Nouvelles annales de mathématiques

H. LEMONNIER

Calcul de $\delta u_0, \delta^2 u_0, \dots, \delta^n u_0$ en fonction de $\Delta u_0, \Delta^2 u_0, \dots, \Delta^m u_0$, puis de $\delta u_1, \delta^2 u_2, \dots, \delta^n u_n$ en fonction de $\Delta u_1, \Delta^2 u_2, \dots, \Delta^m u_m$

Nouvelles annales de mathématiques 1^{re} série, tome 20 (1861), p. 197-206

http://www.numdam.org/item?id=NAM_1861_1_20__197_1

© Nouvelles annales de mathématiques, 1861, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CALCUL DE ∂u_0 , $\partial^2 u_0$,..., $\partial^n u_0$ EN FONCTION DE Δu_0 , $\Delta^2 u_0$,..., $\Delta^m u_0$, puis de ∂u_{-1} , $\partial^2 u_{-2}$,..., $\partial^n u_{-n}$ en fonction de Δu_{-1} , $\Delta^2 u_{-2}$,..., $\Delta^m u_{-m}$;

PAR M. H. LEMONNIER, Professeur de mathématiques spéciales au lycée Saint-Louis.

I. Soient u_0 , Δu_0 , $\Delta^2 u_0$,..., $\Delta^m u_0$ les valeurs d'une fonction u, entière en x, du degré m et de ses différences successives pour $x = x_0$, les valeurs de x considérées à partir de x_0 formant une progression arithmétique de raison h.

Soient ∂u_0 , $\partial^2 u_0$,..., $\partial^m u_0$ les valeurs des différences, lorsque les valeurs de x à partir de x_0 se suivent en progression de raison k.

Dans le grand ouvrage de Lacroix, t. III, § 940, p. 73,

on trouve pour le calcul de $\partial^n u_0$ la formule

$$\delta^n u_0 = [(1 + \Delta)^2 - 1]^n u_0,$$

z étant le rapport $\frac{k}{h}$.

La formule, je le présume, est de Lagrange. Je ne sache pas qu'elle ait été insérée jusqu'ici dans les Traités d'Algèbre à l'usage des classes actuelles de mathématiques spéciales.

Je vais en proposer une démonstration assez simple, il me semble, pour permettre de lui donner place dans l'enseignement courant.

On a pour expression de u, soit

$$u = u_{0} + \frac{x - x_{0}}{h} \Delta u_{0} + \frac{x - x_{0}}{h} \left(\frac{x - x_{0}}{h} - 1\right) \frac{\Delta^{n} u_{0}}{1 \cdot 2} + \dots + \frac{x - x_{0}}{h} \cdots \left(\frac{x - x_{0}}{h} - m + 1\right) \frac{\Delta^{m} u_{0}}{1 \cdot 2 \cdot \dots m},$$

soit

$$u = u_0 + \frac{x - x_0}{k} \delta u_0 + \frac{x - x_0}{k} \left(\frac{x - x_0}{k} - 1 \right) \frac{\delta^2 u_0}{1 \cdot 2} + \dots$$
$$+ \frac{x - x_0}{k} \cdots \left(\frac{x - x_0}{k} - m + 1 \right) \frac{\delta^m u_0}{1 \cdot 2 \cdots m}.$$

Égalons les valeurs de ces deux expressions pour

$$x = x_0 + h,$$

$$x = x_0 + 2k,$$

$$x = x_0 + nh, \dots$$

nous aurons, en posant $\frac{k}{k} = z$,

$$\delta = z\Delta + \frac{z(z-1)}{1 \cdot 2} \Delta^{2} + \frac{z(z-1)(z-2)}{1 \cdot 2 \cdot 3} \Delta^{3} + \dots$$

$$+ \frac{z(z-1) \cdot ...(z-m+1)}{1 \cdot 2 \cdot ...m} \Delta^{m}, \cdot$$

$$\frac{2}{1} \delta + \frac{2 \cdot 1}{1 \cdot 2} \delta^{2} = 2z\Delta + \frac{2z(2z-1)}{1 \cdot 2} \Delta^{2} + \dots$$

