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THE EXTENSION OF DARBOUX'S METHOD 

By D. H. PARSONS. 

INTRODUCTION. 

In the long history of research into tlie theory of partial differen-
tial équations of the second order, many and varied procédures hâve 
been developed ; almost always the objective has been the solution 
of boundary-value problems of various types, although methods 
exist which in certain cases provide gênerai solutions. Certain 
procédures stand out by virtuc of iheir ability to provide the required 
solution in fini te terms, by means of quadratures or other processes 
which can, at any rate theoretically, always be carried out. Àmong 
thèse, the methods of Laplace, Monge, Ampère and Darboux [1], in 
that order of chronology, mark the development of ihe particular 
Une of approach with which the présent work is concerned. 

In 1778, Laplace published a method, applicable to certain équa­
tions with two independent variables, which consisted essentially ot 
applying a séries of transformations to the given équation, with the 
object of eventually obtaining an équation possessingan intermediate 
intégral, which could be found by inspection. Shortly afterwards, 
in 1784, Monge published his work which set forth the gênerai 
method of solution by seeking intermediate intégrais. This procé­
dure wTas extended by Ampère in 1814* A considérable inlerval 
then elapsed, in which the theory advanced very little, until in 1870 
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appeared the paper of Darboux [1], in which he set forth the method 
of intégration which bears his name, and of which the methods of 
Monge and Ampère, and to a large extent that of Laplace, are spécial 
cases. 

Thèse methods hâve been only very imperfectly understood bv 
many mathematicians ; but the theory and applications hâve been 
mostelegantly and simply describedbyGoursat[2], whousesthetheorv 
of characteristic multiplicities to illuminate the underlying principles. 

Both Monge's and Darboux's methods are such that for those 
équations to which the methods may be successfully applied, the 
boundary-value problem of Cauchy may be solved explicitly, reduced 
to quadratures, to the intégration of a completely integrable System 
of total differential équations, or to the intégration of a System of 
ordinary differential équations—processes which, from the theoretical 
point of view, are of equal simplicity, and can always be carried oui, 
in theory at least : and the desired resuit is expressed in finite terms. 
Herein lies the importance of thèse methods. 

However, in their classical forms, the Monge-Anipere and Darboux 
procédures are applicable only to équations with two independent 
variables; and this limitation has led to their being relegated to posi­
tions of obscurity in the minds of most mathematicians. Attempts 
to produce extensions to équations with three or more independent 
variables hâve not met with much success, although Natani [3] indi-
cates a possible extension of Monge's method to équations with any 
number of independent variables, belonging to a spécial class, while 
Vivanti [4] has dealt with équations having three independent 
variables and possessing an intermediate intégral, the essential 
feature of the Monge-Ampere method. 

The primary object of the présent work is the extension of Darboux's 
method to équations with three independent variables. It is shown 
that the method can be extended to deal with a class of équations, 
for which a certain discriminant vanishes identically, exaclly as in 
the case treated by Natani. 

As in Goursat's account of the classical case, the idea of équations 
in involution, originated by Sophus Lie, is also extended to this class 
of équations, in order to gain insight into the reason why the method 
succeeds, which at first sight is far from obvious. Analogues of 
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various classical theorems are established, and finally some examples 
of application of the method are given. 

CHAPTER 1. 

NOTATIONS, FUNDAMENTAL ASSUMPTIONS, 

CERTAIN CONVENTIONS AND DEFINITIONS. 

We begin by defining certain notations, and certain terms which 
will be used throughout. 

Let the independent variables be x, y, z, and let the dépendent 
variable be u. Let 

dit _ . du _ du ()- u _ à'2 u __ . 
dx ~~ • dy- = "'* ôz = n- àx* ~ a- dy* ~" ' 

d'2u __ à9-u _ d2u _ d2 u _ . 
àz*~C' dydz~J' dzdx~~é>' dxdy~~ ' 

in gênerai let 

and in particular let 

àx* dyi dzk = /> l '-^' 

à'2 *-/'+* u 
dx* dyi dzk 

à"-J+ku 
• * ! , / . * » dx dyi dzk ^1,7- " 

d/+k u 
àyi âzk '• *iK / , x • 

Thus when no particular emphasis is required upon the numberof 
dérivations with respect to x, we use the letter p to dénote those 
variables which would otherwise be denoted by r, s, or t as the case 
might be. 

Two terms which will henceforth occur frequently, now require 
précise définition. An " élément of contact of order n " indicates a 
set of values of the variables x, y, z, pij,k wherc i, y, k take ail 
positive intégral and zéro values such that i -\- j + k ^ n. 

.A " multiplicity M7 of order n ", or simply a " multiplicity Mq " 
dénotes an aggregate of éléments of contact of order n, depending 
upon q parameters (i . e., having q dimensions) and satisfying, for 
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any displacement in the multiplicity, the " équations of contact " 

du — Idx — mdy — ndz = o, 
dPi,i k — pt+\,;,kdx — pt / + , kdy—plf k+\ dz = o, 

for each /, j , A such that 

/ + / + / i ^ / i — i . 

