PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

G. MAURY

Enveloppe quasi-injective d'un objet dans une catégorie abélienne de Grothendick à générateur

Publications du Département de Mathématiques de Lyon, 1966, tome 3, fascicule 4, p. 67-74

http://www.numdam.org/item?id=PDML_1966_3_4_67_0

© Université de Lyon, 1966, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ENVELOPPE QUASI-INJECTIVE D'UN OBJET DANS UNE CATEGORIE ABELIENNE DE GROTHENDICK A GENERATEUR.

G. MAURY

Introduction: La notion de module quasi-injectif a été introduite par Johnson [1]. Celui-ci a établi pour tout module l'existence d'une enveloppe quasi-injective [1] et [2]. L'existence d'une enveloppe injective pour un objet d'une catégorie abélienne à générateur, de Grothendick est prouvé dans [3] (on pourra aussi se reporter au chapitre 6 du cours [5]. Il est normal de se demander si dans la catégorie à tout objet a une enveloppe quasi-injective, question qui ne parait pas avoir été résolue.

Remarquons que si & est "équivalent" à une catégorie de modules, ce qui a lieu si et seulement si & possède un petit générateur projectif [4] il est prévisible à coup sûr que le résultat excompté est vrai. Il est moins évident si la catégorie & possède un générateur, sans autre hypothèse sur ce générateur.

On pourra se reporter à l'ouvrage [4] ou au cours [5] pour les propriétés classiques des catégories abéliennes de Grothendick à générateur. Dans la suite & désignera une telle catégorie.

1 - Préliminaire :

Définition 1 : Un objet M de & sera dit quasi-injectif si et seulement si pour tout sous-objet N de M (dont un représentant est le monomer-phisme i : N→M) et pour tout morphisme f : N→M il existe un morphisme h : M→M tel que f = h.i.

Définition 2 : On appelle endomorphisme de M un morphisme h appartenant à $\operatorname{Hom}_{\mathfrak{S}}(M;\mathbb{N})$, $\operatorname{M} \in \operatorname{Ob}(\mathfrak{S})$.

Définition 3 : Soit h un endomorphisme de M et N un sous-objet de M, de représentant i : N→N, on appelle restriction de h à N le morphisme hi = h'. N sera dit stable par h si

Im h' = Im hi ≤Im i = i ou encore h(N) ≤ N.

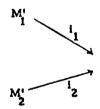
Démontrons d'abord les lemmes suivants que d'aucuns considéreront comme évidents :

Lemme 1: Soient M_1' et M_2' deux sous-objets de M, tels que $M_1' \cap M_2' = 0$.

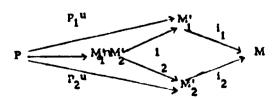
Posons $P = M_1' \oplus M_2'$. Alors $P = M_1' \vee M_2'$.

Démonstration: Soient $i_1 = M_1' \rightarrow M$ et $i_2 : M_2' \rightarrow M$ des représentants des sous-objets M_1' et M_2' de M. On sait que si l'on a $\varphi = i_1 p_1 + i_2 p_2$; Im $\varphi = M_1' \vee M_2'$, p_1 , p_2 représentant $M_1' \otimes M_2'$ corme produit direct de M_1' et M_2' , (voir par exemple le chapitre 2 du cours [5]). Montrons que φ est un monomorphisme si $i_1 \cap i_2 = 0$: soit u tel que φ u = 0 c'est à dire tel que $p_1 = p_2 = p_3 = p_3$

remarque que i ni est le produit fibré du diagramme



il existe un morphisme unique $\[\]$ tel que $p_1 u = \mathcal{L}_1 \[\]$, $-p_2 u = \mathcal{L}_2 \[\]$. Mais par
hypothèse $M_1' \cap M_2' = 0$, donc $p_1 u = p_2 u = 0$ d'où u = 0 car u = 0 est le seul morphisme tel que $p_1 u = p_2 u = 0$. Nous venons de prouver que φ est un monomorphisme



donc $\varphi = \text{Im}\varphi$ et les sources respectives de φ et $\text{Im}\varphi$ c'est à dire $M_1' \oplus M_2'$ et $M_1' \vee M_2'$ sont isomorphes.

Lemme 2: Soit N un sous-objet de M il existe un sous-objet maximal N' de

M tel que NoN' = 0 et alors M est extension essentielle de NeN'.

Démonstration: Soit la famille F des sous-objets N' de M tels que NoN' = 0.