$$+ \frac{2z(2z-1) \cdot ...(2z-m+1)}{1 \cdot 2 \cdot ...m} \Delta^{m},$$

$$(1) \begin{cases} \frac{3}{1} \delta + \frac{3 \cdot 2}{1 \cdot 2} \delta^{2} + \frac{3 \cdot 2}{1 \cdot 2 \cdot 3} \delta^{3} = 3z\Delta + \frac{3z(3z-1)}{1 \cdot 2} \Delta^{2} + \dots \\ + \frac{3z(3z-1) \cdot ...(3z-m+1)}{1 \cdot 2 \cdot ...m} \Delta^{m}, \end{cases}$$

$$= nz\Delta + \frac{n(n-1)}{1 \cdot 2} \Delta^{2} + \dots + \frac{nz(nz-1) \cdot ...(nz-m+1)}{1 \cdot 2 \cdot ...m} \Delta^{m}.$$

Mais si l'on prend

$$\theta = 1 + z\Delta + \frac{z(z-1)}{1 \cdot 2}\Delta^2 + \ldots + \frac{z(z-1)\ldots(z-m+1)}{1 \cdot 2\ldots m}\Delta^m,$$

il est à remarquer que

$$\theta^2 = 1 + 2z\Delta + \frac{2z(2z-1)}{1 \cdot 2}\Delta^2 + \dots + \frac{2z(2z-1)\dots(2z-m+1)}{1 \cdot 2 \cdot \dots \cdot m}\Delta^m$$

pourvu que dans la multiplication de l'expression de θ par elle-même les facteurs Δ , Δ^{a} ,..., Δ^{m} se traitent comme des puissances, sauf que

$$\Delta^{m+1} = 0$$
, $\Delta^{m+2} = 0$, ..., $\Delta^{2m} = 0$.

Car, p étant entier, on a

et

$$(1+x)^p = 1 + px + \frac{p(p-1)}{1 \cdot 2} x^2 + \dots$$

$$+ \frac{p(p-1) \cdot \dots (p-m+1)}{1 \cdot 2 \cdot \dots n} x^m + \dots + px^{p-1} + x^p$$
et
$$(1+x)^{ip} = 1 + 2px + \frac{2p(2p-1)}{1 \cdot 2} x^2 + \dots$$

$$+ \frac{2p(2p-1) \cdot \dots (2p-m+1)}{1 \cdot 2 \cdot \dots m} x^m + \dots + 2px^{2p-1} + x^{2p}.$$

Donc quand on effectue régulièrement le produit du développement de $(1+x)^p$ par lui-meme, les coefficients des puissances successives de x sont des expressions entières en p égales respectivement aux coefficients des mèmes puissances de x dans le développement de $(\mathbf{1} + x)^p$ pour toute valeur entière de p positive. En conséquence, ces égalités subsistent pour toute valeur de p. De là, quel

$$\theta^{2} = 1 + 2z\Delta + \frac{2z(2z-1)}{1\cdot 2}\Delta^{2} + \dots + \frac{2z(2z-1)\dots(2z-m+1)}{1\cdot 2}\Delta^{m},$$

et pour semblables raisons

que soit z, la formule

$$\theta^{3} = 1 + 3z\Delta + \frac{3z(3z-1)}{1 \cdot 2} \Delta^{2} + \dots + \frac{3z(3z-1)\dots(3z-m+1)}{1 \cdot 2 \dots m} \Delta^{m},$$

$$\theta^{n} = 1 + nz\Delta + \frac{nz(nz-1)}{1 \cdot 2} \Delta^{2} + \dots + \frac{nz(nz-1)\dots(nz-m+1)}{1 \cdot 2 \dots m} \Delta^{m}.$$

A l'aide de ces formules, les formules (1) se transforment en

$$\delta = \theta - 1,
\delta^{2} = \theta^{2} - 1 - 2\delta = \theta^{2} - 1 - 2(\theta - 1)
= \theta^{2} - 2[1 + (\theta - 1)]^{2} - (\theta - 1)^{2} = (\theta - 1)^{2},
\delta^{3} = \theta^{3} - 1 - 3\delta - 3\delta^{2} = \theta^{3} - 1 - 3(\theta - 1) - 3(\theta - 1)^{2}
= \theta^{3} - [1 + (\theta - 1)]^{3} + (\theta - 1)^{3} = (\theta - 1)^{3},
\vdots
\delta^{n} = \theta^{n} - 1 - n\delta - \dots - n\delta^{n-1}
= \theta^{n} - 1 - n(\theta - 1) - \dots - n(\theta - 1)^{n-1}
= \theta^{n} - [1 + (\theta - 1)]^{n} + (\theta - 1)^{n} = (\theta - 1)^{n}.$$