Considering équations of the second order, we shall suppose that 
the équation to be considered can be solved for one of the three 
derivatives a, b and c; and clearly there is no loss of generality in 
taking this derivative to be a. This assumption is justified : for we 
are concerned with any intégral of the équation, and not with parti­
cular intégrais, and thus if the équation be 

ty(x, y, z: u, /, ///, /i, a, b, c, / , g, h) = o 

we may solve for a, b or c, excepl on particular intégrais, unless we 
hâve identically, or as a conséquence of the équation ilself 

^ï - dA _ ÙJL -
da db de 

At this stage we will make the assumption, which will apply 
throughout, that ail functions with which we are concerned are 
analytic functions of their arguments, in the neighbourhood of 
certain initial values. W e will, in addition, assume that the équa­
tion ty = o is of fully reduced form; that is, that in the neighbourhood 
of a set of values of the arguments, satisfying the équation, at least 
one of 

" d'\> dty àty db d\ d\ db 
dx dy dz du dl ' dm ' dn ' 

jity cty d± dty dl d^ 
da' db' de' df' dg' dît 

is not zéro. Under thèse circumstances, the conditions stated above 
would imply that the équation does not contain a, b or c. If this 
were so, the équation would contain/ , g or h) for otherwise it would 

be of the first order. Suppose for examplc that —- is not zéro. Then 

we may solve the équation for h and write 

h-*-n(x, y, z, u: l, /??, n, / , g) = o. 



THE EXTENSION OF DARBOUX'S METHOD. 5 

But the change of variables 

x -h y = x' ; x — y = y' ; z — z' 

renders this last équation soluble for y-^ • 

Consequently we will from now on reslrict our attention to the 
équation 
(i) a -h W(x, y, z, u, /, m, n, /t. g, b, / , c) = o, 

where W is analytic in the neighbourhood of a suilable set of initial 
values of x, y, z, u, l, m, n, A, g, 6, / , c. 

W e will be concerned with certain functions of the éléments of contact 
of various ordcrs ; but since we will be mainly interested in the 
behaviour of thèse functions relative to intégrais of ( i) , it will always 
be assumée! that thèse functions contain only those derivalives which 
involve not more than one differentiation with respect to# . For we 
may calculate the values of ail derivatives involving more than one 
differentiation with respect to x, in terms of x, y, z, u and deriva­
tives of u involving one or no ^-differentiation, by means of ( i ) and 
the équations derived from ( i ) by successive differentiations, regar-
ding u and each of its derivalives as a function of x, y, z. 
Accordingly we now introduce a quite usual convention, with a 
slight modification to suit this particular problem. x being a func­
tion of the éléments of contact of order /i, the symbols 

d/ dy d/ 
dx dy dz 

dénote partial derivatives of ^, in calculating which u and the varia­
bles pi,j,h are regarded as functions of x, y, z, in accordance with 
the équations defining thèse variables. Again, 

\dx)' \dy)' \dz) 

dénote the same derivatives as before, but with the terms involving 
derivatives of u of order n -f- i omitted. Thirdly 

cllL, (dJL\ 
dx' \dx] 

indicate that, a/ter calculating c-^ and (-7^) ' we hâve replaced ail 

derivatives of u involving more lhan one x-differentiation by their 
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values derived from (i) , as explained above. In connection with 
the last définition, it is important to notice that we do not obtain 

l -j- \ from -^=- in the same way as ( ~" j is obtained from -^ : for 

the substitution which changes -^ into -^ may introduce fresh terms 

which do not contain derivatives of u of order n + i, 
W e extend the same conventions to any order of differentiation. 

Thus if £ contains derivatives of u of order n but not of higher 

orders, ( , . ,^, ) indicates that after carrying out the indicated diffe­

rentiation we omit those terms involving derivatives of u of order 

n+j + k. 
To illustra te thèse conventions, suppose that x*s R function of the 

éléments of contact of order n, containing no derivative of u invol­
ving more than one ^-dérivation, but containing at least one derivative 
of the zi'th order. Then we may write 

n— i n 

àx 
dto,n—/,J 

7=0 

-dy - \£) ^S'^ 'S^^^S' 0 , ^ / + 1 , / 5ï^y ' 
/=o /=o 

/ i si,n-i,i -r 1- 7 , *o,n-dz • - w * ; ^ ^ J o i 'n~^ *, ,„-! ,<-! ^ ^ J ^ » - ' + i ^ <fc, 
/ = 1 

0,/i—/-+-l,/—l 

^ 7 * 

while to calculate -p* we substitute in the first of thèse équations 

the appropriate values of the r2, n_/_i, i obtained from ( i ) and 

in addition write ( ~ \ instead of ( -^ \ • 
At this stage we adopt a furlher device which will be found to 

give great abbreviation in writing. W e introduce certain fictitious 
variables $1,/,/ and ^, / , / , in which oneorboth of the suffixes is néga­
tive. Thèse variables may be regarded as always equal to zéro; 
furthermore the functions with which we shall be concerned do not 
contain thèse variables, so that we hâve always 