Il y a déjà 0. Elle est inductive car soit $\{N_i\}_{i \in I}$, I ensemble d'indices une famille d'objets appartenant à F et croissante, alors $(\bigcup_{i \in I} N_i) \cap N =$ = $\bigcup_{i \in I} (N_i \cap N) = 0$ et ainsi $\bigcup_{i \in I} N_i$ appartient à F. Soit N' un élément maximal de F. Montrons maintenant que M est extension essentielle de NeN': ce résultat est cité sans démonstration à propos de la démonstration de la proposition 12 page 362 dans la thèse 3:

Nous aurons besoin d'établir deux points :

ler point: Si M_1' , M_2' , M_3' sont des objets d'une catégorie abélienne \mathcal{E} on a M_1' 0 (M_2' 0 M_3') = $(M_1'$ 0 M_2')0 M_3' .

Il suffit de se reporter à la définition de la somme directe (voir par exemple [5] chapitre 1).

<u>2ème point</u>: Si M' = M' v M' = M' eM' , M' et M' étant des sous-objets de M alors $M'_1 \cap M'_2 = 0$. Soient e_1 et e_2 les monomorphismes canoniques de M' et M' dans M' respectivement, p_1 et p_2 les surjections canoniques de M' sur M' et M' respectivement. On a $l_{M'} = e_1 p_1 + e_2 p_2$ et $p_1 e_2 = 0$, $p_2 e_1 = 0$ donc $e_2 < \text{Ker } p_1$. De plus $\text{Ker } p_1 = e_2 p_2$ $\text{Ker } p_1$ donc $\text{Ker } p_1 < e_2$ et $e_2 = \text{Ker } p_1$ de même $e_1 = \text{Ker } p_2$. On a donc $m'_1 = m' / m'_2 = m''$ et $m'_2 = m' / m'_1 = m''$ et $m'_1 \cap m''_2 = m' / m'_1 = m''$ et $m'_1 \cap m''_2 = m' / m'_1 = m''$ (voir par exemple cours [5] chapitre 2).

Ceci étant supposons qu'il existe un sous-objet \mathcal{Q} de N $\mathcal{L} \neq 0$ tel que (1) $\mathcal{Q} \cap (\text{NeN'}) = \mathcal{Q} \cap (\text{N V N'}) = 0$ (lemme 1).

D'après le lemme 1 et le ler point on a $\mathcal{Q} \oplus (N \oplus N') = \mathcal{Q} \vee (N \vee N') = (\mathcal{Q} \oplus N') \oplus N' = (\mathcal{Q} \vee N') \vee N (\mathcal{Q} \oplus N' = \mathcal{Q} \vee N' = C d'après (1))$. Il en résulte $(\mathcal{Q} \vee N') \cap N = 0$ d'après le 2ème point donc $\mathcal{Q} \vee N' = N'$ d'après la maximalité de N' donc $\mathcal{Q} \leq N' \leq N' \vee N$ et $\mathcal{Q} \cap (N \vee N') = \mathcal{Q} \neq 0$ et ceci contredit (1).

2 - Les théorèmes :

Théorème 1 : Soit & une catégorie abélienne de Grothendick à générateur.

Un objet M de & est quasi-injectif si et seulement si tout morphisme d'un sous-objet N' de M dans M se prolonge en un endomormorphisme de M., lorsque M est extension essentielle de N'.

Démonstration: La condition est évidemment nécessaire.

$$\tilde{f} = g.n$$
 et $\tilde{f}.e_{1} = f = gne_{1}$

alors f est par définition la restriction de g à N et par suite M est bien quasi-injectif.

Théorème 2 : Pour qu'un objet de & soit quasi-injectif il faut et il suffit qu'il soit stable par tout endomorphisme de son enveloppe injective M.

Démonstration : Etablissons d'abord une remarque, considérons le diagramme

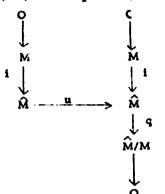
suivant à colonnes exactes. D'après la formule Ker $v \cap Im u = u(Ker(vu))$ et d'après les définitions de u(M), $u^{-1}(M)$ (se reporter au chapitre 3 du cours [5]) on peut écrire $u(M) \cap M = Im(ui) \cap Ker q = Im(ui Ker(qui))$.

Posons
$$A = u^{-1}(M) \cap M$$
,
 $A = \text{Ker}(qu) \cap i = u^{-1}(M) \cap M =$

$$Im(i.\text{ker}(qui))$$

$$= i.\text{Ker}(qui)$$

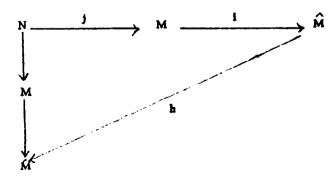
 $u(A) = Im(ui Ker(qui)) = u(M) \cap M.$ On peut trouver $A \le M$ tel que



 $u(A) \le M$. Il suffit de prendre en effet $A = u^{-1}(M) \cap M$, on a $u(A) = u(M) \cap M$ et de plus si l'on suppose $u(M) \cap M \ne 0$, on a $u(A) \ne 0$.