II. Le triangle des différences

$$u_0, u_1, \dots, u_{m-1}, u_m,$$
 $\Delta u_0, \Delta u_1, \dots, \Delta^n u_{m-1},$
 $\Delta^2 u_0, \dots, \Delta^2 u_{m-2},$
 $\dots \dots \dots$
 $\Delta^m u_0,$

quand on prend au rebours les termes de la ligne supérieure, se change en

$$u_{m}, u_{m-1}, \ldots, u_{1}, u_{0},$$
 $-\Delta u_{m-1}, \ldots, -\Delta u_{0},$
 $\Delta^{2} u_{m-2}, \ldots, \Delta^{2} u_{0},$
 $\vdots \Delta^{m} u_{0}.$

Qu'on y applique alors la formule déjà considérée

$$u = x_0 + \frac{x - x_0}{h} \Delta u_0 + ...$$

$$+ \frac{x - x_0}{h} \left(\frac{x - x_0}{h} - 1 \right) \cdots \left(\frac{x - x_0}{h} - m + 1 \right) \frac{\Delta^m u_0}{1 \cdot 2 \dots m},$$

il s'ensuit l'expression connue de u:

$$u = u_{m} - \frac{x - x_{m}}{-h} \Delta u_{m-1} + \frac{x - x_{m}}{-h} \left(\frac{x - x_{m}}{-h} - 1\right) \frac{\Delta^{2} u_{m-2}}{1 \cdot 2} - \dots$$

$$+ \frac{x - x_{m}}{-h} \left(\frac{x - x_{m}}{-h} - 1\right) \cdots \left(\frac{x - x_{m}}{-h} - m + 1\right) \frac{\Delta^{m} u_{m-m}}{1 \cdot 2 \cdot \dots m},$$

$$u = u_{m} + \frac{x - x_{m}}{h} \Delta u_{m-1} + \frac{x - x_{m}}{h} \left(\frac{x - x_{m}^{*}}{h} + 1\right) \frac{\Delta^{2} u_{m-2}}{1 \cdot 2} + \dots$$

$$+ \frac{x - x_{m}}{h} \left(\frac{x - x_{m}}{h} + 1\right) \cdots \left(\frac{x - x_{m}}{h} + m + 1\right) \frac{\Delta^{m} u_{0}}{1 \cdot 2 \cdot \dots m},$$

ou bien, ce qui revient au même,

$$u = u_0 + \frac{x - x_0}{h} \Delta u_{-1} + \frac{x - x_0}{h} \left(\frac{x - x_0}{h} + 1 \right) \frac{\Delta^2 u_{-2}}{1 \cdot 2} + \dots$$
$$+ \frac{x - x_0}{h} \left(\frac{x - x_0}{h} + 1 \right) \cdots \left(\frac{x - x_0}{h} + m - 1 \right) \frac{\Delta^m u_{-m}}{1 \cdot 2 \dots m}$$

Pareillement:

$$u = u_0 + \frac{x - x_0}{k} \delta u_{-1} + \frac{x - x_0}{k} \left(\frac{x - x_0}{k} + 1 \right) \frac{\delta^2 u_{-2}}{1 \cdot 2} + \dots$$

$$+ \frac{x - x_0}{k} \left(\frac{x - x_0}{k} + 1 \right) \cdots \left(\frac{x - x_0}{k} + m - 1 \right) \frac{\delta^m u_{-m}}{1 \cdot 2 \cdot \dots m}$$

