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APPROXIMATION
BY BOUNDED ANALYTIC FUNCTIONS

By M.J. L. WALSH,

Harvard University.

——0 G——

PREFACE.

In the past twenty years (since 1938) there has been developed, as
a sequel to the theory, of approximation by polynomials and by other
rational functions of one complex variable, a theory of approximation
by functions analytic and bounded in a given region. This new
theory thus studies approximation by functions which may be
regarded as the most useful non-trivial functions, analytic in a given
region which is not merely the plane with one or more points deleted.
This new theory has application to the study of approximation by
polynomials and by more general rational functions, but applies also
to topics in numerical analysis, and indeed is of significance whenever
a sequence of functions analytic in aregion D converges in a subregion
of D.

The purpose of the present essay is to set forth both in broad outline
and in detail some of the principal results of the new theory, inclu-
ding some previously unpublished methods and results, and to indi-
cate promising directions for future research. This essay can be read
independently of any other treatment of approximation, although
naturally occasional proofs are merely sketched or omitted. There
is included much of the pertinent theory of approximation by poly-
nomials and other rational functions, although the new theory is not
intended in any way to supersede the old.

While the theory here described, including the related theory of
approximation by rational functions, has been unfolding in recent
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years, it has been the present writer’s privilege to be personally asso-
ciated with other workers in the field, notably H. G. Russell,J. L. Doob,
J. H. Curtiss, W. E. Sewell, Y. C. Shen, E. N. Nilson, A. Spitzbart,
H. M. Elliott, P. Davis, J. P. Evans and A. Sinclair.

The writing of this essay has been sponsored in part by the United
States Air Force, Office of Scientific Research of the Air Research and
Development Command.

J. L. WaLsh.

INTRODUCTION.

APPRONIMATION TO f(2) ON A CLOSFD SET E BY FUNCTIONS ANALYTIC
AND BOUNDED IN A REGION D contaninG E.

Beyond the study of the possibility of uniform approximation to
real functions by polynomials or by trigonometric polynomials
(Weierstrass), there has been developed in the past half-century a
theory relating order (degree) of approximation by polynomials or
by trigonometric polynomials of given degree to the continuity
properties of the functions approximated (de la Vallée Poussin,
Lebesgue, D. Jackson, S. Bernstein, Montel).

An analogue of this theory has later been developed, study of
approximation on a closed point set E in the plane of the complex
variable z, to a function f (z) given on E, by polynomials or more
general rational functions of z; here the main problem is as before to
relate degree of approximation on E on the one hand to continuity
properties (including analyticity, existence of derivatives on the boun-
dary of E, Lipschitz conditions on such derivatives, etc.) of f (z)
on E on the other hand (*). Analyticity of f(z) on E is related to
geometric degree of approximation, weaker continuity properties to
weaker degree of approximation.

(1) We shall not need to use general results on the possibility of uniform approx
mation by bounded analytic functions, but mention by way of background the follo
wing [1935, chap. II, theorem 15; chap. I, theorem 8): Let the closed point set E
be bounded by a finite number of mutually disjoint Jordan curves and let f (z)
be analytic in the interior points of E and continuous on E, or let E be an arbi
trary closed set and f (z) analytic on E. Let points z; be given, at least one in
each of the regions into which E separates the plane. Then on E the function f(z)
can be approximated as closely as desired by a rational function whose poles lie
n the z;

Dates 1n square brackets refer to works mentioned in the Bibliography.
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Similar problems arise in the plane of the complex variable if E
lies interior to a region D and f (z) is approximated on E by func-
tions ¢, (z) required merely to be analytic and bounded : | 9, (z) | <M,
inD. Thus we relate degree of approximation to f'(z) on E expressed
in terms of asymptotic properties of M,, on the one hand to continuity
properties of f(z) on E on the other hand. This problem (in the
continued notation already introduced) is the primary topic of the
present essay; the theory here set forth essentially includes many
phases of the problem of approximation even by polynomials and
rational functions. The theory is by no means complete in the sense
that no further open questions exist ; nevertheless the main outline
of a complete theory now seems to be taking shape, and appropriate
indications for continued research seem clear.

Our study is divided into several parts: Problem A deals with a
function f (z) analytic on E, and with geometric degree of conver-
gence as measured in terms of M, ; Problem o deals with weaker
properties than analyticity (e. g. existence of derivatives and Lipschitz
conditions) of f(z) on E and slower than geometric degree of conver-
gence ; Problem {8 deals with such weaker properties of f (z) not
on E but on a closed set E; containing E and contained in D, where
Jf(z)1is analytic on E but not throughout E,, and degree of convergence
on E is geometric but expressed with various refinements depending
upon the properties of f (z) on E;. This gencral topic of approxi-
mation by bounded analytic functions has been treated in a number
of separate papers (see Bibliography), bul no combined exposition
has hitherto been available, even in outline.

Chapter I deals with Problem A, chapters II and IT with Problems o
and 8, in each case giving the main features of the theory with some
detailed proofs. Chapter IV is devoted to a summary of further
related results, mainly without proofs.

CHAPTER 1.
ProBLEM A : f(3) ANALYTIC ON E.

1.1. E the unit disc, D a concentric disc. — The Taylor deve-
lopment is both a principal tool in the study of analytic functions
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and a model for other series expansions, especially those defined by
interpolation. So we present first a relatively simple geometric
situation [1946], for the purpose of indicating to the reader our
general problems and methods without topological complications.

For convenient reference we state some well known properties of
the Taylor development

(1.1.1) f(B)=ay+ a1 3+ asz2+...

of a function f(z) analytic in the disc |z]| <<p, but analytic
throughout no larger concentric disc (*). Then we have (Cauchy-
Hadamard)

1
(1.1.2) zl!;r:c sup|a,l|"=lp,

2
whence if we set
(1.1.3) Sp(3)=ao+a;3+...+ a,3",

we have also
1
(4.6 lim_sup[max|f(s)—Sa(2)l, foriz!ér]"=§ (r<e)

1
(1.1.5) nli)mﬂD sup [max | S, (2) |, forlzl_ér];=£ (r>p).

The fact that the first member of (1.1.4) is not greater than the
second member is an immediate consequence of (1.1.2); if the first
member of (1.1.4) is less than the second member, we have for n
sufficiently large and for |z |=1r

v}
A

f@=Su@| 25 (<),
. n n—1 Arn
18a(3) = Sucs (3) | =l a0 2 T - T = A7,

in contradiction to (1.1.2). Equation (1.1.5) may be established
similarly. These equations are to be used in proving :

Tueorex 1.1.1. — Let the function f (3) be analytic in the disc
| 2| <p(>1) but not continuable so as to be analytic throughout

(1) A function is analytic on a point set if it is single valued there and if in some
neighborhood of each point of the set it can be represented by a convergent power
series.
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any larger concentric disc. For each M (> o) let 9y (z) denote
the (or a) function analytic and in modulus not greater than M
in the disc D : |z| ZR (> p) for which

(1.1.6) mu=[max |f(2) —u(2)|, z on E], E: |z]<a,

is least. Then we have
1

. oW —lo
(1.1.7) Jim sup m;“”‘" =exp [log_R—%] .

The existence of the extremal function ¢y (z) follows readily by
the use of the Montel theory of normal families. The uniqueness
has been established in this case by Agmon (unpublished). To
study the asymptotic relationship between M and my we use the S, (z)
as comparison approximating functions.

If p, (<<p) is arbitrary, we have from (1.1.4)

(1.1.8) HOETROIEE- SN
and from (1.'1.5)
(1.1.9) |s,.<z>|é% (12| < R);

here and in the sequel the numbers A with or without subscripts
usually represent constants independent of #» and z, constants which
may vary from one formula to another. The functions S,(z) form
a sequence whereas the functions ¢y(z) depend on a continuous
parameter; in order to use the S,(z) for comparison we now relate M
and n by the inequalities

A?, Rn A2 R+t
A =M< S

(1.1.10)

so it follows from (1.1.9) that for M sufficiently large S,(z) is one
of the competing functions in the class whose extremal function
is 94(2). Then we have by (1.1.6) and (1.1.8) and by the first
of inequalities (1.1. 10)

A, AM

(1.1.11) muéﬁém.

From the second of inequalities (1.1.10) we may write

logM —log A,

logR — logp; <A
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so the extreme inequality of (1.1.11) implies

my < AsM exp l_ (logM — log A,) IogR] ,

logR —logp,

for M sufficientlylarge. 'WhenM— o and then p, —pwe now deduce

1

. ToiM — log
im sup mps™ < exp [__,_._p___] .

(1.4.12) aim TogR — logg

To complete the proof of (1.1.7) we use Hadamard’s three-circle
theorem, to the effect that for an analytic function @ (z), the function
log [max | ® (z)|, for | 2| =r] is a convex function oflogr. It turns
out that the strong inequality in (1.1.12) would imply the uniform
convergence of a sequence of the functions ¢y(z) throughout a
region | z|<Cr(>p), which contradicts the definition of p. We
choose the specific values M=e"(n=1, 2, ...), and denote the
corresponding extremal functions ¢y () by ®,(z) respectively. The
(Fatou) boundary values of ®,(z) on the circumference |3|=R
exist, and for those values we have

A.1.13) {I(D,l(z) l<er, | @ani(s)]| Lenr,

| ®rt1(2) — Pu(3) | <L 28+

We assume the strong inequality in (1.1.12), whence for suitably
chosen Ry (p < Ry < R) and for n sufficiently large

1

EN — logRy
s M
My éexP[logR—logR.]’

so by (1.1.6) for M = e” and M = e"*+! on the circle | z| =1 we have

A.1.14) ]‘D,H_,(z)-—(b,,(z)]ézexp[l_oi.g_ﬁn—_lg%]‘.

The last inequality of (1.1.13), together with (1.1.14), yields by
the three circle theorem (which indeed applies not only to the
maximum of the modulus of an analytic function on three circumfe-
rences, but also to the superieur limit of the maximum modulus of a
sequence on these circumferences)

1
,}l;IL sup [max | ®pyy(2) — Pn(3)], for |z| = r]"< exp [logr —logR, ]

logR — logR;
(1£r<R);
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this last member is less than unity for every r << Ry, hence is less
than unity for some ro(p <<ro<<Ri). Thesequence®,(z)converges
uniformly in | 3| < ro,and by (1.1.12) converges to f(z)in |z | <1,
so f (z) can be continued so as to be analytic throughout |z | <<re
(>p), contrary to hypothesis.

As an immediate application of theorem 1.1.1 we prove :

Tueorem 1.1.2. — Under the conditions of theorem 1.1.1 lat
Yu(z) represent a set of arbitrary functions analytic in D and
satisfying there the respective inequalities |y (z)| <M. If weset

pn=[max | f(z) —¢nu(z)|, z on E|,
we have
1

(1.1.15) Jl_;t}esupp;‘l’?‘éexp[ —loge ]

logR — logp

From the definition of the gy(z) follows py> my, so (1.1.15)
follows from (1.1.7).

We emphasize the fact that the conditions on the $y(z) are very light;
the conclusion applies to very many sets $(z) converging uniformly
in a circle. Theorem 1.1.2 and its analogues (which for the most
part are henceforth left to the reader for formulation) are among the
most interesting results set forth in the present essay, due to the light
hypothesis and the frequency with which the situation occurs in ana-
lysis. Although in theorems 1.1.1 and 1.1.2 we have required M
to become continuously infinite, it is in fact sufficient if M becomes
monotonically infinite through a sequence of values M, such that the

logM,,
1 g M,

follows if we set gy (3) = ¢y, (2), Mo M < M,y
Further use of the three circle theorem (details are similar to those
above) establishes :

quolients approach unity; the original form of (1.1.7)

Corortary 1.1.1. — Let the functions ¢4(3) (extremal or not)
Sor every M sufficiently large be analytic and in modulus not
greater than M in the region |z| <R (>1), let f(z) be defined
on E:|z| =1, and let my be defined by (1.1.6). If we have

i , — loge
fos M —_—
(1.1.16) aim sup m 5T exp [logR—lOgP] ’
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then we have

1
. Tor logr —logp
— pllozM -5
A.1.17) % l}gl}g sup [max | f(3) — em(3) |, for |z | = r]'*" < exp [—————logR logp]

(1=r<p),

1
. . o H logr — logg
los M D
(1.1.]8) { Lll—;nw sup [mux|q>u(z)|,for|z| _r] A_QXP[]OgR logp]

(p£r<R);

consequently f(z) can be extended from E so as to be analytic
throughout | z|<<p. If it is known that f(z) cannot be extended
Jrom E so as to be analytic throughout any |z| <p' (o'> p), then
the equality signs hold in (1.1.16), (1.1.17) and (1.1.18).

Many results in the sequel admit analogues of corollary 1.1.1,
which refer to the convergence of a given set of functions which are
not necessarily extremal ; henceforth also these analogues, which are
readily stated and proved, are ordinarily left to the reader.

1.2. Analyticity in an annulus. — In theorem 1.41.1 we have
required both f(z) and the ¢ (z) to be analytic throughout suitable
discs, even though the details of the conclusion are concerned pri-
marily with the annulus 1 <<|z|<<R. A resultrelated totheorem1.1.1
can be established, as we now show, when f(z) and the ¢, (2) are
analytic merely in suitable annuli.

A function f(z) analytic in an annulus 1<|z|<Cp is expressed
there by Cauchy’s integral formula

(1.2.1)  f(3)=/1(3) + fa(3) a<l|z|<p),

a2 A= O (1s1<po<e<e—0),
YNM]=p—==<

(1.2.3) f,(z)s# N J:(_t_);it (1] >1);

the function f;(z) defined by (1.2.2) is analytic throughout the
disc | z| <<p, where the integral is taken in the counterclockwise
sense, 0 <<e <<p—|z|; the function f;(z) defined by (1.2.3) is
analytic throughout |z|>1, where the integral is taken in the
clockwise sense, ¢ <<|z|—1. We consider fi(z) and f3(z) as
the components of f(z). If f(z)is continuous (i. e. in the two-
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dimensional sense) on | 5| =1, so also is f3(z) as defined on |z | =1
by (1.2.1) or by continuity from (1.2.3); likewise if f(z) is
continuous on | z|=p, soalsois f;(z). Ananalogue of theorem 1.1.1
now suggests itself :

Tueorem 1.2.1. — Let the function f°(z) be analytic in the
annulus 1<<|z|<<p but not continuable so as to be analytic
throughout any annulus 1<|z|<<p'(p'>p), and let f°(z) be
continuous on |z|=1. For each M (> o) let ¢y(z) denote the
(or a) function analytic and in modulus not greater than M in
the annulus 1 <|z| <R (>p) for which

(1.2.4) my= [maxlf“(z)—-qaﬂ(z) |, z on E], E: |z]|=1,
is least. Then (1.1.7) is valid.