Cette remarque nous servira ci-dessous.

Montrons d'abord que la condition énoncée par le théorème est suffisante. Si $N \le M \le \widehat{M}$, \widehat{M} désignant l'enveloppe injective de M (voir chapitre 6 du cours [5]), et si f appartient à $Hom_{\widehat{G}}(N,M)$, on peut tracer le diagramme ci-dessous : f se prolonge en un endomorphisme h de \widehat{M} puisque cet objet est injectif. Par hypothèse $Im(hi) \le i$. Considérons la restriction de h à N soit hij on peut écrire hi = i \widehat{G} donc hij = i \widehat{G} j = if et \widehat{G} j = f.



Or 3 appartient à Hom (M,M): on voit donc que f se prolonge en un endomorphisme de M (a savoir 2): M est bien quasi-injectif.

La condition est nécessaire : si M est quasi-injectif, scit f un endc-

morphisme de M (diagramme ci-contre).

Posons N = M \(\) \(\) \(\) \(\) \(\) un représentant du scus-objet N de M :

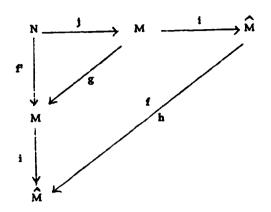
if' = fij , f' se prolonge à son

tour en un endomorphisme g de M qui

se prolonge en un endomorphisme h

de M puisque M \(\) \(\) et que \(\) est

injectif : gj = f' et hi = ig.



Supposens que nous ayens mentré que en pesant u = h - f, u(M) = 0, alors on peut écrire hi - fi = 0 ou encere hi = fi = ig et $Im(fi) \leq Im(ig) \leq i$, ceci prouve que M est stable par f.

Tcut revient donc à preuver que u(M) = 0. Si $u(M) \neq 0$ comme \mathbb{R} est extension essentielle de M, $u(M) \cap M \neq 0$ alors d'après la remarque du début il existe A tel que $A \leq M$, $u(A) \leq M$ et $u(A) \neq 0$: soit a un représentant du scusobjet A de M:

on a donc bien $ia \leqslant \overline{f}^{1}(M) \cap M = ij$ et ia = ijj'. Enfin on peut écrire :

(fi-hi)a = 0 et $u(\Lambda)$ = 0 ce qui contredit $u(\Lambda) \neq 0$. Ceci prouve bien que u(M) = 0.

Corollaire : Dans une catégorie & abélienne de Grothendick à générateur, tout objet admet une enveloppe quasi-injective.

Démonstration: Soit M un objet de C, M son enveloppe injective. Soit fla famille des sous-objets de M contenant M et qui sont stables par les endomorphismes de M, M appartient à J.

L'intersection d'une famille finie ou non d'éléments de \mathcal{F} appartient encore à \mathcal{F} : en effet soit $(M_i)_{i\in I}$ une famille d'éléments appartenant à \mathcal{F} et soit M' leur intersection (elle existe puisque la catégorie est de Grothendick donc cocomplète) : soit f un endomorphisme de \hat{M} :

$$f(\bigcap_{i \in I} M_i) \leqslant \bigcap_{i \in I} f(M_i) \leqslant \bigcap_{i \in I} M_i$$

(voir chapitre 3 du cours [5]) M' est la plus petite extension quasiinjective de M: en effet M' contient évidemment M et M extension essentielle de M l'est de M' donc est l'enveloppe injective de M': d'après le
théorème 2, M' est quasi-injectif. D'ailleurs M' est extension essentielle
de M (on a $M \le M' \le M$ et M est extension essentielle de M.) Soit maintenant P
une extension essentielle de M quasi-injective, \hat{P} est extension essentielle
de M donc $\hat{P} = \hat{M}$ et P appartient à la famille \hat{P} donc contient M':

M' est donc la plus petite extension essentielle de M quasi-injective : on l'appelle l'enveloppe quasi-injective de M.

Remarque: Il est facile d'établir l'existence d'une enveloppe quasi-injective pour un objet M d'une catégorie de Grothendick localement petite (sans l'hypothèse d'un générateur) lorsque cet objet admet une enveloppe injective.

BIBLIOGRAPHIE

[1] JOHNSON : Quasi-injective moduls and irreduable rings.

Journal of London Mathematical Society vol. 36 1961.

[2] RAVEL J. : Article d'exposition : Modules quasi-injectifs

(1965 Section de Documentation, Faculté des Sciences
de LYON).

[3] GABRIEL : Bul. Soc. Math. France 90 - 1962, 323 - 448.

[4] MITCHELL: Theory of categories, Academic Press, 1965.

[5] MAURY G. : Introduction à la théorie des catégories. 2ème partie du cours de 3ème cycle 1965-1966. Faculté des Sciences de Iyon.