En faisant tour à tour

$$x = x_0 - k,$$

$$x = x_0 - 2k,$$

$$\dots$$

$$x = x_0 - nk,$$

on déduit de là

$$-\delta u_{-1} = -z\Delta u_{-1} + \frac{z(z-1)}{1\cdot 2} \Delta^{2} u_{-2} - \dots$$

$$\pm \frac{z(z-1)\dots(z-m+1)}{1\cdot 2\dots m} \Delta^{m} u_{-m},$$

$$-\frac{2}{1}\delta u_{-1} + \frac{2\cdot 1}{1\cdot 2}\delta^{2} u_{-2} = -2z\Delta u_{-1} + \frac{2z(2z-1)}{1\cdot 2} \Delta^{2} u_{-2} - \dots$$

$$\pm \frac{2z(2z-1)\dots(2z-m+1)}{1\cdot 2\dots m} \Delta^{m} u_{-m},$$

$$-\frac{n}{1}\delta u_{-1} + \frac{n(n-1)}{1\cdot 2}\delta^{2} u_{-2} - \dots \pm \delta^{n} u_{-n}$$

$$= -nz\Delta u_{-1} + \frac{nz(nz-1)}{1\cdot 2} \Delta^{2} u_{-2} - \dots$$

$$\pm \frac{nz(nz-1)\dots(nz-m+1)}{1\cdot 2\dots m} \Delta^{m} u_{-m}.$$

Qu'on pose

$$\varphi = 1 - z \Delta u_{-1} + \frac{z(z-1)}{1 \cdot 2} \Delta^{2} u_{-2} - \dots$$

$$+ \frac{z(z-1) \cdot \dots (z-m+1)}{1 \cdot 2 \cdot \dots m} \Delta^{m} u_{-m},$$

et qu'il soit entendu que

$$\Delta^p u_{-p} \cdot \Delta^q u_{-q} = \Delta^{p+q} u_{-(p+q)}$$

et que

$$\Delta^{m+1} u_{-(m+1)} = 0, \quad \Delta^{m+2} u_{-(m+2)} = 0, \dots,$$

ces formules (4) deviendront

d'où les suivantes :

dou les suivantes:
$$\delta u_{-1} = (1 - \varphi), \\
\delta^{2}u_{-2} = \varphi^{2} - [1 - 2(1 - \varphi)] \\
= \varphi^{2} - [1 - (1 - \varphi)]^{2} + (1 - \varphi)^{2} = (1 - \varphi)^{2}, \\
\delta^{3}u_{-3} = -\varphi^{3} + [1 - 3(1 - \varphi) + 3(1 - \varphi)^{2}] \\
= -\varphi^{3} + [1 - (1 - \varphi)]^{3} + (1 - \varphi)^{3} = (1 - \varphi)^{3}, \\
\vdots \\
\delta^{n}u_{-n} = \mp \varphi^{n} \pm [1 - n(1 - \varphi) + \dots \pm n(1 - \varphi)^{n-1}] \\
= \mp \varphi^{n} \pm [1 - (1 - \varphi)]^{n} + (1 - \varphi)^{n} = (1 - \varphi)^{n}.$$
La formula symbolique est ici, avec $\varphi = (1 - \Delta u_{-1})^{n}$

La formule symbolique est ici, avec $\varphi = (\mathbf{1} - \Delta u_{-1})^{\mathbf{1}}$, $\delta^n u_{-n} = [1 - (1 - \Delta u_{-1})^2]^n$.

Remarque. En développant les formules (3) on trouve

$$\delta u_0 = z \Delta u_0 + \frac{z(z-1)}{1 \cdot 2} \Delta^2 u_0 + \frac{z(z-1)(z-2)}{1 \cdot 2 \cdot 3} \Delta^3 u_0$$

$$+ \frac{z(z-1)...(z-3)}{1 \cdot 2 \cdot ... 4} \Delta^4 x_0 + \frac{z...(z-4)}{1 \cdot ... 5} \Delta^5 u_0 + ...,$$

$$\delta^2 u_0 = z^2 \Delta^2 u_0 + z^2 (z-1) \Delta^3 u_0 + \frac{z^2 (z-1)(7z-11)}{3 \cdot 4} \Delta^4 u_0$$