Set f°(2)=f1(3)+ f2(s) as in (1.2.1), where the compo-
nents fi(z) and f3(z) are defined by the analogues of (1.2.2)
and (1.2.3), and f,(3) is continuous on E, analytic in |z|>1.
Then fi(z) is analytic in | 2| < p, and by theorem 1.1.1 there exist
functions Oy (z) analytic with |0y(2)| <N in | 2| <R such that

1
9 . logN gp .
1.2.5) llgl s::p[max |f1(3) —0y(2) |, 2 on E]%N = exp[———-——logR logp]

We now set ¢, (5) =0y(2) + f2(%) in 1< | 2| <R, whence
Si(z)— GN(Z) =fo(z) — q’u(z) on E,
and for suitably chosen N, we have

!9M(z)|éM=N+No in 1<|2| <R,

where Ny js independent of Mand z.  From (1.2.5) follows (1.1.12),
with the notation (1.2.4), and the equality sign follows precisely as
in the proof of theorem 1.4.4. Theorem 1.2.1 is established.

We remark however that proof of the existence of the extremal
function ¢y(z) minimizing (1.2.4) requires additional discussion.
We need not assume f°(z) continuous on E, but do assume f9(z)
bounded in a neighborhood of E, and in (1.2.4) we use the least
upper bound and (Fatou) boundary values of £°(z) and ¢§(z) almost
everywhere on E. For fixed M suppose we have {,(z) analytic
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and |§,(2) | Z£Min 1 < |3 | <R, with
wn=[sup[f°(2) — ¢u(2) |, z on E] > m,,
where my is the greatest lower bound of the expression
[sup|fe(s) —4(2) |, 2 on E]

for all $(z) analytic with |{(2)| =M in 1<|z|<<R. Let p, be
fixed, 1 <py<<p. For some A, we have

[fo(z) —dn(3)| £ Ay on |z|=py,
where A, is independent of 7, and on | 5| =1 we have
1/°(2) = $n(2) | < pra.

If §o(2) is a limit function of the sequence ¢,(z) in 1< |3] <R,

we have
[bo(5) <M in 1<|z|<R,

and in 1<|z|<Cps the function log|f°(z) —¢o(2)| is dominated
" by the harmonic function whose value on |z|=p, is logA, and
whose value on | z| =1 is logmy. Consequently (1.2.4), involving
boundary values of the functions on E, is valid with ¢y (z) = $o(2).
A new result for an arbitrary annulus A can be found from
theorem 1.2.1 by mapping A onto an annulus 1 <|z|<<R:

Treoren 1.2.2. — Let A be an annulus bounded by two Jordan
curves Go and Cy, with C, interior to C,, let u(z) be harmonic
in_ A, continuous in A + Go+ Cy, and equal to zero and unity
on Gy and G, respectively. Let Cs denote generically the Jordan
curve u(z) =o (o <o <C1) in A, and let T; denote the annulus
bounded by G, and C,.

Let f(z) be analytic throughout T, but not continuable so as to
be analytic throughout any T's (¢ > p), and let f(z) be continuous
on Co. For each M (> o) let ¢, (2) denote the (or a) function

analytic and in modulus not greater than M in A such that
(1.2.6) my=[max |f(z) —9y(2)|, z on G ]

is least. Then we have
1

1.2. Li los M
( 7) l:l_)s:p m

-

1

= e’
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If A is the annulus 1 << | 2| <R, we have u(z) = %G_gj%l_, and u(z)

is invariant under conformal mapping.
The analogue of corollary 1.1.1 is of course valid, and indeed is

a consequence of corollary 1.1.1. We prefer to formulate for later
use a more general result :

CororLary 1.2.2. — Let D be a region containing a closed
set E, and let D—E be connected. Let u(z) exist, harmonic
in D—E, continuous and equal to zero and unity on the boun-
daries of E and D respectively. Let C; denote generically the
locus u(z)=o (0 Lo L1) in the closure of D —E, and let T,
denote the set o < u(z) <<ocinD—E. Let f(z)bedefined onC,,
and for each M(>o) let ¢,(z) extremal or not be analytic
with |9, (2)| <M in D—E. If the first member of (1.2.7) is

not greater than the second member, and my is given by (1.2.6),
we have

1 e=C
(1.2.8) ]il':l sup[max | f(3) — ¢y (3) |, 20n Cs]®M <ef~' (0 <£0<p),
> o
L g=c
(1.2.9) li:;x_)sgp[maxl tu(2) |, 2 0n ca]losméep—l (pLo<r);

consequently f(z) can be extended from E so as to be analytic
throughout T,. If it is known that f(z) cannot be extended
Jrom E so as to be analytic throughout any T'y(p'> p), then the
equality signs hold in (1.2.7), (1.2.8) and (1.2.9).

Corollary 1.2.2 remains valid if we allow M to become infinite
merely through a monotonic sequence of values M, such that the

quotients l(l’ggdl\;*" approach unity.
n

The proof of corollary 1.2.2 can be given at once by use of the
Nevanlinna two-constant theorem, a generalization of the three-circle
theorem, which for the present purposes merely expresses the fact
that a suitable upper bound for ¢ (z) (M = ¢*) in.D —E is readily
calculated in terms of e*(?), thanks to our hypothesis concerning ¢, (z)
on Co and C,. Indeed the two-constant theorem applies directly to
the superior limit of the maximum modulus of a sequence of
functions {(z) analytic and bounded in A, on three level loci of  (z);
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we deduce
1

lim sup [max |4,(2z)]|, z on Ca];é ea+(b—ala,
ny>wo

where we assume
1
lim sup [max |},(3) ]|, 2 on G ]* <L ea,
n-pow
1
lim sup [max | $,(2)|, 2 on G;]" < eb.
n>w

The harmonic function @ + (b —a) u(z) dominates

1
lim sup log 3 [max |¥n(2) |, 2 on Ca]z} for every o (oLo L)
n>wo

Inequalities (1.2.8) and (1.2.9) thus proved [as in 1940]
for M=e", hold also for functions ®,(z) defined as ¢.(z)
for e < M < e+, and combine with the hypothesis on the ¢y(z) to
prove the corollary,

The functions ¢, (z) need not be continuous on Gy, but if not we
use the (Fatou) boundary values on G, and the least upper bound
in (1.2.6). An inequality similar to (1.1.14) shows that the
sequence ¢ (z) (M=e") converges uniformly in a neighborhood
of C,, and the limit function f(z) is bounded in such a neighborhood,

and possesses the given f(z) as boundary values almost everywhere
on Co.

To complete the analogy with the case that G, and C, are concen-
tric circles, one may inquire whether in theorem 1.2.2 the ¢ (2)

can be chosen analytic throughout the closed interior of G, if f(z)
is given analytic throughout the interior of G,. 'We prove

Treoren 1.2.3 — Under the conditions of theorem 1.2.2
let f(z) be analytic throughout the interior of G,; then the o, (z)

of theorem 1.2.2 can be chosen analytic (and in modulus not
greater than M) throughout the closed interior of Cy.

If ¢, (2) is the function already defined and used in theorem 1.2.2,
we consider its components ¢, (2) and ¢, (z) analytic respectively
interior to C; and exterior to Gy; in A we have

?u(z) = ?nu(z) + ‘Pu-z(z)-
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For z on Gy we have (0o < e <p)
1 [f(2)— 3y, (D)]de

(1.2.10) f(Z)—‘Pm("')E?ﬂ c t—z
_ 1 @ —e@)dt
=) T i—z

Ce

¢
in fact, for z on G, the integral of ?'i(—z) over G, equals the integral

(1) . . . ..
%!:—z over a circle of variable radius r containing C., and the latter-
(constant) integral approaches zero as r — o by virtue of ¢, ()= o.

‘We may now write from (1.2.10)

[maxlf(z)—qam(z)|, z on Co]éA1[max |f(z)—— ?M(Z)I, z on C,],

of

whence by (1.2.8) '
1 p—=
(1.2.11) ]i;:l—)s‘:lp [max lf(z) — % (3) |, z on Collosllé ef—1,

and ¢ —o yields the fact that the first member of (1.2.11) is not
greater than the second member of (1.2.7).

To be sure, although the functions ¢, (3) are analytic interior
to C,, they have not been shown to satisfy lcpm(z)léM there.
Nevertheless we have for z in the neighborhood of C,

L[ % (¢) de ,
2niJe I — 3

[Pua(2) | £ AeM, |0y, (3) | < | oy (®) | + | oya(3) | £ (14 Ag) M.

Py (3) =

Since (1 A;)M is a bound for |9, () |in the neighborhood of Cy,
it is also such a bound throughout the interior of C;. We also have
as M > o«

log(1+ A))M  log(1+ A,) +logM .
TogM TogM 1

from which it follows that the first member of (1.2.11) is not
greater than the second member of (1.2.7), where M now indicates
a bound on the modulus of ¢y,(2) interior to C,. However, the
strong inequality is not possible (compare corollary 1.2.2), so the
proof of theorem 1.2.3 is complete.

MEMORIAL DES SC. MATH. — N° 144. 2
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A proposition weaker in some respects than theorems 1.2.2
and 1.2.3 and corollary 1.2.2 is still of interest :

Cororrary 1.2.3. — Let C be a Jordan curve, and let f(z) be
continuous on G. A necessary and sufficient condition that f(3z)
be the boundary value of a function analytic in an annular
region of which C is one of the two boundaries, is that there
exist a sequence of functions fn(z) continuous on G and analytic
in an annular region A of which C is one of the two boundaries,
such that

1
lim sup [max | f(z) — fu(2) |, 3 on C]" <1,
n>w®
1
lim sup [max | f,(3)], 2 in A< w.
n>=»

A necessary and sufficient condition that f(z) be analytic on G
is that there exist a sequence of functions fn(z) analytic in an
annular region A containing C (which separates the two boundary
components of A) and satisfying these inequalities,

If f(z) is given, analytic respectively in an annular region of
which-C is one of the two bounding curves or in an annular region
containing C, the annular region A may be chosen arbitrarily,
satisfying the topological conditions mentioned.

The direct parts of corollary 1 .2.3 may be proved by approximating
separately the two components of the given f(z), using theorem1.2.3;
the indirect parts may be proved by applying the two-constant
theorem to the sequence f,(z) — fa—1(2)in A; in the first case the
application is made but once, using the annular region A; in the
second case the application is made to the two annular regions into
which C separates A.

The topological situation of theorem 1.2.2 can be generalized so
that for instance G, is replaced by a Jordan arc.

Tueorem 1.2.4. — Let D be a simply connected region whose
boundary contains more than one point, and let E be a continuum
containing more than one point, interior to D. Let A denote the
annular region D —E, and let u(s) be harmonic interior to A,

continuous in the closure A of A, equal to zero and unity on the
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boundaries of E and D respectively. Let G, denote generically
the Jordan curve u(z) =o (0 <o <1)in A, and let T, denote the
locus o <u(z)<<oinA.

Let f(3) be analytic throughout T,+ E, but not continuable so
as to be analytic throughout any T's (¢ > ). For each M(> o)
let 9, (z) denote the (or a) function analytic and in modulus not

greater than M in D such that

(1.2.12) mn=[max|f(z)—cpu(z)|,zon E]
is least. Then we have

1 e
(1.2.13) lirn:\-)s:pm;"“ =ef !,

Let ¢ (0 << e <p) be arbitrary, and let us set
1.2.1%) my (&) = [ max |f(2) — oy (3)], 200 Ce],

where ¢, (5) denotes the (or a) function analytic and in modulus

not greater than M in D such that (1.2.14) is least. Since E lies
interior to Ce we obviously have

(1.2.15) my < my (€).

It is no loss of generality to assume D the interior of a Jordan
curve C;. The function harmonic in the annulus bounded by G,
and G, continuous in the closure of the annulus and equal to zero

and unity on Ccand G, respectively is ue(z) = Lﬁf—)_?, which takes

the value ‘::: on C,. By theorem 1.2.3 we have

I

li::x_)s”\,lp[mm(es)]“”‘M =P~

use of (1.2.15) and approach of ¢ to zero implies that the first
member of (1.2.13) is not greater than the second member.
However, by corollary 1.2.2, the strong inequality is impossible, so
theorem 1.2 .4 follows.

1.3. Approximation by polynomials. — The discussion of
Problem A (relation of regions of analyticity to geometric degree of
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convergence), culminating in theorems 1.2.2,1.2.3 and 1.2.4, is
entirely satisfactory so far as concerns approximation on a set E
consisting of a single continuum by functions ¢ (2) analytic and
bounded in a simply connected region D containing E. The
direct theorems [ proof of the existence of the ¢, (z)] are based on
the Taylor development, and the indirect theorems (proof of the
analyticity properties of the approximated function when order of
approximation is given) are based on the three-circle theorem. We
now engage in the study of more complicated topological situations,
notably point sets E consisting of several continua and regions D that
are not simply connected. Thetwo constant theorem (as in the proof
of corollary 1.2.2) is adequate for the indirect theorems, but the
Taylor development is not adequate for the direct theorems, and
less familiar expansions are to be used.

A limiting case of a region D bounded by a continum not a single
point is that of the plane of finite points; boundedness of the
approximating functions in D is then no longer feasible, but it is
appropriate to study approximation by polynomials, as we now
proceed to do (*).

The discussion of paragraph 1.2 is significant in the study of
approximation by polynomials; we prove

Treorem 1.3.1. — Let E be a closed bounded set whose
complement K is connected and possesses a Green's function g(z)
with pole at infinity. Let Eg(R>1) denote generically the
locus g(z)=logR in K. If f(z) is defined on E, and if | pn(2)}
is a sequence of polynomials of respective degrees n, then the
relation

1
. n_1
(1.3.1) lim suppy = = (¢ >1),
o= max[|f(2) —pa(2)|, 5 on E],
implies that f(z) can be continued analytically from E so as

to be analytic throughout the interior of E,. Indeed, the

sequence | p,(z)} converges uniformly on every closed set interior
to E,.

(') A polynomial of degree n 1s a function of the form @,z"+ a,z"~'+...+a,
whether or not @, = 0. A rational function of degree n is a rational function having
poles whose total order is not greater than n.
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A point z is considered to be interior 10 E, (which may consist
of a finite number of Jordan curves, mutually exterior except that
each of a finite number of points may belong to several such curves)
if z is separated by E, from the point at infinity.

An important tool is a lemma due to S. Bernstein in the case
that Eis a finite line segment; we use [1933, § 4.6] a method of proof
first published by M. Riesz, independently found by M. Montel.

GeneraLizep BernsteiN LemMA. — Let E and Ey satisfy the
conditions of theorem 1.3.1. If P,(z) is a polynomial of
degree n which satisfies the inequality |P,(3)| <M, on E, th
we have

(1.3.2) | P.(2) | < MyR"

throughout the closed interior of Eg.

zero on the boundary of K, and of having the form
g(z)=log|z|+ g:1(5) forlarge|z|,

where g4(z) is harmonic at infinity. If /(z) is a function conjugate

to g(z) in K, the function w:—%‘—]; is analytic although perhaps

not single valued throughout K, and its modulus is single valued
there. This function has a modulus which is continuous and not
greater than M, on the boundary of K, hence which is not greater
than M, throughout K. Then for s on E; we have (1.3.2),
so (1.3.2) is valid throughout the closed interior of Eg.

