D. H. PARSONS
The extension of Darboux’s method

Mémorial des sciences mathématiques, fascicule 142 (1960)
<http://www.numdam.org/item?id=MSM_1960__142__1_0>

© Gauthier-Villars, 1960, tous droits réserveés.

L’acces aux archives de la collection « Mémorial des sciences mathé-
matiques » implique I’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSM_1960__142__1_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

D. H. PARSONS

THE EXTENSION
OF DARBOUX’S METHOD

MEMORIAL DES SCIENCES MATHEMATIQUES

Directeur : H. VILLAT

FASCICULE CXLI

PARIS
GAUTHIER-VILLARS, EDITEUR-IMPRIMEUR-LIBRAIRE

Quai des Grands-Augustins, 55
1960




© 1960 by Gauthier-Villars.
Tous droits de traduction, de reproduction et d’adaptation réservés pour tous pays.



THE EXTENSION OF DARBOUX'S METHOD

By D. H. PARSONS.

INTRODUCTION.

In the long history of research into the theory of partial differen-
tial equations of the sccond order, many and varied procedures have
been developed ; almost always the objective has been the solution
of boundary-value problems of various types, although methods
exist which in certain cases provide general solutions. Certain
procedures stand out by virtuc of their ability to provide the required
solution in finite terms, by means of quadratures or other processes
which can, at any rate theoretically, always be carried out. Among
these, the methods of Laplace, Monge, Ampere and Darboux [1], in
that order of chronology, mark the development of the particular
line of approach with which the present work is concerned.

In 1773, Laplace published a method, applicable to certain equa-
tions with two independent variables, which consisted essentially ot
applying a series of transformations to the given equation, with the
object of eventually obtaining an equation possessing an intermediate
integral, which could be found by inspection. Shortly afterwards,
in 1784, Monge published his work which set forth the general
method of solution by seeking intermediale integrals. This proce-
dure was extended by Ampere in 1814. A considerable interval
then elapsed, in which the theory advanced very little, until in 1870
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appeared the paper of Darboux [1], in which he set forth the method
of integration which bears his name, and of which the methods of
Monge and Ampere, and to a large extent that of Laplace, are special
cases.

These methods have been only very imperfectly understood by
many mathematicians; but the theory and applications have been
most elegantly and simply described by Goursat[2], whousesthe theory
of characteristic multiplicities to illuminate the underlying principles.

Both Monge’s and Darboux’s methods are such that for those
equations to which the methods may be successfully applied, the
boundary-value problem of Cauchy may be solved explicitly, reduced
to quadratures, to the integration of a completely integrable system
of total differential equations, or to the integration of a system of
ordinary differential equations—processes which, from the theoretical
point of view, are of equal simplicity, and can always be carried out,
in theory at least : and the desired result is expressed in finite terms.
Herein lies the importance of these methods.

However, in their classical forms, the Monge-Ampere and Darboux
procedures are applicable only to equations with two independent
variables; and this limitation has led to their being relegated to posi-
tions of obscurity in the minds of most mathematicians. Attempts
to produce extensions to equations with three or more independent
variables have not met with much success, although Natani [3] indi-
cates a possible extension of Monge’s method to equations with any
number of independent variables, belonging to a special class, while
Vivanti [4] has dealt with equations having three independent
variables and possessing an intermediate integral, the cssential
feature of the Monge-Ampere method.

The primary object of the present work is the extension of Darboux’s
method to equations with three independent variables. [t is shown
that the method can he extended to deal with a class of equations,
for which a certain discriminant vanishes identically, exactly as in
the case treated by Natani.

As in Goursal's account of the classical case, the idea of equations
in involution, originated by Sophus Lie, is also extended to this class
of equations, in order to gain insight into the reason why the method
succeeds, which at first sight is far from obvious. Analogues of
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various classical theorems are established, and finally some examples
of application of the method are given.

CHAPTER 1.

NO’I‘A'I'IONS7 FUNDAMENTAL ASSUMPTIONS,
CERTAIN CONVENTIONS AND DEFINITIONS.

We begin by defining certain notations, and certain terms which
will be used throughout.

Let the independent variables be x, y, 5, and let the dependent
variable be . Let

oy Ju Ju JPu Pu

=l = mEn mse gEeh
du Pu . J2u 2y

922 O 5 =/ ==& —— =nh;

d3? dyds ' dzdxr %’ Jdr oy

in general let
dl—e—i-i—k u
dzi dyJ dzk = Pijks
and in particular let

92 itk y
Jz T dgk = "Bk

itk y
W = S81,j.4»

di+ky

Tyromk = ik

Thus when no particular emphasis is required upon the number of
derivations with respect to z, we use the letter p to denote those
variables which would otherwise be denoted by r, s, or ¢ as the case
might be.

Two terms which will henceforth occur frequently, now require
precise definition. An ‘¢ element of contact of order n” indicates a
set of values of the variables z, y, z, pi j« where ¢, j, k take all
positive integral and zero values such that i +j + k < n.

-A ‘“multiplicity M, of order n”, or simply a ‘‘ multiplicity Mg
denotes an aggregate of elements of contact of order », depending
upon ¢ parameters (i. e., having ¢ dimensions) and satisfying, for
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any displacement in the multiplicity, the ‘* equations of contact ™

du — lde — mdy — ndz = o,

dpi;jk— Pivr, ;0B — po jr1 i dy —pi; k1 ds =o,

for each ¢, j, A such that

t+j+hzZn—r

Considering equations of the second order, we shall suppose that
the equation to be considered can be solved for one of the three
derivatives @, b and c; and clearly there is no loss of generality in
taking this derivative to be @. This assumption is justified : for we
are concerned with any integral of the equation, and not with parti-
cular integrals, and thus if the equation he

Y(x, ¥, 3 4, {, m, n, a, 0, L‘,f, & h)y=o

we may solve for @, b or ¢, except on particular integrals, unless we

have identically, or as a consequence of the equation itself
oV Ay JY

da 96 de ¢

At this stage we will make the assumption, which will apply
throughout, that all functions with which we are concerned are
analytic functions of their arguments, in the neighbourhood of
certain initial values. We will, in addition, assume that the equa-
tion ¢ = o is of fully reduced form; thatis, that in the neighbourhood
of a set of values of the arguments, satisfying the cquation, at least
one of
' R S R VR VY

dy’ 9z’ odu a’  om’  an’

A S S S S U
da’ 96> ac’  af’ Jdg’ ok

4
oz’

is not zero. Under these circumstances, the conditions stated above
would imply that the equation does not contain @, & or¢. If this
were so. the equation would contain f, g or &; for otherwise it would

be of the first order. Suppose for example that N is not zero. Then

oh
we may solve the cquation for /4 and write

h+=n(z, ¥, 3,u,l,mn,f,g)=o.
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But the change of variables
z4+y=u, r—y=73"; 3=23
JDu
Py
Consequently we will from now on restrict our atlention to the
equation
(1) a+¥(z, ), u,l,m,n b, g0, f c)=o,

renders this last equation soluble for -—;

where W is analytic in the neighbourhood of a suitable set of initial
values of z, 3, z, u, {, m, n, h, g, b, f, c.

Wewill beconcerned with certainfunctionsofthe elementsofcontact
of various orders; but since we will be mainly interested in the
behaviour of these functions relative to integrals of (1), it will always
be assumed that these functions contain only those derivatives which
involve not more than one differentiation with respect toz. For we
may calculate the values of all derivatives involving more than one
differentiation with respectl to z, in terms of z, y, z, u and deriva-
tives of « involving one or no z-differentiation, by means of (1) and
the equations derived from (1) by successive differentiations, regar-
ding » and each of its derivatives as a function of z, y, 5.
Accordingly we now introduce a quite usual convention, with a
slight modification 10 suit Lhis particular problem. y being a func-
tion of the elements of contact of order 7, the symbols

dy dy dy

dx’ dy’ dz
denote partial derivatives of i, in calculating which u and the varia-
bles p;, j 1 are regarded as functions of z, y, z, in accordance with
the equations defining these variables. Again,

(%) (&) (%)

denote the same derivatives as before, but with the terms involving
derivatives of u of order n + 1 omitted. Thirdly

dg* ( di\*
dzx dx

indicate that, after calculating Z— and (dx>, we have replaced all

derivatives of u involving more than one z-differentiation by their
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values derived from (1), as explained above. In connection with

the last definition, it is important to notice that we do not obtain
dX\* ay* . ) ( dy, dy

(%> from 2. o the same way as %> is obtained from d_ : for

the substitution which changes % into %4 may introduce fresh terms
S dx dx

which do not contain derivatives of u of order n -+ 1,

We extend the same conventions to any order of differentiation.
Thus if y contains derivatives of u of order n» but not of higher
orders, ( %) indicates that after carrying out the indicated diffe-
rentiation we omit those terms involving derivatives of u of order
n+j+ k.

To illustrate these conventions, suppose that y is a function of the
elements of contact of order r, containing no derivative of u invol-
ving more than one z-derivation, but containing at least one derivative
of the n’th order. Then we may write

n—1

d 9 2
&= ( )*Z Tt G ,‘A +_S’ SLn=ii Gg,, £

—i—1,1 n—] ]

=0

d n—1 d

ax _ £ 9%

dy ( ) +23‘ ol d"i n—i—1, l+2 to anl) l)to n-j, l

d d Il-’-‘ d

‘% _ % 7

dz' ) +2' fyniit 081, n—i,i-1 +21 fo,n—j+1, 0to,n—j+1, 1—1
= j=
dy*

while to calculate -+ we substitute in the first of these equations
the appropriate' values of the rs, n_i_s, ; obtained from (1) and
in addition write (d—’()* instead of ( %) .
dx dz

At this stage we adopt a further device which will be found to
give great abbreviation in writing. We introduce certain fictitious
variables s,,; j and ¢, ;, j, in which one or both of the suffices is nega-
tive. These variables may be regarded as always equal to zero;
furthermore the functions with which we shall be concerned do not
contain these variables, so that we have always

9% _ % _
Fores = o and Tiois =

when ¢ or j or both are negative.
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One last remark, of great importance, must be made before we go
on to obtain results. From the form of (1), and since ¥ is an ana-
lytic function of its arguments, it follows from the usual existence
theorem that integrals of (1) exist such that when 2 —o0, u and !
reduce to arbitrarily assigned (analytic) functions of - and z. This
being so, we see that for any fixed values of z, y, 3, integrals of (1)
exist for which all the variables u, s,,.,,, to,1,4(¢, J, k, ¢ being, of
course, positive integers or zero), up to and including any given
order of derivatives, take arbitrarily chosen values at the point z,
¥, 3

In particular, given the values of z, ¥, 2, u and all the deriva-
tives of « of order up to and including  (thatis, the variables sy 4_i_1,:,
toyu—y,, 1< k=n), we may find integrals of (1) for which these
variables take the assigned values at this point, and for which the
derivativesof uof the n+4-1" th order, s, ;,—;; and ¢ ¢_j441,, (=0, 1,,..,n,
J=0,1, ..., n n-+ ), assume any arbitrarily assigned values.

From now on, it will be understood that an ‘¢ arbitrary element of
contact of order » "’ means an element of contact in which T,y,5u
and derivatives of » involving not more than one differentiation with
respect to z have been chosen arbitrarily ; while the other derivatives
have the values calculated from (1) and the equations derived from
(1) by differentiations. Similarly the phrase ‘¢ the derivatives of u
of order n + 1 ” will refer only to the derivatives sy, ,_;,; and fo,n_j1, -
Thus we may state the remark of the last paragraph more briefly as
follows.

““Given an element of contact of order n, integrals of (1)
exist, admitting this element, for which the derivatives of u of order
1 -1 correspondingto the elementassume arbitrary values”.  Again,
the phrase *¢ a function of the elements of contact of order n” will
henceforth refer exclusively to functions of z, y,z,u and the
variables sy s .4, top—ypy 1 Lk Zn, 0 ik —1, 072k

We write
AN oS v v o
-d—b-=B, —d—c—=c, —a.—f—-F, d?—G’ ;—E——H.

Hence, differentiating (1) n— ¢ —1 times with respect to y, and ¢
limes with respect to 5, and using the notation deseribed above, we
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have

{ ( dn=

(2) Tap—i-10=— | m) + Hsi,n—t,0+ GS1, 1,541

+ Bto, n—it1,i+ Fto n—t i1+ Clo, n—i—1.4120 %

a result which we shall frequently use.

CHAPTER II.

DEFINITION OF CHARACTERISTICS : EQUATIONS TO BE SATISFIED :
CONSEQUENCES OF THE DEFINITION : THE RANK OF A PARTIAL DIFFERENTIAL EQUATION :
Tueorev I.

The method of Darboux, as expounded by Goursat, is inextricably
linked with the theoryof characteristics. Thus whencontemplatingan
extension of the method to equations with three independent variables,
the question which one naturally asks first is, what is a characteristic
multiplicity? As Goursat [ 3] points out, there are two possibilities
which are naturally suggested. If there be m independent variables
we may define a characteristic of order n to be an m — 1 dimensional
multiplicity of elements of contact of order », contained in more
than one m-dimensional integral multiplicity : that is, rendering
the problem of Cauchy indetlerminate. This is the view adopted by
Beudon [6] in his work on characteristics.

Alternatively, we may adopt a viewpoint analogous to that of
Natani [7], and define a characteristic to be a multiplicity, contained
in an integral multiplicity, and satisfying at least one total differential
equation, distinct from the equations of contact, which may be
written down in advance and is independent of the particular integral
on which the characteristic is situated.

Goursat points out that this latter definition may only be adopted
for a special class of equations of the second order with three inde-
pendent variables; nevertheless it will appear later that for our pur-
pose this kind of definition is the more fruitful, and that Darboux’s
method may only be extended to those very equations to which the
definition leads.

To avoid confusion, we will refer 1o the m —1 dimensional cha-
racteristics of the first definition as Monge-characteristics, in accor-
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dance with the usual nomenclature for equations with two independent
variables : to the multiplicities of the second definition we simply
refer as ** characteristics ”, since it is with this kind that we shall be
mainly concerned : while to the one-dimensional characteristics of a
partial differential equation of the first order, which depend only on
arbitrary conslants and not on arbitrary functions, we refer as
Cauchy-characteristics, in accordance with common practice.
Meanwhile, we remark that it is well known that the two definitions
lead to identical results in the case of equations with two independent
variables.

But before stating the definition precisely, it is convenient to make
some further remarks about ¢* multiplicities of elements of contact”,
which have been mentioned on pages 3 and 8.

Suppose that we are given an analytic integral of (1), in the form

u="U(z,y, 2).

Then by differentiating this equation we may obtain, at any
point z, y, z, the values of the partial derivatives of u, up to and
including any desired order n. Adopting the notation for these
derivatives which has been used all along, it is clear that we may
thus associate with each point a set of values of the variables which
compose an element of contact of order n. Then if throughout any
suitable region of the space of (z, ¥, z) we consider the aggregate of
these elements of contact of order n, it is clear from the way in which
each element is obtained that the equations of contact (p. 4) are
satisfied : and thus that the aggregate is in fact a multiplicity M; of
order n (see p. 3). And since U(z, y, z) is an integral of (1), it is
natural to refer to a multiplicity M; of this special sort as an ‘¢ inte-
gral multiplicity .