$$+ \frac{z^2 (z-1)(z-2)(3z-5)}{3 \cdot 4} \Delta^5 u_0 + ...,$$

$$\begin{split} & \delta^3 u_0 = z^3 \Delta^3 u_0 + \frac{3 z^3 (z-1)}{2} \Delta^4 u_0 + \frac{z^4 (z-1) (5z-7)}{4} \Delta^5 u_0 + \dots, \\ & \delta^4 u_0 = z^4 \Delta^4 u_0 + 2 z^4 (z-1) \Delta^5 u_0 + \dots, \\ & \delta^5 u_0 = z^5 \Delta^5 u_0 + \dots, \\ & \text{ce qui donne, pour } z = 0,1, \\ & \delta = 0,1 \Delta - 0,045 \Delta^2 + 0,0285 \Delta^3 - 0,0206625 \Delta^4 \\ & + 0,01611675 \Delta^5 - \dots, \\ & \delta^2 = 0,01 \Delta^2 - 0,009 \Delta^3 + 0,007725 \Delta^4 - 0,0066975 \Delta^5 + \dots, \\ & \delta^3 = 0,001 \Delta^3 - 0,00135 \Delta^4 + 0,00014625 \Delta^5 - \dots, \\ & \delta^4 = 0,0001 \Delta^4 - 0,0001,8 \Delta^5 + \dots, \\ & \delta^5 = 0,00001 \Delta^5 - \dots \end{split}$$

$$& D'\text{autre part}$$

$$& \delta u_{-1} = z \Delta u_{-1} - \frac{z(z-1)}{1 \cdot 2} \Delta^2 u_{-2} + \frac{z(z-1)(z-2)}{1 \cdot 2 \cdot 3} \Delta^3 u_{-3} \end{split}$$

$$\delta u_{-1} = z \Delta u_{-1} - \frac{1}{12} \Delta^{2} u_{-2} + \frac{1}{12 \cdot 3} \Delta^{3} u_{-3}$$

$$- \frac{z(z-1) \cdot \cdot \cdot (z-3)}{1 \cdot 2 \cdot 3 \cdot 4} \Delta^{4} u_{-4}$$

$$- \frac{z \cdot \cdot \cdot (z-4)}{1 \cdot \cdot \cdot \cdot 5} \Delta^{5} u_{-5} - \cdot \cdot \cdot ,$$

$$\delta^{2} u_{-2} = z^{2} \Delta^{2} u_{-3} - z^{2} (z-1) \Delta^{3} u_{-3} + \frac{z^{2} (z-1) (7z-11)}{3 \cdot 4} \Delta^{4} u_{-4}$$

$$- \frac{z^{2} (z-1) (z-2) (3z-5)}{3 \cdot 4} \Delta^{5} u_{-5} + \cdot \cdot \cdot ,$$

$$\delta^{5} u_{-3} = z^{3} \Delta^{3} u_{-3} - \frac{3z^{3} (z-1)}{2} \Delta^{4} u_{-4}$$

$$+ \frac{z^{4} (z-1) (5z-7)}{4} \Delta^{5} u_{-5} - \cdot \cdot \cdot ,$$

$$\delta^{5} u_{-5} = z^{5} \Delta^{5} u_{-5} - \cdot \cdot \cdot ,$$

$$\delta^{5} u_{-5} = z^{5} \Delta^{5} u_{-5} - \cdot \cdot \cdot ,$$

d'où, pour z = 0, 1,

$$\delta u_{-1} = 0, 1 \Delta u_{-1} + 0, 045 \Delta^{2} u_{-2} + 0, 0285 \Delta^{3} u_{-3} + 0, 0206625 \Delta^{4} u_{-4} + 0, 01611675 \Delta^{5} u_{-5} + ...,$$

$$\delta^{2} u_{-2} = 0, 01 \Delta^{2} u_{-2} + 0, 009 \Delta^{3} u_{-3} + 0, 007725 \Delta^{4} u_{-4} + 0, 0066975 \Delta^{5} u_{-5} + ...,$$

$$\delta^{3} u_{-3} = 0, 001 \Delta^{3} u_{-3} + 0, 00135 \Delta^{4} u_{-4} + 0, 00014625 \Delta^{5} u_{-5} + ...,$$

$$\delta^{4} u_{-4} = 0, 0001 \Delta^{4} u_{-4} + 0, 0001, 8 \Delta^{5} u_{-5} + ...,$$

$$\delta^{5} u_{-5} = 0, 00001 \Delta^{5} u_{-5} + ...,$$

Note du Rédacteur. Le point de départ de ce genre de symbolisme est de Leibniz :

Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de Lege homogenerum transcendentali Miscellanea Berolinensis (p. 160). Berol., 1749.

L'homogénéité dont il s'agit ici est celle de $(dx)^2$ et d^2x , etc.