We are now in a position to prove theorem 1.3.1. Equa-
tion (1.3.1) yields by elementary algebraic inequalities

1
ligl_)sup[max | Pn(3) — prn—i(2) ]|, 3 0on E]" < i-;

whence by the generalized Bernstein lemma,

1
lir::_)s:xp[max | Pr(3) — pr-1(2)]|, 3 0n E "<

o |m

(R>1).

The sequence p, (z) converges uniformly on every Ey (1 < R < p), so
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theorem 1.3.1 follows. It is worth noting too that for an alternate
proof we may choose a fixed R (> p), may write from (1.3.2)

1
lim sup[ max | p.(2) |, 3'on Eg]"<
n>w

o |

and apply corollary 1.2.2 with D the interior of E; (which may
— 8(3)
— logR

Green’s function, of fundamental importance in the (indirect)
theorem 1.3.1 on approximation by polynomials, is also of funda-
mental importance in direct theorems.

consist of several mutually disjoint regions) and with u(z)

Turoren 1.3.2. — Let B denote a finite number of mutually
exterior analytic Jordan curves, K the infinite region bounded
by B, and g(z) Green’s function for K with pole at infinity.
Suppose for large | z | we have

g(z)=log|z|+ g1(3), where g;(®)=— go.

Then for z in K we have

- _ 1 9dg
(1.3.3) g(z)+go=fncp<s>logrds, 9(s) = = %,
where v denotes inner normal for K and r=|z—t|, t on B; we
also have
(1.3.4) f:p(s)ds:x.
B
Consequently, if for n =1, 2, ... the points {\", (5", . . ., {V are

equally spaced on B with respect to the parameter o, = f 9(s) ds,
we have
(155 {m.mz).r’z:em}m,

wa(2) =(z—L) (s = L) ... (#—L),

uniformly on any closed bounded set in K.
Thanks to the special properties of g(z) at infinity and the
relation g(3) = o on B, Green’s formula

1 /) dlogr
s@)= o [ (ogrSf — 5258 jas,
A
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where B’ is B together with a large circle whose center is 3, reduces
to (1.3.3), and (1.3.4) follows by g(z) =log|z |+ g1(2)- Equa-
tion (1.3.5) expresses the exponential of the Riemann sums for the
integral in (1.3.3), where the points £ =¢{" of subdivision of B are

equally spaced with respect to o= f 9(s)ds, and uniformity of

convergence results from equicontinuity. Equation (1.3.5) was
first used by Hilbert in the case that B is a single curve, and by
Faber in the more general case. The full use of (1.3.5) in relation
to geometric degree of convergence by polynomials is due to Walsh
and Russell [1934]:

Tusorem 1.3.3. — Let E and Ey satisfy the conditions of
theorem 1.3.1. Let f(z) be analytic throughout the interior
of E; but not throughout the interior of any E,. (p' > p).

If t.(z) denotes the polynomial of degree n of best approxi-
mation to f(z) on E in the sense of Tchebycheff, then we have

1
(1.3.6) lim sup[max | f(3) —t.(3) |, 5 0n E]7'==%.
n->ow

Of course ¢,(z) is the polynomial of degree » which minimizes
the square bracket in (1.3.6); this polynomial is known to exist
and bc unique. By the method of proof of theorem 1.2.4, it is
sufficient here to suppose E bounded by a finite number of mutually
exterior analytic Jordan curves B. For z interior to E,_¢ (0 << 2 <<p)
we use Hermite’s interpolation formula

_ 1 w1 (3).f(2) dt
(1.3.9) F &= =5 ), oD =)

where w,.1(z) is defined by (1.3.5) and p,(z) is the polynomial
of degree n which interpolates to f(z) in the points £7*" on B.
There follows

[max | f(z) —ta(2)|, 5 on E] < [max | f(s) — pa(2) |, z on E]
« [max | f(z) — pa(3)], 3 on Eyi¢],

and the superior limit of the 2™ root of this last member is by (1.3.5)
€
€

greater than the second member; equality follows by theorem 1.3.1.

not greater than ~%; thus (e — o) the first member of (1.3.6)is not
Py
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Any sequence of polynomials ¢,(z) of respective degrees n
satisfying (1.3.6) is said to converge mazimally to f(z) on E.
Theorem 1.3.3 is due to S. Bernstein if E is a line segment.

Theorems 1.3.1 and 1.3.3 form a satisfactory solution of Problem A
for approximation by polynomials. They include the special case
of Theorem 1.2.3 in which C; is a level locus of Green’s function
for the exterior of C, with pole at infinity. In order to prove a
direct theorem concerning Problem A for approximation by bounded
analytic functions in general regions, we establish such a theorem
for approximation by rational functions, of which theorem 1.3.3 is
a limiting case.

1.4. Approximation by rational functions; applications. —
Theorems 1.3.1 and 1.3.2 are limiting cases of results to be proved
by similar methods [1935].

Tneoren 1.4.1. — Let D interior to C, be a region whose
boundary consists of mutually disjoint analytic Jordan curves By,
B, ..., By; Cyy Gy, ..., G, and let u(z) be harmonic in D, equal
to zero on B =2 B, and equal to unity on G =2 Ci. Then
Jor z in D we have

u(z)—lafcp(s)logrds—-—ﬁcp(s) logrds,
B

du
N

(1.4.1)
¢(s)= ;I;

where N denotes inner normal for D and r=|z—t|, tonBorC;
we set

(1.4.2) fq:(s)ds=t.
B

Consequently, if forn =1, 2, ... the points 3\, By, ..., " are
equally spaced on B with respect to the parameter oo = f 9(s)ds
and the 2", &, . . ., &' similarly spaced on G, we have

1 u(zf—i

(1.4.3) l}i_;y;]wn(z)|n=e T,
_ (). (3 — )
(1.4.4) on(z) = (z.._a(lln))...(z—“(n")),

uniformly on any closed set in D.
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Equation (1.4.1) is merely Green’s formula for the function u(z)
and the region D; the logarithm of the two members of equa-
tion (1.4.3) expresses the convergence of the Riemann sums for the
integrals in (1.4.1), where the points £ = ‘" and a” subdividing B
and C are chosen equally spaced with respect to the parameter

co=f:p(s)ds;

uniformity of convergence follows from the uniform continuity of
the harmonic functions involved.

For purposes of interpolation by rational functions it1s convenient
to modify (1.4.4) by setting

(z—B") ... (3 —30)
(z—al") ... (z—at)

(1.4.5) 0. (3) = ,
where now for each n there are chosen n -1 points 3™ on B;
equation (1.4.3) persists uniformly on any closed set in D.

TuroreM 1.4.2. — Under the conditions of theorem 1.4.1 let Ty
denote generically the locus u(z) =¢ (0 <e <<1) in D, and let Dq
denote the point set o <u(z) <<oinD. Let the function f(z) be
analytic throughout D, plus the closed interiors of the curves B.
Then there exists a sequence of rational functions r,(z) of
respective degrees n, whose poles &\ lie on a locus Ty¢, determined
by interpolation to f(z) in points 3" on B, satisfying

1 —p+E

(1.4.6) lim sup[max | f(z) —r.(3) ]|, 3 on B]'_‘ée o,
n>w»

1 1—p-+¢
(1.4.7) lim sup[max |7,(3)|, 30on C]"<Le
n->wo

The function u(z) can be extended harmonically across C so
that #(z) remains harmonic in the region bounded by B and some
locus Tyye @ u(z)=1-+¢(e>0), consisting of v analytic Jordan
curves exterior to D near to the respective G,. We set for z interior

toT, . (s < g)
(1.4.8). f(z)—rn(z)E—!f u)n(z).f(t)dt
r

27L — w,(t)(t— 3)
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where w,(z) is defined by (1.4.5) and (1.4.3) is valid with u(z)

replaced by u(z) and 7 replaced by — Forz onTs (s <<p—¢)

by (1.4.3) as modlﬁed, the superior limit of the n'™ root of the
second member of (1.4.8) is not greater than exp [c—“—:——’_—s]v
whence (¢ — o) we have (1.4.6).

To establish (1.%.7) we use (1.4.8) together with Cauchy’s
integral formula for f(z); for z interior to I';_. we have

(1.4.9) sy = o f Ll OO,

23 Jp w, (t)(t—3)

and since the integrand has no singularity in z on I',_¢, this formula
is valid for 5 on C. Inequality (1.4%.7) follows.
Theorem 1.4.2 applies [1938] to approximation by bounded

analytic functions :

Tueorem 1.4.3. — Assume the geometric conditions and
notations of theorems 1.4.1 and 1.4.2. Let the function f(3)
be analytic throughout D, and also throughout the closed
interiors of the B,, but not analytic throughout any D, (p'>p).
Let ¢,(z) denote the (or a) function analytic and in modulus

not greater than M in D plus the closed interiors of the B,, for
which

(1.4.10) mM=[max{f(z)—q:M(z)l, z on BJ
is least. Then we have
! ..L
(1.%.11) lim supmlyEM = ¢ —F
Mo

Our hypothesis that each of the Jordan curves C; is analytic
involves no loss of generality; any given D can be mapped so that
it lies interior to an analytic Jordan curve, the image of C;; further
conformal maps can be made onto regions D so that the images of C,
and G, are analytic, then the images of Gy, G, and G, are analytic, etc.

If B is composed of analytic Jordan curves, the method used
in theorem 1.1.1 based on (1.1.4) and (1.1.5) but now based
on (1.4.6) and (1.4.7) shows that the first member of (1.4.11)isnot
less than the second member (of course ¢ > 0). Equality in (1.4.11)
follows from corollary 1.2.2.
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If B is not composed of analytic Jordan curves [indeed, it is suffi-
cient if B is composed of a finite or infinite number of components,
provided u(z) exists], the method of theorem 1.2.4 completes the
proof.

Tueoren 1.4.4. — With the topological hypothesis and notation
of theorem 1.4.3, let f(z) be analytic in D, and continuous.on B
but net analytic throughout any Dy (o <<p <<p' <1); let ¢ (z)
denote the (or a) function analytic in D, and in modulus not
greater than M in D, for which (1.4%.10) is least. Then (1.4.11)
is valid.

Theorem 1.4.4 is to be proved by use of the components of £(z).
For zin D, say o <e <u(z) <p—¢, we have

(1.4.12) f(z)E—I—f(,)__f(t)dt""‘l_[ fae

ani t—2z zxit“(‘)zp_‘ t—z
where the integrals are taken over the loci indicated, in the positive
sense with respect to the point set ¢ < u(s)<<p—e. The second
integral in (1.4.12) represents a function analytic in D, plus the
interiors of the B, satisfying the hypothesis of theorem 1.4.3,
and the first integral represents a function analytic throughout D,
continuous on B. Details of the proof of theorem 1.4.4 are left
to the reader, and are entirely analogous to those of the proof of
theorem 1.2.1; it is convenient to apply corollary 1.2.2, which
indeed may be regarded as a converse of theorem 1.4. 4.

CHAPTER II.

PRroBLEM « : f(2) NoT anavLyTIC ON E.

2.1. Approximation by bounded analytic functions. — Chapter I
represents in broad outlines a relatively complete treatment of Pro-
blem A; we turn now to Problem «, i. e. degree of approximation on
a point set E to a function whose properties (less than analyticity)
are given on E.  'We are in a position to make large use of the theory
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of trigonometric approximation in the real domain, in the form given

it by de la Vallée Poussin [ 1919], namely :

Turorem 2.1.1. — If f(8) és a function with period 2 whose p'"
derivative satisfies a Lipschits condition of order a(o <a <1),
then there exist trigonometric polynomials

n
T, (9) EZ(G,;LCOS k04 b, sin k6)
[

of ordersn=1, 2, ..., such that for all 6
A
(2.1.1) |f(0)—Tn(ﬂ)|é’-w—+a'

Conversely, if the T,(0) exist such that (2.1.1) holds for all 6,
then f(0) has a p'" derivative which satisfies a Lipschitz condition
of order «:

Our fundamental theorem here concerning approximation by
bounded analytic functions is [compare 1951, 1952 ¢ and 1939 €]. *

Tueorem 2.1.2. — Let the function f(z) defined on the ana-
lytic Jordan curve C possess a p* derivative on G whick satisfies
a Lipschitz condition of order a(o <<a < 1), with respect to arc
length on C. Then there exists a region D containing C and a
sequence of functions f,(z) analytic in D satisfying

(2.1.2) | fu(3)| < AR?, zinD,
(2.1.3) |f(z)——fn(z)|énTA_"_;, zonC.

Conversely, if f(3)is defined on C, and the functions f,(z) ana-
lytic in some region D containing C satisfy (2.1.2) and (2.1.3),
then f*(z) exists and satisfies a Lipschitz condition of order «
or C.

We establish the first part of theorem 2.1.2 when C is the unit
circle by the use of theorem 2.1.1. A trigonometric polyno-
mial T, (8) may be expressed on T : |z| =1, by the Euler formulas

" = cosnh + ¢ sin nd, z—" = cosnb — i sin n,
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as a polynomial P, (z, %) in 2z andé of degree n, and if (2.1.1) is

. P. (z, —;)
satisfied we may write ] P, (z, ;)l ~A,onI. The functions —
and z"P, (z, %) are analytic respectively in the closed regions | 5 | > 1
and |z| <1, and are in modulus not greater than A, on I' and in

those regions. Thus we have |P, (z, %)léAgR" on the two

circles | 2| =R(>1)and | 3| = Il{’ so that same inequality persists
in the annulus D : %<|z| < R.

The first part of theorem 2.1.2, thus established when C is T, fol-
lows in the general case by a conformal map of C onto I, so that
a neighborhood of G is carried into a neighborhood of T. The
property of a function that it has a p'* derivative satisfying a Lips-
chitz condition of order « is invariant [ 1942, § 5.2] under conformal
transformation.

To prove the second part of theorem 2.1.2 we may assume that
C is T and D contains a closed annulus D,: §|é|z|ép(> ).

