
PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

RICHARD HAYDON
Compactness in Cs(T ) and Applications
Publications du Département de Mathématiques de Lyon, 1972, tome 9, fascicule 1
, p. 105-113
<http://www.numdam.org/item?id=PDML_1972__9_1_105_0>

© Université de Lyon, 1972, tous droits réservés.

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PDML_1972__9_1_105_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Publications du 

Département de 

Mathématiques 

Lyon 1972 t.9-1 

COMPACTNESS IN C (T) AND APPLICATIONS s 

Richard HAYDON (*) 

1. - INTRODUCTION. 

In this paper I look at some properties of compact subsets of C g(T) which 
have applications to the "more interesting" space C c(T). A little light is cast 
on the difficult problem of when C c(T) may be a Kelley space, the concept of 
infra-kp-space is examined, and lastly I offer two generalizations of a theorem 
of BUCHWALTER concerning the repletion UT. 

The notations throughout are "standard Lyon". The algebra C(T) of all 
continuous real-valued functions ont the completely regular space T may be 
endowed with the topology either of simple, compact or bounded convergence on 
T and is then denoted by C (T), C (T) or C, (T), respectively. 

S C D 

2. - ON KELLEY SPACES C (T). 
c 

The characterization of M(T) as the space C c(0T) f • M c(6T), of all measures 
of compact support on the c-repletion 6T, enables one to deduce ((Bl) and (HJ) 

that Cc(6T) is always a Kelley space ((BjJ) and that, when T is a kR-space, 
C c(T) is Kelley if and only if T is c-replete. Put into an attractively symmetric 
form : 

C c(T) is a complete Kelley space <— s>T is a c-replete kR-space. 

One can, however, say more, namely that, when T is a kR-space, C c(6T) is the 
Kelley fié k C c(T) ((B,)) of C c(T). 

But what can we say if we do not assume T to be a kR-space ? We can note 
first that the property used to prove the above results is not the full strength 

(*) Research supported by SRC grant B/70/666. 
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Compactness in C S (T) and applications 

of being a kR-space, but only that the compact discs of C C(T) should be equi-
continuous. H. BUCHWALTER has introduced the definition of a property inter­
mediate between these : 

(2.1) DEFINITION* - T is said to be an infra-kR-space if every precompact 
subset of C c(T) is equicontinuous. 

If T is the space of (H 2), 0T is infra-kR and not k R. Evidently, when T 
is an infra-kD-space, 8T is also infra-k and we have C (6T) « k C (T). 

K K c c 
But this last equality does not hold for arbitrary T, as has been pointed 

out in (Hj). I want to consider here the problem posed at the end of that Note : 

If C c(T) is Kelley, need T be c-replete ? 

This question remains open still, but I am able to give some partial results and 
to show how it is linked to properties of compactness in C (T) . 

s 
(2.2) PROPOSITION. - Let T be non-c-replete and suppose that C c(T) is a Kelley 

space. Then there is a compact disc in C (T) that is not compact in C (0T). 
^ s 

Proof. - The continuous characters of the algebra C C(T) are the evaluations 
6 t(t€T). If u e G T ^ T , u is not continuous on C c(T) and, since C c(T) is Kelley, 
not continuous on some compact disc of C (T). This disc is not compact in C (8T) . 

s 
I know of no example of a space T for which some compact subset of C c(T), 

even of C (T), fails to be compact in C (0T). Propositions (2.4) and (2.8) s ® 
suggest that such a space (if one exists !) would be difficult to construct. 

Let us denote by R(T) the set of all closures in T of subsets of T 
and consider the property : 

T 
(A) Every function \J;e(R which coincides on each C c R with a suitable 

f €C(T) is itself in C(T). 
This property was introduced by J.D. PRYCE who proved : 

(2.3) THEOREME ((p), Theorem 2.4). - If T has property (A) then every relati­
vely countably compact (rcc) subset of C (T) is relatively compact (rc) 

s 
in C ( T ) . 