But, just as explained on page 5 in dealing with single elements of
contact, since U(z, y, z) is an integral of (1), the values of all the
variables represcnting those derivatives of u which involve more
than one difterentiation with respect to z, may be calculated directly
from the equation (1) and the equations derived from (1) by diffe-
rentiation. Thus we see that an integral multiplicity is completely
specified when we know the values, at each point, of the variables z,
NEAEIR/S andsi,k-i—i,i, tl),lc—-j,j(k= Le,n;i=o0,.., k—1 ;j=01 "')k)
This being so, it is clear that the ** equations of contact” written on
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page 4 are no longer independent total differential equations. In
fact, the only equations which are independent, after we have substi-
tuted for each of the variables pggy(a> 2), its value in terms of
the other variables deduced from (1), are the following :

sflu—cl oodr—tyyody—ty o 1 ds=o0,

(3) dsy j—q—1 1 — T A—t—l-zdl — S 4 zzd,]'_sl.l-—z—‘l l'rldz = 0,
dty j—; j— Sk ydr — by f—ypr gAY —ty 4y dzs = 0.
(h=1,...,n—1,0=0, ..., h—1,7=0, ..., k)

in which it is understood that each rs , _,_i,. is expressed in terms of

the other variables by means of (1) and (2). It may readily be veri-
fied by writing the appropriate expressions derived from (1) for the
remaining variables, that the other equations of contact written on
page 4 are consequences of (3); though indeed this is almost obvious.
We may remark that the only variables, on the above understanding
regarding the ra ;_,—1,, which appear in (3), are the variables which
make up an element of contact of order », in the narrower sense in
which we have used the phrase all along.

It is also useful to remark that every integral multiplicity of order 7
is certainly contained in an integral multiplicity of order n 1 :
that is, the multiplicity of order n + 1 associated with the given
integral.

Having made these remarks, for the sake of clarity in the defini-
tion, we are now in a position to define characteristics.

Definition. — A characteristic multiplicity, or more shortly a
characteristic, of order n(>.2), is a multiplicity of elements of
contact of order n, forming a part of at least one integral multi-
plicity M; [and therefore satisfying (3)], and having the property of
satisfying at least one new total differential equation which we may
adjoin to (3); the new equalion or equations being entirely inde-
pendent of the particular integral of (1) of which the characteristic
forms part, and containing the differential of aL least one partial
derivative of order n.

We shall see later that in consequence of this definition, charac-
teristics of this kind, when they exist, are of one dimension : and
furthermore that the new total differential equation or equations,
about whose nature we have made no assumption, must be linear.
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We now proceed to determine all the total differential equations
which a characteristic must satisfy.

First of all, we notice that the equations of contact (3) are solved
for the differentials of u and of all the variables representing the
various derivatives of , up to and including the » —1I'th order, and
express each of these differentials as a sum of multiples of dz, dy, d=.
The only variables whose differentials do not appear are those which
represent derivatives of z of order n. Thus since we may substitute
for all the differentials for which (3) are solved in terms of dz, dy, dz,
any new total differential equation which we adjoin may be written
in the form

X‘ Ly oeny to,o'n; dS"n_.j,o, ey dSi,O,n-—-i}=o,
U dto,n,0; -y dlo,o,n; dz, dy, dz ’

and by the definition, at leasL one new equation must contain at least
one of dsy n_i_a,i, dto,nj, j({=0, ..., n—1;j=0,1, ..., n).

Now since by definition the characteristic whose existence we are
now assuming is contained in at least one integral multiplicity of
order n, it is also (see p. 10) contained in at least one integral multi-
plicity of order n + 1. Therefore, anywhere on the characteristic
there exists at least one set of values of the variables which represent
the derivatives of u of order n 1, such that the additional equations
of contact appropriate to an integral multiplicity of order 7 + 1 are
satisfied : that is, the equations

dsl,n—i—-i.l= ra, n——1,1 dz + S1,n—i,1 d)’ —+ 81, n—i—1,i+1 dz,

which, putting in the values of each rs,_i_i,; given by expres-
sions (2), chapter I, we may write

dn—1
k dsi,n-t—l,i+ <m) dz

(4) = {(dy — Hdx) s,,,._;,,-+(dz—Gd.z‘)s,,n_,-_,_l._,_,
— (Bto,n—tt1,:+ Fto, n—t,11+ Clo, n—i—1,s42) dx }
(i=o0, ..., n—1I)

and also the equations

(5) dto-'l—i,i= S1,n—j,) AT + Lo, n—v1,] dy + &, n—j, j+1 458 (j =0, I, ..., )

Since n > 3, and therefore » 4- 1> 3, it follows that the deriva-
tives of u of order n + 1 do not occur in ¥, H, G, B, F, C; nor do
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dn—1 g
dy"—i—1dzt
page 6. Thus when dz, dy, dz have values appropriate to a charac-
teristic (which we suppose known), and are regarded as constants,
the expressions on the right hand sides of the 2n +- 1 equations (4)
and (5) may be regarded as 2n + 1 homogeneous linear forms in

the 2 -+ 3 variables

S1,n—iyi (£=0, ..., 1) and to,n—j1,; (J=0, ..., n+1),

they occur in ( >, by the definition of this expression on

which do not occur on the left sides of the equations.

Now if dz, dy, dz were such that these 27+ 1 linear forms
in 2n + 3 variables were linearly independent, then clearly these
forms could be made to take any arbitrary set of values, by suitable
choice of the values of the variables in question. And thus we could
satisfy the equations (4) and (5) for any arbitrary choice of the
differentials dsy, ,_i_1,i, dto,n—j, j on the left hand sides, by suitable
choice of the variables sy, i i, fo,n—+1,j. But we have seen that
integrals of (1) exist, admitting any chosen element of contact of
order n, and such that the variables sy, ¢, fo,n—ji1,; assume any
arbitrary set of values. Hence it would be impossible to restrict the
differentials dsy,n_i_1,i, dto,n_j,j to salisfying any total differential
equation, which actually contains one at least of these difterentials,
without any knowledge of, and without placing any restriction upon,
the nature of the integral multiplicity or multiplicities of which the
characteristic in question forms a part.

Therefore in order to comply with the definition, we see that on a
characteristic, dz, dy, dz must be such that the 27 - 1 linear forms
on the right hand sides of the equations (4) and (5) are ro¢ linearly
independent; in which case it is clear that the elimination of the
derivatives of u of order n+ 1 from these equations, which from
their nature are consistent, leads at once to a certain number of
linear total differential equations, containing the differentials which
appear on the left hand sides of (4) and (5), and fulfilling all the
conditions laid down in the definition.

We could have taken this as the starting point, and defined a
characteristic of order n to be a multiplicity such that the derivatives
of order n1 could be eliminated between the equations (4) and (5).
This would have considerable advantage in simplicity : but although
the result would be the same, such a definition would be slightly less
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general, and much more artificial, than the one which we have in
fact adopted. 'We now proceed to find the conditions which must
be satisfied by dz, dy, dz; and to determine the new total differen-
tial equations mentioned above.

First of all, we dismiss the possibility that dz = o. For suppose
that dz=o0. Then clearly the variables s, ,_;; occur in (4) but not
in (5), while the variables ¢o n_j.1,, occur in (5) but not in (4).
The matrix of the coefficients of the variables sy,,_;,;, on the right
hand sides of (4), is then the matrix of » rows and n + 1 columns
such that the element in the i’th row and the A’th column is dy
if k=1, is dz il k=1i{41, and is zero in all other cases. If we
omit the last column, we obtain a determinant equal to dy", while if
we omil the first column, we oblain a determinant, also of 7 rows
and columns, equal to dz*. Thus unless dy = dz — o, the matrix
is of rank n. Similarly the matrix of the coefficients of the
variables ¢y, n_j41,; on the right hand sides of the equations (3) is an
cxactly similar matrix, but with n+ 1 rows and n -+ 2 columns; and
by exactly the same reasoning, this matrix is of rank »n -1
unless dy=ds =o0. Thus we see that the 27+ 1 equations are
linearly independent unless dy = ds =o. In this latter event, it is
clear from the equations (3), (4), (5) and the hypothesis that dz=o,
that the multiplicity reduces to a single element of contact, all the
variables remaining constant : and this is obviously inadmissible,
since a characteristic is defined to be of at least one dimension.
Thus in order that the equations (4) and (5) be not linearly inde-
pendent, in the sense explained, it is necessary that dz 3 o.

This being so, we consider instead of the equations (4) and (5), a
system of equations entirely equivalent. For each ¢, we multiply (4)
by dz; put j = ¢ in (5) and multiply by — (dy—H dz); put j =i+ 1
in (5) and multiply by — (d5— G dz); and add the three together,

thus obtaining

dn—\q’
dz { dsy, n—i—1,i+ (d_.}"‘”“”" dzl) dx}
— (dy —Hdz) dty, n—t,1— (dz — G dx) dto, n—i—1,1+1
(6) = —[(dy*— Hdy dz + Bdx?)ty. n—i+1,1

+(2dyds— Gdydz —Hdzdzr + F dz?)to, n—1,141
+(dz2— Gdzdr + Cda? ) to n—i—1,iv2]
(f=o0,1, ..., i —1I).

MFMORIAL DES SC. MATH. — N° 142, 2
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Since dz #£ o, it is clear that (6) and (5) are together entirely
equivalent to (4) and (5); and the variables si,,_,, do not occur
in (6) Furthermore since each of the n + 1 variables s, »_,,, occurs
in one, and only one, of the n+1 equations (5), it follows that
if the n expressions on the right of the equations (6) are them-
selves linearly distinct, considered as linear forms in the n 41
variables Zo n_;+1,, then all the 27 41 equations (5) and (6) are
linearly distinct. Therefore on a characteristic, we must choose dx,
dy, dz in such a manner that the matrix of the coefficients of the
variables o, n_j41,;(j =0, ..., n+1), on the right of the n equa-
tions (6), is of rank less than n. If we now write, for brevity,

—a = (dy*— Hdy dx + B dz?),
—B=(2dyds— Gdydz — Hdzdz + F dz?),
— 1= (d32— Gdzdx + Cdz?),

then this matrix is the matrix of » rows and n + 2 columns such
that the element in the {’th row and the A’th column is a if k =1,
is Bif k=i+1,1is v if k=i 2, and is zero elsewhere. If we
omit the last two columns, we obtain a determinant of ~ rows and
columns equal to «”; if we omit the first two columns, we obtain a
determinant equal to y?; while if « =y =0, and we omit the first
and last columns, we obtain a determinant equal to 87. Therefore,
in order that the matrix be of rank less than =, it is necessary that

e=f=y=0;
that is
dy*— Hdy dxz + Bdz*= o,
2dydz —Gdyde —Hdzdz +F dz?=o,
dz2— Gdzdz + Cdz>=o.

But we have shown that dz £ o; thus we may put
dy = pdzx; dz=vdz;

and after dividing by dz? we obtain

7 p2— Hp + B =o,
(8) 2py — Gu — Hv +F =o,
(9) v—Gv+C=o.

We must therefore investigate the necessary and sufficient condi-
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tions for a common solution of the equations (7)-(g). Lel g, pa be
the roots of the equation (7), and vy, vy the roots of (9). Then

H =+ u,, B =uu,, G = v+ vy, C=viva.
Putting in the values of G, H, equation (8) becomes
20y — (V4 v2)y — (M + pa)v +F =o.

If this equation be satisfied either by pu=py, v=v, or p=yp.,
v =v,, we see that the necessary condition is F = pyvo+ p,vy.  If
the equation be satisfied by p. =y, v=vs, or p=pa, v=y,, we
have F = pyvy+ p2ve.  We may always suppose the former condi-
tion satisfied : for the latter is obtained from the former simply by
re-labelling vy, v as vs, vy respectively. Thus we may assert that the
necessary condition for a common solution is F = pyvo+ pav,.  This
condition is also sufficient, for, putting in the values of G and H, and

this value for I¥, (8) becomes

(=) (v—a)+ (p— ) (v—v) =0,

and this equation is clearly satisfied by p =i, v =v, or p=p,, v=v,.
To interpret this condition in terms of the function W', we observe
that, after putting in the values of H, G. B, G, we have

H G
l — —_—
2 2
A= H B E
2 2
G F
2 2
=— ';' (F — (w24 av1) | {F — (o1 =+ pava) |

Thus, noticing once again that the second factor is obtained from
the first by permuting v; and v,, we see that the necessary and
sufficient condition for the existence of a common solution of (7), (8)
and (9) is that A, which we shall call the « discriminant » of (1),
shall be zero.

‘We may go further than this. For the minor of A obtained by

omitting the last row and column is B — % H? =— %([Ja —-2)?; and
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the minor obtained by omitting the second row and column
is C— % Gl=— % (vi—vs)?. Thus if the determinant is zero, but

either of (py— pa), (vi—va) is different from zero, A is of rank 2,
and therc are two distinct pairs of solutions of (7)-(9), namely p = p.,
v=v; and g = o, v=va. Butif

1= M, vi= Yy, F =pva+ pavi=2pvy,

A becomes
I M1 Vi
B BE B
Vi MgV Vi

in which the second and third rows arc multiples of the first and A is
clearly of rank 1. Thus we see thatif A be zero but of rank 2, at
least one of py— pa, vi—vs is non-zero; while if A be of rank 1,
1= pa, V4= Vs, and (7)-(9) admit one solution only, namely

Bo= g = Mg, V=V = Va.

Suppose now that the condition A = o is satisfied, so that
H =+ u,, B = e, G=v,+v,, C=vyvy, F =y va+ wavy.
Then choosing, for definiteness, the solution g = py, v =1v,, we have
(10) dy —pydz = o, dz —vidz = o.

Putting these values, and the values of H, G, B, F, C in the equa-
tions (6), and dividing by dz, which is not zero, we have

dr—

dst, n—i—1,1+ Pa dbo, n—, 1+ Va2 Qlo, n—g—1, 141 ~+ <m

(11) )dw:o

(i=o0,1, ..., n—1)

and clearly the equations (11) fulfil the conditions of the definition
of characteristics of order n. Furthermore, from (10) we see that
there is one relationship between y and z only, containing y, and one
between z and z, containing z. Hence, since a characteristic is, by
definition, contained in an integral multiplicity M;, in which the
independent variables are z, y and z, we see at once that characte-
ristics of the kind which we have defined are of one dimension only.
Thus we regard (10), (11) and the equations of contact (3), no longer
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as total differential equations, but as an incomplete system of ordi-
nary differential equations.

If one or other or both of py— po, vy— v,y is different from zero,
we may deduce a second system of equations which characteristics
of order n may satisfy, simply by writing p., vy for py, v, respec-
tively, and vice wersa, in (10), (11). In this case we shall show that
there are two distinct systems of characteristics of each order n(n>2),
while if gy = pa, v4= v, there is only one system.

We have yet to establish the existence of characteristics of this
kind, although we have found the equations (10) and (11) which, in
addition to the equations of contact (3), they must satisfy. But this
point presents no difficulty. For suppose that we have any integral
of (1), so that all the variables which make up an element of contact
of order n -1 may be regarded as known functions of z, y, z.
Then, substituting the values of the appropriate variables in py
and vy, let us consider the system of two ordinary différential equa-
tions
(1) v

r1 (2, 9 2) vi(&, ¥, 5) 1

These equations define a system of (one-dimensional) curves in
the space of (z, y, z), such that through cach point 2, y, z passes
one curve of the system and only one (throughout, of course, a
suitable region within which all the functions involved are analytic).
Let us then associate with each point of one of these curves, the
element of contact of order 2, and the element of contact of
order n + 1 containing the former element, belonging to the integral
multiplicities of order n and 7 + 1 respectively, associated with the
given integral of (1). Then the equations (3), (4), (5) and there-
fore (6), being satisfied throughout the integral multiplicity of
order n -1, are satisfied in particular along any one of the curves
defined by (12). 'While remembering that dx £ o, the equalions (12)
are themselves equivalent, on this integral, to (10). And therefore,
along this curve we may eliminate the derivatives of u of order n—+ 1
from (4) and (5), or (5) and (6) which are equivalent, thus showing
that the equations (11) are also satisfied. Therefore the one-dimen-
sional multiplicity M, consisting of any of the curves defined by (12),
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the definition adopted. And since one and only one of these curves
passes through any point z, y, z, we may state the result in the
following concise manner, remembering that the same arguments
may, of course, be applied to the second system of characteristics,
by permuting p1, and g, v4 and v :

« Every integral multiplicity of order n, is a locus of one-dimen-
sional characteristics of order n belonging to either system, when
the two systems are distinct, and to the single system when the two
are confluent ».