For z interior 1o D, we write

S (3) = fu1(2) + fns (3),
Fur(3) = 2;1”] JAGYS

(2.1.4) li=p £TF
_ 1 Sn(t)de
I =m)  Ti==
|z|=5

where fn1(z) and fn2(z) are analytic in |z|<pand |z|> ; respec-
tively with fr2(0)=0. We set further

— o

(2.1.5) fu(R) = Damst,  fu(z)= 3 amst,
k=0

k=—1

and the Cauchy inequalities on these coefficients, computed

from integrals of £1(2) over |z|=p and [:|=-;-respectively, are

Zh+1
ARn .
|@ni | < AT - Then on T we bave for the partial sums S,y (z) and
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T,x(z) of order N of the respective series in (2.1.5)

. AR~ AsRn
| fr1(3) — San(3) | < _PT- =%"
(2 1 6) k=N-+1
hd AR~ AgqR2
lf"?(z)_'Tn,l\(z)lé E 7’= —:V—'
A=N+1

Let us choose the positive integer A so that p~> R, whence we
deduce from (2.1.6), (2.1.4) and (2.1.3)

A
|./(z)_Sn,)\n(z)—Tn,An(z)'é d zonT.

np+a’

OnT the polynomial S, 5, (%) + Trpa(z) in 2 andé is also a trigono-
metric polynomial of order An. To be sure, these trigonometric
polynomials are not defined for all orders, but we may set on T

Ti(0) = S,upn(3) + Trun(3) [ArnLh<h(n+1)]

Then the trigonometric polynomials T, (0) are defined for all A (> o)
and satisfy on T

A')
Ap+a *

[f(3) = Tu(8) | <

and the second part of theorem 2.1.2 is a consequence of the second
part of theorem 2.1.1.

Theorem 2.1.2 is to be contrasted with corollary 1.2.3. A less
general situation than that of theorem 2.1.2 deserves explicit
statement :

Tueoren 2.1.3. — Let the function f(z) defined on the analytic
Jordan curve G, analytic interior to G, and continuous in the
closed interior of C, possess a p'" derivative on C which satisfies a
Lipschitz condition of order a (o <<a <C1), with respect to arc
length on C. Then there exists a region D containing C and its
interior, and a sequence of functions fn(z) analytic in D satis-
Sfying (2.1.2) and (2.1.3).

Conversely, if f(z) defined on C and the functions f,(z) ana-
lytic in some region D containing C and its interior satisfy (2.1.2)
and (2.1.3), then f(s) is analytic interior to G, continuous in the
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corresponding closed region, and f¥)(3) exists and satisfies a
Lipschitz condition of order « on C.

In the first part of theorem 2.1.1 the sequence T, (0) arises by
summation of the Fourier development of f(0) by the method of
D. Jackson, so if £(0) is the set of continuous boundary values of a
function analytic in |z| <1, with z=¢e® on T : | 3| =1, the trigo-
nometric polynomial T, (9) in (2.1.1) is also on T a polynomial in 5
of degree n. Thus if C in the first part of theorem 2.1.3 is T,
the f.(z) satisfying (2.1.3) can be chosen as polynomials in z of
degree n, and (2.1.2) in the closed interior of I'y follows by the gene-
ralyzed Bernstein lemma. Consequently, if G in theorem 2.1.3 is
arbitrary, a conformal map of the interior of C onto the interior of T
yields the existence of D and the f,(z). The second part of theo-
rem 2.1.3 follows from the second part of theorem 2.1.2.

2.2. Approximation by polynomials. — Both for its intrinsic inte-
rest and for later application we proceed to consider Problem a for
approximation by polynomials. Here the fundamental theorem
is [1936, 1937].

Theoren 2.2.1. — Let By, B,, ..., B, be mutually exterior
analytic Jordan curves, and let E denote the sum of their closed
interiors. If f(z) is analytic in the interior points of E and conti-
nuous on E, and {f fr)(z) exists and satisfies a Lipschits condi-

tion of order a (o <<a<<1) on EBj’ then there exist polyno-

mials p,(z) of respective degrees n =1, a, ... such that
(2.2.1) |f(z)—p,,(z)]én::_a, zonE.

Conversely, if f(s) is defined on E and (2.2.1) holds for a
sequence of polynomials pn(z) of respective degrees n, then f(z)
is analytic in the interior points of E, continuous on E, and

onZB y possesses a p't derivative satisfying a Lipschits condition
of order a (o <<a<<i).

The second part of theorem 2.2.1 is readily proved from the sccond
part of theorem 2.1.3, if we identify the given p,(z) with the Sn(3).
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It follows from (2.2.1) that the p,(z) are uniformly bounded on
each Bj, and (2.1.2) follows in an arbitrary bounded region D
containing E from the generalized Bernstein lemma (§1.3); conse-
quently the second part of theorem 2.1.3 is applicable.

In proving the first part of theorem 2.2.1 (the general method is
due to J. H. Curtiss) we apply the first part of theorem 2.1.3 to
each B;(1 < j < p), making use of the functions f, (z) and the ine-
qualities (2.1.2)and (2.1.3); we assume, as we may do, that (2.1.2)
and (2.1.3) hold for all the functions f,(z) independently of 7, and
we choose p(> 1) in such a way that the regions D of theorem 2.1.2
for the various B in their totality contain the locus E; (notation of
theorem 1.3.1) which consists of » mutually exterior analytic Jordan
curves containing the respective B,. For each n the function f,(z)
shall hence forth indicate the aggregate of the previous f,(z) defined
forj =1, 2, ..., i, sothe new f, (z) is analytic throughout the closed
interior of E, and satisfies

(2.2.2) | fn(3)] < AR?, zinEg,
(2.2.3) |f(z)—f,,(z)|é;l%, zonE.

We proceed to use the method of proof of theorem 1.3.3. and in
particular we use Hermite’s interpolation formula (1.3.7), now in
the form (1 <1+ ¢ <p)

(2.2.4) f,,(z)—pn,N(z)E—l—fM-)M zonE, ..

d R
2niJ, N (t)(2—2)

From the relation (1.3.5) and from (2.2.2) and (2.2.4) follows
for z on E,. and hence for z on E

(2.2.5) () = prx(a) | = 2550

1

where A, is independent of nand N and where p; (1 < ps <<p) is sui-
tably chosen. Asin the discussion of (2.1.6) we choose the integer A
so that p» > R, whence by (2.2.5) and (2.2.3)

A,
If(z)_PuJ\n(z)lé;-p:%i zonkE.

Here pnn(3) is a polynomial in z of degree A, and is not defined
for all degrees; however we may set

Pk(3) =Pnin(3) [Ar<kW(n+1)],
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so the pi(z) are defined for k=1, 2, ..., and (2.2.1) follows.
Theorem 2.2.1 is established.

A somewhat analogous result [1932], involving a function given
merely on a single Jordan curve, is

'U'neoren 2.2.2. — Let C be an analytic Jordan curve contai-
ning the origin in its interior. If f(z) defined on C has a p*
derivative which satisfies a Lipschitz condition of order

a(o<<x <1)onG, then thereexist polynomialsP, <z, é) of degreen

inz and%such that
2.2.6 5)—Po(z-)]|< A sonC
(2.2.6) If(5)—Pa(32) £z s0nC.

Conversely, if f(z) is defined on G and if there exist polyno-
mials P, (z, %) of degree n in z and i such that (2.2.6) is satis-

fied, then f\P)(3) exists on C and satisfies there a Lipschitz condi-
tion of order a.

If fir)(z) exists on G and satisfies there a Lipschitz condition of
order «, we use the first part of theorem 2.1.2, and assume the func-
tions f,(z) analytic in the closure of the region D, whose boundary
consists of analytic Jordan curves G, (interior to C) and C; (contai-
ning Cinitsinterior). Asin (2.1.4) we set f,(2) = fn1(3) + fa2(3),
1 fa(e)dt I Jn(2) dz’

g k) 2(3) = ——
25l e t—3, fn2(2) 2xiJg t—3

Jni(3)=
where f,.1(2) and f,2(z) are analytic respectively interior to C, and
exterior to Go. From (2.1.2) we deduce | f,1(3) | £ AaR” on any
closed set interior to C; and | fra(2) | < AaR” on any closed set exte-
riorto Co. Use of equation (2.2.4), where f,(z) is replaced by fn1(2)
and where the integral is taken over a Jordan curve interior to C, but
containing C in its interior, proves (py >>1)

A?‘ R~

lfni(z)"“Pn,N(z)lé PN ’ zonC,
1

for polynomials p, y(z) in 5 of respective degrees N, and similar rea-
soning proves a corresponding result involving f,2(z) and polyno-

MEMORIAL DES SC. MATH. — N° 144, 3
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. 1 . I . . - .
mials P,y (;) in — of respective degrees N. As in the discussion

of (2.1.6)and (2.2.5) we choose the integer A so thatp} > R, whence
by (2.1.3)

lf(Z)— [pn;,.n(z') + Puin (53) ] !é ni‘—— zonC.

=3

If we now set
Pr (z, i) =pnin(2) + Prin (i) [Arngk <i(n+1)],

the P (z, l;) are defined for all degrees &, and (2.2.6) follows.

To prove the converse we note by (2.2.6) that the P, <z, é) are

uniformly bounded on C : l P, (z, o) ] ~A,. Ifg(z)denotes Green’s

z
function for the exterior of C. with pole at infinity and % (z) the conju-
gate function, we have
1
P, ( %3 )

< Ay

on G and exterior to G even at infinity; in particular on the
locus Cp : g(5) =1log R (> o) exterior to C we have

(2.2.7) l p”( . lz) < A R".

If go(2) denotes Green’s function for the interior of G with pole in
the origin we prove similarly (2.2.7) on the lacus Cg : go(5) =log R.
Then (2.2.7) holds in the annular region bounded by Gy and Cg,
so the conclusion of the second part of theorem 2.2.2 is a consequence
of theorem 2.1.2.

Such a property as (2.2.6) is [1959e] intrinsically invariant
under conformal transformation.

2.3. Complements. — Some complements to the preceding results
are of interest.

Turorex 2.3.1. — Let C be an analytic Jordan are,let D be a
region containing G, let f(z) be defined on G, and let func-
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tions fu(z) analytic in D satisfy (2.1.2) and (2.1.3). Then on
any closed subarc of C containing no endpoint f\P)(z) exists and
satisfies a Lipschitz condition of order u (o < a<<1).

Let the transformation 5 =¢(w) map C onto the line segment
S : —1 < w1, the map being conformal and one to one in sui-
table neighborhoods of C and S; inequalities (2.4.2) and (2.1.3)
in suitably modified form persist. Green’s function g(w) for the
w-plane slit along S with pole at infinity admits a representation ana-
logous to (1.3.3), where the integral is taken over S, (¢ > 0) and
the analogue of (1.3.5) persists exterior to S;;.. The method of
proof of the first part of theorem 2.2.1 is valid, and shows the exis-
tence of polynomials p, () in v of respective degrees n satisfying

A

ne+a

(2.3.1) [fle (@) —pa(w)| < » wonS.

The classical transformation w=cos6 maps S onto the axis
—o <8<+, transforms f[¢(w)] into a periodic function of 0
and pa(w) into a trigonometric polynomial in 0 of order n. Theo-
rem 2.1.1 now applies, and yields the conclusion.

We have essentially proved the first part of : If D is suitably
chosen, a necessary and sufficient condition for the existence of
the fn(z) satisfying (2.1.2) and (2.1.3) is that f[o (cos 0)] pos-
sess a p' derivative with respect to 0 which satisfies a Lipschitsz
condition of order a with respect to 0.

If fI9(cos0)] satisfies this laiter condition with Z = e®, there

and lz satisfying on I : |Z| =1 the inequality

exist by theorem 2.1.1 polynomials p, (7 l) of degree n in Z

715 cor 01— pn (2. ) | 2 ot
Since f{¢(cos6)] as a function of Z is symmetric in the axis of reals,
there follow on T

Slo (cos8)] — p, <lz) Z) I < %’
[7tscos 1= 2o (2,5) — 2pa (5 2) | < ooz
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The transformation & = -;- (Z + —IZ-) now yields (2.3.1) and (2.1.3),

also (2.1.2) by (2.3.1) and the generalized Bernstein lemma.

If the functions f,(z) of theorem 2.3.1 are given as polynomials
in z of respective degrees n, inequality (2.1.2) in a suitable region D
is a consequence of (2.1.3), by the generalized Bernstein lemma.
Moreover, the methods that we have developed (compare the proof
of the first part of theorem 2.2. 1) show that if f[¢(cos0)] possesses
a p' derivative with respect to 0 which satisfies a Lipschitz condition
of order « with respect to 0, then the functions f,(z) in (2.1.3) can
be chosen as polynomials of degree nin z. Thus if D is an arbitrary
bounded region containing G, and if f[¢(cos0)] satisfies the condi-
tion just mentioned, the functions f,(z) of theorem 2.3.1 exist, as
polynomials of degree n in 3.

The second part of theorem 2.1.2 follows from theorem 2.3.1, for
we may apply the latter to two subarcs of the Jordan curve C of
theorem 2.1.2 overlapping cach other at both ends.

Thus far in chapter Il we have considered, concerning approxi-
mation by bounded analytic functions, sequences rather than families
depending on continuous paramelers. We now treat briefly extremal
functions [ 1951], for definiteness in the situation of theorem 2.1.2;
but it is clear that a similar discussion applies also in numerous other
situations.

TreoreM 2.3.2. — “Let D be a bounded, annular region and let
the analytic Jordan curve C separate the two bounding curvesof D.
Let the function f(z) be defined on C, and for each M(> o)
let gy (z) denote the (or a) function analytic and of modulus not
greater than M in D such that

(2.3.2) my = [max | f(3) — ¢n(z)|, s0nC]

is least. Then a necessary and sufficient condition that f(z) pos-
sess a p'™ derivative with respect to arc length on G which satisfies
there a Lipschitz condition of order a (o << a < 1), is that

1
(2.3.3) log M- m/+?

be bounded as M — .
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If (2.3.3) is bounded, we choose the sequence M = e", whence

1
e A1 A)
mﬁ*“é w7 my<

and the conclusion follows from theorem 2.1.2. In theorem 2.3.2

it is sufficient if (2.3.3) is bounded for a monotonic sequence M,
IOgMn+1

with 2= bounded ; boundedness of the original form of (2.3.3)
M,
follows if we set oy (2) =y, (2), M =M <M,4.
To prove the converse, we note that in the first part of theorem 2.2.2,

the polynomials P,(z. 1) satisfy (2.2.7) for suitably chosen R in
poty Z y 7 Y

any bounded region D containing G but whose closure does not
conlain the origin; this fact appears in the proof of the second part
of theorem 2.2.2. Consequently in the first part of theorem 2.1.2
the region D may be chosen as an arbitrary annular region
whose two boundary curves are separated by G, the position of the
origin being unessential. 'We now compare my defined by (2.3.2)
with the measure of approximation to f(z) on G of the f,(z) of
theorem 2.1.2. Let n be defined as a function of M by the
inequalities AR*<M <AR"*!, in the notation of (2.1.2); we

A . )
have my =< iz in the notation of (2.1.3), whence

1
1 pra

m"‘l'"“é-—?n——a logM <log A+ (n+1)logR,

from which the boundedness of (2.3.3) follows.

It is merely for convenience in exposition that we have supposed D
in theorem 2.3.2 10 be an annular region (i. e. bounded by two
Jordan curves); it is sufficient, as is shown by a suitable conformal
map, if D has at least one boundary component not a single point
interior to G and at least one such boundary component exterior to C.