- ^ - = o and - A - = o 

when i o r / or both are négative. 
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One last remark, of great importance, must be made before we go 

on to obtain resul ts . F r o m the form of ( i ) , and since W is an ana-

lytic function of its a rguments , it follows from the usual existence 

theorem that intégrais of ( i ) exist such that when x = o, u and l 

reduce to arbi trar i ly assigned (analytic) functions of y and z. Th i s 

being so, wesee that for a n j fixed values of a?, j ' , z, intégrais of ( i ) 

exist for which ail the variables u, sljl}J, £o,A,?(*>/> k, q be ing, of 

course, positive integers or zéro) , up to and including any given 

order of derivalives, take arbitrari ly chosen values at the point x, 

y* z-
In particular, given the values of x, y, z, u and ail the deriva­

tives ol u of order up to and including AÏ ( tha t is, the variables $ I ,A_/_J , / , 

to^-jj, i^k^in), we may find intégrais of ( i ) for which thèse 

variables take the assigned values at this point , and for which the 

dériva ti vesof u of the / i - j - i ' th order , Si ,A—/,/ and £0,^-/+1,./(/=0, 1, ,..,/&, 

j = o, 1, . . . , / 1 , / 1 + 1 ) , assume any arbi trar i ly assigned values. 

From now on, it will be understood that an " arbi t rary élément of 

contact of order n " means an élément of contact in which x, y, z, u 

and derivatives of u involving not more than one differentiation wi th 

respect to x hâve been chosen arbi t rar i ly ; while the o ther derivatives 

hâve the values calculated from (1) and the équations derived from 

( i ) by differenliations. Similarly the phrase " the derivalives of u 

of order n + 1 " will refer only to the derivatives $i,w_/,/ and £0,/1-/-+-1,/. 

Thus we ma}' stale the remark of the last paragraph more briefly as 

follow s. 

' ' G i v e n an élément of contact of order /z, intégrais of ( 1 ) 

exist, admit t ing this élément, for which the derivatives of u of order 

/ i-f- i corrcspondingto the élément assume arbi t rary va lues" . Again, 

the phrase u a function of the éléments of contact of order n" will 

henceforlh refer exclusively to functions of x, y, z, u and the 

variables s1>A_-i_i,,, £O,A-./,/, I ^ k ^ r c , o ^.i^.k — 1, o ^ y ^ k . 

W e write 

Hence, differentiating (1) n — i—i times with respect to y, a n d / 
limes with respect to 5, and using t h e notation described above, we 
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have 
( / dn~iX¥ \ 

-+- B / o . / i — / + J , « H - F 

a resuit which we shall frequently use 

B ^o, /i—i+i, i -+- F^o, « - / , z+i -+- G ̂ o, «—î—i. <+2 j 

CHAPTER IL 

DÉFINITION OF CIIARACTERISTICS : ÉQUATIONS TO BE SATISFIED : 

CONSEQUENCES OF THE DEFINITION : THE BANK OF A PARTIAL DIFFERENTIAL EQUATION 

TlIEOREM I. 

The method of Darboux, as expounded by Goursat, is inextrîcably 
linked with the theory of ciiaracteristics. Thus when contemplatingan 
extension of the method to équations with three independent variables, 
the question which one naturally asks first is, what is a characteristic 
multiplicity? As Goursat [5] points oui, there are two possibilities 
which are naturally suggested. If there be m independent variables 
we may define a characteristic of order n to be an m — i dimensional 
multiplicity of éléments of conlact of order 7i, contained in more 
than one m-dimensional intégral multiplicity : that is, rendering 
the problem of Cauchy indelerminate. This is the view adopted by 
Beudon [6] in his work on ciiaracteristics. 

Alternatively, we may adopt a viewpoint analogous to that of 
Natani [7], and define a characteristic to be a multiplicity, contained 
in an intégral multiplicity, and salisfying at least one total differential 
équation, distinct from the équations of contact, which may be 
written down in advance and is independent of the particular intégral 
on which the characteristic is situated. 

Goursat points out that this latter définition may only be adopted 
for a spécial class of équations of the second order with three inde­
pendent variables; nevertheless it will appear later that for our pur-
pose this kind of définition is the more fruitful, and that Darboux's 
method may only be extended to those very équations to which the 
définition leads. 

To avoid confusion, we will refer to the m — i dimensional ciia­
racteristics of the first définition as Monge-characteristics, in accor-
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dance with the usual nomenclature for équations with two independent 
variables : to the multiplicities of the second définition we simply 
refer as ll characteristics ", since it is with this kind that we shallbe 
mainly concerned : whîle to the one-dimensional characteristics of a 
partial differential équation of the first order, which dépend only on 
arbitrary constants and not on arbitrary functions, we refer as 
Cauchy-characteristics, in accordance with common practice. 
Meanwhile, we remark ibat it is well known that the two définitions 
lead to identical results in the case of équations with two independent 
variables. 

But before stating the définition precisely, i t is convenient to make 
some further remarks about " multiplicities of éléments of contact", 
which hâve been mentioned on pages 3 and 8. 

Suppose that we are given an analytic intégral of ( i ) , in the form 

u = V(x,y9 z). 

Then by differentiating this équation we may obtain, at any 
point x, y, z, the values of the partial derivatives of u, up to and 
including any desired order n. Adopting the notation for thèse 
derivatives which has been used ail along, it is clear that we may 
thus associate with each point a set of values of the variables which 
compose an élément of contact of order n. Then if throughout any 
suitable région of the space of (x, y, z) we consider the aggregate of 
thèse éléments of contact of order n, it is clear from the way in which 
each élément is obtained that the équations of contact (p. 4) a r e 

satisfied : and thus that the aggregate is in fact a multiplicity M3 of 
order n (see p. 3) . And since U(# , y, z) is an intégral of ( i ) , it is 
natural to refer to a multiplicity M3 of this spécial sort as an " inté­
gral multiplicity". 