We therefore see that a characteristic of order n is a multi-
plicity M, of elements of contact of order z, satisfying the equations
of contact of order » [in which, it is understood, each derivative of
the form ra , ;. is replaced by the appropriate expression of the
form (2), chapter I}, being contained in at least one integral multi-
plicity of order n, and satisfying either the system (10), (11), or the
system obtained by permuting u; and p,, vy and vy, If the deter-
minant A be of rank 2, there are two distinct systems of character-
istics, while if A be of rank 1. the two systems are confluent, i. e.,
there is one system only.

Before stating the theorem which really summarises all the
conclusions of this chapter up till now, we introduce an extremely
important conception, namely the rank of a partial differential
equation. We define the rank of the equation (1) to be the rank of
the determinant A (p. 15). But this conception may be extended to
equations of more general form than (1). Suppose in fact, with the
notation of chapter I, that the given partial differential equation is

(13) Y&,y 5.1, l, m.n, a, b, c, f, g h)=o0;
then we adopt the following definition.

Definition. — The rank of the equation (13) is the rank of the
determinant

d o1dp 19y
da 2 0h 2 0g
RO A S A A
20h  Jb 29f|
1oy 1 dy ay
5dg 2df dc

which we shall call the discriminant of (13). If the equation (13)
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contains a, SO that:—g # 0, we may solve for a in the forni (r).

Thus, applying the rule for calculating the derivative of an implicit
function, we see that

9
oW _ Jh

BT
da

and similarly for g, b, f,c. Thus, A being the corresponding deter-
minant for the equation solved for a, i. e., (1), we see that each

element of A', is g% times the corresponding element of A : and

clearly the rank of A’ is the same as the rank of A. A similar
argument applies if (13) contains b or ¢, by simply permuting z, y
and z. If (13) does not contain a, b or ¢, but contains, for example,
h, we have seen in chapter I that the change of variables z, = = + y,

. ru o .
y1=a —y renders the equation soluble for ot and it is easily

verified that after this substitution the rank of the corresponding
determinant is the same as the rank of A'.

Thus we may now summarise all the results of this chapter in the
following theorem :

Treorex 1 :

(1) If the equation (13) be of rank 3, there are no characte-
ristics of the kind defined on page 10.

(i) If (13) be of rank 2, there are two distinct systems of one-
dimensional characteristics of each order n>2 of the kind
defined earlier, and every integral multiplicity of order n is a
locus of characteristics of order n, of either system. If the
equation be solved for a, in the form (1), chapter I, then the
equations satisfied by characteristics of order n, in addition to the
equations of contact of order n, are the equations (10), (11), or
else the system obtained by permuting p. and pa,vy and v,,
where (i1, v1), (2, va) are the two distinct pairs of solutions of the
three equations (7), (8), (9)-

(i) If (13) be of rank 1, there is one system only of one-
dimensional characteristics of each order n> 2, of this kind,
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and -every integral muitiplicity of order n is a locus of charac-
teristics of order n of this single system. If the equation be
solved for a,in the form (1), there is only one solution, say p= .,
v=v, of the equations (7)-(9), and the equations satisfied by
characteristics of order n,in addition to the equations of contact,
are (10), (11), in which we write py = pra, vy ==va.

This is the fundamental theorem of characteristics for second
order equations with threc independent variables. Comparing the
results with the classical case of an equation with two independent
variables, and making the corresponding definition of rank, we
observe that an equation with two independent variables of rank 2 has
two systems of characteristics, while an equation of rank 1 has one
system only, entirely in accordance with the results we have esta-
blished. But there is an interesting difference to which we shall
return later.

CHAPTER III.

IN\'ARIANTS, AND THE GENERALISATION OF DARBOU\'S METIIOD.

The next problem to engage our attention is that of finding the
conditions which must be satisfied by a function of the elements of
contact of order n, which has the special property of remaining
constanl along a characteristic of one or other of the two systems
[from now on, we will always assume that the equation (1) is of
rank 2 or 1; and except where it is expressly stated that the charac-
teristics are distinct, all propositions about ‘¢ one or other of the
two systems ” will apply to the case when the two systems are
coincident]. A function of this kind is called an ‘¢ invariant ”
of the appropriate system. To be more precise, we state the
following definition.

Definition. — An invariant of order #n, is a function y of the
elements of contact of order 7, such that the equation

dy=o
is a consequence of the system of equations (10) and (11) and the

equations of contact of order », or else of the corresponding system
obtained by permuting gy and pa, v, and v,.
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Thus let y be any function of the clements of contact of
order n(>2). Then to calculate the variation of y along any
characteristic of the system characterised by py, v, we substitute
in dy for each of the differentials for which the equations (10),
(11) and the equalions of contact are solved; and thus, taking

account of these equations and of the definitions of the symbols (ﬂ)'

dz
elc.,
x 9% I qs + %4
4 dy= d.l:+ )} dy+dzd..+dudu
BB s ,+2, s o)

=i(2‘f;>+w<z5§>+“(i%>§‘“

n—1

f_, _ dn—w
2-! 081 n—i—1,1 | e llo,n—i— Vadllon—iztr — dyn—i=1 dzi)dw

1=0
n

+3 dt_“:;dto,‘_,,, [using(10)-(11)]
“

dy ' dy dy
(&) = ()= (2
N[ A 9
~ 1e— 1L\ Ve
_z (dy"—l—i tlz-l> ds,,,,_i_.,lgdx
I=u

{921 % %

-+ = — M2 — -—————— dto n—

.ZO Wy~ "2 Ostujmr ds, P R
/:

(after rearranging and using the negative suffix convention).

Now given an clement of contact of order n, we have seen that
integrals of (1) exist, admitling this element, for which the deri-
valives of u of order n -1 assume any arbitrary values. Further-
more, it is clear from the equations (5) that, having chosen the
ratios dz:dy:dz (dz £ o), we may certainly choose the derivatives

. . dtop—ji;
of order n 41 in such a way that the n -+ 1 ratios —°£7—’—’ assume

any arbitrarily chosen set of values. But the ratios dz:dy:dz are
determined by (10) in terms of elements of contact of order 2; and
are therefore fixed when an element of contact of order 2 is assigned.
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Thus we may assert that given an element of contact of order n, we
may always find an integral, admitting this element, for which the

ato.n—j.;

ratios » corresponding to the characteristic of order n of

this system lying on the integral and containing the given element,
assume any set of values given in advance.

Thus in order that dy = o on any characteristic, it is neccessary
that the coefficient of each dto,._j,;(j=o0, ..., n) on the right
hand side of (14) be zero : and then since dz £ o on a characte-
ristic, we may also equate to zero the coefficient of dz in (14).
Therefore in order that y may be an invariant of the first system,
it is necessary, and from the equation (14) it is also obviously
sufficient, that y should be an integral of the partial differential
equations of the first order

' n—1
dy\* dy R N\ ar—1y I _
\ (%) + Fi(@) i ((TZ / _iz <(i_}’n_l'_1 d.Zl> ()Sl’n_l_jj =%
=0

A
9% 9% 9%

— — v
dlon—iy ' OS1n—i—1a

(15)

=0
081, n—i,i—1

(i=o, ..., n)

and clearly an invariant of order »n, of the other system, satisfies the
same system with p; and pa, v4 and va permuted:
We may remark here that from the definitions in chapter I of

the symbols % etc., and the equations such as (2), chapter 1, the
equation

dg* . 4% dy _
d—.l‘ +‘J.125,+V1?z=0

is a direct consequence of the equations ((5).

We will frequently be dealing with characteristics, and with
invariants, of different orders. Thus we will usually refer to the
system of equations (15) as written, as the ** system (15) of order n "'
But when it is a question of distinguishing between one system and
the other, we simply refer to the system characterised by (10) as
the ‘“ first system ” and the system obtained by permuting p,
and p, v, and v, as the ¢¢ second system .

We now prove two further results.
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Tucorem 2. — Every characteristic of order n 41 (n> 2) (of
either system «when the two are distinct) contains a characteristic
of order n.

For suppose that we know a characteristic of order n +1 of, say,
the first system. Then along this characteristic, the equations (10)
are satisfied, and also the equations of contact appropriate to any
multiplicity of order n 41 : that is to say, (3), (4) and (5). And
therefore the equations (11) are also satisfied : for we have seen that
when (10) are satisfied, (11) are consequences of (4) and (5).
‘Thus the multiplicity of order n contained in the characteristic
multiplicity of order » + 1, is itself a characteristic multiplicity of
order n : and the theorem is established.

From this last result it follows at once that any ¢ invariant of
order n ”, as defined above, is also an invariant of the characteristics
of any higher order n+ m. For a characteristic of order n + m
contains one of order 7+ m— 1 : one of order n +m—2 :.
and finally one of order n. And y being constant along the last, is
also constant along the first.

Suppose now (which is by no means always the case) that one
system of characteristics, say the first, possesses three invariants £,
n, ¢, of order not exceeding n(n>>2), one at least of which is of
order n. Then by the corollary to theorem 2, we see that &, 0, ¢
are all invariants of the first system of order . Consider now any
integral of (1), which we have proved to be a locus of charac-
teristics of the first system. ILet us then substitute for u and the
partial derivatives of order up to and including 7, in £, n and g, the
values, in terms of z, y and z, appropriate to the integral, and
make the same substitution in py, v;. We thus obtain three
functions i(z, y, 2), n(=, ¥, 3), {(x, y, ). But since ¢, » and ¢
are, by hypothesis, constant along any characteristic of order n ot
the first system, we have, along the characteristic (the symbols g% etc.,
now referring to the functions £ etc., after substituting for u and

the partial derivatives)

dsd + = ()E

dt = dy ) z

% iz
dx
E{d—E ui(m,.}’,z)d—+w(~l‘,.}" “)d } Z = 0,
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AU g

oz TGy Tz T
and similarly

dn an dn

0$+‘ul—d;’+‘“(—)_z =0,
% 118 i
d_x+Hld—)’+V1¢T‘7_o

Hence, the values of u and all partial derivatives having been
replaced by the functions of z, y, z appropriate to the integral.
we have

96, %) _ .
Jd(z, ¥, 7) ’

and therefore the given integral satisfies an equation of the form
(16) #(& M, L) =o,

for some form of the function y. Thus, once again expressing &, 7,
¢ in terms of the elements of contact of order n, we sece that (16) is
a partial differential equation of order n, which must be satisfied,
for some form of the function y, by each integral of (1). This
important result is entirely in accordance with the result for equa-
tions with two independent variables.

Now the essence of Darboux’s method, in the classical case, is
that, given the data of Cauchy along a non-characteristic curve, and
knowing two invariants of one system of characteristics, we may
deduce a new ordinary differential equation which enables the
characteristics of the opposite system (or the single system, if the
two be confluent) to be determined. 'We shall therefore investigate
the corresponding possibility.

It is a well known result in Cauchy’s problem, in three indepen-
dent variables, that if « and one of the derivatives of u of the first
order be given at every point of an analytic surface, then in general
this data specifies an unique integral of (1); and the values of all
the derivatives of u of any order may be calculated at any point of
the surface, by using the equations of contact, the equation (1) itself,
and equalions derived from (1) by partial differentiation (for
example, this latter fact is obvious if u and sy,0,0 be given as funcs
tions of y and z when £ =0). One of the conditions sufficient in
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order that this may be true is that the surface shall not correspond
to a Monge characteristic of the integral in question : and it is a
standard result that the surface Z(z, y, z) = o is a Monge characte-

ristic corresponding to a particular integral of (1) if the function =
satisfies the equation :
-

in which we substitute for # and each of the derivatives of u the
values appropriate to the integral in question.

Thus we now assume that we are given the Cauchy data in such a
manner that the problem is determinate. To be definile, we will
suppose that the coordinates z, y, z of a point in a suitable closed
region of the surface Z(z, ¥, z) = o are cxpressed in terms of two
parameters ¢ and w, in such a way that not all three of the

. a(y, z) d(z, ) d(z,y)
Jacobians 5ro oSy St w)’ 3(s, w)

ponding region of the planc of ¢, & : and that from the given data,
the equation (1) and the equations derived from (1), the values of u
and all the derivatives of u of order up to and including n (> 2)
have been expressed as analylic functions of ¢ and v throughout
this region : and further that, putting in the value in terms of v
and v of each of the appropriate variables, we have

(o= }2 I()E 0= J= J= {d=2 = J= {
7= 22 = o= o= = g2 /=
(17) V9zf "V oz dy+de dz+B{ y | +de dz+cl

S

y are zero, throughout the corres-

_(0Z2 L O0E JE I 0=
B 2

+Bgdy$ T 9y 9s

%]ﬁ

N

o
jo

We have thus a two-dimensional multiplicity of order » : and for
brevity we henceforth refer to this as the « initial multiplicity ».

We suppose all along that the equation (1) with which we are
concerned is of rank 2 or 1. Then we have seen, in the last chapter,
that there are two systems of one-dimensional characteristics of each
order 7, of the kind which we have discussed hitherto : and further-
more, that the integral multiplicity of order 7, corresponding to the
required integral, is a locus of characteristics of either system.
Thus we may assert that this integral multiplicity is in fact the
locus of those characteristics of either system, contained in the
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integral multiplicity, which emanate from each element of the initial
multiplicity, provided that we can establish that these latter charac-
teristics do in fact form a multiplicity M, and are not entirely
contained in the initial multiplicity. To prove this point, we will
prove that there is a one-one correspondence between the points of
the space of z, y, z, and the points of the curves (12) which pass
through each point of the surface Z=o0. In this connection, we
may remark that since the given boundary data makes the problem
determinate, we may regard v and each derivative of u as known
analytic functions of z, y, z; and then, substituting these values
in Py, pa, vy, va, We may regard the equations (12) as defining a
known system of curves, one of which passes through each point of
the space of x, y, z : each curve, of course, corresponding to a
characteristic contained in the required integral multiplicity.