2.4. Approximation by rational functions. — An extension [1956 a]

of theorem 2.2.1 to a more general topological situation turns out to
be useful in the sequel :

Tueorem 2.4.1. — Let E be a bounded open set whose boundary
J consists of a finite number of mutually disjoint analytic Jordan
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curves J,, J:E.lj. Let f(z) be analytic on E, continuous

on E+J, and possess on J a p'* derivative which satisfies a Lip-

schitz condition there of order a (0 <<a <<ti). In the extended

plane, let the set complementary to E +J consist of the mutually

disjoint regions Ey, Eq, ..., E,, let a point a; be given in each E;,

and for eachn = v,v+1,v+ 2, ... let positive integers m,, be
v

n

. . l
given wzth}_‘ mur=n. Suppose the numbers are bounded

nk

A=1
Sor all k and n. Then there exist rational functions R,(z) of
respective degrees n whose poles (of respective multiplicities not

greater than m,y) lie in the points a; such that we have

A .
(2.4.1) lf(z)—R,,(z)Iém, son E+1J.
For z in E we have
(2)dt
(2.4.2) =YL (L
f( sz y, t—3 K

where the integrals are taken over all J, in the positive sense with
respect to the regions which compose E.  Although the function

(2.4.3) ! f—f")‘”

EX.41 t— 3

J

is defined and analytic at all points of the plane (including by conti-
nuity the point at infinity ) except on J, it is not defined on J,; we
hereby define (2.4.3) on J, by equation (2.4.2), of which all terms
but the one (2.4.3) are previously defined. Then (2.4.3) is conti-
nuous on E, and on J, has a p* derivative which satisfies there a
Lipschitz condition of order 7; the function (2.4.3) is analytic
throughout that one of the two regions bounded by J, which contains
a subregion of E adjacent to J,, and is continuous in the corresponding
closed region.

Each curve J, belongs to the boundary of precisely one region E;.
For every k (1< k <v), we define the function

t— 2z

(2.4.4) Fk(z)EE‘_Z_;-i J&)—df,
] J

where the integrals are extended over the complete boundary of Ej,
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over each J, of this boundary in the same sense as in (2.4.2); this
function F;(z) is analytic in the interior points of the comple-
ment C (E;) of E, (the complement contains E 4 J), continuous
on C (E;), and on the boundary of E; has a p" derivative satisfying
a Lipschitz condition of order «, by our definition of (2.4.3) on J,.

The equation f (z) Ez Fi(z) follows from (2.4.2), for zon E 4 J.
A=1

By theorem 2.2.1 there exists a rational function R{ (z) of
degree m,x whose poles lie in a such that we have

A
(2.4.5) | Fe(z) —RP, (3) | < ;p—fﬁ, z on G (E).
nk

If we assume % = A, for all £ and n, we have

Al. AI. A%+oc .
consequently R, (z) EZ ¥ (2) is a rational function of the kind
A=1
required, which satisfies (2.4.1). Theorem 2.4.1 is established.
We shall later apply :

CororLary 2.4. 1. — Theorem 2.4.1 remains valid if the total
number of given points a, is greater than v, provided each E,

contains at least one a,, the equation Z mp,;= n persists, and the
/

quotients m—n~ are bounded for all j and n.
ny

We make use of but a single point e, in each E, in establis-
v

hing (2.4.5)as before ; then R, (2) EZ R (z)isarational function,
k=1
ofdegree n but also perhaps of smaller degree, which satisfies (2.4.1).

In theorem 2.4.1 it is essential to place at least one point a; in
cach E;; if no «; lies in a particular E,, the function f (3) = z_lﬁ’

where {3 is a finite point in E; (assumed bounded), cannot be uni-
formly approximated on J by rational functions R,(z) whose poles
lie in the @;. A sequence of such rational functions R, (), conver-
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ging uniformly onJ to the function f(z), would yield for the integrals
over the boundary of E,

o=’}i_>n§°fR,,(z)dz=ff(z)dz,

whereas the integral of f (z) is2n.

For a precisely similar reason, in approximation on a set E hounded
by a finite number of mutually disjoint analytic Jordan curves by
functions analytic and bounded in a region D containing E, it is
essential that cvery one of the subregions into which E separates the
plane should contain an infinite number of boundary points of D.
For instance, theorem 2.3.2 is false if D is allowed to be merely a
simply connected region conlaining E ; under such conditions if D is

bounded and we choose f (z) = -z-I—,j, where 3 lies interior to C,
i

the relation my— o is not possible as M —> oo .
The functions R, (z) of theorem 2. 4.1 satisfy an inequality

(2.4.6) [ Ra(2) ] < AoR7,

in u suitably chosen region containing EJ. Indeed, if g,(z)
denotes Green’s function for the region E, with polein a;, and 4(z)
R.(3)

en g+l
1s analytic in E, even at «;, and | @i (z)] is single valued and conti-
nuous in E;.  From (2.4. 1) we deduce | R, (z) | £ Ao on J, whence
}®ak(2)| < Ao on the boundary of E,, and |Re(2)] <L AgR" on the
locus Ly : g4(5) =log R (>0)inE,. Consequently (2.%.6)is valid
in the region Dy bounded by these v loci Ly ; the L, may be chosen
as close to the points «; as desired, merely by choosing R sufficiently
large. In any subregion of Dy, as in Dy itself, the functions R, (z)
are analytic and satisfy (2.4.6).

We have now at hand a converse of theorem 2.%.1: if rational
Junctions R.(z) of the prescribed kind exist satisfying (2.4.1),
then f (z) is analytic on E, continuous on E +J, and has a deri-
vative f\7)(z) on J which satisfies there a Lipschitz condition of
order «. 'We merely apply the second part of theorem 2.1.2.

Since the ponts «; of theorem 2.4.1 are entirely arbitrary in the
respective E;, and since any simply connected region whose boundary
is a continuum (not a single point) can be mapped onto the interior

the function conjugate 10 g/(z) in E,, the function ®,,(z) =
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or exterior of a circle, there follows by the method of proof of
theorem 2.3.2:

Tueoren 2.4.2, — Let E be a bounded open set whose boun-
dary J consists of a finite number of mutually disjoint analytie

Jordan curces J;, J =2 J,. Let D be a region containing E +J

such that each of the regions Ei, Es, ..., E, composing the
complement of E +J contains at least one component of the boun-
dary of D which is a continuum not a single point. Let the
Sunction f(z) be analytic on E, continuous on E +J, and for
cach M (> o) let gy (5) denote the (or a) function analytic and in
modulus not greater than M in D such that

(2.4.7) my=[max | f(z) —9u(z)|, z on E +J]

s least. Then a necessary and sufficient condition that f(z)
possess a p' derivative on J which satisfies there a Lipschitz
condition of order a (o <<a <<1) is that
1
log M-m;""‘

be bounded as M— .

Thanks to a possible succession of conformal transformations, we
may assume that the region D of theorem 2.4.2 is such that each Eq
contains points not in the closure of D, so the points a; in E, exterior
to D exist for application of theorem 2.4%.1.

Theorems 2.4.1 and 2.4.2 both extend to the case that E 4 J is
replaced by an arbitrary closed set E whose boundary consists of a
finite number of mutually disjoint analytic Jordan curves; the new
set may contain a Jordan curve which does not bound (wholly or in
part) a region belonging to the new set E; compare [1956 a].

CHAPTER I1I.

PropLen 3 : f(2) aNALYTIC ON E, MORE REFINED DEGREE OF CONVERGENCE ON E.

If the Taylor development about the origin of a function S (z) has
the radius of convergence p (> 1), the precise degree of convergence
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to f(z) of the Taylor development on E: [z| <1 depends on the
kinds of singularities of f (z) on | z| = p, whether for instance f(z)
has a pole of order 17 or is relatively smooth there. Degree of
convergence to f (z) on E of best approximating analytic functions
of prescribed norm depends likewise on the behavior of the function
on the boundary of its region of analyticity, and we proceed to
study this relationship. The Taylor development is adequate for
such a study in the simplest cases, but our program involves geometric
situations which seem to require more powerful tools, so we first
consider a general conformal map and then a special series of rational
functions. We frequently use the plane of finite points extended
by the adjunction of the point at infinity.

3.1. Conformal map ‘of multiply connected regions. — Here our
fundamental theorem is

Turorem 3.1.1.— Let D bearegion of the z-plane whose boundary
consists of mutually disjoint Jordan curves By, By, ..., B,; Gy,
Ca, ..., G. Then D can be mapped conformally onto a region A
of the L-plane, one-to-one and continuously in the closures of the
two regions, where A is defined by

1

A(Z——-a,)‘“x(Z— ag)":...(Z—au)MP <e.;’

<] |
(3.1.1) s (Z—b)N(Z —bs)Ne...(Z—b,)™
~ O
M;> o, N;>o, 3 M;= : Nj=1.

The images of the Bj and C; separate the a; and b; respectively
Jrom A.

We outline the proof, whose methods are due in part to de la
Vallée Poussin (who treats the case v=1) and to Julia; details may
be found in [1956].

We omit the classical case p=v=1, which in fact is easily
treated by the same methods, and assume p. > 2, which may require
interchange of the roles of the B; and C,. By a preliminary trans-
formation we may assume the curves B; and C; analytic; compare
the proof of theorem 1.4.3. We assume D interior to C;. The
function u(z) defined and used in theorem 1.4%.1 is invariant under
conformal transformation, and is central in the present proof.



APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS. 39

The function u(z) is harmonic in the closure D of D, and can be
extended harmonically across each of the bounding curves of D, so
as to be harmonic in a closed region D' containing D whose boun-
dary B': u(2) =—3d;(<<C0), (' : u(5) =08 =1+ 94, consists of . -} v
analytic Jordan curves B’,and C; near the Byand C;. If¢(z) denotes
the conjugate of u(z), Green’s formula corresponding to (1.4.1)
for z interior to D' becomes

u(z)sf-log]zatlds—J log|z—t|ds~+3,
o T
da:.—-—-ldvl, ':==fdc=fda>o;
Cl

2% Jy

(3.1.2)

the first and second integrals in (3.1.2) are taken over B’ and C/.

The derivative of u(z)+ /v(z) does not vanish on B:}:BJ- or

C =2 G;, for near ecach point say of B the locus u(z)= o consists

of a single analytic Jordan arc. We assume too that the derivative
of u(z)+ {v(3) does not vanish on B'+4 C' or between B’ and B,
and €’ and C.

If the ay, a3, ..., @s and By, B, ..., B,(depending on 7) divide
B’ and C' respectively into n equal parts with respect to the para-
meter 7, we have uniformly in D :

n n
ztn(z)E%Zl()g}z~a5|—~%Zlog]z-—-(skl+8-—>u~(z‘).
1 1

For » sufficiently large D is approximated by D, : 0 < u,(z) <1, a
region whose boundary consists of x + v Jordan curves near the B;
and C;. Each point of D lies in D, for n sufficiently large; each
point exterior to D lies in at most a finite numter of the D,. The
region D, can be expressed

n "" n Ay (2) 4 ivg (3N
1< |Ra(3) | <€, R, ( )EE’" Il-z-—a‘z *
3 — [SL
The transformation » = R, (z) of the s-plane onto an n-skeeted

Riemann surface o, over the w-plane maps D, onto a connected set

n

1 < |w| < & whese boundary consists of  circumferences of radius 1
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n
of respective multiplicities m; and v circumferences of radius e*of
respective multiplicities n;; here the m; and r; are the numbers of
a; and B4 on the B'I- and C}. The p + v closed regions of the z-plane
complementary to D, are mapped into p. + v simply connected closed

n
regions of gy covering |w| =1 and |w | e" respectively m; and n;
times. We define a new Riemann surface o; over the (v-plane by

replacing continuously each of these p + v closed regions by a sub-
1 1
region of the Riemann surface for z = w™i or 2 = w™ likewise cove-

n
ring |w| <1 or |w|X e precisely m; or n; times; these new sub-
regions of g, have each a single branch pomt atw=—o0orw= o0,
where all m; or njsheets meet. Then ¢y is also the topological image
of the extended z-plane, and (Schwarz) can be mapped conformally
onto the extended Z-plane ; the transformation is of the form

Ap(Z—ay)ym(Z—as)m... (L —ay )"

w=5.(0)= —g Sz =y (Z =6

Here the @, and &; (depending on n) are distinct, and lie exterior

to the image A,:1<<|S,.(Z)|< e of D,. The transforma-
tion R, (3) =S,(Z) of D, can be writtenZ =17, (z) We choose a;,
a,, b, as distinct points independent of », as is possible by a linear
transformation of the Z-plane.

As n tends to infinity, there exists a sequence of indices n such
1

that all the Af:, a;, b; approach limits A, a;, b;; we define M; and N;
by the equations

mp 1 = M; 7N =N; = =
. +1£;dc_M,l " —>T°[;a’a_N,, FM=YN=1

Thus the inequalities defining A, take the limiting form (3.1.1),
inequalities which define some region A.

The functions Z,(z) admit in D the exceptional values a,, @, b4,
hence form a normal family there. Henceforth we consider only
a subsequence of the subsequence of indices » already chosen, such
that the Z,(z) approach a limit Zo(z) in D, uniformly on every
closed subset of D. The assumption Z,(z)= g, a constant, leads
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to a contradiction, for by a suitable linear transformation of the
Z-plane we may choose g3£®, a:7#, and if necessary by a
change of notation we lake g% a,. If T is a Jordan curve in D
near B, and containing B, in its interior, the image of T' under
the transformation Z = 7,(z) contains a, in its interior, whence
arg[Z,(z) —aa]|c=2n, which contradicts Z,(z)—> g uniformly
onT.

A slight modification of classical reasoning concerning the
conformal mapping of variable regions now shows that the func-
tion Z =7Zy(z), univalent in D, maps D onto A. The methods of
Carathéodory or of Montel show that the map is one-to-one and
continuous in the corresponding closed regions.

3.2. A series of interpolation [1955 a]. — To prepare for our
further study of approximation we shall prove two lemmas.

Lemua 3.2.1. — If the positive numbers my, ma, ..., m, are
given with Zm j=1, there exist positive integers Ny for j =1,

2, ey by =1, 2, ... which satisfy the relations

u
(3.2.1) ZN,,,:n,
]=1
(3.2.2) Nn/é N,,.H‘/'é N,./'—i-l,
(3.2.3)  |Npj—nm;| <A (=12 .., n=1,2,...).

In the case u= 2 it is sufficient to set N,, = [~my], the largest
integer not greater than nm,, and Nyo=n—[nm,]. Forp>2it
is sufficient to iterate this process.

anuu 3.2.2. — Let the Jinite points a,, a., ..., a, be given,

and relative positive weights my, m., . . ., my, Zm ,=1. Set
U(3)=(z— @) (s —ay)m. .. (3 — ap‘)m.‘*_

Then there exists a sequence of points ay, as, ... each of which
ts some a;, such that on every compact set E containing no aj we
have

3.9, (z—2)(8—a3)...(53—a,)
(3.2.4) 0< A< ' [U(;)]n < As.
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We define the a, according to the properties established in
lemma 3.2.1, namely so that among the points a4, ay, ..., a, there
are precisely N,; which coincide with @;. Then for each n we have

n W
HeE—=f[¢—a™

j=1

From (3.2.3) follows for zon Eand for j =1, 2, ..., p

[Npjlog|z—a;| —nm;log|z—a;|| < A,

g o
EIoglz-—ai |Nnj— n)log[z—; a;lmi| L uwAs,
j=1 f=1

and (3.2.4) follows. The set E may be taken as a compact set of
the extended z-plane.