8 
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(2.4) PROPOSITION. - When QT has property (A) the compact subsets of C (T) are 
1 s 

compact in C (61) . 
s 

Proof* - When (f ) is a sequence in C(T) and ueuT, there exists teT such that 
f^(t) = f n( u) ^ o r every integer n. It follows at once from this that the rcc 
subsets of C g(T) and C g(uT) (hence also of C S(6T)) are the same. Thus an rc 
subset of C(T) is rcc in C (6T) and, by the theorem of PRYCE, rc in C(6T). s s s 
If a subset is compact in C (T) it is rc and closed, hence compact, in C (8T). 

s s 
We can note that 0T satisfies (A) if 8T is k^ or if there is a dense K 

subset of 0T, in particular if T is pseudocompact or has a dense (a-bounded) 
subset . 

Write R'(T) for the set of all closures in T of B subsets of T. PRYCE's 
0 

theorem allows the generalization below. 
(2.5) PROPOSITION. - Let T be a completely regular space that satisfies : 

T 
(A1) Every ipelR which coincides on each C € R f with a suitable f e C ( T ) 

is itself in C(T). 
Then every rcc subset of C (T) is rc in C (T). 

s s 

Proof. - Suppose first that T satisfies (A f). I shall show that the bidual T" 
satisfies (A). Recall that the bidual of T is defined ((B2)) as the space T" 
of all continuous characters of the algebra C^(T), embedded as a subspace of 8T. 

Let i|i be a real-valued function on T M and suppose that for all CeR(T") 
there is an f€C(T") with f | c = ip|C. Now if B is a bounded subset of T, B, 
taken in T", is compact, so that the T n closure D of any D€R'(T) is in R(T") . 
Thus, for every such D, there is a g€.C(T) such that g|D = ip|D. Applying (A'), 
we see that \J;|TeC(T). Let us denote by Q the continuous extension of j X to 
T". It will be enough to prove that <J>«\p. If B is bounded in T, B is compact in 
T" ; 4> a n (l ^ a r e both continuous on B and coincide on B. Hence <j> and ^ coincide 
on B. But by proposition 2 of (B2) we know that T" =VJ{B ; B bounded in T} 
and we can deduce that (J) and \J> coincide on T M. 

If now A is rcc in C g(T), A is rcc in C g(T n) by the same reasoning as was 
used in proposition (2.4). A is therefore rc in C (T") and so certainly rc in 

s 
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C g ( T ) . 

(2.6) DEFINITION. - A space X is said to be angelic ({p), p. 534) if 
(i) rcc => rc for the subsets of and 

(ii) every element of the closure of an rc subset A of X is the limit of 
some sequence in A. 

If Te.R f ( T ) , we know already by the first part that (i) is satisfied. 
PRYCE showed that C (T) is angelic if T € R (T) ( ( P ) , theorem 2.5). Therefore 

s C (T") is angelic. If A is rc in C (T) (and hence also in C (T")) and f€A s s s 
(the closure being the same in the two topologies), there is a sequence in A 
that converges to f in C (T"), and which converges to f, a fortiori, in C ( T ) . 

s s 
Then : 

(2.7) PROPOSITION. - If T € R f (T) (particularly if T is pseudocompact)3 C (T) 
s 

is angelic. 

(2.8) PROPOSITION. - Let T be a (completely regular) space in which all closed 
CO 

and discrete subspaces are C -embedded (particularly if T is normal or 

countably compact) and that satisfies : 

(B) For every u € 0 T s T there is a base U of neighbourhoods of u in 8T 
such thatj whenever t /CU and the cardinality of 1/ is strictly less than 

that of U, then Tn(O^) is nonempty. 
Then the compact subsets of C (T) are compact in C (6T). 

s s 
Proof. - It is enough to show that every character u€0T is continuous on each 
compact A c C ( T ). Suppose then that u is not continuous on such an A ; there is 

S 8 0 a net (f ) in A such that f f in C (T) while f (u) + Si t f (u) . We can 
ot ot s ot 

assume that the f are uniformly bounded by 1, that f^ 0 in C g ( T ) and that 
f 6(u) = 1 for all a. a 

Let U be a base of neighbourhoods of u in 0T with the property of ( B ). Then 
if BCC(T), l/CU and card B, card V are strictly less than card li, there exists 

ft 

t € T such that tcfV and f(t) • f (u) for every f e B . Let us denote by ft the 
first ordinal of cardinality card U and index U as (U^)^^- 1 shall define, by 
transfinite induction, families (x^) in T and (g^) in A with the properties : 
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(a) g ?(x c) 4 1/2 (£*0, 
(b) g c(x ?) = 1 = g|(u) a<o, 
(c) u in 6T. 