Thus let us consider the curve of the system (12) which passes
through the point of the surface Z=o0 which is specified by the
parameters (¢, ). Lel the position of a point on this curve be
specified by a new parameter §, chosen in any convenient way,
which takes the value zero at the point (¢, «v) on the given surface.
For example, we could take 6 to be the arc-lengh along the curve,
measured from the point (¢, w) on the surface. Thus we may find
a function A(z, y, z) (different from zero, since dx 3£ o) such that
along the curve we have

dy ds d.
= == A . do.
wi(z, ¥, &) vi(@, ¥, 2) I (57, )

Then clearly the point (z, 5, ) on a curve passing through any
point on the surface is entirely specified by the three para-
meters (0, ¢, w) : and we now proceed to calculate the Jaco-
9z, 3, 2)
9(8, ¢, w)
point where 6 =o0. To this end we remark that from the equa-
tions written above it is clear that for any values of 6, ¢, w,
we have

bian y al any point on the surface = = o, thal is; at any

dz .. ay . . az Lo
'd—a-—-)s, -0—0-—/\}1.1, -d—ﬂ-—)\\lj,

while, on the surface, we obtain by differentiating Z=o0 with
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respect to ¢ and w respectively

Eox ooy  0E_,
Jdz dv dy de  dz dv
0= or  0Zdy  IZox_,
dx dw  dy dw = dz ow

and thus, solving these equations, we see that a function p(z, ¥, 3)
must exist, such that

00,5 _ 0= dza) _ 0= d@y) _ I=
v, wy  F oz’ d(v,w)“-d’ (v, w) ‘oz’

and clearly p 5 0, since by hypothesis one of the three expressions
on the left of these last equations is not zero. Hence when 6 = o,
we have

A Awy Ay
dr dy 0z )
’)("I:s Y B) 159 26 Ao | — sg.:-': I 9= dﬁ')
d—(ﬂ, o w) dv dv dv _)\Pldx_’—‘ildy-’- 1055
oo dy oz
Jdw  dw dw

But, putting in the values of H, G, B, F, C in terms of py, s, v1,
v, in the expressions A4 (v, w), we see that

w1 () o (F) () e () ()
Jx oy Jdz dy /) \dz
o () ()« e () (5)
=(Erug ) (G rmly ) o
and therefore in particular

J= J= =

d_w+‘ui = 0.

"d.—y-_ ~+ Vi % E
Therefore, since A 7 o, p 7 0, we have

d(x, ¥, 3)
2(8, v, w) o

whenever 68— o and ¢, w lie in the prescribed region of the ¢,
w plane. But since we assume that all the functions with which we
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are dealing are analytic, it follows that there is a region of the space
of (98, v, w) which includes the region of the plane 0 =o in its
interior, and throughout which the Jacobian is different from zero.
Consequently, we may express 0, ¢, w in terms of z, y, z throug-
hout a region of the space of (z, y, z) which includes the given
region of the surface Z=o0 : and there is thus an unique corres-
pondence between the points of the space of (z, y, z) and the points
of the curves of the system (12) which emanate from each point of
the initial multiplicity.

By exactly the same reasoning we¢ may establish the same result
for the system of curves of the second system, obtained by
wriling ps, v for py, vy in (12), emanating from cach clement of
the initial multiplicity; and the desired result is thus obtained.
In other words, we may now assert that the required integral multi-
plicity of order n is the locus of the characteristics of order n, of
either system, which arc contained in the integral multiplicity and
emanate from each element of the initial multiplicity.

Now it is clear that if by any means we could determine these
characteristics explicitly, the problem of finding the integral would
be solved. For1f, with the notation which we have adopted in this
chapter, we could solve for the various elements of a characteristic
of order n, emanating from the initial multiplicity, in the form

z=z(b, v, w), Y= (0, o, w). 3=2z(h, v, w), u= u(e7 9, W),
$1k—i—1,2= $1 4—,—1,2(8, 0, @), tok—y,) = tok—,, (8, 0, w),
(k=1,...,n;i=0,..., h—1;j=0, ..., k)

JI(z, ¥, 3)

then since 20w # 0, we could climinate 0, ¢, w from the first

four equations and obtain the required integral in the form
u=u(r, ¥, 3).

We shall now see how, in certain cases, we may carry out this
determination : the method of procedure to be adopted being
clearly suggested by Darboux’s procedure for equations with two
independent variables, and the results which we have obtained
so far.

Thus suppose for some integer n(>>2) one or other of the
systems of characteristics possesses three invariants ¢, n, {. Then
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we have seen that when the vaviables involved take the values
corresponding to an integral multiplicity of (1), &, n, ¢ satisfy an
equation of the form (16). Now we may determine the precise
form of the function y in (16) from the boundary conditions. For
suppose that we substitute for each of the variables which make up
an clement of contact of order n, the values in terms of the para-
meters ¢ and w which these variables assume on the initial mulu-
plicity, thus obtaining three functions £(v, w), n(¢, w), ¢(v, w).
In general (in other words, except possibly for special boundary
conditions), we may then express one of these functions uniquely
in terms of the other two, say

E(o, w) 49 {n(p, w), {(p, w)} =0,

the form of the function ¢ now being known; and since we have
proved that there is a functional relationship between &, n, ¢ valid
for all z, y, z, it follows that the required integral satisfies, for all z,
Y, %, the equation

(18) L=E+9(m, ¢) =o;

and we may remark that y is itself an invariant. The foregoing
reasoning would only be defective if every integral of (1) were such
that, on substituting for u and its derivatives their values appro-
priate to the integral, there were always two or three functional
relationships between &. u and ¢, so that either, say, £ =X(%),
n =Y (), or else £, n and ¢ are constants. Both these circumstances
we shall shortly show to be impossible.

Since, by hypothesis, at least one of ¢, 7, { contains a derivative
of order 7, it is clear that, in general, (18) is an equation of order n.
But we must now prove, [denoting the left side of (18) by x], that
M
I8, n—i—1,0
zero. For it is conceivable that, whatever the integral of (1), the
corresponding form of the function ¢ in (18) might be such that

in general, one at least of (!=p0, 1, ..., n—1) is not

each d——dl-— = o0, when we substitute for v and each derivative
S1,n—i—1,1

of u the values appropriate to the integral, in terms of z, y z.

Now integrals of (1) exist admilting any arbitrary element of
contactof order n. Thus for general values of the variables, we may

MEMORIAL DES SC. MATH. — Ne 142, 3
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JE Jn %
suppose one at least of >
PP ds d,n—1—1t,1 d«"‘! JR—1—1,0 dst n—t—1,1

to be non-zero. For if this were not the case, it follows from (15)
that none of §, 0, { would contain a derivative of order n, contrary
to hypothesis. Thus the matrix of n rows and three columns,

which has 3 am a in the 74 1'th row and

dsi,n—z—i,z, 51, n—1—1 z’ d81 n—1—1,
respectively the first, second, and third column, is of rank 1, 2 or 3.
Let us therefore suppose, if possible, that for every integral

(z__o, I,...,n—I),

of (1), the function ¢ in (18) is such that each

is zero on
ds S1n—1—11
the integral. This requires
043 do dn do [ .
—_— e — —_— =0, 1, ..., n—1).
dsl,n—t—l,z dan dsl,n—z—i ' d: ds; Ja—i—11 © (l > ’ )

If the matrix described above be of rank 3, then these r equations
are incongistent. If it be of rank 2, and if the equalions be consistent,

then we may solve them uniquely for 22 and %2 dC in terms of elements

d
of contact of order n. But since, by hypothesis. n and ¢ are inde-
pendent functions of these elements, it follows that we may express
two of the variables composing the element of contact in terms
of 0, { and the remaining variables. Doing this, we solve the »
equations above, in the form

% _ %9
o= A. 7
where A and B are functions of n, ¢, and all except itwo of the
variables composing an element of contact of order . But since ¢

is a function of n and ¢ only, this is impossible unless A and B are,
in fact, functions of n and ¢ only. Hence we suppose that we have

9% _ Aiary. 99
d—n—A(,’hC)a JC B(qat)

=B,

But even if the integrability condition were satisfied, we would
then have ¢ in the form ¢ =U(n, {) —24 where the form of U is
fixed, and 1 is an arbitrary constant. Thus we would have the
result that every integral of (1) satisfies an equation of fixed form

REE+U(7\~C)=)‘~

for some value of 3; and we observe that R is also an invariant.
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Now this is impossible. For suppose that R contains a derivative
of order s < n, which we may denote by p. Then, for general

values of the variables, ‘;-}RD must be non-zero. Hence, differentiating

the equation R=17 with respect to y or s, we obtain a linear
relationship between the derivatives of order s + 1, containing at
least one of these latter, and satisfied by every integral of (1),
contradicting the fact that integrals of (1) exist, admitting any
element of contact of orders + 1.

It remains only to examine the case when the matrix described
earlier is of rank 1. If this be so, we see that, with our hypothesis,
and again expressing two of the variables in terms of 4, ¢ and the
remaining enes, ¢ must satisfiy, for any integral of (1), an equation
of the form

A %—:‘ + B %% =C,

where A, B, C are functions of s, g, and all but two of the variables
éomposing the element of contact of order n, and at least one of A,
B, C is non-zero for general values of the variables. Clearly the
equation can only be satisfied if one of A, B is non-zero. Since ¢
depends only on » and ¢, itis easy to show that either we deduce two
do
on
just shown to be impossible, or else the ratios A:B:C depend only
on 7, ¢, so that we may rewrite the single equation satisfied by 3 in
the form

equations of the form X = A, (=, 7), :% =By (n, £), which we have

v do . d
R(18) G5+ L, U 5 = M(a, 0,
not both of K and L being identically zero. But such an equation
may be integrated, in the form
3=U(n H+®1¥ DY,

where U(n, ¢) and V (¥, {) are functions of known ferm, and @ is
arbitrary. 'We would thus have the result that any integral of (1)
satisfies an equation of the form

E+ U@ D) +d )V (n, g)f':‘ov
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or, writing P =¢ ++ U(n, 7), Q = V (=, ¢), and noticing that P and Q
are again invariants,

Now if P and Q are not independenl invariants, we have an
equation P = Cite, satisfied by every integral of (1), which we have
shown to be impossible. If P and Q are independent, at least one
must contain a derivative of u, otherwise we would have an expression
for the general integral of (1), containing only one arbitrary function,
which isimpossible. Thus without loss of generality we may suppose
that the derivative of highest order in P or Q is of order n (n not

necessarily being the same as before). Let this derivative be p.

Then either % or ‘(’% must be non-zero for general values of the

dP dQ
dz’ dz
are identically zero. But, differentiating the equation P 4- ®(Q)=o0
with respect to z, y and to z, and using (1) as all along, we obtain

variables, and therefore not both ofg—P, 9!2, and not both of
ly dy

dp* dQ*

7 TYQ) 7 =o
P aqQ
aj’,‘ +¢(Q)@ =0,
dP

dz +®,(Q)%% = 0.

I follows that, for every integral of (1), and therefore for arbitrary
elements of contact of order n -+ 1, the matrix

dPt dQ o —
dz dz
dP  dQ
dy dy
dP  dQ
ds dz

must be of rank 1 : and this may be shown to contradict the hypo-
thesis that P and Q are independant invariants.

We have thus proved that, the function ¢ in (18) being chosen
appropriately for any particular integral of (1), it is impossible that

d . . .y s
cach ds—x—- is always zero. This may occur for special integrals
1, n—i—1,1
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of (1) : but for general integrals of (1), we may suppose that at

J .
least one of the —2%__ is non-zero.
dsl,n—i—i,i

It may happen that we know a number of invariants, say of the
first system, of different orders, and are thus able to form a number
of equations such as (18), of different orders, which the required
integral satisfies. 'We shall therefore now show how, from an equa-
tion such as (18), of order n, we may deduce ¢ + 2 new ordinary
differential equations for the determination of the characteristics of
the opposite system of order n + g(¢g>o0). Now, since the integral
which we are seeking satisfies (18), and since, on this integral, all
variables are functions of z, y, z, it follows that the integral must
also satisfy the equation obtained by differentiating (18) any number
of times with respect to z, y and z. No advantage is gained by
differentiating with respect to x : for we have seen that the identity

is an algebraic consequence of (13), and thus, when we use (1) and
the equations derived from (1), all equations derived from (18) by
differentiation are consequences of those among them involving no
differentiation with respect to .

Differentiating ((8) ¢ — k + 1 times with respectto y, and & times
with respect to z2(0 < k =< ¢ + 1, ¢ > o) we obtain

n—1

di+ty (4
(19) (m) -+ E e et e
i=0

n
Jdy
+2———— Lo, n+q—)—h=+1,7+h = O.
oto,n—;,; ~ /
=0

But along any characteristic of order n + ¢, of the second system,
we have

dy = g dur, dz =vy dx,
and therefore

dty, nygei—i, ik = { S1, nqgei—h, 10k + 220, nebg—i—h+1, 1L
~+ Vo o, ntqg—i—k, i+h+1 | AT
(i=o0,1,..., n—1; k=o,1,...,9+1)
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Since dz %20, we may substitute for each siuiy_isivs in the
equations (19) from these last equations. Doing so, and rearranging
with the help of the negative suffix convention, we obtain

n—1

airiy JY )
(m) dx +Z m dty prg—i—i, i+vh
i=0

n
< ay dy dy, |
+ ORI S S — vy
2‘ % dlo. n—j.j e IS\ n—j—1,j 5 Sy, n—j, j—1)

7=

X ALty g g—j—kr1, j+k = 0.
(hk=o,1, ...,q+1).

Then, taking account of (15), which are satisfied since y is an
invariant of the first system, we have

1

n—1

e dy+ty, _
T D e e C e
(hk=o,1, ..., g+1).

. . J; . o
Since at least one of the —24 — is non-zero, it is easy 1o see that
081, n—1—1,1

the matrix of the coefficients of the n + ¢ + 1 differentials d¢o, n_j4q,;
(J=o, 1, ..., n+¢q). in the g+ 2 equations (20) is always of
rank ¢ + 2. These equations are thus distinct, and we have ¢ + 2
new ordinary differential equations which are satisfied by the
characteristics of the second system, of order n 4 ¢, contained in
the required common integral of (1) and (18).

Suppose now that we have determined a number of invariants of
the first system, of order not exceeding n(rn > 2), say £y, . . ., &, 1, &,
one at least being of order n. Then, using the boundary conditions,
we may form s equations of the same form as (18), say

fa= G+ 9(m, §)=o,

the equations being of various orders, but at least one being of
order n. Then, applying the procedure indicated above, we may
construct a number of ordinary differential equations satisfied by the
characteristics of order n, of the second system. These equations
will not, in general, all be distinct; but if there be » + 1 distinct
equations, we may solve these latter for the n 1 differentials
dton_j,j(j=o0,1, ..., n); and, adjoining these new equations to
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the equations of characteristics of the second system of order n, we
have a complete set of ordinary différential equations, which, inte-
grating and using the boundary conditions, determines the required
integral.

This is, in essence, the extension of Darboux’s method, though
there are a number of points still to be examined before we give
examples of the method.

We notice that we may write down at once a number of first
integrals of the system of ordinary differential equations for the
second system. Firstly, any invariant of the second system, of
order not exceeding 7 is, by définition, a first integral of this system.
So that even though we may, in theory, solve the problem by using
the invariants of the first system, in practice it is well worth deter-
mining all the invariants of the second system as well, in order to
simplify the final integration. Secondly, suppose that we are using,
among others, an equation of the form (18) of order p =~ n, and that
we are attempting to determine the characteristics of order 7 of the
second system. Then, in addition to the various ordinary differential
equations satisfied by this system, we have the finite equation (18)

itself, and 2 (n—p) (n— p + 3) other finite equations

Zde:TXE;f= (s=1,2, ..., n—p;t=0,1,...,85)

which the common integral of (1) and (18) must satisfy, and which
are therefore satisfied, in particular, along the characteristics of the
second system contained in the common integral [if p=n we, of
course, simply have the equation (18) itself]. These equations
and (18) itself, all of which may easily be seen to be distinct, by

virtue of the hypothesis that one of the L/ SN non-zero, may be
dsl,n—i—l,l

solved for % (n—p 1) (n— p + 2) of the variables composing the

clement of contact of order n; and we may therefore reduce the
number of ordinary differential equations by this number.