But, just as explained on page 5 in dealing with single éléments of 
contact, since U ( # , y , z) is an intégral of ( i), the values of ail the 
variables representing those derivatives of u which involve more 
than one difierentiation with respect to x> may be calculated directly 
from the équation (i) and the équations derived from ( i ) by diffe­
rentiation. Thus we see that an intégral multiplicity is completely 
specified when we know the values, at each point, of the variables x, 
y,z,u,andsij-i_ij,to,k-jj(k=i,...,n;i==o, . . . , À r — i ; / = o , . . . ,#) 
This being so, it is clear that the " équations of contact" written on 
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page 4 a r e n o longer independent total differential équations. In 
fact, the only équations which are independent, after we hâve substi-
luted for each of the variables/?a ,^T(a ^ 2 ) , its value in terms of 
the other variables deduced from ( 1 ), are the followring : 

(3) 
( du — v, 0 0 dx — t(] 1 0 dy — f0 0 1 dz = o, 

dst / - j - , t — /"> n - t - ^ t d t — vi / , idy — i Si,/,—i—i I-T 1 dz = o, 

dt0 k-j ;— *\ k-/ /di — t(> x -/-+-1 / d} — 0̂ / - / /+i dz = o. 

( A = 1, . . . , n — 1 , 1 = o, . . . , À — 1 , j = o, . . . , A ) 

in which it is underslood that each r2,A_,_i,, is expressed in terms of 
the other variables by means of ( 1 ) and (2). It may readilv be veri-
fied by writing the appropria te expressions derived from ( 1 ) for the 
remaining variables, that the other équations of contact vvritten on 
page 4 ai>e conséquences of (3 ) ; thoughindeed thisis almost obvious. 
W e may remark thaï the onl> variables, on the above understanding 
regarding the r2,A_?-i,/? which appear in (3), are the variables wrhich 
make up an élément of contact of order n, in the narrower sensé in 
which we hâve used the phrase ail along. 

It is also useful to remark that every intégral multiplicity of order n 
is certainly contained in an intégral multiplicity of order n -+-1 : 
that is, the multiplicity of order n + 1 associated with the given 
intégral. 

Having made thèse remarks, for the sake of clarity in the défini­
tion, we are now in a position to define characteristics. 

Définition. — A characteristic multiplicity, or more shortly a 
characteristic, of order / 2 ( ^ 2 ) , is a multiplicity of éléments of 
contact of order H, forming a part of at least one intégral multi­
plicity M3 [and therefore satisfying (3)], and having the property of 
satisfying at least one new total differential équation which we maj 
adjoin to (3 ) ; the new équation or équations being entirely inde­
pendent of the particular intégral of (1) of which the characteristic 
forms part, and containing the differential of at least one partial 
derivative of order n. 

W e shall see later that in conséquence of this définition, charac­
teristics of this kind, when they exist, are of one dimension : and 
furthermore that the new total differential équation or équations, 
about whose nature we hâve made no assumption, must be linear. 
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W e now proceed to détermine ail the total differential équations 
which a characteristic must satisfy. 

First of ail, we notice that the équations of contact (3) are solved 
for the differentials of u and of ail the variables representing the 
various derivatives of u, up to and including the n — l'th order, and 
express each of thèse differentials as a sum of multiples oîdx, dy, dz. 
The only variables whose differentials do not appear are those which 
represent derivatives of u of order n. Thus since we may substitute 
for ail the differentials for which (3) are solved in terms of dx, dy, dz, 
any newr total differential équation which we adjoin may be written 
in the form 

^ ( X, • . . , £o,0, n i ûfc l . / i—l ,0j • • • j «^1,0,71—1 ) 

( dt0in,o, •. -, dt0io,n'-> dx, dy, dz 

and by the définition, at leasL one new équation must contain at least 
one ofûfci, „_/_i,/, dt0,n-j,i(i = o, ...,n — 1 ; / = o, 1, . . ., n). 

Now since by définition the characteristic whose existence we are 
now assuming is contained in at least one intégral multiplicity of 
order n, it is also (see p. 10) contained in at least one intégral multi­
plicity of order ra-f-i. Therefore, anywhere on the characteristic 
there exists at least one set of values of the variables which represent 
the derivatives ofuoî order ft-+- 1, such that the additional équations 
of contact appropriate to an intégral multiplicity of order n -f-1 are 
satisfied : that is, the équations 

dfci,/i-t-i,i= ro^n-t-ijdx -h Siin-itl dy -h 5,^-/-1,/+1 dz, 

which, putting in the values of each r2,n_/_i,/ given by expres­
sions (2) , chapter I, we may write 

\dyn-l-i dz1 ] 

= {{dy— H dx)sun-ttf*-(dz — G dx)su „_*_i./+i 
— ( B t0, n— /-+-1, i-+-^t0) „—i} / + ! -+- G £0, n—i— 1, i+2 ) dx } 