We are now in a position to consider our series develop-
ment [1955 a}, a generalization of the Taylor development :

Tueoren 3.2.1. — Suppose given the finite points ey, as, . . ., a,;
by, by, ..., b,, and the posttive relative weights my, my, ..., my;

-
Ny, Nay v oy nv,ij=2'nj= 1. Weset

(z2—a)"(z—az)m...(5— ay )"y

(3.2.5) “E) = T e — b (2 — b,

and for every o (> o) denote by E, the set|u(z)|<<o. A
Junction f(z) analytic on E, but not analytic throughout
any E, (p'> p), can be expanded on E, in a series

(3.2.6) f(2) 520,. . (3), uof3y =1, u,(z)= ((z : ;:; E:: ;:;,

n==a

which converges uniformly on every Eq (o <<p). The an, each of
which is an aj, are to be chosen to satisfy (3.2.4), and the (3,
each of which is some bj, are to be chosen to satisfy the analogue
of (3.2.4); consequently er ever) compact set cantairing ne a,
or b; we have

(3.2.7) oAz

#,(3)
(o] ’ <A
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The coefficients cy in (3.2.6) satisfy

1

. a1
(3.2.8) lim sup | e, "= 2
and for every o (<< p) we have
1
g lim sup [max | f(3) —8Sa(3)|, 52 0on Eg]"= E,

(3.2.9) n
? Sp(2) Ech ur(z).

Inequality (3.2.7) is quite powerful, and a weaker inequality
although sufficient for Problem A would not suffice for our later uses
of theorem 3.2.1 in Problem 3. With (3.2.7) the series (3.2.6)
possesses most of the important properties (i. e. for present purposes)
of Taylor’s series. Series (3.2.6) has the well-known form of a
series of interpolation (Newton’s series); the ¢, can be found formally
from (3.2.6) by setting successively z=ay, s3=2a,, ..., with
differentiation a suitable number of times when the a4, a,, ...,
@, are not all distinct. The series (3.2.6) has a meaning even if
one of the points a; or b, is infinite; in (3.2.5) and (3.2.6) a linear
factor of u,(z) corresponding to an infinite value of a; or 8; is simply
to be omitted.

As we have said, choose all the «; and §; finite, and E, bounded,

with ¢ <o'<<p. If T, denotes generically the locus | u(2)| =0, we
have for z in E,/

1 wa(3)f(2)de
(3.2.10) f(3)—8Sn(3)= Py - (D (T=73)
(3.2.11) ©a(3)=un(3)(5— %nt1)-

As a consequence of (3.2.7) there follows

wy(3z)

(3.2.12) 0< As< [_u(-?)_];

< Ag

on any compact set containing no @; nor b;. It is now clear
from (3.2.10), by allowing ¢' to approach p, that the first member
of (3.2.9) is not greater.than the second member.

The coefficients ¢, are readily estimated from (3.2.g) and (3.2. 7
since Sp(3) —S,_4(3) = ¢y un(3). It follows that the first member
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of (3.2.8) is not greater than the second member. If the first
member of (3.2.8) or (3.2.9) is less than the second member,
that is true of both (3.2.8) and (3.2.9), whence by (3.2.7) the
sequence S,(z) converges uniformly throughout the interior of
some E; (p'> p) contrary to our hypothesis on f(z). Theorem3.2.1
is established. The case p = « is not excluded here.

We add the remark that (3.2.8) and (3.2.7) yield

1

(3.2.13) lim sup[max |S,(z)|, zon E,,]H = g (s>p).
n> o

We have at hand in theorems 3.2.1 and 3.1.1 a new method for
the proof of theorems 1.4.3 and 1.4.4, namely precisely the method
of use of theorem 1.1.1 to establish theorems 1.2.2 and 1.2.3, as
the reader may verify. 'We have preferred to base theorems 1.4.3
and 1.4.4 on the simpler expansion propertics expressed in
theorem 1.4.2, which is much more elementary in the sense that it
does not involve theorem 3.1.1.

The method of proof of the generalized Bernstein lemma (§1.3)
gives here 100 a useful result :

Lenma 3.2.3. — Let Ro(2) be a rational function of degree n
whose poles lie in the points 31, Bs, ..., By, and.suppose |R,(3)| <M
onYs. Then for T > 0o we have

A n
(3.2.14) |Ra(3) | < 0:51 ’ z on I';,

where the constant A, does not depend on n, z, o, 7, or R,(z),
except that ¢ and t are to have specific finite upper and lower
(positive) bounds.

Rn(3)
un(z)
points ;; on T'; we have in the notation of (3.2.7)

The function is analytic on the set |u(z)|> o, even in the

R.(3)
un(32)

Ra(z) [u(2)]" M
[w(a)] wn(z) |= Koot

This inequality, valid on I's, is also valid on the set [u(z)|x0;
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and in particular on I'; we have again by (3.2.7)

R"(Z) un(z) n A1MT
an(z)‘E ll,,(Z) [u(z)]"[ ( )] S0 I

which is (3.2.14).

3.3. Problem 3. — We now introduce the notation that a func-
tion f(z) analytic in a one-sided neighborhood of an analytic Jordan
curve C, continuous on C, is of class L(p, a) on G, where p (> o)
is integral and o <<« <1, if f(z) has a one-dimensional p'* deri-
vative on C which satisfies there a Lipschitz condition of order a.
It is immaterial here [1949 @, theorem 2.4] whether fir(z) is
taken on C as a one-dimensional derivative with respect to z or to
arc-length, or indeed a two-dimensional derivative with respect to z.

For negalive integral values of p and o <<« <<1, we say that f(z)
is of class L(p, ) on the analytic Jordan curve C provided f(z) is
analytic in a one-sided neighborhood of C, and C can be expressed
as the level locus u(z) =1 of a non-constant function % (z) harmonic
and without critical points in an annulus containing G, and where
in the one-sided neighborhood of C we have | f(z)| < A (1—p)***on
the locus u(z) = p (po<< o << 1); this condition is [1950, theorem 5.3]
independent of any particular u(z). To be sure, this requirement
is a restriction on the behavior of f(z) not on C but in a one-sided
neighborhood of C. Nevertheless, as Hardy and Littlewood have
shown if C is the unit circle, and as also is true if C is an arbitrary
analytic Jordan curve [1942 §5.2], whenever f(z) is of class L(p, &)
on C (o < a << 1), the derivative and integral (if single valued) of.f(z)
are of respective classes L(p—1, a) and L(p+1, «) on C when
suitably defined on G if necessary; so even in the case p <o the
class L(p, a) is closely related to behavior on C. The class L(p, «)
is invariant under a one-to-one conformal map of a region containing C
[compare 1950, § 8].

Our main theorem on Problem 8 is [1958] :

Tueoren 3.3.1. — Let D be a finite region whose boundary
consists of mutually disjoint Jordan curves By, By, ..., By;
Cy, Coy ..., Cy, and let U(z) be the function harmonic in D,
continuous in the closure of D, and equal to zero and unity

MEMORIAL DES SC. MATH., — Ne 144, &
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on B =EBJ- and G :2 Cjrespectively. For everye(o<<o <1),
let Ts denote the locus U(z)=0c in D and let D, denote the
subregion o < U(z) <o of D, whose boundary is B + I';.

If T, has no multiple point, and if the function f(z) is analytic
in Dy, continuous on B, and of class L(p, a)on Ty(o < a << i), then
there exist functions f,(z) analytic in D and continuous on B
such that (n=1,2,3,...)

ng
A1 e i

(3.8.1) | f(3)— fa(3) | < Fy=ml z on B,
ni1—g)
(3.3.2). FAD I )

where ant is the total variation along T, of the function conjugate
to U(z).

Reciprocally, if f(z) is defined on B, if the f,(z) are analytic
in D, and if (3.3.1) and (3.3.2) are valid for the boundary
values of the f,,(3) on B and G, where p is an integer and o < a <1,
then f(z) on B represents the boundary values of a function
analytic in D, and of class L(p—1, a) on T,.

Thanks to a conformal map (theorem 3.1.1) it is no loss of gene-
rality to suppose D interior to C, and defined by dy <log | u(z) | < di,
where u(z) is defined by (3.2.5) and the a; and b; are finite. We
use the series (3.2.6) of theorem 3.2.1.

For z in D, the function f(z) can be expressed

J(3)=2:1(3) + 92(3), ?1(2)_=_Zq>h(z), ‘?2(5)52%1(2),
?ki(Z)EZ—;iL[ -L:_(_‘__)__;‘l_t, ok (2) = — f(t)dt’

27 Jy, t—z

where v, (depending on z) is a suitably chosen rectifiable Jordan
curve in D, near T, precisely one such curve near each component
of T'y, z interior to the regions bounded by B and the y;, and where
the integrals are taken in the positive sense with respect to those
regions. The function ¢,(z) is analytic throughout the set Dj :
|u(z)| < e™, and can be represented there by a series (3.2.6).
Moreover 93(z) is analytic on T,, 5o ¢1(3) is of class L(p, a) there.
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The poles B; of u,(z) are to be found among the &, so lie exterior
to D,. Suppose now p>o0. I S5,(z) is the sum of the first n 41
terms of the development (3.2.6), we have for z in D) the
interpolation formula

33.3) | AT = L L S o=

0,(3) = (5 — 1) uu(3);

1 w,(3) ¢ () dt Y=ZYM

here S,(z) is the unique ratienal function of degree » whose poles
lie in the set 34, Ba, ..., B» and which coincides with ¢,(z) in the
points ay, @2, ..., auya. A particular case of (3.3.3) occurs
if ¢ (3) is replaced by an arbitrary ratienal function R, (z) of degree
whose poles lie in the set 3y, 81, .. ., Ba

I w,(3)R,(¢)dt

(3.3.1) 0’:‘5-;:—1 ,WZ_), Z1m DO-

We shall use a combination of (3.3.3) and (3.3.4) :

n€ t)— R, (¢ dt .
(3 3. ')) ?1(2)—'511( )—?foj Z)(JE,?(II() zf—z)‘ )l 31 Do.

Under the present circumstances (p > o) the integral in (3.3.5)
may be taken over D,, and it follows from corollary 2.4.1 that
functions R, (2z) exist such that (n>o0)

R A
(3.3.6) l'?r(z)—“n(z)lén,,ﬂv zon .
‘When we note the equalions
oy = loglu(s )['—"10 _ .
Uis) = == Rl e
the inequality
np
Ae T .
(3.3.7) le(z)=Su(a) < =Ly sonB,

follows from (3.3.6), (3.3.5) and (3.2. 12). We now set

Sn+l(5) —_ S,,(Z) = Cpt1Un+1(3),
whence from (3.3.-)

ne
2A1€ K

| Cnsy tinis(2) | £ Py . zon B,
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and by (3.2.7) o
Age

T
lc"""u"""(z)lé'—np—-f—_a—’ zon C.

Purely algebraic inequalities now show

n(1—p)

T
(3.3-8) |S,,+1(z)|éé%_—|_“—-—, < on C.

Since f(z) is continuous on B, so also is ¢a(2) = f(2)—91(5), so
if we set fu(z)=Sa(z)+ ¢2(z), we deduce (3.3.1) and (3.3.2)
from (3.3.7) and (3.3.8).

In the case p<<o we use (3.3.3) where vy is chosen as T,

r=r,= p(l——;—)- For z on B and » > o we have by (3.2.7)
_nz

91(2) — Sa(a) | = 22

which in form is identical with (3.3.7). As in the previous
treatment of (3.3.7) we deduce (3.3.1) and (3.3.2).

The proof of the first part of theorem 3.3.1 is complete; we
proceed to discuss the second part. With p>1(o<<a<i)and
with (3.3.1) and (3.3.2) as hypothesis, we write for n sufficiently
large

ng.

o

al

3.3.9),  fan()—fa(a) |2 2oy zonB,
n(t—p)
(3.3.00)  |fan()—fu(n) | 220y zong,

where the boundary values are used on C; these exist for almost all
values of the conjugate of U(z). If we set

M, = [max | fu+1(3) — fa(3)], 3 on L],
the two-constant theorem applied to the function fni1(2)— Sn(3)
for the respective loci U(z) =o, p, 1, is
logAs—’%g—(p+a)logn o1
logM, s 1|Lo.

logA;.—ﬁ-(l—__———P—) —(p+a)logn 1 1
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Subtraction of the first row from the third row yields

As
The sequence f,(z) converges uniformly throughout the closure
of D,, by (3.3.1) to a function coinciding with f(z) on B, because
we have for z on T,

(3.3.11) | f(3) —fa(3)| £ | frn+1(3) — fn(3)| + | fore(2) — frra(5) | +...
As
_éMn+ M"+'+"'é'np_+'a——7'

It follows from (3.3.11) and (3.3.2), by virtue of theorem 2.1.2
and of theorem 2.3.1 if I', has multiple points, that f(z) is of
class L(p—1, a) on T,

In the case p <C1 we again use the two-constant theorem, now to
determine a bound for

M, (r) = [max | far1(28) = fr(3) |, 300 T,] (o <r<p),
by means of (3.3.9) and (3.3.10). We obtain

_nlp—r)

M (r) < Aee

np+a

where Ag is independent of 7 near p. For z on I, we find (for
instance by comparing the series with an improper definite integral )

_m{o—n)

it T
If(z) l = A72 emw_ = A8(P— ,-)/)+:x—1,

m==2

where A, is independent of 7, so f(z) is of class L(p—1, ) on T,
and theorem 3.3.1 is established. There is a discrepancy of
unity in the classes of functions in the first and second parts of
theorem 3.3.1, but that is inherent in the problem itself, as
examples show [1949 a ].

In the second part of theorem 3.3.1 we may replace (3.3.1) and
(3.3.2) as hypothesis by (3.3.9) and (3.3.10), and define f(z)
on B as the limit of the convergent sequence f,(z).

Theorem 1.4.4 is not included in theorem 3.3. 1, but may be
proved by the same method.
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3.4. Problem (3, continued. — In the second part of theorem 3.3.1
we have assumed (3.3.1) and (3.3.2) without restriction on 7, but
in the first part of theorem 3.3.1 we have written those inequalities
where 27t denotes the total variation of the conjugate of U(z)
along Ty, and for the discrete values n =1, 2, .... The form may
be readily changed; M we set fy(z)=/fn(2) for nLx<<n-+1,
(3.3.1) and (3.3.2) yield (x> 1)

'x_‘f{

A’l e T
xR+

®(1—p)

[f(2) —fu(2) | <

’ 3 on B,

Aye © .
&fx(z)lé—?rj"—? zin D,
and a change of variable 2 = E, with a change in notation of f,(3)

and a possible auxiliary definition of the new Si(z) for small 2,
yields (0 >2>1)

(3.4.1) f)—fu =28, om,
(3.4.2) ff-,,(z)[é%_—@, 3in D.