Let x o be an arbitrary point of T and choose a 0 such that f (x c) ^ 1/2. 
Put g o = f^ . Suppose that x^ and g^ have been defined for all £ less than 
some ri<fi and that (a) and (b) are satisfied. Since the cardinality of (o,ri( 
is less than card (J, there exists x^Tn(0 ^ ) such that 

Let us now choose, for each finite subset S of (o,n) > an otg such that 
f (x>-) ̂ 1 / 2 ( C ^ S ) . Let e be a cluster point of the net (f ), directed by 

a S ^ " S 
the upward filtering set of finite subsets of (o,n). Then we have 
g^Cx^) £ 1/2 (g*n) and 

g6(u) = 1 (because there is t€T with g^Ct) = g^(u) and f^ (t) = (u) for 
S S 

every finite set Sc(o,n)). 

Since, by construction, each x is in | ^ ^ U r , we see that x u in 6T. 

I shall now show that {x^ ; r}<£2} is a closed discrete subspace of T. If not, 
there is £<ft such that {x^ ; r\<l} has an accumulation point x in T. Choose 
to be the least such ordinal ; then x is in the closure of {x^ ; £<n<£} for each 

Hence g^(x) = 1 for every Let g be a cluster point of the net 
(g p) . Then 

g(x) - 1, but 
g(x ) ̂  1/2 (n<C), since 
g^(x^) £ 1/2 (n<C <C)• This contradicts the continuity of g at x. 

Since {x^ ; £<ft} is a closed discrete subspace of the space T, there is 
a continuous function f€C(T) with f(x^) = 0 (£ an isolated ordinal) 

f(x^) = 1 (£ a limit ordinal). 
But such an f can have no extension that is continuous on 6T, and this contra­
diction ends the proof. 

Proposition (2.8) applies in particular to the non-c-replete P-space of 
((GJ), 9.L). In this case there exists, for every ^ € R 6 T and every C€R(6T), 

109 



Compactness in C S(T) and applications 

a function f£C(6T) with f | c = i p | c ; a situation very different from that consi­

dered in proposition (2.4). 

For the last result in this paragraph, we return to the methods of propo­

sitions (2.4) and (2.5). 

(2.9) PROPOSITION. - A compact subset of C (T) remains compact in C (yT). 

Proof. - By the characterization of yT as the space obtained by transfinite 

iteration of the bidual operation ((B 2), théorème 2), it is enough to prove 

that a compact subset A of C (T) is compact in C (T"). Such an A is countably 

compact in C (T'f) and hence, for each bounded BCT, A|B is countably compact 
s 

in C g(B°). But countable compactness and compactness coincide in this space, 

since B° is compact. Thus, for all characters u in B°, u|A is continuous for 

the topology of pointwise convergence on B, and we deduce that U|A is C (T)-
s 

continuous for every u€T". 

(2.10) COROLLARY. - If C (T) is a Kelley space then T is a \i-space, i.e. C (T) 
' c c 

cannot be Kelley without being barrelled. 

3. - INFRA-kR-SPACES. 

The space T of (Hg) has given us an example of a complete les E = C c(T), 

the Kelleyfié of which, F « kE = C c(0T), is not quasi-complete. F is, however, 

a ^-semi-reflexive space ((DJ)), that is to say, every precompact subset is 

relatively compact. In this example 8T happens to be an infra-k -space, but 

it would seem, a priori, that the property "every precompact set is relatively 

compact11 was a good deal weaker than the infra-kR-property, "every precompact 

set is equicontinuous". But it turns out that this is not the case. 

(3.1) THEOREM. - T is an infra-k^-space if and only if every precompact subset 

of C (T) is relatively compact in C (T). 
c s 

(3.2) COROLLARY. - T is an infra-k^-space if and only if C c(T) is ^-semi-

reflexive . 

We shall need a definition and two preliminary results. 
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(3.3) DEFINITION. - Let us say that a subset H of C(T) is closed under lattice 
operations (or, more simply, lattice-closed,) if fVg€.H and f A g € H whenever 
f,g£H. If HcC(T) 3 define the lattice-closed hull AH of H to be the 
smallest lattice closed set that contains H. 