( / = 0 , . . . , n— 1) 

and also the équations 

(5) dt0.n-f,î= Sl,n-/\/ dx -h t0tn--/-hl,/ dy -h 10^--;,;+! dz U = °J *> - ) 4 

Since w ^ 2 , and therefore n-\-1 ^ 3 , it follows that the deriva­
tives of u of order n H- 1 do not occur in W, H, G, B, F, G; nor do 
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they occur in ( •, /l_l_) , , ) ? by the définition of this expression on 

page 6. Thus when dx, dy, dz hâve values appropriate to a charac­
teristic (which we suppose known), and are regarded as constantsr 

the expressions on the right hand sides of the in + i équations (4) 
and (5) may be regarded as 271 + 1 homogeneous linear forms in 
the 2/1 + 3 variables 

si,n-iti (/ = 0 , . . . , /1) and ^0,/1-/+1,/ (y = o, . . . , /n-1), 

which do not occur on the left sides of the équations. 
Now if dx, dy, dz were such that thèse 2/1 + 1 linear forms 

in 2/1 + 3 variables were linearly independent, then clearly thèse 
forms could be made to take any arbitrary set of values, by suilable 
choice of the values of the variables in question. And thus we could 
satisfy the équations (4) and (5) for any arbitrary choice of the 
differentials <£?i,,i_/_i,/, rf£0,„_/,/ on the left hand sides, by suitable 
choice of the variables *if,»-/,/, £0,/1-./+1,/. But we hâve seen that 
intégrais of (1) exist, admitting any chosen élément of contact of 
order n, and such that the variables Si,n_/,/, £0,/1-/+1,/ assume any 
arbitrary set of values. Hence it would be impossible to restrict the 
differentials dsiiJl_i_iii, G?£O,/Î_/,/ to satisfying any total differential 
équation, which actually conlains one at least of thèse diftcrentials, 
without any knowledge of, and without placing any restriction upon, 
the nature of the intégral multiplicity or multiplicities of which the 
characteristic in question forms a part. 

Therefore in order to comply with the définition, we see that on a 
characteristic, dx, dy, dz must be such that the 2 / 1 + 1 linear forms 
on the right hand sides of the équations (4) and (5) are not linearly 
independent; in which case it is clear that the élimination of the 
derivatives of u of order n + 1 from thèse équations, which from 
their nature are consistent, leads at once to a certain number of 
linear total differential équations, containing the differentials which 
appear on the left hand sides of (4) and (5), and fulfilling ail the 
conditions laid down in the définition. 

W e could have taken this as the starting point, and defined a 
characteristic of order n to be a multiplicity such that the derivatives 
of order /1 + 1 could be eliminated between the équations (4) and (5). 
This would have considérable advanlage in simplicity : but although 
the resuit would be the same, such a définition would be slightly less 
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gênerai, and much more artificial, than the one which we have in 
fact adopted. W e now proceed to find the conditions which must 
be satisfied by dx, dy, dz\ and to détermine the new total differen­
tial équations mentioned above. 

First of ail, we dismiss the possibilily that dx = o. For suppose 
that dx = o. Then clearly the variables Si,,i_/,/ occur in (4) but not 
in (5), while the variables £0,/1-/+1,7 occur in (5) but not in (4) . 
The matrix of the coefficients of the variables Si,n~i,/, on the right 
hand sides of (4), is then the matrix of n rows and n + i columns 
such that the élément in the i'th rowr and the A'th column is dy 
if A' = i, is dz if A = « + i, and is zéro in ail other cases. If we 
omit the last column, we obtain a déterminant equal to dyn, while if 
we omit the first column, we obtain a déterminant, also of n rows 
and columns, equal to dzn. Thus unless dy = dz = o, the matrix 
is of rank n. Similarly the matrix of the coefficients of the 
variables £0,^-/+1,/ on the right hand sides of the équations (5) is an 
exacllv similar malrix, but with / i + 1 rows and n + 2 columns; and 
by exaclly the same reasoning, this matrix is of rank n + 1 
unless dy = dz = o. Thus we see that ihe 2/1 + 1 équations are 
linearly independent unless dy = dz — o. In this latter event, it is 
clear from the équations (3), (4), (5) and the hypothesis that dx = o, 
that the multiplicity reduces to a single élément of contact, ail the 
variables remaining constant : and this is obviously inadmissible, 
since a characteristic is defined to be of at least one dimension. 
Thus in order that the équations (4) and (5) be not linearly inde­
pendent, in the sensé explained, it is necessary that dx^ o. 

This being so, we consider instead of the équations (4) and (5), a 
System of équations entirely équivalent. For each i, we multiply (4) 
by dx; put y = / in (5) and multiply by — (dy—Hdx); put y = « + i 
in (5) and multiply by — (dz — Gdx)) and add ihe three together, 
thus obtaining 

( / d'1— llT \ ) 

l — (dy— Hdx)dt0,n-i,i— (dz — G dx) dt0,n-i-i,i-hi 

(6) ) = — [(dy*-—Hdydx-hBdx0-)t0.n-i+î,i 
i -+- (2 dy dz — G dy dx — H dz dx -+• F dxi)t0> n-it /+1 

f -h (dz2 — G dz dx -h C dx- ) t0t n-i-i,/+2] 
' * ( ¢ = 0 , 1, . . . , n — 1 ) . 