In the particular case when p = n, so that we are seeking to deter-
mine the characteristics of order », using an equation such as (18)
of order n, we shall show directly that y is a first integral of the
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equations (20), which in this case reduce to two, namely

n—1

a7 czé _
0 Zmd"”"-“* (%) d==o
i=0
ay -
(22) 2081 et i dto n—i, i+ (d >d‘1/' =o0.

together with the equations of characteristics of the second system.
Suppose thalt we calculate the variation of the function y along a
characteristic of the second system, without assuming that the integral
satisfies (18). Then, by the reasoning by which we obtained (14), but
permuting py and pa, vy and v,

L)AL\ [ dy. dy d 9
d'{_§<0_l:v> S (dr) ( >“Z< dy"—i-tdz )dst,n—t—1,t =

9 i)
+ = —V dlo n—ei
2 { o, n—j, - dsi,n—j-—],/’ ! ()81',,__1-,/_1 ) 0,n=/,]

Jj=0

But again, ) being an invariant of the first system and satis-

fying (15), we substitute for cach and for

dty, n—j,j

n—1
Ay dn—1 \* oy -
(Zl:) ~—2 (d_}‘"—i—‘ ds‘).c)s,,,,_l-_,,i from (15),
i=0

and obtain

n—1

(03)  dr=(m— m{z i dto,nr+ () dx}

08y n—i—1,i dy
i=0

%

n
VD B NS/ S dy
+(V2 “)24031 P dlon 1;+<dz dzx ).

Therefore it is apparent from (23) that

dy=o0

~

is a consequence of the equations of characteristics of the second
system, and the two equations (21) and (22).

We may remark from (23) that when the characteristics are
distinct, so that one of (pa— 1), (v2—v;) i$ non-zero, then instead
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of the equations (21) and (22), we may wrile one of these and the
equation dy =o. But it is better to write (21) and (22), and to
solve the finite equation y = o for one of the variables sy, ,_i4,;

(i=o0, ..., n—1), (which is possible since one of the Js—ﬂL_ is
1, n—i—1,1{

non-zero), and thence eliminate this variable from the system of

ordinary differential equations.

It may happen that an equation such as (18), in general of order p,
may be of lower order for particular boundary conditions. For
example, if§, n, ¢ are three invariants of the first system, ¢ being of
order p but n and ¢ being of order ¢ << p, then in general, an integral
satisfies an equation of the form

7.5 8 =o,

of order p : but a particular integral may satisfy an equation of the
form
%x(n, &) =o, or 1+9(8)=o,

of order ¢ <<p. This circumstance, when it arises, is highly advan-
tageous. For from the results established we see that the number of
new ordinary differential equations which we can deduce for the
characteristics of order » from an equation (18) of order ¢ is (p— ¢q)
greater than the number deduced from an equation of order p. Ifit
should happen that the equation y = o contains only partial deriva-
tives of the first order, then this equation may always be solved, say
by Cauchy’s method, and we could thus obtain the required integral
of (1). Finally, if the equation contains no derivative, but contain u,
we would have the required integral of (1) explicitly.

Just as in the case of equations with two independent variables [8],
there is an important simplification in the procedure when the two
systems of characteristics are confluent. For all the reasoning
hitherto applies whether the characteristics are distinct or confluent :
but when they are confluent, every invariant is constant along the
system of characteristics which we seek to determine, by the method
described above. From this remark it follows that, provided that we
can determine a sufficient number of invariants, we do not need to
determine the exact form of the functions ¢ in the equations of the
form (18), in order to be able to integrate the system of ordinary
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differential equations which determine the characteristics. For if §,
0, ¢ are three krown invariants of the single system of eharacteristies
of order n, then for ary function y (&, n, ) we have

day _ 9% ot + d_,{ Jan 9 a7
dsl,n—t—l,i - 13 dsl,n—-z—l,l Jdn ()31,11—1—1,1 0% 08\ n—i—1,1
(i=o,...,n.—l),
dll-i-lx d/ dt]+1E %
‘i.:yq—k-l—i dz* dt d,,q—k—ki dzk

()/‘ dr+1 n ()/ ( di+1 C
* o (dyt]——k—t—l dzlc> + o\ i dgk

Thus the lefi-hand sides of the ¢ + 2 equations (20), or the two

equations (21) and (22) if ¢ = o, for the function y are the sums of

three corresponding expressions for £, n, { (which do not depend on

the boundary conditions), the coefficients of the three expressions
.0 J . . .

being —X, dé d%' But along a characteristic of the single system, ,

7, ¢ are constlant; and thus Z/EC ()X d’( are also constant. Hence if

there are enough invariants for us to construct » + 1 new ordinary
differential equations of order 7, then we may integrate the system

of ordinary differential equations thereby obtained, treating d" d_/_,

3( as parameters in the integration, which may thus be carried out
before the boundary conditions are specified.

This is the basis of the extension of Darboux’s method. We see
that the success or failure of the method depends upon the existence
of a sufficient number of invariants of one or other of the systems of
characteristics, of some order n.

‘We must observe that the procedure of deducing equations of the
form (20), or as a particular case (21) and (22), is fundamental.
There in no question of finding enough invariants, and thence enough
equations of the form (18), of order not exceeding n, to solve these
equations for the variables ¢, ,_;,; (=0, 1, ..., r), in terms of the
remaining variables, and integrating the equations of characteristics
of order n, which would then be of sufficient number. For suppose
that we have any number s, s> n-1, of invariants of the first
system of orders not exceeding n, say xi, xa, ..., % Consider then
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the matrix which has —2%% __ in the {+1th row and X' th column
ds‘l,n—l‘—d,l

(o£LiLn—r1), and has (-)T—d‘u—” in the n + j 4+ I'th row and &'th
0, n—/,

column (0 Zj < r). Then by virtue of (15), we see that every
row of this matrix is a sum of multiples of the first z rows, and the
matrix is of rank not exceeding n. Consequently, it is impossible
to solve the equations y = o for the n —+ 1 variables o ,_j, ;(j = o,
1, ..., n). Similarly, we may see that if we find all the invariants
of both systems, when they are distinct, of order not exceeding =,
and then form the equations such as (18) for both systems, we can
never solve the problem by solving these equations for all the deri-
vatives of order r, and then treating the equations of contact as an
integrable system of total differential equations. For if we have any
number of invariants y;, ..., x, of one system, and E,, ..., &, of
the other system, of order not exceeding n, the matrix whose elements
are the partial derivatives of the invariants with respectto the 27 41
variables sy n_i_1,i, to,n—j,; 15 easily seen to be of rank not excee-
ding 2n, by virtue of (15) and the analogous system with p, and p,,
v and v, permuted. There is thus no analogue of the simplification
which sometimes occurs in the case of equations with two independent
variables. Another contrast with the classical case 1s that, whereas
in the latter the knowledge of any two invariants of one system is
sufficient to solve the problem, in this case the knowledge of three
invariants is not. For we have seen that from three invariants of
order not exceeding 7, one atleast being of order n, we deduce ¢ + 2
new equations for the characteristics of order » + ¢, while 4 g 41
new equations are required.

Thus we see that, given an equation of the form (1), the procedure
is as follows :

(i) We form the determinant A(chap. II, p. 15). If this deter-
minant is of rank 3 (i. e., not zero), the method cannot be applied.
If however the determinant be of rank 2 or 1, we proceed to the net
step.

(ii) We set up the equations (15) of order 2 for one system of
characteristics and, applying the standard procedures for solving
systems of linear, homogeneous, partial differential equations of the
first order, we find all the integrals of the system. If these be suffi-
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cient in number and of such a nature that we can deduce three
distinct new equations, of the form (21) and (22) with » = 2 (having,
of course, used the boundary conditions to determine the form of the
functions y; except, as explained above, when the characteristics are
confluent) we may determine the characteristics of the other system
of order 2 by the aid of equations of the form (21) and (22). Failing
the existence of enough suitable invariants to solve the problem in
this way, we

(iii) repeat the procedure with the equations (15) appropriate to
the other system, in an attempt to determine the characteristics of
the first system of order 2. Failing this, we

(iv) repeat the procedure with the equations (15) for the first
system, and then the equations (15) for the second system, of order 3 :
and so on until the problem can be solved, Zf indeed such a stage
can ever be reached.

Just as in Darboux’s original method, there is no way of telling in
advance whether or not the method can be successful, nor of deter-
mining what order of characteristics we may have to consider, in
order to solve the problem in those cases when the method succeeds.

From the results obtained, it appears thats as » increases, so does
the number of invariants which are required. But though this might
scem to make the work involved quite prohibitively long, we shall
later see how the knowledge of invariants of a certain order enables
us to determine new invariants of higher order. And indeed there
are a number of results, most of them similar to corresponding
results for equations with two independent variables, which may be
used to simplify the search for invariants, and in certain cases to
place an upper limit on the number of invariants of each order which
could exist [9]. Some of these we shall obtain in chapter V.

Meanwhile, we notice that there are certain aspects of the theory
which are not entirely satisfying. The crucial fact, on which the
success of this method depends, is the vanishing of the variables
representing derivatives of u of order n + ¢ + 1, from the ordinary
differential equations which lead to the equations (20). At first
sight there seems to be an element of luck in the fact that the coeffi-
cients of these variables conveniently vanished. And in order to
obtain a full understanding of the theory of these equations, we
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follow the line of investigation adopted by Goursat [10], in dealing
with equations with two independent variables : in other words, we
extend the conception, originated by Sophus Lie [11], of « equations
in involution ». In doing so, we shall also seec how the knowledge
of a number of invariants, in itself inadequatc to determine the
characteristics of any order, may yetbe used to determine an infinity
of integrals of (1), depending upon an arbitrary function.

CHAPTER 1V.

EQUATIONS IN INVOLUTION : COMMON INTEGRALS OF SUCH EQUATIONS :
COMMON SYSTEM OF CHARACTERISTICS FOR A SYSTEM IN INVOLUTION.

Suppose now that we are seeking a common solution of the equa-
tion (1) and another partial differential equation of order n (> 2).
We may always assume that the second equation contains no partial
derivatives of u which involve more than one differentiation with
respect to ; for we may always substitute for these derivatives their
values in terms of the other variables, obtained from (1) and equa-
tions obtained by differentiating (1). Thus we write the second
equation in the form
(24) S(2y ..y tojo,n) =0,
and we suppose this equation to be of fully reduced form. Then
since on a common integral, whose existence we assume, all the
variables involved are analytic functions of z, y, z, the derivatives
of u of order n + 1, appropriate to such an integral, salisfy firstly
the various equations oblained by differentiating (1) 2 —1 times, and
secondly the three cquations

Z—i‘ =0; Z—j‘ =0, %—é‘ = 0.

Then, as mentioned above, all variables ry ;. may be expressed
by means of (1) and equations derived from (1) and substituting for
these variables in the first of the three equations written above, we
have finally three equations relating the 27 -+ 3 variables s1,7_4,1-
ton_yi1,j(=o0, ..., n;j=0, ..., n41), namely

dy*_dp _dy
dr ~— dy  dz

= 0.

Using the expressions of the form (2), Chapter I, we may write
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these equations more fully in the form

: n—1
dy* _(dy\* ar— v ay
() dz I’") .—2(‘1.,""”i_1dz'>d5':,n——t—-l.:

i=n

n
( dy ay . Jy }
L w2 ¢ 4 _
+§,% dtﬁ,n—l,l ')si,n—iﬂ,t 981 n-1.i-4 it

ll-i—l d
9Y / 2
— +F - +C - to n—jt+1,j =0
20 ’)Sl n—j—1j O51,n—j.j—1 dsl.n—-i——l./'—-'.’ OR=IHL/ =0

n+1

d,( ay. Z
(26) ) Z l’\| S '51 n—i, t+2 lﬂo —y to,n—j+1,j = 07

/=0
n+1

dy [dy v ay Iy ‘
(27) dz <d:) +Hm St n—1, 1+2m to.n—j+1,7j = 0.

1= I—

Définition. — Now extending the well known definition, given by
Goursat [12] for equations with two independent variables, we say
that the equations (1) and (24) are « in involution » if the
equations (25), (26), (27), regarded as linear equationsin the 2 n + 3
variables which represent the derivatives of u of order »n -1,
reduce to two distinct equations, in the ncighbourhood of an
arbitrary element of contact of order n satisfying ( 24).

In order that this may be so, it is clearly necessary and sufficient
that three functions of the elements-of contact of order n, A, p, v
should exist, not all zéro, and such that
d; d;

(28) -l—u.—'(‘+v?{—'£“E0.

First of all we dismiss the possibility that A=o0. Ior suppose
that A — o, but that one of y, v is not zere; say the former. Then
eciuating to zero the coefficients of s; ,_;; and %o, n—j.1,j, We obtain

9% . 97 -
* OS1,n—i 11 v S\ n—ii—1 o
9% 97

“

-+ v = 0;
‘”O.n-—/’./‘ oty, n—j+a.j—1 !

and puiting /=0, ..., —1 successively, and j=o, ..., 2
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successively, and using the negative suffix convention, we obtain

9% _ 9%
081, n—i—1,2 dty, n—j,;

=o0 (i=o0,...,n—1;j=0,...,n).

But the equation (24) is, by hypothesis, of fully reduced form,
so that the partial derivative of y with respect to at least one of the
variables composing the element of contact of order n, is not zero.
We may therefore suppose (24) solved for one of these variables,
which clearly does not affect the property of being in involution

. . ay ay
with (1), as defined, and consequently if each Fr— and o

be zero for values of the variables, which are arbitrary subject to (24)
being satisfied, they must be identically zero, and not merely zero
as a consequence of (24). It follows that (24) contains no deri-
vatives of u of order n, contrary to hypothesis. Hence we must
have A £ 0; and we may divide (28) by 2, or else take A =1, which
is the same thing. Thus taking 2 =1, and equating to zero the
coefficient of each sy, n_; i, to,n_ji1,; in (28), and also equating to
zero the term independent of these variables, we obtain

ay\* ., (4% dy. dn—1y I _
(29) (3.2‘) + JL( > ((l.-) Z(d "—l—‘dz'>f)sl,n__,_,,l =%

Iy I% . a7z .

(30) Fr— + (x— H)ds. p— -+ (v G)()--———-s1 T =0 (i=o0,...,n)
d)( ay. Jay
. N 5 — B 5

(31) T T 981, n—y—1,j
ay ay .
—F —C = =0,...,A41)
dsl,n—/',/'—i dsi,n—/+17/'—2 © (J 0 ’ )

Then, substituting from the equations (30) in each equation (31),
we have

ay 9%,
2__ -~ —Gue—H F -
(32)  (p2—Hp+B) 951,n—j—1, + o " v )dsl,n—/',i—-i
dy. .
+(—Gv+C)— =0 (J=0,..., n4+1)
081 n—j+1,)—2

If (u2—Hp+ B) is not zero, we put j= o,1, ..., n—1
successively; if (2 — Gv + C) is not zero, we takef=n+1,n,...,2
successively; while if both the preceding expressions are zero
but (2 pv — Gp — Hv + B) is different from zero, we take j =1, . . . n.
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In any of these three events, taking account of the negative suffix
convention, we see that

97

m=o (i=o0,..., n—1)
and thence from (30)
Iy )
dto,n_,',/=o (J=o0,..., n)

Thus, by the same reasoning as before, the hypothesis that the
equation (24) is of order 7 is contradicted, unless we have

(12— Hu +B) =o,
(2pv —Gu—Hv+F)=o,
(v—Gv+C)=o,

equations which we recognise at once as the equations (7)-(9),
chapter II. Thus the reasoning of chapter II follows at once; and
in particular we see that it is impossible for the equations (1) and (24)
to be in involution unless the condition A == o is satisfied : in other
words, unless the equation (1) is of rank 2 or 1. If this condition
be satisfied, the quantities H, G, B, F, C have the values found in
chapter II.  Then if we choose p. = p;, v =y, and substitute these
values in (29) and (30), we obtain precisely the equations (15),
chapter IlI; while from the way in which we obtained the
equations (32), it is clear that equations (31) are consequences
of (30) and (7)-(9). Similarly, the choice p = p,, v=1v, leads to
the .equations (15), with p, and p,, v; and v, permuted.