(3.4) LEMMA. - For a subset H of C(T) the following are equivalent : 
(a) H is precompact in C^(T) ; 
(a1) for every compact KCTj HJK is bounded and equicontinuous in C(K) (i.e. 
H|KeH(K)) ; 
(b) AH is precompact in C c(T) ; 
(bf) for every compact KCT, AH|K€H(K). 

Proof. - The equivalences(a)<=>(a*) and (b)<=>(b!) are consequences of ASCOLI's 
theorem, (a1) is equivalent to (b ?) since the lattice-closed hull of an equicon-
tinuous set is equicontinuous. 

(3.5) PROPOSITION. - A lattice-closed, relatively compact subset of C (T) is 
equicontinuous. 

Proof. - Let H be such a set and suppose, if possible, that H is not equiconti­
nuous at some teT. We can assume that, for some e>0, there are, for each 
neighbourhood U of t, a function h^CH and a point ^€11 such that 

h^ty) * h^t) + e. 

Now the set {h(t) ; h€H} is bounded in (R and there exists a subnet of (hy(t)) 
convergent to some a€IR. That is to say that there is a base U of neighbourhoods 
of t such that h^(t) a as U decreases through U. We can suppose that 
|hy(t) - <x| < e/3 (U€U) f so that h^t) 4 a + e/3 and 1^(1^) > a + 2e/3 for 
all U£U. 

Now let us define, for each finite subset F = <Uj s...»U } of U, 
g F • hy V ...Vhy and note that g p(t) < a + e/3 for all F, and gpC^) ^ a +2 e/3 

1 n 
whenever U € F. 

Each g F is in H and so there is a subnet of (g f) convergent in C g(T) to 
some g (in fact, to g « Sup h ) and we see that g(t) < a + e/3 while 

U€U U 

g(tjj) ̂  a + 2 e/3 (U€U). This contradicts the continuity of g at t. 
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Proof of theorem (3.1). - The necessity of the condition comes from the fact 
that a pointwise bounded equicontinuous subset of C(T) is relatively compact 
in C g(T). 

Suppose now that the condition is satisfied and that H is a precompact 
subset of C c(T). By lemma (3.4), AH is precompact in C c(T), and hence relatively 
compact in C (T). But now, by proposition (3,5), we deduce that AH is equicon-s 
tinuous• 

4. - TWO GENERALIZATIONS OF A THEOREM OF BUCHWALTER. 

H. BUCHWALTER has shown that, if UT is a kR-space, then necessarily 
UT • 0T. There follow two generalizations of this result. 

(4.1) LEMMA. - If H6tf(T) and card H is non-measurable> then the metrizable 
space T u is replete and H U€ H ( u T ) . 

H 

Proof. - Recall that T u is defined to be the Hausdorff quotient of T endowed 
I I H with the pseudometric d(s,t) » Sup |h(s)-h(t)|. There is an injection T IR 

card H h * H 

so that card T u ^ c C . Now if m,n are non-measurable cardinals, so is mn 

((i), p. 128) and it follows that T R is replete. 
H factors through the quotient mapping TT„ : T •+ T u, as H « H. 0 7 r T 7 where 

v) H 1 H 
HjfcH(T H). Since T R is replete, TT h extends to TT r : oT + T R and 

H U » Hj o T T^eH ( u T ) . 

(4.2) THEOREM. - Let T be a completely regular space and suppose either : 

(a) uT has property (A), or 
(b) uT is an infra-k^-space. 

Then uT = 9T. 

Proof : 

(a) Let H € H ( T ) . H is relatively compact in C g(T) and hence relatively countably 
compact in C ( u T )• By the theorem of PRYCE, H is relatively compact in C ( u T ) . s s 
We can deduce that the topologies of C (T) and of C (UT) coincide on H and hence 

s s 
that, for any u € u T , u|H is continuous for the topology of simple convergence 
on T. But this is exactly the condition for a character u to be in 0T. 

112 



Compactness in C S (T) and applications 

(b) Again suppose H€H(T). As above, it will be enough to show that H U is rela­

tively compact in C g(uT) and hence enough to show that H
U is precompact in 

C c(uT). This will be true provided that J
U is precompact in C c(uT) for each 

countable JCH. But, by lemma (4.1), we know that each J U is even in H(uT). 
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