MFMORIAL DES SC. MATH. — N° 142. 2 
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Since dxy£o, it is clear that (6) and (5) are together entirely 
équivalent to (4) and (5) ; and the variables si,n_i,, do not occur 
in (6) Furthermore since each of the n + i variables sifn-i,i occurs 
in one, and only one, of the n + i équations (5), it follows that 
if the n expressions on the right of the équations (6) are them-
selves linearly distinct, considered as linear forms in the JI + i 
variables £0,^-/+1,/, then ail the 2/¾+ 1 équations (5) and (6) are 
linearly distinct. Therefore on a characteristic, we must choose dx, 
dy, dz in such a manner that the matrix of the coefficients of the 
variables ^0,n_y+i,y(y= o, ..., /i + i), on the right of the n équa­
tions (6), is of rank less than n. If we now write, for brevity, 

— a = (dy2— VLdydx-h B dx2), 
— P = (idy dz — G dy dx — H dz dx -h F dx2), 
— y = (dz2— Gdzdx -h Cdx2), 

then this matrix is the matrix of n rows and /1 + 2 columns such 
that the élément in the t'th row and the k\h column is a if k = i, 
is (3 if /: = / + 1 , is y if k = / + 2, and is zéro elsewhere. If we 
omit the last two columns, we obtain a déterminant of n rows and 
columns equal to a"; if we omit the first two columns, we obtain a 
déterminant equal to y"; while if a=.y = o, and we omit the first 
and last columns, we obtain a déterminant equal to (3". Therefore, 
in order that the matrix be of rank less than n, it is necessary that 

a = p = y = 0 ; 

that is 
dy2— Rdydx-+-B dx2 = o, 
2 dy dz —- G dy dx — H dz dx -+- F dx2 = o, 
dz2 —Gdzdx -+- G dx2 — o. 

But we have shown that dx ^ o ; thus we may put 

dy = |JL dx ; dz = v dx ; 

and after dividing by dx2 we obtain 

(7) ^ 2 _ H f X H - B = 0, 

(8) 2fjiv — G\L — Hv + F = 0, 

(9) v 2 - G v + G = o. 

W e must therefore investigate the necessary and sufficient condi-
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tions for a common solution of the équations (7)-(9). Let jxi, JUI2 be 
the roots of the équation (7), and v4l v2 the roots of (9) . Then 

y-** : Ï-Li U - j , G = vi+-v 2 , C = viv2 

Putting in the values of G, H, équation (8) becomes 

2|XV — (V, -+- V,)jJ — (î-1, -I- [ J L , ) V - + - F r= O. 

If this équation be satisfied either by ^ = ^ , v=Vi or p. = p.2, 
v = v2, we see that the necessary condition is F = p4v2 + jut-jVi. If 
the équation be satisfied by p. =: /ml5 v = v2, or JUL = /JL2, v = v4, we 
have F = fJt-iv±-+ p.2v2. We maj always suppose the former condi­
tion satisfied : for the latter is obtained from the former simply by 
re-labelling v4, v2 as v2, v4 respectivelv. Thus we may assert that the 
necessary condition for a common solution is F = f*iv2+ /^2^. This 
condition is also sufficient, for, putting in the values of G and H, and 
this value for F, (8) becomes 

Ca — Pi ) (v — v2 > -+- (p — Pa) 0> 1) = o , 

and this équation is clearly satisfied by [j = fJt±, v = vL or ^=:/JL2 , v = v>. 
To interpret this condition in terms of the function *F, wre observe 

that, after putting in the values of H, G. B, G, we have 

A -

H 

2 

B 

F - - G 

= — 7 i F — (PiViH-l-^vi) j { F — ( i x i ^ i - h ^ v a ) ; 

Thus, noticing once again that the second factor is obtained from 
the first by permuting vi and v2, we see that the necessary and 
sufficient condition for the existence of a common solution of (7), (8) 
and (9) is that A, which we shall call the « discriminant » of (1), 
shall be zéro. 

W e may go further than this. For the minor of A obtained b \ 

omitting the last row and column is B — - H- = — 7(^1 — ^2)- ; and 
4 4 
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the minor obtained by omitting the second row and column 

is G— - G2 = — 7 (vi — v2)3. Thus if the déterminant is zéro, but 
4 4 

either of (/JL4— p 2 ) , (v4— v2) is différent from zéro, A is of rank 2, 
and there are two distinct pairs of solutions of (7)-(9), namelyp = p 4 , 
v = v4 and p. = |m2, v = v2. But if 

Pl = P2, Vj = V2, F = ^ 7 2 - + - ^ 2 V i = 2 [J-iVi, 

A becomes 
I fi-i v t 

Pi PÎ P1V1 

Vl ^ i V i V2 

in which the second and third rows are multiples ol the first and A is 
clearly of rank 1. Thus we see that if A be zéro but of rank 2, at 
least one of /JL4 — jm2, vi — v2 is non-zero; while if A be of rank 1, 
JUL4 = |UL2, v4 = v2, and (7)-(9) admit one solution only, namely 

P = Pl = P2, V = V] = V2. 

