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EQUIVALENT CONDITIONS FOR UNIQUE FACTORIZATION

by C.R. FLETCHER

Univensity College of Wales, Aberystwyth.

1 - INTRODUCTION.

This paper forms the main part of an address given at
the University of Lyon in May 1971. Results on Euclidean
rings, which were also stated, will shortly be appearing in
the Journal of the London Mathematical Society (see (3)),
and will not be repeated here. The terminology used in the
sequel was defined in (1) and (2). All rings are commutati-
ve and have identity elements.

In (2) we showed that if R is a pseudo—domain having
the property that every non-unit element has an irreducible
decompesition, then R is a unique factorization ring (UFR)
if and only if every irreducible element is prime. This
résult we now generalize, and we also consider the generali-

zation of other equivalent conditions from the theory of UFD's.
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2 - MAIN RESULT.

THEOREM 1. - R 48 a ning 4in which every non-unit element has
an Ovieducible decomposition. Then R 44 a UFR {4
and only if every ureducible {8 prime.

PROOF. - One way rond is trivial. For suppose R is a UFR, then
from (2), R & RIO---ORn where Ri is a UFPD for i = 1,...,n.
If p is irreducible in R and p|ab, then p is of the form
(ul,...,pi,...,u ) where P4 is irreducible in R and u (3#1i)
is a unit in R, , and p; |a b, with an obvious notatl.ons. The
result from (2) mentmned above proves that P; is prime in R.
and hence p]._la:.L or pi|bi. Therefore p|a or plb and p is prime
in R.

To prove the converse we require some further results.

PROPOSITION 2. - 14 R 48 a ning in which every non-unit
element has an iwveducible decomposition, and 44
eveny {ueducible element of R 48 prime, then the
factons of the nelevant part of each U-decomposs-
tion of 0 are unique ap 1o aﬁéacLaILVLty, L.e. if

0= ()(og? ceca ) = ( )(Bl e*Bp )
whenre o, and o ane not associate fon 1#3 , and
B, and B, are not associate forn rés , then n = £
and o and 8; are associate gon i = 1,...,n aften
a suitable nenomberning of the 8's. (At this stage
m, # ky necessanily) .
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PROOF. - ai|6¥1---s§£ and since a. is irreducible and hence
prime we have ailsj say. Similarly lea?a-~'u:n and leaksay.
Therefore ailak ,» and either a; and a, are associate or
aieU(ak). In both cases we have i=k and @. and Bj are asso-—
ciate. Thus taking each factor in turn we get a; and
jl’...,an and Bjn are associate. Now if B.s are associate,
then a. and a  are associate and r=s. Hense B. ,~'°,Bjn
represent distinct associativity classes, and £3n. Similarly,
starting with the B's we may prove that n»f, which implies
n=f. We have also proved that a and Bi are associate for

i=1,...,n after a suitable repumbering of the B's.

In the sequel 0 = ( )(u?l-~-a:n) will always be a U-
decomposition of 0 where a, is not an associate of aj for
i#i.

PROPOSITION 3. - R 48 a ning in which every non-unit efement
has an <nreducible decomposition and every iure-
ducible element L& prime.If 0 = ( )(agu--°a:n) then

-

d-
ml... 1... mtl
(£) ai¢U(a1 a;teeea M) where 0<d,<m. for

i=1,...,n.
o
{£L) aieU(ai ) fon i=1,...,n.

PROOF. - ({) Immediate.

{4£) Suppose i=1 and put oj=a, mj=m. If n=] then
m
0= ( )(am) and an(dm). If n>1 then 0 = am(a-(a—azz--oa:n)).

m .
Suppose G'ng"°a:n = u a unit, then am+] = amu and an(am).
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m, m, . . . . . .
a-azz---an is a non-unit then it has an irreducible décompo-
s m+ m . . s .
sition dl---dg and o . a dloo-dg. Since d, is irreducible

it is prime and dila, i=1,...,8. Then either dl and a are as-
sociate or dieU(a). If the former then a?z--- :n = a-dje--d
implies that alaj for some j»2, and either a and @; are asso-
ciate or aGU(aj).

