Nouvelles annales de mathématiques

J. Dolbnia

Sur le développement de \sqrt{R} en fraction continue

Nouvelles annales de mathématiques 3^e série, tome 10 (1891), p. 134-140

http://www.numdam.org/item?id=NAM_1891_3_10__134_0

© Nouvelles annales de mathématiques, 1891, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUR LE DÉVELOPPEMENT DE √R EN FRACTION CONTINUE;

PAR M. J. DOLBNIA.

Je me propose d'exposer ici la démonstration très simple des quelques théorèmes insérés dans le Mémoire d'Abel Sur l'intégration de la formule différentielle, etc. (1).

Théorème I. — R étant une fonction entière de x, \sqrt{R} se développe en fraction continue illimitée

$$\sqrt{R} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \cdots + \frac{1}{\alpha_i + \frac{1}{y_i}}}}$$

où α , α_1 , α_2 , ..., α_i sont des fonctions entières, y_i est l'un des quotients complets quelconque. Je dis que y_i est racine de l'équation

$$Ay_i^2 + 2By_i - C = 0,$$

οù

$$\mathbf{A} = p_i^2 - q_i^2 \, \mathbf{R},$$

p_i, q_i étant des fonctions entières, et les coefficients A, B, C satisfaisant à l'égalité

$$B^2 - AC = R$$
.

⁽¹⁾ Œuvres complètes, t. I, p. 104 et suiv.; 1881.

Demonstration. - Posons

$$\alpha + \frac{1}{\alpha_{1} + \frac{1}{\alpha_{2} + \cdots + \frac{1}{\alpha_{l-1}}}} = \frac{p_{l-1}}{q_{l-1}},$$

$$\alpha + \frac{1}{\alpha_{1} + \frac{1}{\alpha_{2} + \cdots + \frac{1}{\alpha_{l-1} + \frac{1}{\alpha_{l}}}}} = \frac{p_{l}}{q_{l}},$$

alors on aura

$$\sqrt{\mathbf{R}} = \frac{p_i \, \mathcal{Y}_i + p_{i-1}}{q_i \, \mathbf{v}_i + q_{i-1}},$$

ou

$$\begin{split} &(p_i^2 - q_i^2 \, \mathbf{R}) \, \mathcal{Y}_i^2 \\ &+ 2(p_i \, p_{i-1} - q_i \, q_{i-1} \, \mathbf{R}) \, \mathcal{Y}_i + (p_{i-1}^2 - q_{i-1}^2 \, \mathbf{R}) = \mathbf{0}. \end{split}$$

D'où il suit que

$$\Lambda = p_i^2 - q_i^2 R,$$
 $B^2 - AC = (p_i q_{-i} - q_i p_{i-1})^2 R = R, \quad \text{c. q. f. d.}$

THEOREME II. - Soit

$$\sqrt{R} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \dots + \frac{1}{\alpha_l + \alpha_l \frac{1}{y_l}}}}$$

ou y l'est l'une des racines de l'équation

$$(p_i^2 - q_i^2 R) y_i^2 + 2(p_i p_{i-1} - q_i q_{i-1} R) y_i + (p_{i-1}^2 - q_{i-1}^2 R) = 0.$$

 s_{ι}

$$p_i^2 - q_i^2 R = a,$$

a étant constant, pour i impau, nous au ons

$$a=1$$
.

Démonstration. — Des équations

$$p_i^2 - q_i^2 R = a,$$

 $p_i q_{i-1} - q_i p_{i-1} = (-1)^{i-1} = 1,$

on déduit

$$q_i q_{i-1} R - p_i p_{i-1} = \frac{p_i - a q_{i-1}}{q_i},$$

d'où il suit que

$$\frac{p_i - aq_{i-1}}{a_i}$$

est une fonction entière. Mais, comme

$$\delta p_i > \delta q_i > \delta q_{i-1}$$
 (1),

il est évident que aq_{i-1} est le reste de la division de p_i par q_i . Par conséquent,

 $\frac{p_i}{q_i} = \alpha + \frac{\alpha q_{i-1}}{q_i},$

ou

$$\frac{p_i}{q_i} = \alpha + \frac{1}{a^{-1} \frac{q_i}{q_{i-1}}}.$$

Mais

$$\frac{p_i}{q_i} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \cdots + \frac{1}{\alpha_i}}},$$

done

$$\frac{a^{-1}q_i}{q_{i-1}} = \alpha_1 + \frac{1}{\alpha_2 + \frac{1}{\alpha_3 + \dots}},$$

$$\frac{q_i}{q_{i-1}} = \alpha_i + \frac{1}{a^{-1}\alpha_2 + \frac{1}{a\alpha_3 + \dots}}$$

D'après une propriété bien connue des fractions conti-

⁽¹⁾ δp_i est le degré de la fonction p_i (OEuvres complètes, t. I. p. 108 et suiv.).