There is, however, a significant difference in the way in which we
interpret the equations (15). In order that y might be an incariant
of order n of the first system, it was necessary for y to satisfy the
equations (15) identically, since integrals of (1) exist for which the
variables which figure in (15) of order n assume arbitrary values,
and characteristics of each system emanate from any element of
contact contained in an integral of (1). But in order that (1)
and (24) may be in involution, it is clearly sufficient that the
equations (15), or the system obtained by permuting p; and p,,
vy and v,, should be satisfied as a consequence of the equation (24)
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itself. Thus we may summarise the result in the statement of the
following theorem :

Tueorex 3. — In order that the two equations (1) and (24) be
in involution, it is necessary and sufficient :

(1) that the equation (1) be of rank 2 or 1;
(1) that the function y should satisfy either (15), or (13)

with py and pa, vi and vy permyted, either identically or as a
consequence of (24) itself.

Itis an immediale consequence of this result that any equation of
the form (18), that is 10 say an equation y = o in which the func-
tion y is an invariant of cither system, is in involution with (r).

We now proceed to show that two equations in involution have a
system of common integrals, which depend on an arbitrary
function [13].

Suppose Lhat we are given, instead of the full Cauchy data, the
value of % in terms of the two parameters ¢ and w, at each point
of the surface Z=o (see chap. III). Then we will now show that
if the equations (1) and (24) are in involution, we can determine a
common integral of the two equations, such that u takes the given
values on the surface = = o.

‘We assume for one of the derivatives of u of the first order, an
undetermined form, say

$1,0,0 = S(V, W).

Then, as explained in chapter III, we may calculate by means of
the equations of contact, the equation (1) itself and the equations
derived from (1) by differentiations, the values of all the derivatives
of u of order up 10 and including r, in terms of ¢, w, S(v, w) and
the partial derivatives of S with respect to ¢ and w, of orders in
general up to and including n—1. Substituting these values,
together with the given values of u, and the values of z, y, 5 in
terms of ¢ and w, in the equation (24), we obtain in general a
partial differential equation of order n—1, with one dependent
variable S, and two independent variables ¢ and w : though in
particular cases it may happen that the order of the equation is
lower than n—1, or even that the equation is a finite equation

MEMORIAL DES SC. MATH. — No 142, [}
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for S. The integrals of this equation depend in general upon n— 1
arbitrary functions of one variable : that is, we can in general
specify the values of S and »—=2 partial derivatives of S along a
curve in the plane of (v, w).

But selecting any integral whatever of the latter partial differen-
tial equation, we have in conjunction with the given value of u in
terms of ¢ and v, the data of Cauchy in the usual form : and this
data specifies uniquely an integral of (1), provided that it does not
correspond to a Monge characteristic. This latter event might
arise for a particular surface = = o and for a particular specification
of u on the surface : but in general it cannot occur : for from the
equation (r7), chapter III, we observe, for example, that a
plane # = Cite can never be a Monge characteristic. And from the
way in which we have calculated the boundary conditions which the
integral satisfies, it is clear that if we substitute for all the variables
in the function y on the left hand side of (24), the value appropriate
to this integral of (1), then at any point on the surface Z=o we
have

"‘ = 0.

But we have seen that any integral multiplicity of (1) is the locus
of characteristics of either system, emanating from each element of
the initial multiplicity associated with the surface = = o.

Hence if  be an invariant, say of the first system, and therefore
in involution with (1), then if we substitute the values of all variables
in y, appropriate to this particular integral, we have along cach
characteristic of order n of the first system, emanating from the
initial multiplicity,

dy=o;

and thus since y=o on the surface = =o, it follows that the
equation (24) is satisfied at every point by the integral which we
have determined, which is thus a common integral, taking the
specified values on the surface = = o.

If, however, the function y is not an invariant of either system,
although the equations (1) and (24) arein involution — that is, if the
function y satisfy the equations (15) (or those obtained by
permuting p, and pg, vy and v,), not identically, but as a consequence
of (24), then we have to proceed rather differently to establish this
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result. Let us suppose, for definiteness, that y satisfies (13) of
order n as a consequence of (24). Having determined the integral
of (1) by the procedure of the last page, and having seen that the
equation (24) is satisfied al any point of the surface = = o, suppose
that we substitute in the function y the values of each variable,
appropriate lo a point on a characteristic of the first system,
contained in the integral multiplicity which we have determined,
and emanating from the point on the initial multiplicity specified by
the parameters ¢, w. And let us suppose that the point of this
characteristic is specified by the parameter 0, as in chapter III. 4 is
then a function of 0, whose derivative we require to calculate at any
point of the characteristic. But before doing so, we may place
certain restrictions on the form of the function .

We may always regard the equation (24) as solved for one of the
variables sy, ,_,_1,i, (=0, ..., n—1. For if, for arbitrary values

. C . , Jdv .
of the variables, satisfying (24), each ;T—/—_ were zero, then since
' IS, n—1—11

by hypothesis satisfies the equations (13), each d—l-dL—- (j=o0,...,n)
o,ﬂ—j 7/

would also be zero, and by the same reasoning as earlier, the
hypothesis that (24) is of order » would be contradicted. Suppose

. . d;
then that for some particular integer p, dT—_L__— #o. We may
1,n—p—1 p

thus solve the equation (24) for s; ,_p_u,p; and from the definition

which we have adopted, it is clear that solving for one of the

variables cannot affect the property of being in involution with (1).
Thus we may write the equation (24) in the form

(33) 7 Stn—p—tpH+ o(r .o Lopn) =0,

in which the function ¢ does not contain sy, ,_p—1,,. Then substi-

tuting this value of y in the equations (15), chapter III, we obtain

do\* _ [dg\ (ciqj‘
s (85w (20) o (2

n—i{

X\ dn—y Jdz . dw )_0
"Z \ dyn—t 'd3! ) ISy 0 —t~1, dyn—r—tdzr ]

=0

in which the term { = p is omitted from the summation; and also
‘ Iz ", )9 o J?
0o n-11 TS R -1 dsl,n—t i—1

l (F=o0,...0: 0 pil#p+1)

=0

(35)
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and finally

J? . J? _
(36) dto,n—-p,p — 2 Vo ds},n—p,p—-l =0,
(37) -——i?— — e — Vo= 0.

re o=
o, n—p—1.p+1 981,n—p—2,p+1

Now if n> 2, it is clear that s, n_p_1,p, does not occur in any of
the equations (33), (36), (37) : and therefore these equations
cannot be satisfied as a consequence of (33). Thus they must be
satistied identically by ¢. But, by hypothesis, y satisfies (34)-(37)
only as a consequence of (33) : and thus (34) must be a consequence
of (33). That is, ¢ must be such that (34) is satisfied identically
when we write — ¢ for s; n_p—4, p-

Again if » = 2, we may still arrange that sy ,_p_4,, does not occur
in W, py, pa, vi, vo. For we may then substitute for sy, p—y,p
(which is in this case one of the variables %, g) in the equation (1)
Jrom the cquation (33) itself, in terms of the remaining variables.
And from the definition which we have adopted, it is clear that this
procedure does not affect the fact that the two equations are in
involution. Hence once again we see that the equations (35), (36),
(37) are satisfied identically, but (34) only as a consequence of (33).

Furthermore, whether n>2 or n=2, we may observe that
since §y,,_p—1,p does not occur in W, only the terms (dy%:i—iw@)’
<——-——-dyil:::l;zp) in (34) can contain $y,n_p_1,p. And this being so,
we may see at once by wriling the expressions for these quanlities
in full, that each is at the most a guadratic expression in sy ,_p—1,p,
so that only the first and second powers of s4,,—_1,, can occur in (34).

‘We now turn our attention o calculating the derivative of x
with respect to the variable 0, at any point of a characteristic of the
first system contained in the integral multiplicity of order n, asso-
ciated with the integral of (1) which we have determined by the
procedure described above : the value of each variable in terms of
the parameter 0, which specifies the position of an element of the

characteristic, having been, as explained earlier, substituted in the
function y.

Then using the expression (14), chapter III (which gives the
variation of eny function y containing derivatives of » of order n
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but no higher, along a characteristic of 6rder n of the first system),
but putting in (14) the particular form of the function y written on
the left of (33), using the equations (35), (36), (37), which, as we
have seen, are salisfied identically by ¢, and dividing by df, we

have
dy _)[(d=\* dy dyp
| () () (2)

—1
( 38) _"2 ( dr—1 g ()9 dn— g ) dx
dyn——1 dz‘) O51n1. \dyr—P—idzr ) (dd

=0

(¢ = p being omitted from the summation).

But the first factor on the right hand side of (38) is the same as
the left hand side of (34); and is therefore zero whenever (33) is
satisfied : that is, whenever y —=o. Furthermore, we have secn
that the left side of (34) is of degree not exceeding 2 in $1,,—p_1,p-
Thus if we wrile

St,n—p—1p =L — 9

in (38) we sce, remenbering that all the variables involved are

analytic functions of 6 along the characteristic, that we may write (38)
in the form

(39) U~ PO+ QX
P and Q being analytic functions of 6.

But we know that y=o0 when 6=o0; that is, on the initial
maultiplicity. And it follows from the usual existence theorem for
ordinary differential equations of the form (3g), that the only
solution of (39) which is zero when 6 =o is

X =o.

Therefore y = o at every point of the characteristic, and therefore
throughout the integral multiplicity. In other words, the integral
of (1) which we have determined, and which takes the prescribed
values on the surface == o, satisfies the equation (33) at every point :
and the required result is thus established.

We may observe that instead of assigning the value of u at each
point of the surface &= o, and then calculating the value of one of
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the derivatives of « of the first order in such a way as to make ¥ zero
at every point of the surface, we could reverse the procedure. That
is to say, given the value at each point of £ = o of one of the deriva-
tives of u of the first order (corresponding to a direction not tangen-
tial to the surface), we could determine u by a procedure exactly
analogous to that which we employed to determine /, leading to a
partial * differential equation with two independent variables, of
order 7, instead of the equation of order n—1 obtained earlier, All
the rest of the argument would then apply unchanged.

We may summarise these results in the following brief statement.

Treoren 4. — If the equations (1) and (24) are in involution,
there are an infinity of common integrals of the two equations,
depending on an arbitrary function.

Next we consider the characteristics of equations in involution.
Suppose that the function y in the equation (24) satisfies the equa-
tions (15) of order n, chapter III, either identically or as a conse-
quence of the equation (24) itself. Then the reasoning of chapter III
applies unchanged, to show thatalong any characteristic multiplicity
of order n + ¢ of the second system, contained in an integral multi-
plicity associated with a common integral of the two equations,
the ¢ + 2 equations (20), or if ¢ = o, the equations (21) and (22),
chapter III, are satisfied.

Now in deriving these latter equations, we do rot substitute for
any of the variables, values derived from the equation (1). Further-
more, although we have shown that there are an infinity of common
integrals of (1) and (24), the equations (20), or (21) and (22) are
entirely independent of the particular common integral with which
the characteristic of the equation (1) in question is associated. Thus
we see that all the conditions of the definition of a characteristic of
order n+ g of chapter II, are satisfied in relation to the equation
(24) : and therefore every characteristic of the second system of
order n + ¢, ¢ > 0, associated with a common integral of the two
equations, is also a characteristic of the equation (24) [14]. And
hence we may state the following very important resuli; bearing in
mind that by exactly the same reasoning we may establish that if y
satisfies (15), with g and g,, v, and v, permuted, then the characte-
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risties of the first system associated with a common integral are
characteristics of (24) :

Turorenm 5. — If the two equations (1) and (24) are in involution,
there is a common system of characteristics of each order n+ q,.
g = o, associated with the common integrals : if the function y on
the left of (24) satisfies (15), then the common characteristics
belong to the second system; while if y satisfies (15) with py, and p.,

vi and vy permuted, the common characteristics belong to the first
system.

This result now fully explains why it is that the knowledge of an
equation in involution with (1) enables us to write down further ordi-
nary differential equations for the determination of characteristics on
the required integral of (1).

It should be noticed that we have not proved that when y satisfies
(15), every characteristic of the second system is a common cha-
racteristic : and indeed this is obviously not true. For we may
take any element of contact of order n, for which y 3£ o. Then there
are integrals of (1) admitting this element, and therefore characte-
ristics of both systems which are not characteristics of (24). The
result of theorem 5 applies only to characteristics contained in a
common integral multiplicity.

It may happen that we know a number of equations, each in invo-
lution with (1), the function on the left of each satisfying the same
system of equations, (15), chapter III, though not necessarily of the
same order. Suppose that the one of highest order is of order n.
Then by the methods of chapter III, we may construct, {rom each, a
number of ordinary differential equations for the determination of
characteristics of order n of the second system [of the first system,
if 4 and py, v4 and v, are permuted in (15)], together with a number
of finite equations. These equations may be inconsistent, in which
case the system has no common integral. On the other hand, it may
happen that they are consistent, and of sufficient number to determine
the characteristics of order n, in terms of a number of arbitrary cons-
tants, so that each of the variables is expressed as a function of a para-
meter, representing displacements along the characteristic, and a
certain number of arbitrary constants.

If these constants be two or more in number, say p + 2,

§¢ VICE DE
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p>o, and if two of them, and the parameter of the characteristics,
may be eliminated in such a way as to express u and the various
partial derivatives in terms of z, y, z, and p arbitrary constants, then
the characteristics so determined form a multiplicity M;, depending
on p arbitrary constants. From the way in which this multiplicity
is determined, and the hypothesis that the various equations are
consistent, it follows that the equations in involution with (1) are
satisfied throughout the mutiplicity M, : and we thus have a common
integral of the system in involution, depending on p arbitrary cons-
tants (p > 0). But if there be only one arbitrary constant, or none,
the system has no common integral : for every integral multiplicity
M; is a locus of one-dimensional characteristics, which must therc-
fore depend on at least two arbitrary constants.

It must be observed that the determination of characteristics in
this way can never be effected when we only have one equation in
involution with (1). For suppose that we have a single equation of
order n, say (24), in involution with (1), y satisfying (15), chapter
III, and suppose that we are attempting to determine the characteris-
tics of the second system of order n + ¢(g>0). Then we have seen
that we may deduce the ¢ + 2 equations (20), chapter IIl, for the
characteristics in question, whereas we require z -+ ¢ -+ 1 new ordi-
nary differential equations, which could be solved for the differentials
dto,nig—y,jy J=0, t, ..., n+q. We also have ¢+ 1 finite
equations,

di,
7%(2 k)Ed_yITk%z—/;:O (k=0,1,...,9)

which contain the variables representing derivatives of order n+ ¢;
and we might conjecture that the equations dy (g, k) = o provide
new ordinary differential equations of the kind required. But this
is not so. For, forming the equations dy (g, k) =o, the terms
containing the differentials of the variables representing derivatives
of order n + ¢ constitute a linear form in these differentials, which,
using (15), chapter IIl, may easily be shown to be a sum of multiples
of the lincar forms in these differentials on the left of two of thc
equations (20), chapter III, and on the left of the equations of cha-
racteristics of the second system of order n + ¢, i. e., (11) chapterII,
writing n+ ¢ for n and py, v for g, vo. Thus the equations
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d (g, k) = o are not distinct from the ordinary differential equations
already known for the characteristics of the second system of order

n -+ g, in accordance with the result which we proved earlier for the
special case ¢ = o.