Of course (3.3.1) and (3.3.2) follow for arbitrary = from (3.4.1)
and (3.4.2).

It is sufficient in the second part of theorem 3.3.1 so far as
concerns (3.3.1) and (3.3.2)if (3.4.1) and (3.4.2) are satisfied
for a monotonic sequence of values A, with A,,4—2, bounded; the
original forms of (3.4.1) and (3. %. 2) follow if we set /A(z) = A, (2),
7\n = A < )‘n—v-l-

In theorem 3.3.1 the functions f(z) and f,(z) may be analytic
on larger point sets :

Tueoren 3.4.1. — If the hypothesis of theorem 3.3.1 is modified
so that the Jordan curves B; are analytic, and that f(z) is ana-
lytic on and within each Bj, then the functions f,(3z) can also be
chosen analytic on and within each B;.

The map of D onto a canonical region used im the proof of
theorem 3.3.1 is one-to-ene and conformal not merely in D4 B but
also in the closure of a suitably chesen set D_.:—e¢ <<U(z) <o
consisting of p regions. The functions f(z) and fa(z) in (3.3.1)
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and (3.3.2) are analytic throughout the closure of D_,, and (as
follows from the proof of theorem 3.3.1) for arbitrary ¢(> o) we

have in the z-plane of theorem 3.4.1
_nE+p—9)

(3.4.3) [max | f(3) —fa(3)], 3onT_] <A e T

We split f(z) and the f,(z) into their components by integrating
over a locus I'y, where I'; is in D near I';, and integrating also over B
or I' . indifférently. For z in Dg we have Ju(2) = fur(2) + fra(3),

with
S(t)dt . o fult)de
f(z)E;:-t—l.ur _t—z ) ‘/nj(z):z‘—_ri‘[l:”—tt:-—z—,
1 f(t)de 1 T dt
e S = O R
(3.4.%) f"g(z)E——_I [f () —fn(l)ldt.

27:itp t— 3
13

Equation (3.4.4) is valid throughout the closure of D, so by virtue
of (3.4.4) and (3.4.3) we may now replace f,(z) in (3.3.1)
and (3.3.2) by fu1(2), with suitable modifications of A, and A, if
necessary, which completes the proof of theorem 3.4.1.

We have phrased both theorems 3.3.1 and 3.4.1 to deal merely
with suitably chosen sequences f,(z), not necessarily extremal, but
it is clear that for functions of best approximation, analytic and of
modulus not greater than sufficiently large M in D, the analogues
of (3.4.1) and (3.4.2) hold.

In various cases included under the second part of theorem 3.3.1,
inequality (3.3.2) is a consequence of (3.3. 1). For example let B
consist of a finite number of mutually exterior Jordan curves R and
suppose polynomials f.(z) of respective degrees n=1, 2, ..
given such that

(3.4.5) 1f(8)—fu()| = A% L on B,

T Se VICE BE
o AEMATIQUES
is valid, o < a<<1,3>0. Then we have for n sufficienitly-1al éﬁlﬂ |i‘ RES
L v
(3.4.6) |fn+,(z)—fn(z)|é%:—o, zon B, .

and foi4(2) —fa(z) is a polynomial of degree n 4 1. Let g(z)
denote Green’s function with pole at infinity for the infinite region D’
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bounded by B, and let g, denote generically the locus g(z)=0o(>0)
in D'. From the generalized Bernstein lemma (§ 1.3) follows
by (3.4.6) for n sufficiently large

Ag enty—5)

(3.4.7) [far1(23) =fu(2)| £ —75—>  zongy
Inequalities (3.4.6) and (3.4%.7), provided y > 4, can be identified
with (3.3.9) and (3.3.10), which are sufficient for the application
of the second part of theorem 3.3.1. Here D is bounded by B
and g, (y>d), with
U(Z)Ei(yi), ‘E=%’ 3=-S’ Y—3=-I—:-’

whence T'; of theorem 3.3.1 is g;, namely the locus g (z) =yp=2.
The conclusion [1937], a consequence merely of (3.4.5), is that f(z)
ts of class L(p—n, a) on g; provided (if p>>o0)gs has no multiple
points; this conclusion is independent of the auxiliary number y (> d).

Theorem 3.3.1 thus applies under suitable conditions to approxi-
mation by polynomials; it may apply also to approximation by more
general rational functions. As an illustration, supposc with the
conditions and nolation of theorem 3.2.1 [other than the hypothesis
on f(z)] that for a function f(3) defined merely on B : |u(z)|=e%
we have d >do(o<<a<C1)forn=1,2,3, ...

—n(d—d,
(3.4.8) 1/(3)— fu(a) | =« 22z on B,

npo
where f,,(z) is'a rational function of degree n whose poles lie in the
set 31, B2, ..., Bu; of course fn(z) need not be determined by
interpolation, but may be for instance the rational function of the
prescribed type of best approximation to f(z) on B in the sense of
Tchebichef with continuous norm function. From (3.4.8) we
have for n sufficiently large

—n (d—dy)

(3.4.9) |fn+1(z)—f"(z)|é%—; z on B.
From lemma 3.2.3 there follows (dy>d, C:|u(z)|=-e%) for n
sufficiently large

(3.4.10) | fart(2) — fu (2) | < 222970 0 on G

np+o
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In the notation of theorem 3.3.1 for U(z) we have

log|lu(3)|—ds _ 1
U(z)_=_-—————-———-—dl_do ) ‘_(—_—ll—do’

50 (3.4.9) and (3.%4.10) can be identified with (3.3.9) and (3.3.10),
whence it follows merely as a consequence of (3.4.8) that f(z)
can be extended from B so as to be analytic in |u(z)| << e?, and
of class L(p—1, &) on the locus |u(z)| =e®.

A remark is appropriate here regarding choice of approximating
functions in general. In the geometric situation of theorem 3.3.1,
it is apparent that so far as concerns degree of approximation and
norm of approximating functions as we have measured them, the
rational functions of theorem 3.2. 1 are as effective for approximation
as are any possible family of analytic functions. Likewise in the
geometric situation of theorem 1.3.3 polynomials in z are as effective
as any set of analytic functions can be.

CHAPTER 1V.

GENERALIZATIONS AND EXTENSIONS, OPEN PROBLEMS.

We have given in the foregoing chapters a presentation in detail
of some of the most striking results to date of the theory of approxi-
mation by bounded analytic functions. We shall now indicate
without proof some of the wider ramifications, for the known results
are by no means limited to those set forth above.

4.1. Geometric situations. — Although theorems 1.4.1-1.4.4
admit rather general geometric configurations, other interesting
configurations are not included. For instance if D is an annular
region and if E is either a Jordan curve or an annular region in D
which separates the two boundary components of D, it is appropriate
to consider approximation on E by functions analytic and bounded
in D to a function analytic on E but not analytic throughout D. This
configuration, and others much more general, have been studied
[1944] in connection with Problem A (relation of regions of analyti-
city to geometric degree of convergence), have been studied in
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connection with Problem a in theorem 2.1.2 and elsewhere [1956 a],
and can be studied by similar methods in connection with Problem {3,
though that has not as yet been done except [1942, § 8.1] when the
boundaries of the sets involved are concentric circles and [1959 6]
in a few other cases.

In chapter II we have limited ourselves to approximation on
analytic Jordan curves and sets bounded by such curves. Although
some slight progress has been made, Problem a is on the whole still
open for more general curves. In particular, if C is a Bernoullian
lemniscate or other analytic curve with but a single double point, no
precise analogue of theorem 2.1.2 is known. Naturally, if G
together with the finite regions which it bounds lies in a region D,
and if functions f,(z) analytic in D satisfy (2.1.2) and (2.1.3),
theorem 2.3.1 can be applied to each subarc of C, and shows that
f(z) is of class L( p, 2) on C; but this remark is far from supplying
a necessary and sufficient condition for (2.1.2) and (2.1.3). Asa
consequence of this lack, Problem B as discussed in chapter III
(e. g. theorem 3.3.1) is satisfactorily treated provided I', has no
multiple points, but not if T'; has multiple points; although we have
not emphasized the fact, use of class L(p, «) for p << o presents no
difficulty if [, has multiple points, but this is not true for p > o.

Likewise Problem {3 deserves deeper study concerning more
general sets; can theorems 3.3.1 and 3.4.1 be extended to include
measure of approximation (3.3.1) on an arbitrary continuum or on
several continua? Resulis are available [ 1942, § 8.2] for approxi-
mation by polynomials and [1959] by bounded analytic functions
on a line segment.

Hitherto we have interpreted Problem A as approximation on a
set E by functions f, (z) analytic and bounded in a region D contai-
ning E. A possible extension is to admit common boundary points
of D and E, with suitable bebavior of the f,(z) in such points.
Under suitable conditions the results of chapter I can be extended to
include this situation, for both direct and indirect theorems [1954].

4.2. Continuity classes. — In chapters II and III we have for
simplicity restricted ourselves to the use of classes L(p, «)(o<<a<<1);
this is to some extent a reflection of the fact that theorem 2.1.1 is
elegant and satisfying for such classes with p> o, but does not
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extend to the class L(p, @) with a =1. Indeed, for a =1, the first
part of theorem 2.4.1 is valid but the second part is false. To fill
this gap, Zygmund {1945] introduced into the theory of degree of
trigonometric approximation the condition

(+.2.1) [f(0+h)+f(0—Rh)—2f(B)| < AR

which for a continuous function f(0) of period 27 is necessary and
sufficient for approximation to f(0) by trigonometric polynomials of

. A .
order n with error not greater than —; a necessary and sufficient
condition for approximation to f(08) by trigonometric polynomials

. A . .
of order n with error not greater than —= is that f1»)(8) exist and be

continuous, and satisfy the analogue of (4.2.1). This same
condition, interpreted on an analytic Jordan curve G in terms of
arc length, say that f(z) is of class Z,, where o lies interior to C,
is necessary and sufficient [ 1950, § 4] that a function f(z) can be

approximated on G by polynomials of degree » in z and é with error

not greater than 7;7%-7; if polynomials of degree n in z are used, f(z)

must also be the continuous set of boundary values on C of a function
analytic interior to C. Throughout the discussion of chapters Il
and III, all results remain valid if the class L(p, a) is replaced by
class Z,, and if the exponent p + « of n is replaced by p + 1.

Also for negative p(5£-—1) the class L(p, «) already introduced
(§3.3) can be replaced by a similarly defined class Z,, and the
results of chapter III persist for the new class if p - « is replaced
by p+1. But p=—1is genuinely exceptional, in that a suitable
class L(—1, 1) is otherwise defined and studied [1950, 1957] yet
with analogous conclusions.

Condition (4.2.1) is not the expression of a modulus of continuity,
although any function which satisfies a Lipschitz condition of order
unity also satisfies (4.2.1). For a function S(0) with given
modulus of continuity « (3) and period 27, de la Vallée Poussin [r910]
following D. Jackson shows that there exist trigonometric polyno-
mials of respective orders n=1, 2, ... approximating f(0) with

error not greater than Aco(%)- Conversely, if there exist such poly-

nomials approximating f(8) with error not greater than Q(n), he
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derives an expression for a modulus of continuity of f(8), under
suitable conditions on Q(rz). Both these results have precise
analogues in approximation by polynomials in z and by bounded
analytic functions; every result proved in chapters II and III concer-
ning Lipschitz conditions admits a corresponding generalization
[1949 @, 1951 a].

The behavior of continuity classes as such under conformal

mapping is studied in [1949 @, 1959 d, 1959 e].

4.3. Other norms. — In chapter I we have considered the
Tchebichef norm and Tchebichef measure of approximation, as being
the most fundamental. It is obviously appropriate to consider other
norms and measures of approximation, say p™ power integrals with
or without weight function. Such a theory can be developed [1949],
and it is not necessary to use simultaneously the same kinds of norms
and measures of approximation. The results are wholly analogous to
those already set forth (chapter I) on Problem A.

The theory just mentioned is of particular elegance and interest if
the integrals of squares are used. For instance, if D is the region

|z]|<<ri(>1)and E is the set | z | < ro (< 1), supposef(z)zzahz‘
0
given, where the series has unit radius of convergence. The extremal

function fy(z) EE b.z" of norm || fy || in D,

N M1 S FIOTIESE WA

z|l=r

which shall be not greater than a prescribed M, while the measure ot
approximation my of fy(z) to f(z) on E,

(4.3.2)  mm= e =) lds| = | ax— bi| ri,

is least, is given explicitly by

arrik

b= ———21—=»
rif - drik
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where 7 is determined by the equation

2

w
lai | r3k
et r
‘2 ETSRpYY: )
=0
and the measure of approximation satisfies
«©
o' [ | ax| rif ye o4
ma = )\22‘ (———-—— re2k,
M e \ r3E 30 o

It follows that fy(z) is analytic not merely throughout D but even

-~y

k— M,

2
throughout the larger region |z|<C :—; In fact the singularities
0

of fu(s) are closely relaied in position and character to those
of f(5) — this relation deserves further investigation for the norms
just used as well as others.

‘Whether or not D and E are more general, there is a close relation
between norms and measures of approximation defined by integrals
of squares such as (4.3.1) and (4.3.2), and on the other hand a
sequence of functions introduced by S. Bergman, functions that are
mutually orthogonal not merely in D but also in E. This relation,
and its connection with certain Fredholm integral equations, have
been investigated by P. Davis [ 1952 d].

Although the study of approximation by functions of minimum
(non-Tchebichef) norm has been carried to a certain point, inves-
tigation of boundary behavior (Problems o and 8) has not yet been
undertaken on a broad scale. Other questions, such as behavior of
zeros of approximating functions near the boundary of a region of
convergence, and overconvergence in the sense of Ostrowski, and
even lacunary series, have been broadly treated [1946 a] but thus
far without application as specific as is possible. Compare [19359 f]-

Specific determination of the numerical constants involved in the
conclusions throughout the theory would desirable.

4.%. Interpolation by functions of least norm. — A problem
complementary to the one we have been studying throughout the
present essay is the following [1938] :

.Pnom.sm I. — Given a region D, a point set E in D, and a Junc-
tion f(z) analytic on E but not throughout D; for each m(> o)
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let ¥, (5) denote the (or a) funclion analytic in D such that
|f(3) —Fun(s)|<£m on E and for which [1. u. b. |F,(3)],
zinD]=M,, is least. To study the convergence of F, (z). Our
previous results are clearly of significance here, and yield also opti-
mum results.