Contradiction from the U-decomposition of 0. Therefore
diEU(a) and dy¢++d €U(a). Hence a = dl---dgra and

= d1~--dgram = ram+l, which gives aeU(a®).

COROLLARY. - 0 has unique factorization,

k k
PROFF. - Suppose 0 = ( )(a?l---amn) = ( )(611'--B££) then
from Prop031t10n 2, I=n and a; and B are assoclate i.e.

= ( )(al '--an ) = ( )(al ---akn). If for some i m, >k
m; -1
then o, €U(a1 AN 17 seca ) and O, €U(a ') from above. But
m. -1
U(al ---ail ecal )2 U(ai ) and we have a contradiction.

Therefore m, = ki for i=1,...,n.

It is immediate that every zero-divisor irreducible in
R has a; as an associate for some i. Also we see that the

d X
U-decomposition of the product a?l---ann is (a?l---ann)

ylooo Yn 1 = =
(o7 e ) where if di; s then X, di-mi and y; =m

and if d,<m. then x; =0 and y; =d

i L]
We are now able to complete the proof of our main re-

sult.
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PROOF of THEOREM 1. - Suppose r is a non-zero element of R

with irreducible decompositions:

r = pl...pkell...B}kIBZI..‘Bnk = qlcooqulloo.‘YlllYZI
“Yap where the p's and q's arenregular and where B

ij
and Yi? are associate to a, . Substituting we have :
rau .I.u p ..'p akl..laknzv ..‘v q I"q a‘zl...a -
11 pk F1 k 1 n 11 nl 1 A 1 n

n
Let us suppose that k;<m;. Then if k;<£; we may multiply

through by arlamz-o-&mn where r; = max(0,m;-£,) to obtain :
1792 n 1 1741
. ky+ry; ko+m, k1:1."mn
ull..'unk pl ..pkal az ...an
n

+m
-~ v LR .v LN ) ull +r1 £2+m2 LN ] .aln n
11 n!.nql 9™ a2 n *

The right hand side is zero since £,+r,»m). Therefore
m
n
Un 811 Bnkn =0
since the p's are regular. Transforming to U-decomposition

ry m
oT 1402

using Proposition 3 we have
m
r; m n
(821"°Bnkn) (Bll"'B]kldlla22°"an ) =0,
which implies that Bi1°°*Byy aflugz‘--unn = 0 from Proposition
1.
3 of (1). Hence a§1+r1d?2---a:n = 0 which is impossible since

ky+ry<m, . We have thus proved that in this case k; = £;. Simi-

larly if £,<k; we may prove the same result.

Now suppose that kj2m. If £,<m; the above proof may be
repeated with k; and £, interchanged. Hence we suppose kj,£;>m;.
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We transform the original irreducible decompositions to
U-decompositions using Proposition 3 and noting that in any
statement a€U(b) or its negative, we may replace either ele-
ment by an associate. Hence in both U-decompositions there
will be exactly m; elements associate to a; in the relevant
part. Now considering the elements associate to az,---,an

we see that we have proved the uniqueness of the non-regular

factors of r.

Turning to the regular factors, suppose p; is in the
relevant part. Then pllr and therefore pllql , OF PllYll say.
If latter holds then p;€U(y,;) (Proposition 1 of (2)) and
p1€U(B;;). Contradiction. Hence p; and q; are associate since
p1¢U(q1) = {units}. Now q; is also in the relevant part be-
cause otherwise qleu(Yll"'Ynl ) which implies pleU(Bll"'Bnk )
a contradiction as before. By Gancellation we immediately see®
that the number of associates of p; equals the number of asgso-~
ciates of q; , considering relevant parts only. Arguing in a
like manner we prove that all regular factors in the relevant

part are unique.

Putting the two results together we have proved that r

has unique factorization and therefore R is a UFR.

3 - EQUIVALENT CONDITIONS.

The result in the previous section may lead one to suppoge
that a complete generalization of the usual equivalent condji-

tions for a UFD is possible, but one is soon disillusioned. Hgw
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wever we have the following.