CHAPTER V.

SOME RESULTS REGARDING THE INVARIANTS @
SOME SPECIAL DEVICES FOR SOLVING THE PROBLEM IN PARTICULAR CASES.

Reverting to the actual extension of Darboux’s method, the theory
of which we have established in chapter III, it is obvious that the
difficulty of determining whether a sufficient number of invariants of
a certain order exists, and of finding these invariants when they do
exist, is much greater than is the case when dealing with equations
with two independent variables. And just as in the latter case, there
is no tlest to establish whether or not the method will be successful
in dealing with any given equation of rank 2 or 1. There are,
however, a number of results which are useful, mostly analogous to
corresponding classical theorems for equations with two independent
variables [15].

Suppose firstly that we have three invariants ¢, , ¢ of the first
system, of order n, at least one actually containing a derivative of
order n. Then we have scen that every integral of (1) satisfies an
equation

7.(8, m, L) =o,

for some form of . And conversely, for any form of y, it is clear .
that y is itself an invariant, and from the results of the last chapter
it follows that the equation (1) and the equation y = o are in involu-
tion, and therefore possess an infinity of common integrals. But any
common integral must also satisfy the equations obtained by differen-

tiating with respect to y and to z (we have seen, chapter III, that the
cody . Y o %X —
equation El% — o is an algebraic consequence of Iy =0 d; =%

so that no further information is obtained by differentiating with
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respect to a:), that is, the equations
dy % dy da  Ix dt
dp A 9 dn Wd
75 dz on dz Xodz

. . . . . £ 0d
Since x is an arbitrary, function of ¢, n, {, we see that ';_E, 3_'( 2X

can take arbitrary values, and in particular none is identically zero.
Thus, solving the above equations, we have

dy d( B
L ay, z)
I d(m 0
ok d(y, z)
g d(E m)
I d(y, z)
g~ dm )’

d d(y, z)

Now any characteristic of the first system of order n + 1 is, by
definition, contained in at least one integral multiplicity, and there-
fore associated with at least one choice of y above, and also contains
a characteristic of order n (theorem 2), along which &, 0, ¢, and

df of Iy
therefored—e an’ o

A& 5 dE )
d{y, z) d(y, 3)
d(n, §)’ d(n, §)
d(y, z) d(y, z)
of order n 4 1.

It can be shown [16] that, starting with three invariants of order 7,
we may deduce ¢ + 1 distinct invariants of order n + ¢ : and from
this, and the results of chapter III, we might conjecture that we
could find 2(g + 1) new ordinary differential equation for the deter-
mination of the characteristics of the opposite system, of order » + ¢,
contained in the required integral. But this is not so, for the 2(g+1)
equations will not be distinct.

In fact, knowing the three invariants £, n, £, we have seen that we
may determine the form of y in the equation y (¢, 1, {) = o from the
boundary conditions. Then it is easy to show [16] that the only
new ordinary differential equations, for the characteristics of

are constant. = It therefore follows at once that

the functions

are new invariants of the first system
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order n + ¢ of the opposite system, which may be deduced from the
knowledge of the three invariants £, n, £ of order 7, of the first
system, are precisely the ¢ + 2 equations (20), which are deduced,
after determining the form of 3, by the precedure of chapter III.

Nevertheless, although deducing further invariants of higher order
from three known ones gives no theoretical advantage, in practice it
1s well worth while. For if we are trying to determine a system of
characteristics of order 7, we require a number of invariants of the
opposite system, of order not exceeding 7, which necessitates the
integration of a simultaneous system of linear partial differential
equations, i. e., (15). The more integrals of this system we know,
the easier is the task of finding the remaining integrals. Henceif we
know three, of order less than n, it is well worth deducing, by a
process which, as we have seen, requires only differentiations,
further integrals of each order up to and including ».

Next we discuss an artifice which is often very valuable when one
or other of the systems of characteristics of order 2 possesses at least
three invariants, whether or not there are enough invariants of order 2
to solve the problem directly. Suppose that &, 0, { are three distinct
mvariants of, say, the first system of order 2, one at least of which
contains a derivative of u of order 2. Then we have seen that by
using the boundary conditions we may determine an equation

(40) /,(57 LB C)=0

which is satisfied by the required integral : and in general, that is,
except possibly on exceptional integrals of (1), the reasoning of chapter

ay .
11T shows that one or other or both ofj—),g, Tg 1s not zero.

Now it may well happen that it is easier Lo solve the boundary
problem for the equation (4o0) than for the equation (1). In such an
event, it may be desired to apply the extension of the method of
Darboux, which we have developed, to (40) : and accordingly we
will now show that this equation is of rank o.

£, m, ¢, and therefore x, being invariants of the first system of
érder 2, and therefore satisfying equations (15) of order 2, we have
[writing 7= 2 and £o,3,0= b elc., in the equations (15) as written
in chapter III, and taking account of the negative suffix con-
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vention ]
ay dy
ap T Hgp =
I% 9% J7
7 e gy =Ly S =
(41) af “™Mgg TV gR =
% 9% .
%—;%(Ezo,
and therefore
o LIz 1y
2dh 2dg
1d7 dy 1%
20k db 2 4df
19y 191 9y
2dg 2df Jdc
19% 19y
2 dh 2 0dg
_| 19z 9% 1/ 9x dx.) _
Tl 2dk Y3 E(“"'—g"'vzd_ =9
10y 1/ dx . 9% 7%
2 dg 2(“’3€'+'2«Th> Wy

for sublracting pa times the first row from the second, and v, times
the first row from the last, we oblain a determinant whose second

. . . ay 9y
and third rows are proportional. But since one or both of FIARY:

is non-zero, we see that one or both of the minors obtained by omit-
ting the second row and column, or the third row and column of the
discriminant, is not zero, and the equation is therefore of rank 2.
Thus we may always attempt to find the required integral by
applying the method which we have developed to (40) : and we
also have the curious result that the characteristics of (40) arc
always distinct.

‘We now establish a most important result, which in certain cases
greatly facilitates the finding of the required solution of (1) : once
again, this result generalises a classical theorem, due to Goursat.

Tueorem 6. — If one system of characteristics of order 2 pos-
sesses five distinct invariants, then (whether the characteristics be
distinct or confluent) the required integral of the equation (1) can
always be found by the integration of a partial differential
equation of the first order.
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To prove this, let us for definiteness suppose that &y, s, 83, n, { are
five distinct invariants of the first system of order 2. Then by using

the boundary conditions in the usual way, we form three distinct
equations, say

(42) (8 0, 8) = x2(Ba, m, Q) = u(Es, M, ) =0

each of which the required integral of (1) satisfies.

Now the functions X1, X2, Xs are themselves invariants of the first
system of order 2, and therefore each satisfies the three equations (41).
From this it follows that each of the last three rows of the matrix

()Z-l ’)72 l)y_:_
R ok Ok
o dx2 94
g dg dg
ﬂ}g ()7_2 0’;(_&
b b 9b
Ixs 9K I
af Jdf df
I dya Ifa
| dc de¢  de

is a sum of multiples of the first two rows; and the matrix is therefore
of rank not exceeding 2.

Therefore it follows that we may eliminate the five derivatives £,
&, b, f, ¢ between the three equations (42), obtaining either one
cquation or two equations of the first order, which must be satisfied
by the required integral of (1). Hence this integral may always be
found by the integration of this equation (or of either onc, if there be
two) of the first order. We shall consider an example of this type
in chapter VIL

Lastly, we mention another circumstance which sometimes arises
for particular boundary conditions, which may enable us to solve the
problem, even when the number of invariants is inadequate to do so
in general. If we have three invariants, £, 0, { say. of the first system,
of orders not exceeding 7, then it may happen, for particular boun-
dary conditions, that on the initial multiplicity there are two func-
tional relationships between &, =, ¢, instead of one, say

E+o(l)=0, n+¢({)=o0.
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Then since £+ ¢(¢) and n -+ $(Z) are also invariants, and are
therefore constant along the characteristics of the first system of
order » emanating from the initial multiplicity, we may assert that
both these equations are satisfied throughout the required integral.
Proceeding as before. we are then able to deduce new ordinary diffe-
rential equations for the characteristics of the second system from
both these equations; and clearly we may obtain a larger number for
this particular integral than would be the case for general integrals
of (1), which satisfy enly one equation of the form x (&, n, {) =o.
This larger number of ordinary differential equations may enable us
to determine the characteristics of the second system, for this parti-
cular integral, even when we bhave not enough invariants of the first
system to do so in general.

Similarly, it may even happen, for special boundary conditions,
that £, » and ¢ are constant on the initial multiplicity, say

o —_ " —_ -
§=a, n=2 C—f’

where a, 8, y are constants. Then, since {—a, n— 3, {— 7y arc
also invariants, by the reasoning of the last paragraph we may assert
that these three equations are satisfied throughout the required
mtegral, and deduce three new sets of ordinary differential equations
for the characteristics of the second system.

CHAPTER VL

CHARACTFRISTILS OF THE TIRST ORDER.

The theory of characteristics of order 2 and above, which we have
built up in preceding chapters, has been sufficient for us to extend
the method of Darboux to equations with three independent variables,
provided that they be of rank 2 or 1, in accordance with the defini-
tion of chapter Il. But the theory would be incomplete without a
mention of the corresponding generalisation of the idea of characte-
ristics of the first order. This latter topic is closely linked with the
extension of the methad of Monge-Ampere 1o equations with three
independent variables, which has been fully discussed elsewhere,
particularly by Vivanti. Thus we will deal very briefly with charac-
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teristics of the first order : but it is of interest to see how these are
related to the characteristics which we defined in chapter iI; and we
shall also see how the equations of characteristics of the first order
may sometimes be useful in determining certain invariants of the
characteristics of higher orders.

The definition of chapter II may be extended to the case
when n =1, without any change whatever : in this case the equations-
of contact (3), reduce to the single equation

(43) die —s;00dx—to0dy —too,: dz=0

(we avoid denoting the derivalives of u of the first order by {, m, n,
owing to the possible ambiguity with the integer n), while corres-
ponding to (4) and (5) are

(4%) dsiop=—VWdr+hdy+ gds,
(45) ( dtop,o=hdz+bdy+ fdz,
{ dtyor= gdz + f dy +cds.

Now tbe equation (44) is in general not linear in the five deri-
vatives of u of the second order, %, g, b, f, c; and therefore we
cannot apply all the arguments of chapter II unchanged. Never-
theless, if dz, dy, dz have the values appropriate to a characteristic
of the first order, which we suppose known, and if dz, dy, ds and
the variables making up an element of contact of the first order be
regarded as constants, then the argument of chapter II, page 12, in
which we substitute the phrase ° independent functions of the
derivatives of uz of order 2 ” for ¢ linearly independent forms ",
shows that the three expressions on the right hand sides of (44)
and (45) cannot be independent functions of the five variables 4, g,
b, f, c. Furthermore, this being so, the reasoning of chapter II
applies unchanged, writing =1, to show that the condition that
the three expressions are not independent requires dz 7 o.

From the usual theory of Jacobians, the condition that the three
equations (44) and (45) cannot be solved for three of &, g, &, f, ¢
is that the matrix

dx o dy dz o

dy —Hdr dzi—Gdx —Bdz —Fdr -de]
[ 0 dx o dy dz
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should be of rank 2 (clearly it is not of rank 1, since dz o).
Thus equating to zero the determinants formed respectively from the
first three columns, from the first, second and fourth, and from the
first, sccond and last, we obtain (after dividing by dx £ o)

dy?—Hdydr +Bdxr=o, )
2dy ds — Gdyde —Hdzdz + F det=o,
ds2— Gdzdr + Cdx2=o.

But writing dy = pdz, dz=vdz, we have precisely the equa-
tions (7)-(9), chapter II; and reasoning exactly as in chapter II
we see that there can be no characteristics of the first order unless
the equation (1) is of rank 2 or 1. Furthermore, we again sce
that dz, dy, dz must satisfy the equations

(46) dy —pdr =o, dz—vidx = o,
or else
47) dy — pedx = o, dz—vedr=o,

(p1, v1) and (pa, va) being the two pairs of solutions of (7)-(9).

Now in this case, since in general the equations (46) and (47)
contain derivatives of u of order 2, we cannot in general regard
these as being total differential equations appropriate to charac-
tevistics of the first order. Nevertheless, it may, under special
conditions, occur that we can eliminate %, g, b, f, ¢ between the
five equations of one or other, or both, of the sets (44), (45), (46)
and (44), (45), (47), obtaining thus one or more total differential
equations (not necessarily linear), satisfying the conditions of the
definition, where n =1.

In general this elimination cannot be carried out : and thus in
general the equation (1) has no characteristics of the first order.
But if it should occur that the elimination can be carried out, for all
values of the variables which compose an element of contact of
order 1, for one or other of the sets of equations mentioned in the
last paragraph, then we say that there is a system of characteristics
of the first order associated with the first system, or with the second
system as the case may be : if the elimination be possible for both
sets, there are two systems of characteristics of the first order.

We are not primarily concerned with the conditions for the
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existence of characteristics of the first order. But if one or two
systems of this kind exist, that is to say, if certain total differential
equations which satisfy the conditions of the definition are identical
consequences of one or both of the systems of equations (44), (45),
(46) and (44), (43), (47). then the reasoning of chapter II applies
unchanged, to establish that these characteristics are of one
dimension only, and that the integral multiplicity of the first order
associated with any integral of (1) is a locus of characteristics of the
first order (of either system, if two distinct systems exist).

Furthermore, we know that along any characteristic of order 2, of,
say, the first system, the equations (44), and (45) together with (46)
are satisfied. Hence if a system of characteristics of the first order
exists, associated with the first system, then we may at once extend
the result of theorem 2, showing that every characteristic of the first
system of order 2 contains exactly one characteristic of the first
order of the same system. Again, since a characteristic of the first
order is by definition contained in at least one integral multiplicity
of the first order, which in turn is contained in a multiplicity of the
second order, and since the equations (46) or (47) are satisfied, for
the values of the derivatives of the second order appropriate to the
integral in question, it follows that every characteristic of the first
order is contained in at least one characteristic of the second order.

Now suppose that either one or two systems of characteristics of
the first order exists; and suppose that one system possesses an
invariant. That is, suppose that there is a function y of the
elements of contact of the first order, such that

dy=o0

is a consequence of the ordinary differential equations which the
system of characteristics of the first order satisfies. Then since
every characteristic of the second order of the corresponding system
contains a characteristic of the first order, it follows at once that y is
also an invariant of this system of characteristics of the second order;
and therefore y satisfies (15) of order 2, or else the corresponding
system with p, and g, v; and v, permuted.

Conversely, suppose that y is an invariant of the system of charac-
teristics of order 2, of the same system as the characteristics of
order 1 whose existence we assume, but that x depends only on

MEMORIAL DES SC. MATH. — N° 142, 5
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elements of contact ot the first order. Then since every charac-
teristic of the first order is contained in at least one of the second
order, along which latter y is by hypothesis constant, it follows
that 5 is also an invariant of the system of characteristics of the first
order.