Suppose now that the condition A = o is satisfied, so that 

H = {JL1+u2, B = [xl[JL2, G = v1 + v2, C = Viv2, F = [ / 1 v 2 + a ï v 1 . 

Then choosing, for definiteness, the solution /J. = {JL1} v = v4, we have 

(10) dy — \x± dx = o, dz — v±dx = o. 

Putting thèse values, and the values of H, G, B, F, G in the équa­
tions (6), and dividing by dx, which is not zéro, we have 

^ l . n - i - l . i H - P2 <2fr0j7i-i,i-h v 2 û f r 0 , n - i - l , H - i - t - ( » n_l_i d z l J dx = O 

(* = o, 1, . . . , n— 1) 

and clearly the équations (11) fulfil the conditions of the définition 
of characteristics of order n. Furthermore, from (10) we see that 
there is one relationship belweeny and x only, containing y, and one 
between z and x, containing z. Hence, since a characteristic is, by 
définition, contained in an intégral multiplicity M3, in which the 
independent variables are x, y and z, we see at once that characte­
ristics of the kind which we have defined are of one dimension only. 
Thus we regard (10), (11) and the équations of contact (3), no longer 
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as total differential équations, but as an incomplète System of ordi-
nary differential équations. 

If one or other or both of /Ĵ I — /JL2, V4 — v2 is différent from zéro, 
we may deduce a second System of équations which characteristics 
of order n may satisfy, simply by writing /JL2, V2 for JA1? V4 respec-
lively, and vice versa, in (10), (i i) . In this case we shall show that 
there are two distinct Systems of characteristics of each order n(n^2), 
while if JUL4 = p-2, v4 = v2 there is only one System. 

W e have yet to eslablish the existence of characteristics of this 
kind, although we have found the équations (10) and (i i) which, in 
addition to the équations of contact (3) , they must satisfy. But this 
point présents no difficulty. For suppose that we have any intégral 
of ( i ) , so that ail the variables which make up an élément of contact 
of order n + i may be regarded as known functions of x, y, z. 
Then, substituting the values of the appropriate variables in /JL4 

and vi, let us consider the System of two ordinary differential équa­
tions 

dy dz dx 
( I 2 ) —-—£ - = - = = — . 

^(x,y,z) vL{x, y, z) i 

Thèse équations define a System of (one-dimensional) curves in 
the space of (x, y, z), such that through each point x, y, z passes 
one curve of the System and only one (throughout, of course, a 
suitable région within which ail the functions involved are analytic). 
Let us then associate with each point of one of thèse curves, the 
élément of contact of order n, and the élément of contact of 
order n + i containing the former élément, belonging to the intégral 
multiplicities of order n and n + i respectively, associated with the 
given intégral of ( i) . Then the équations (3), (4), (5) and there­
fore (6), being satisfied throughout the intégral multiplicity of 
order n-\- i, are satisfied in particular along any one of the curves 
definedby (12). While remembering that dx^ o, the équations (12) 
are themselves équivalent, on this intégral, to (10). And therefore, 
along this curve we may eliminate the derivatives of u of order / i + 1 
from (4) and (5), or (5) and (6) which are équivalent, thus showing 
that the équations (11) are also satisfied. Therefore the one-dimen­
sional multiplicity M4 consistingof any of the curves defined by (12), 
and the élément of contact of order n associated with 
the curve, constitutes a characteristic of order n, in accoud 
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the définition adopted. And since one and only one of thèse curves 
passes through any point x, y, z, we may state the resuit in the 
following concise manner, remembering that the same arguments 
may, of course, be applied to the second system of characteristics, 
by permuting /jii and /Jt2, v4 and v2 : 

« Every intégral multiplicity of order n, is a locus of one-dimen-
sional characteristics of order n belonging to either system, when 
the two Systems are distinct, and to the single system when the two 
are confluent ». 

W e therefore see that a characteristic of order n is a multi­
plicity Mi of éléments of contact of order n, satisfying the équations 
of contact of order n [in which, it is understood, each derivative of 
the form r2,y!/, is replaced by the appropriate expression of the 
for m (2) , chapter I ] , being contained in at least one intégral multi­
plicity of order n, and satisfying either the system (10), (11), or the 
system obtained by permuting /UL4 and /ut2, v4 and v2, If the déter­
minant A be of rank 2, there are two distinct Systems of character­
istics, while if A be of rank 1, the two Systems are confluent, i. e., 
there is one system only. 

Before stating the theorem which really summarises ail the 
conclusions of this chapter up till now, we introduce an extremely 
important conception, namely the rank of a partial differential 
équation. W e define the rank of the équation (1) to be the rank of 
the déterminant A (p. I D ) . But this conception may be extended to 
équations of more gênerai form than (1). Suppose in fact, with the 
notation of chapter I, that the given partial differential équation i> 

( i3 ) ty(x, r , *, u, l, m. /?, a, b, c, / , g. h) = o; 

then we adopt the following définition. 

Définition. — The rank of the équation ( i3) is the rank of the 
déterminant 

cty 1 dty 1 dty 
da 2 dh 2 dg 

1 dty d'\t 1 dty 
2dh db 2df ' 
1 dty 1 àty dty 

dg 2 df de 

which we shall call the discriminant of ( i3 ) . If the équation ( i3) 
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contains a, so that -p ^ o, we may solve for a in the forai ( i ) . 