nues, nous aurons (1)

$$\frac{q_i}{q_{i-1}} = \alpha_i + \frac{1}{\alpha_{i-1} + \frac{1}{\alpha_{i-2} + \cdots + \frac{1}{\alpha_i}}}$$

Done

$$\alpha_{i} + \frac{1}{\alpha_{i-1} + \dots + \frac{1}{\alpha_{1}}} = \alpha \alpha_{1} + \frac{1}{\alpha^{-1} \alpha_{2} + \dots + \frac{1}{\alpha^{-1} \alpha_{i}}}.$$

Cette égalité entraîne les suivantes

$$lpha_i = a lpha_1,$$
 $lpha_{i-1} = a^{-1} lpha_2,$
 $lpha_{i-2} = a lpha_3,$
 $lpha_1 = a^{-1} lpha_i.$

Si i est impair, en posant

$$i = 2k + 1$$

nous aurons

$$\alpha_{i-k} = a^{\pm 1} \alpha_{k+1},$$

ou

où

$$\alpha_{k+1}=a^{\pm 1}\alpha_{k+1},$$

 $a^{\pm 1} = 1$,

et enfin

$$a=1$$
.

C. Q. F. D.

Théorème III. — Si, dans le développement de \sqrt{R} en fraction continue, l'un des quotients complets y_i satisfait à l'équation

$$ay_i^2 + 2by_i + c = 0,$$

 $a = \pm (p_i^2 - q_i^2 R)$

est une quantité constante, la fraction continue est nécessairement périodique.

⁽¹⁾ SERRET, Cours d'Algèbre supérieure, t. I. p. 30; 1866.

(138)

Démonstration. - Étant donné

$$\sqrt{R} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \cdots + \frac{1}{\alpha_i + \frac{1}{y_i}}}}$$

De l'équation

$$ay_i^2 + 2by_i + c = 0,$$

nous tirerons

$$y_i = \frac{-b + \sqrt{R}}{a},$$

$$y_i = \frac{-b + \alpha + \frac{1}{y}}{a},$$

et, en posant,

$$\frac{-b+\alpha}{\alpha}=\beta,$$

nous aurons

$$y_i = \beta + \frac{1}{ay}$$

Cela posé, distinguons, avec Abel, deux cas.

Premier cas. — Le nombre i = 2k + 1, k étant entier. Dans ce cas

a=1,

done

$$y_i = \beta + \frac{1}{\gamma}$$

donc la fraction continue

la fraction continue
$$\sqrt{R} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \cdots + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \cdots + \frac{1}{\alpha_2 +$$

est évidemment périodique. En outre, nous avons vu

que pour i impair

$$\alpha_{i-m}=\alpha_{m+1}.$$

En posant successivement

$$m = 0, 1, 2, 3, \ldots, (k-1), k,$$

nous obtiendrous

$$\alpha_i = \alpha_1,$$
 $\alpha_{i-1} = \alpha_2,$
 \dots
 $\alpha_{k+2} = \alpha_k.$

Par conséquent les quotients incomplets de la fraction continue formeront la série suivante

$$\alpha$$
, α_1 , α_2 , ..., α_k , α_{k+1} , α_k , ..., α_2 , α_1 , β ,

Deuxième cas. — Posons

$$i = 2k$$

Nous avons

$$y_i = \beta + \frac{1}{ay}.$$

Mais

$$y = \alpha_1 + \frac{1}{\alpha_2 + \frac{1}{\alpha_3 + \dots + \frac{1}{\alpha_i + \frac{1}{\gamma_i}}}}$$

donc

$$ay = a\alpha_1 + \frac{1}{a^{-1}\alpha_2 + \frac{1}{a^{-1}\alpha_i + \frac{1}{a\gamma_i}}}$$

ou

$$ay = a\alpha_1 + \frac{1}{a^{-1}\alpha_2 + \frac{1}{a^{-1}\alpha_1 + \frac{1}{a^{-1}\alpha_1 + \frac{1}{a\beta + \frac{1}{y}}}}$$

et par conséquent
$$\sqrt{R} = \alpha + \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \dots + \alpha_i + \frac{1}{\beta + \frac{1}{a\alpha_1 + \frac{1}{\alpha^{-1}\alpha_i + \frac{1}{\alpha^$$

Il suit de là que les quotients incomplets forment la série

$$\alpha$$
, α_1 , α_2 , ..., α_i , β .
 $\alpha \alpha_1$, $\alpha^{-1} \alpha_2$, $\alpha \alpha_3$, ..., $\alpha^{-1} \alpha_i$, $\alpha \beta$, α_1 ,

La période se compose des nombres suivants

$$\alpha_1, \quad \alpha_2, \quad \ldots, \quad \alpha_i, \quad \beta, \quad \alpha \alpha_1, \quad \alpha^{-1} \alpha_2, \quad \ldots, \quad \alpha^{-1} \alpha_i, \quad \alpha \beta.$$

Ainsi, dans les deux cas, \sqrt{R} se développe en fraction continue périodique. C. Q. F. D.