Related to approximation by functions of least norm is a problem
of interpolation [ 1938], which we formulate as

Prosren [I. — Gicen a region D, points

[511,
3"1’ B‘l“v
(d.4.1) )

.........

in D, and a function f(z) not analytic throughout D but ana-
lytic in each point B,.; let f.(z) be the function of least norm
in D which coincides with f(z) in the points Buy, Bray - .., Bnn; to
study the convergence of the sequence f,(3z).

Perhaps the simplest non-trivial illustration of Problem II is that
in which the points (4.%.1) are all identical; we prove

Tueorew 4.4.1. — Let f(z) be analytic in the region || <<p.
but not analytic throughout any region|s| <<p' (p'>p). Letfn(z)
be the function analytic in D : | 5| < R(> p) which coincides with
f(2) in the origin counted of multiplicity n, the least upper bound
of whose modulus in D is a minimum. Then we have

(-d.2) tim sup[max | f(5) — ful@), for |sl<rl =% (r<e)
(4.4.3) lim_}sup[l. u. b.| fu(3)1, Jor |s|< r]; = g (p£r<R).

The existence and uniqueness of the f,(z) are known [1935,
§10.3, theorem 8].

With the notation (1.1.1)and(1.1.3)wehave(1.1.4)and (1.1.5),
the extremal property of the f,(z) yields

A.4.4) [lub.|fu(5)], for| 5| 2R} Z[max|S, ,(3)|, for | 2| =R],
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whence by (1.1.3)
1 R
(4.4.5)  lim sup[L u. b. |.fn(2) — Su—1(3) |, for | 2| = R]*< i
no=w®
The function f,(2) —S,_1(z) has a zero of multiplicity at least nin
the origin, so by an obvious extension of Schwarz’s lemma we have

(4.4.6) lim sup[max | f,(5) —S,—1(3)], for | 3] ér]’;é z
n>»

< R).
. (r<R)

Equation (1.1.4) and inequality (4.4.6) show that the first
member of (4.4.2) is not greater than the second member; equa-
tion (1.1.5) and inequality (4.4.6) show that the first member of
(4.4.3) is not greater than the second member. Equality in
(4.4.2) and (4.4.3) follows from corollary 1.1.1.

Let theorem 4.%4.1 be modified by requiring that f,(z) shall be
the function analytic in D which coincides with f(z) in the origin
counted of multiplicity », whose norm is least, where now for an

arbitrary ¢ (z) Echz" we define the norm of ¢(z) by

ll#(2) IP=2Y, | an ! R2".

Then for every n we have fo(z)=S,-1(z), and the convergence
properties of Sp(z) are known (compare §1.1). Since f, (z) coin-
cides with f(z) =a¢+ a;z +... in the origin counted of multipli-
city n, we have

Jn(B)=ao+ a1z +4...4+ ap_, 3" 4 cp 3" + Cpr1 B 4 L,

where the coefficients c,, Cn+t,y + .., to be determined so as to mini-
mize || f,,(z) ]|, must all vanish consequently

Jn(3) =8,-1(3).

Theorem 4.4.1 admits of large extensions [1939, 1955] to other
regions D, to other norms, and to sets of points (4.4.1) which are
given with certain asymptotic conditions.

Investigations of Problem IT have thus far been primarily concerned
with regions of analyticity and of convergence (Problem A); the more
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delicate questions of boundary behavior (Problems « and ) remain
open.

One further phase of Problem II deserves mention if the points
(4.4.1) are independent of . To determine or to study the func-
tion f(z) analytic and of minimum norm (according to any classical
definition) in D, taking on prescribed:values B, in the points B4 :

(4.4.7) JB)=Br (k=1,2,..)

one may consider first the finite problem, that of studying the func-
tion f,(z) analytic and of minimum norm, satisfying

(4.4.8) Sn(Br) =By (k=1,2, ..., n)

and then allowing n to become infinite. This method is entirely
effective if || f(s)| satisfies simple requirements, for instance if

17 @ =1L v b | f(3) |in D] or i [|f(a) = f['1 /(<) | S;

compare [1935, 1954 a].

4.3. Extremal problems. — If a closed point set E lies interior to
aregion D, and if f(z) is given on E whether analytic there or not,
it is appropriate to study best approximation to f(z) on E as measu-
red in any one of a variety of ways by functions ¢y(z) analytic and
of norm (in some sense) on D not greater than M. As M becomes
infinite, the sequence ¢y (3) may well converge on E to some extre-
mal function. In addition the ¢4(z) may be required to satisfy
conditions of interpolation in D, conditions which may or may not
vary with M and which may or may not require equality of ¢y (z)
to f(z) in certain points [compare 1935, § 11.3-11.5]. It is not
to be expected that such a general problem can be fully treated.
But progress has been made especially in the cases where norm and
measure of approximation are tahen in the sense of Tchebichef
[1935,§11.7, 11.8], and where norm and measure of approxima-
tion are expressed by integrals of squares of moduli [1950 a¢]. In
the latter case, orthogonality conditions enter naturally and are
highly convenient as a tool. Interesting open questions remain as
to other norms and measures of approximation (Problem A), and
even in the cases hitherto treated as to behavior on the boundary of
regions of convergence (Problems « and f8).
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By way of historical perspective, it is of interest to note that
C. Runge’s theorem on polynomial approximation was published
seventy-five years ago (1885), P. Montel’s book on series of polyno-
mials appeared fifty years ago (1910), and the present writers’s book
on interpolation and approximation dates from twenty-five years
ago [1935]. '

This essay should not be concluded without some mention of pro-
blems for harmonic functions analogous to those here treated for
analytic functions. This topic has received some treatment [1944,
1949 @, 1950, 1954 b, 1960], but for it numerous open problems
also remain.

MEMORIAL DES SC. MATH. — N, 144,



BIBLIOGRAPHY.

References in the text are made by citing the dates indicated; further refe-

rences are given in [1935].

{1919] C. J. pE 1A VaLLEE Poussiy, L'aupproximation des fonctions dune
variable réelle, Paris.

[1934] J. L. WaLsk and H. G. RussELL, On the convergence and overconver-
gence of sequences of polynomials of best simultaneous approximation
to several functions analytic in distinct regions (Trans. Amer. Math.
Soc., vol. 36, p. 13-28).

[1935] J. L. Wawsu, Interpolation und approzimation by rational fune
tions in the complex domain ( Colloquium Publications of the Amer. Math.
Soc., vol. 20; second edition, 1956).

[1936] J. H. Curmiss, A note on degree of polynomial approximation (Bull.
Amer. Math. Soc., vol. 42, p. 873-878).

[1937] J. L. WaLsu and W. E. SEweLL, Note on the relation between conti-
nuity and degree of polynomial approximation in the complex domain
(Bull. Amer. Math. Soc., vol. 43, p. 557-563).

[1938] J. L. WaLsu, On interpolation and approzimation by functions
analytic and bounded in a given region (Proc. Nat. Acad. Sc., vol. 24,
P- 477-486).

[1939] J. L. WaLsH, On interpolation by functions analytic and bounded
in a given region (1Trans. Amer. Math. Soc., vol. 46, p. 46 65).

[1940] J. L. WaLsu, Note on the degree of convergence of sequence of
analytic functions (Trans. Amer. Math. Soc., vol. 47, p. 293-304).

[1942] W. E. SeweLL, Degree of approximation by polynomials in the
complex domain (Ann. Math. Studies, No. 9).

[1944] E. N. Nison and J. L. WawLsu, Interpolation and approzimation by

" functions analytic and bounded in a given region (Trans. Amer. Math.
Soc., vol. 53, p. 53 67).

[1945] A. Zvemunp, Smooth functions (Duke Math. J., vol. 12, p. 47-76).

[1946] J. L. WawLsn, Taylor's series and approzximation to analytic func-
tions (Bull. Amer. Math. Soc., vol. 52, p. 572-579).

[1946 a] J. L. WaLsu, Overconvergence, degree of convergence, and zeros
of sequences of analytic functions (Duke Math. J., vol. 13, p. 195-234).

[1946 ] A. SeirzBart, Approximation in the sense of least pth powers with
a single auxiliary condition of interpolation (Bull. Amer. Math. Soc.,
vol. 52, p. 338-346).

[1949] J. L. WaLsn and E. N. Nison, On functions analytic in a region :
approximation in the sense of least pth powers (Trans. Amer. Math.
Soc., vol. 65, p. 239-258).



BIBLIOGRAPHY. 63

(1949 @] J. L. Watsn, W. E. SeweiL and H. M. Eruiorr, On the degree of
polynomial approximation to harmonic and analytic functions (Trans.
Amer. Math. Soc., vol. 67, p. 381-420).

[1950] J. L. Warss and H. M. Ecuiorr, Polynomial approzimation to
harmonic and analytic functions : generalized continuity conditions
(Trans. Amer. Math. Soc., vol. 68, p. 183-203).

[1950 a] J. L. WaLenr and H. G. RusseLL, On simultaneous interpolation and
approzimation by functions analytic in a given region (Trans. Amer.
Math. Soc., vol. 69, p. 416-439).

[1951] J. L. WaLsu, Note on approzimation by bounded analytic functions
(Proc. Nat. Acad. Sc., vol. 37, p. 821-826).

[1951 a] H. M. ELuiort, On approximation to functions satisfying a gene-
ralized continuity condition (Trans. Amer. Math. Soc., vol. T1, p. 1-23).

[19527 J. L. Waisu, Polynomial expansions of functions defined by
Cauchy’s integral (J. Math. pures et appl., vol. 31, p. 221 244).

[1952 @] J. L. WaLsu and Philip Davis, Interpolation and orthonormal
systems (J. Anal. math., vol. 2, p. 1 28).

[1952 &] J. L. WaLsu, Degree of approximation to functions on a Jordan
curve (Trans. Amer. Math. Soc., vol. 73, p. 447-458).

[1952 ¢] J. L. WaLsu and H. M. ELLiorr, Degree of approxzimation on a Jordan
curve (Proc. Nat. Acad. Sc., vol. 38, p. 1058-1066).

[1952 ] Philip Davis, An application of doubly orthogonal functions to a
problem of approximation in two regions (Trans. Amer. Math. Soc.,
vol. 72, p. 104-137).

[1954] J. L. WaLsu and J. P. Evans, On approzimation by bounded ana-
lytic functions (Archiv. der Math., vol. 5, p. 191-196).

[1954 @] J. L. Waisn, Détermination d'une fonction analytique par ses
valeurs données dans une infinité dénombrable de points (Bull. Soc.
math. Belgique, p. 52 70).

(1954 &] J. L. WaLsw, An interpolation problem for harmonic functions
(Amer. J. Math., vol. 76, p. 259 272).

[1955] J. P. Evans and J. L. WaLsu, On interpolation to a given analytic
Junction by analytic functions of minimum norm (Trans. Amer. Math.
Soc., vol. 79, p. 158-172).

11955 @] J. L. Waisn, Sur Papprozimation par Sfonctions rationnelles et
par fonctions holomorphes bornées (Annali di Matematica, vol. 39,
p- 267-277).

[1956] J. L. WaLsh, On the conformal mapping of multiply connected
regions (Trans. Amer. Math. Soc., vol. 82, p. 128-146).

(1956 @] J. L. WaLsH, Note on degree of approximation to analytic func-
tions by rational functions with preassigned poles (Proc. Nat. Acad. Sc.,
vol. 42, p. 927 930).

[1958] J. L. Waisu, On approzimation by bounded analytic functions
(Trans. Amer. Math. Soc., vol. 87, p. 467-484).



64 BIBLIOGRAPHY.

[1959] J. L. WaLsu, Approzimation on a line segment by bounded analytic
functions : Problem 3 (Proc. Amer. Math. Soc., vol. 10, p. 270-272).

11959 @] J. L. WawsH, Note on leastsquare approximation to an analytic
Sunction by polynomials, as measured by a surface integral (Proc.
Amer. Math. Soc., vol. 10, p. 273-279).

[1959 8] J. L. WaLsn, Approximation by bounded analytic functions :
general configurations (Proc. Amer. Math. Soc., vol. 10, p. 280-285).

[1959¢] J. L. WaLsu and H. G. RusseLr, Integrated continuity conditions
and degree of approximation by polynomials or by bounded analytic
JSunctions (Trans. Amer. Math. Soc., vol. 92, p. 355 370).

[1959 4] J. L. WaLsH, Note on approximation by bounded analytic functions
(Problem o) (Math. Z., vol. 12, p. 47-52.

[1959 €] J. L. WaLsH, Note on invariance of degree of polynomial and
trigonometric approximation under change of independent variable
(Proc. Nat. Acad. Sc., vol. 43, p. 1528-1533).

[1959 f] J. L. WaLsu, The analogue for mazimally convergent polynomials
of Jentzsch’s theorem (Duke Math. J., vol. 26, p. 605-616).

[1960] J. L. WaLsH, On degree of approximation by bounded harmonic
Sunctions (J. Math. pures et appl., vol. 39).



TABLE OF CONTENTS.

PREFAGE ..ot tiititiiier ittt iannsaseseenoseesanosesssosansosonenssaneees 1

INTRODUCTION. — Approximation to f(z) on a closed set E by functions analytic
and bounded 1n a region D containing E............c.cooiiiiiiiiiiiiii,. 2

CHAPTER I.

Problem A . f(z) analytic on E.

1.1. E the unit disc, D a concentric disc........ooevuiiiiiiniiinniinnennns e 3
1.2. Apalyticity in an annulus...........cooviiiiiiiniiiniinnnn, PR ceees. 8
1.3. Approximation by polynomials...........ccoviieiiiiieriiiiiiinnn.., [ 15
1.4. Approximation by rational functions; applications......... P 20

CHAPTER II.

Problem a . f(z) not analytic on E.

2.1, Approximation by bounded analytic functions...............coiiiiiia., . 23
2.2. Approximation by polynomials................cvvverveerennnnnnnns PPN 27
2.3. Complements.....cuvuuuniinnnennsenenennennnnnnnn, R Crereeeiiians . 3o
2.4. Approximation by rational functions....................... Cevens veveresan 33

CHAPTER 111,

Problem B : f(z) analytic on E, more refined degree of convergence on E.

3.1. Conformal map of multiply connected regions. ........ Cererenenees FERTT 38
3.2. A series of interpolation...................oveerininiiriniiinins, [ A
3.3. Problem B......co.oiiiii i S 11
3.4. Problem B, continued .

.......... Y 1



66 TABLE OF CONTENTS.

CHAPTER 1V,

Generalizations and extensions. Open problems.

4.1. Geometric SIbUALIONS. .. vovut vttt ittt i e 53
4.2, Continmity Classes.......viuiiiiiiiiiiiiine viriiiiiii ittt 54
4.3, OUher NOTMS. .. viuvuttvn et eiiaiateieiierieaneasrsenerasnessene von 56
4.4. Interpolation by functions of least norm..............oooiiiiiiiiiina, 57
4.5. Extremal problems........... .. P 6o
BIBLIOGRAPHY............. Se e taetereenseaeateatetranetaaoanenens eereereeieaa. 62

———— E—————