THEOREM 4. - The foflLowing conditions on a ning R are equi-
valent.
(£) R {5 a UFR.
(44) R satisfies the maximum condition for prin-
cdpal {deals, and every iureducible efement
48 prime.
(£dl)  Every non-unit element of R has a factorni-
zation into primes.
PROOF. - (L) =>(4{L). - If R is a UFR then every irreducible
is prime (Theorem 1). From the structure theorem (2),
R & RIG---QRn where each R, is either a UFD or a special PIR.
Hence each R, satisfies the maximum condition on principal

ideals, and it is a simple matter to show that R does also.

(i) => (4il) . - Consider the set of principal ideals gemerated
by non-unit elements not having an irreducible decomposition.
The existence of the maximum gives the contradiction (see (1)
Theorem 7). Then every non-unit has an irreducible decomposi-

tion and hence a prime decomposition.

(4L} =>(4). - From Theorem ! it is sufficient to prove that
every irreducible element is prime. So suppose q is irredu-
cible and q = P1*°°P, where each P; is prime. Then qlpi for

some i, and q and p; are associate. Therefore q is prime.

The next result gives conditions that are necessary but
not sufficient.
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THEOREM 5. - 1§ R 4is a UFR then the foLlowing conditions hold.

({) R satisgies the maximum condition for prinedi-
pal ideals, and the internsection of any iwo
prineipal ideals is principal (L.e. any two
elements have an l.c.m.).

(££) R satisfies the maximum condition gor prin-
cipal ideals, and the set of principal ideals
containing any two principal ideals has a
unique minimum (L.e. anay two elements have a
g.c.d.).

(£LL) Eveny non-zero prime {deal (#R) 0f R contains
a non-zerno prinelpal prime ideal.

PROOF. - R 2 R;8--+8R where each R, is either a UFD or a spe-
cial PIR. Hence conditions {{) and (4{{} are satisfied for each
Ri , and therefore also for R. Now suppose P is a prime ideal
and P # (0), R. Then there exists a non-zero, non-unit r P
which has a prime decomposition Py** Py from Theorem 4. Thus

(pj)QP for some j.

To prove that no part of Theorem 5 has a converse we need
two couter—examples. Both are constructed from the familiar
example Z[/:-3] is domain theory. First consider By = {(m,n)
|m,n€z,} where

(ml ,n1)+(m2,n2) = (ml+m2’nl+n2)

and (ml ,nl) . (mz ,nz) = (mlm2+n1n2 ,m1n2+n1m2) .
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Then ({) and ({{) are satisfied since in pictorial form the
ideals are

where J = (2,2)B, , I; = (2,0)B, = (0,2)B, , I, = (1,3)B, =
(3,1)B, , I3 = (3,3)B, = (1,1)B, , and M is the unique maximal
ideal consisting of all non—units. However (2,0) is irreducible
but not prime, since (1,1)(1,1)€I,. Therefore from Theorem 1
B, is not a UFR. We remark in passing that it is still an open
question whether strengthening the hypoth&ses, so that the sum

of principal ideals is principal, will ensure that the ring is
a UFR,

The second counter-example is R = B®Z, where B = z[/=3].
R is not a UFR since B is not a UFD (see (2) Theorem 10). The
prime elements of R are of the form (p,v) and (u,q) where p,q
are prime and u,v are units in B and Z, respectively. 0 is pri-
me in B and 2 is the only prime in Z,. Suppose P (# (0),R) is
a prime ideal of R. Then not all elements of P are of the form
(b,0) since (0,2)(0,2)€P. If P has an element of the form (b,3)
then (b,3)(1,3) = (b,1)EP and (0,1)RESP. Finally suppose (b,2)EP.
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Then (b,2)(1,2) = (b,0) = (b,1)(1,0)€P. The case (b,1)€P has
been dealt with. Suppose (1,0)€P. Now (b,2)(0,1) = (0,2)€P
and therefore (1,0)+(0,2) = (1,2)€P. Hence (1,2)REP. We have
proved that every non-zero prime ideal of R contains a non-

zero principal prime ideal.

It is perhaps surprising to find that a ring satisfying
the maximm condition for principal ideals and having the ad-
ditional property that every irreducible is prime is a UFR,
whereas one with the additional property that every pair of
elements has a g.c.d. is not a UFR in general. In the domain
case of course the g.c.d. property implies that every irre-

ducible is prime.
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