We assume always that there are not three invariants of a system
of characteristics of the first order; for if there were, the solution
of (1) could always be effected by the method of Monge-Ampere
extended, with which we are not concerned. Nevertheless, we have
shown by the reasoning of the last two paragraphs that when a system
of the first order exists, we may find all those integrals of the
corresponding system (15), which depend only on elements of
contact of the first order, by setting up the diflerential equations of
the characteristics of the first order, and seeking invariants
directly.

And when one or two of these exist, it may in certain cases be
simpler to find them in this manner rather than by starting with (15)
of order 2. Furthermore, knowing these one or two integrals in
advance, we may use them to simplify the integration of the
system (15). In this lies the only utility of characteristics of the
first. order in relation to the extension of the method of Darboux :
and it will be noticed that all the results which we have obtained in
this chapter are analogous to classical results, for equations with two
independent variables.

CHAPTER VII.

EXAMPLES.

To illustrate the foregoing theory, we now consider two examples,
the solutions of which exhibit all the essential features of the method.
For the sake of brevity, we now revert to the convenient notation [/,
m, n for the derivatives of u of the first order s1,0,0, Z0,1,0, 0,0,1,
respectively, since there will now be no risk of ambiguity between
the derivative n and the integer n.

Examree 4. — It is required to find a solution of the equa-
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tion
2u Ju Nu |
d*u  Jdxdy dxdz dx dy
ozt Fu otu (T

'~ oyez ' s

1 Ju
such that when z =0, u = 52 and oz =y*+yz.

Writing the given equation in the notation which we have adopted
all along, we have

hg 2.
(48) a+l__f+g]_f} —o;
so that
_ & 2h _h
=7 *om STy
F he 2k B=C=0;

= a=n Ta=n

and since each term obtained in differentiating (48) once with
respect to y or z must contain a derivative of u of the third order,
we have in accordance with the definition of these symbols in

chapter I,
(42)- ()=
Y

Thus the equations (7)-(9), chapter II are in this case

2§ & L _2h )
® u—/:ol—m}“h“ .
. _ h _ g 2 g 2 -
B {x—f”’(r—;;)ﬂ”*%(:—/r*(:—na} %
v’——l__fv=o,

which we may rearrange as

[r-liy 2o
g

_l_& 2k U, __2_
[~ Zmil -
oot lume
This latter form of the equations shows clearly that they are consis-
tent, so that there is no need to verify that the equation (48) is of
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rank 2. Thus we have two pairs of values

g 2h i
r1= l——-f+ (I'—f)z’ V4= 0;
and
13
K2 = 0, Vo = 'I_:._f.

The equations (15) of order 2 are therefore in this case [writing n=2

and Zo,2,0="> etc., in the equations (15) as written in chapter III, and

putting in the values of gy, vy, pta va, (%), (%)] the following four

équations :

Va(x) =% =o,
Ve =5 — 7 K=o,
Vi =% — 2 K=o,

Forming the equation

Ve { Vi) —=Vi{Va(x)} =0,
we obtain at once

and thence the combination

Vs {Vi(x) } —-V,{V;(x) ] =0
gives

I

0.

d
Vo(x) =%

Then, using the equations V;(x)= Vs (x)=o0, we see that the
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equation V,(x) = o becomes

& 2h oy

Vit = *% L+ oy o
h? 41); g 2.fh ;d;{.
—Jf)» at i —} T G=ifon

Next we form the equation
Vi Vi) —=Va{Va(x) i =0,
which leads to the equation

Vo(x) = "X

=o;

and using this last equation, the equal.ion V. (3) = o becomes

. =d_x h az 2h Jy
' vg('()—dx+(l—f)27)7_l—f3—ﬁ

=0:
and it may readily be verified that the system of seven equations with
twelve independent variables

Va() = Va(X) = V() = Vs () = Vs () = Vs () = Vo () = 0

is a Jacobian system, which therefore possesses five integrals. These
integrals are easily found. The equation V;(x)= o, in which only
the two variables % and f occur, is easily found to admit the integral

_’i 5 and clearly this function satisfies all the other equations. Next,
the equation V,(x) =o, in which 4 and f may be treated as cons-

tants, admits the integral g+ ¢ ; and once again this function

h
i—f

clearly satisfies all the equations of the system. Thirdly, the equa-

tion V,(x) = o may be treated as an equation with constant coeffi-

cients, since x, !, n do not occur in the coefficients, and hence we
. . . . /3

see that this last equation admits the integrals 2!+ n ey

n4a2x ;—_g—? and y. Then taking account of the equation V4 () = o,

we see that the equations
Vo(72)=Vs(x) =0

admit the common integrals 2/ +(n—y) ; _’ifand n——y+2w%;
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and in view of the integrals which have already been found, these
functions are both seen to satisfy all the equations of the system.
Finally it is obvious that the system admits the integral z; and thus
we have the seven common integrals, which we now tabulate for
convenience as follows :

3 h 3
L=1=% h=s+eq—s L=22U+(—y)—p
3

I‘=n,—-y+2mI

f; 15 = 2.

Now to establish the three equations which the required integral
of (48) satisfies, and which can be deduced from these five invariants,
we use the given boundary conditions as follows :

When z =0, u= %z“ and /= y?+ yz : and therefore
m=o; n=3; b=f=o; c=1; E=2y+3; g=y.

And thus on the *¢ initial multiplicity ”’, we have

Ii=2y+3;
IL=3y + 3;
ILi=z3y + 3);
L=z—y;
I;=z.

From these expressions we deduce at once the functional relationships

Il+ 2[5—-3[5= 0,
Iz—l— 31‘——415:0,
Lo+ Is (31— 41;) =o.

These relationships are satisfied throughout the required integral
multiplicity : and thus we see that the required integral of (48) satis-
fies the three equations

-L “+2 { n—y—+2x

—7

Iff}—.’»z:o,
I-if+3{n—y+2xl_,if}—4z=o,
l£f+z[3{n—y+2xl_h_fs—dz]=o,

g+c

2l+(n—y)
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which after rearranging we write in the form

71=(1+ 42) T —(2y + 32 —2n) =0,

=7
XsE(0+6w);-ﬁ—f+g—(3y+4z—3n) =o0,
xs=(63z —y +n) ‘_,if—(3yz+ 43— 3zn—2l) =o.

the functions yi, ya, ys being, of course, invariants of the first
system of order 2.

Now we observe straight away that in accordance with the result
of theorem 6, chapter V, we may eliminate the ratio -I-_-'_‘—fbelwen the
equations yy= o0 and y; = o, thereby obtaining an equation of the
first order, which the required solution of (48) satisfies. And clearly
this is the most direct, and therefore the best, procedure to use for
this example. Nevertheless to illustrate the general method, we first
of all effect the solution by determining the characteristics of the
second system of order 2, by the method of chapter III, using certain
of the simplifications discussed in chapter V. We will then derive
the same solution by the direct method of theorem 6, which is, of
course, only applicable by virtue of the fact that there are, in this
particular case, five invariants of order 2 of the first system.

Before going on to complete the solution of the problem, it is
worth mentioning that it may easily be shown that the only inva-
riants of the second system of order 2 are y and (m—z). The
calculations are similar to those for the first system, and there is no
particular point in reproducing them.

Solution by the general method. — We begin by forming, from
the equation ;= o, the two equations corresponding to (21) and
(22), chapter III, in which we write n = 2. Differentiating y, with
respect to ¥ and to z, and omitting the terms involving derivatives of
order 3, we see that

dys\ _ A fl_l_(._i > — (2 __ .
(%) =—26—p; (%) =—@—20);
and thus the two equations are

db—2(1—f)dz =o, %‘fdf—(a—zc)dx=o.

1+ 42

—7
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Next we form, from the equation y,=o, the equation correspon-
ding to (22), chapter III. In this case we have

dX_z _ .
(dz> __(4_30)1
and thus the equation is

c+6x

—7

Then solving these three ordinary differential equations for db, df,
dc, and dividing by dz, we see that the characteristics of the second
system of order 2, contained in the required integral multiplicity,
satisfy the ordinary differential equations

df +dc—(4—3¢c)dz =o.

db 21— f)?

dz = 1+ 4z

df _ (3—20)(1—f)
(49) -d_m_T’

de _ 2(c2—3c+2—x)

dz ~ I + 4z )

To these we adjoin the equations (10), (11), of order 2, chapter II,
and the equations of contact, which in this case, after putting in the

values of Vi,V ay aw are
iy L2, Vi, Ve, dy ] 3z )’

dy =o,
h
dz—-;:—.-fdx=o,

d —(l+—k—n dzx =
“ 3 1—7 } =
LI

dl-l—{-:fs dx-——-O,
h
dm—l—::-fdx—_-.o,
h
dn—{g+cl_f dz = o,

g 2h _
{_& 2k -
de+ Ly + ghgn| Y=o

and thus we have a complete set of ordinary differential equations



THE EXTENSION OF DARBOUX'S METHOD. 69

for the determination of the characteristics of the second system of
order 2. As regards the initial values to be used in the integration
of the system, let us suppose that on the characteristic in question,
when z=o0, z2=9¢. Since dy = o, y may be treated as a parameter

in the integration. And thus, using the conditions written on page 66,
we have the initial values :

1
xr=o0; z=y; u=;v=; l=3)24 yo; m=b=f=0; n=v;
h=2y—+v; E=Y; c=1.

The integration of the system thus expresses all the variables, and
in particular, u and z, in terms of z, y and ¢ : and elimination of the
parameter ¢ will then express u in terms of z, y, 3.

To simplify the integration, we use two artifices described in
chapter V. First of all, we have mentioned that the second system
of order 2 leads to the two invariants y, (m — z), which are thus
first integrals of the system written above (which indeed is obvious
directly). Therefore, using the boundary conditions we have

m—z=—p, or m=z—py.
Secondly, we may solve the three equations y1=0, y2=0, ys=o for

h, g, and [ in terms of the remaining variables, obtaining thus the
three equations

h _2y+3z—2n
1—f I+ 4
h  3y+4z—3n—23x
g+e I—-f— l+4.z‘ ’
h _y2+3yz+232—ax32—n?
l+]—-fn_ 1+ 4z

Substituting from these last equations in the second, third and
sixth of the equations written on the last page, we have finally a system
of siz ordinary differential equations to express the six variables z,
u, n, b, f, ¢ in terms of z, y (which is treated as a parameter throu-
ghout) and the parameter ¢; namely the three equations (49) which
contain only the variables z, b, f, ¢, together with the three equations

dz 2y+3z—2n

dz ~ ~ 1+4z

dn 3y+4z2—3n—23x
(80) dr = 1+ 4z

du _y*+3yz+22*—23’—n?

dz 1+ 4z

)

?
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The first two of these equations (which are linear in z and n)
contain only #, z, » and (as a parameter) y; and thus these may be
integrated to express s and r in terms of z, y and the parameter ¢
introduced by the initial values : after this has been done, the third
équation gives u by a quadrature, also in terms of z, y, v. Thus we
eventually obtain expressions of the form

u="Ui(z, y, ¢), z=1L(z, y, »),

and the elimination of ¢ leads to the required expression

uw=U(z,y, 2).

The first two of the equations (50) cannot be solved in terms of
elementary functions; but nevertheless we have reduced the problem
10 the solution of two simultaneous linear ordinary differential equa-
tions with two dependent variables, followed by a quadrature; and
thus we regard the problem as solved.

Alternative solution, by the special method of theorem 6. —
Reverting to the equations y;=o0, ya=0, x;=0 on page 67, we

eliminate the ratio

1ﬁf between the first and last of these equations,

obtaining at once the equation
(51) (1+4z2)l—ni+(2y+33)n—y?—3yz— 232+ 32z =0,

which the required integral of (48) must satisfy.
Now if we solve this equation of the first order by Cauchy’s
method, the equations to the Cauchy characteristics are

de _dy _ dz i du
I+4x o 2y+3z—2n (1+4x)l—2n2+(2y+3z)n
dl dm dn

T TGl+z) 2y+3z—an 3y+4z—ezz—3n

The two combinations dy = o, d(m — z) = o are obvious; and thus
taking the irditial conditions as before, we have

m=z—vw,

and using the equation (51) to express / in terms of the other variables,
and treating y as a parameter, the equations written above reduce to
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the three equations

dx dz _ dn
1+4x 2y+3z—2n 3y-+45—230—3n0
_ du
T Y 3yz+2zi—az—nt

These equations are identical with the equations (50); and with

the initial conditionsz =0, s =n=v,u= % 02, the solution follows
as before.

Exaupie 2. — As another illustration of a solution rapidly effected
by the method of theorem 6, we consider (to’save repetition of the
routine work involved in determining the invariants) once more the
same equation (48), which was considered in example 1; but this
time we choose boundary conditions for which it is possible to solve
the problem explicitly.

Suppose that it is required to find a solution of the equation (48).

such that when z =0, u =o0 and 3—: =y3z. Then from these con-

ditions it follows that when z = o we have
u=o, ¢ =Y¥3; m=n=b=f=c=0; h=z; =Y

The invariants being, of course, those written on page 66, it is thus
clear that when 2 = o,

I,=3; L=y; Iy=y3; L=—Y; Is= 3.
At once we may write down the functional relationships
ILL,—I;=o0, Li+ILI;=o,

(and of course, the equation I+ I.=o, which we shall not use in
this example), showing that the required integral satisfies the two
equations

= h —Z2=0
Xi:l—f =0

h h
xgazl+(n——y);:-_7+z{n—_y+2a:l——_:f§=o,

Eliminating -‘—_—}i— between these two equations, in accordance with

f
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the result of theorem 6, we obtain the equation

(52) l+2zn+232—yz=o0.

This is a non-homogeneous linear equation of the first order, which

the required solution of (48) satisfies : and we solve it in the usual
way by considering the ordinary differential equations

do _dy_dz_ _ du

1 o 3 yz—az*
From these equations we form the integrable combinations

dy=o0; d(ze~*)=o0; d(“-—yz—%z+z—l£>=o;

and thus the general integral of (52) is of the form

2 2
u=ys+ g — ST+ 4(y, a0).
To determine the form of the function ¢ appropriate to the parti-

cular integral in question, we have from the boundary conditions

z?
o=yz+ 7'+qa(y, z);
and thus finally we have

2 2 2
u=yz-+ 54-— z—; —yie % — (%) e—2x,
It may easily be verified that this is the correct solution, satisfying

the equation (48) and the prescribed boundary conditions.

CHAPTER VIIIL.

GENERAL CONCLUSIONS AND REMARKS.

The whole of the results which we have obtained may be summa-
rised by the statement that all the classical theory of characteristics,
of equations in involution, and of Darboux’s method of solution, may
be generalised to apply to an equation of the second order with three
independent variables, provided that it be of rank 2 or 1 (chap. II).
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But if the equation be of rank 3, i. e., if the discriminant be different
from zero, the classical theory has no counterpart.

And the results which we have obtained may be generalised to
deal with equations having any number of independent variables.
The extension of the fundamental idea of the rank of an equation of
the second order, with m independent variables, is obvious : and it
may be shown that, exactly as in the case with which we have dealt,
the equation has no characteristics, two distinct systems, or a single
system which may be regarded as two confluent systems, according
to whether the rank is 3 or greater, 2, or 1 respectively. The
extension of Darboux’s method may again be made, provided that
the equation be of rank 2 or 1. The method may also be extended
to suitable equations of higher order.

Throughout all the foregoing work, we have shown that, in order
to extend Darboux’s method, it is sufficient for the equation to be of
rank 2 or 1. But it may also be proved [17] that this condition is
also necessary, i. e., that there is no other way in which the method
can be extended, and also that there is no possible way of extending
it to equations of rank 3.
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