Thub, applying the rule for calculating the derivative of an implicit 
function, we see that 

dty 

H - — - È*L 
dh~~ dty' 

da 

and similarly for g, b,f,c. Thus, A being the corresponding déter­
minant for the équation solved fora, i. e., ( i ) , we see that each 

élément of A', is -—- times the corresponding élément of A : and 

clearly the rank of A7 is the same as the rank of A. A similar 
argument applies if ( i3) contains b or c, by simply permuting x, y 
and z. If (i3) does not contain a, b or c, but contains, for example, 
h, we have seen in chapter I that the change of variables x± = x -\- y, 

d2 u 
yl = x—y renders the équation soluble for —? : and it is easily 

verified that after this substitution the rank of the corresponding 
déterminant is the same as the rank of A'. 

Thus we may now summarise ail the results of this chapter in the 
following theorem : 

THEOREM 1 : 

(i) If the équation ( i3) be of rank 3, there are no characte­
ristics of the kind defined on page 10. 

(ii) If (i3) be of rank 2, there are two distinct Systems of one-
dimensional characteristics of each order / 1 ^ 2 of the kind 
defined earlier, and every intégral multiplicity of order n is a 
locus of characteristics of order n, of either system. If the 
équation be solved for a, in the form (1), chapter I, then the 
équations satisfied by characteristics of order n, in addition to the 
équations of contact of order n, are the équations (10), (11), or 
else the system obtained by permuting /JL4 and f/.2,v4 and v2, 
where (/JL4, V4), (/JL2, V2) are the two distinct pairs of solutions of the 
three équations (7) , (8) , (9) . 

(iii) If ( i3) be of rank 1, there is one system only of one-
dimensional characteristics of each order n^.2, of this kind, 
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and every intégral multiplicity of order n is a locus of charac­
teristics of order n of this single system. If the équation be 
solved for a, in the form ( i) , there is only one solution, say JJ. = JJ.4J 

v = v4 of the équations (7)-(9), and the équations satisfied by 
characteristics of order n, in addition to the équations of contact, 
are (10), (11), in which we write /JL4=:JUI2, v4 = v2. 

This is the fundamental theorem of characteristics for second 
order équations with three independent variables. Comparing the 
resulls with the classical case of an équation with two independent 
variables, and making the corresponding définition of rank, we 
observe that an équation with two independent variables of rank 2 has 
two Systems of characteristics, while an équation of rank T has one 
system only, entirely in accordance with the results we have esta-
blished. But there is an interesling différence to which we shall 
return later. 

CHAPTER III. 

INVARIANTS, AND THE GÉNÉRALISATION OF DARBOUVS METHOD. 

The next problem to engage our attention is that of finding the 
conditions which must be satisfied by a function of the éléments o( 
contact of order n, which has the spécial property of remaining 
constant along a characteristic of one or other of the two Systems 
[from now on, we will always assume that the équation (1) is of 
rank 2 or 1 ; and except wrhere it is expressly slated that the charac­
teristics are distinct, ail propositions about u one or other of the 
two Systems " will apply to the case when the two Systems are 
coïncident]. A function of this kind is called an " invariant " 
of the appropriate system. To be more précise, we state the 
following définition. 

Définition. — An invariant of order n, is a function y of the 
éléments of contact of order n, such that the équation 

dÂ = o 

is a conséquence of the system of équations (10) and (11) and the 
équations of contact of order n, or else of the corresponding system 
obtained by permuting ^4 and JJL2, V4 and v2. 
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Thus let i be any function of the éléments of contact of 
order n(^i). Then to calculate the variation of x &long any 
characteristic of the system characterised by JJL4, v4, we substitule 
in dx for each of the differentials for which the équations (10), 
(11) and the équations of contact are solved; and thus, taking 

account of thèse équations and of the définitions of the symbols ( ~ ) 

etc., 

( l4) j , = dJ, dx H- -½ dy -+- -¾ ^ - + - ^ du v 4/ '- dx dy J dz du 

; = 
= <^Y-

1 = 0 

11 

• + " 5 J 7>T~^—dt***-M [ u s i n g ( i o ) - ( n ) ] 

=1(1)--(̂ )-(¾) 
-yj /•-'"•', ) , *>• U 

i — u / 

+ y | «% _, , ,_ j fe v., _ & _ ! * , „ _ , . 
JLU (dt^n-jj ' dsitH-j-ij - ds^n-jj-i] ' '" 

y = 0 

(after rearranging and using the négative suffix convention). 
Now given an élément of contact of order n, we have seen that 

intégrais of ( i ) exist, admitting this élément, for which the deri­
valives of u of order n + i assume any arbitrary values. Further-
more, it is clear from the équations (5) that, having chosen the 
ratios dx'.dy \dz (dx ?é. o), we may certainly choose the derivatives 

of order / i + i in such a way that the n + i ratios °j~/J assume 

any arbitrarily chosen set of values. But the ratios dx'.dy\dz are 
determined by (10) in terms of éléments of contact of order 2 ; and 
are therefore fixed when an élément of contact of order n is assigned. 
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Thus we may assert that given an élément of contact of order n, we 
may always find an intégral, admitting this élément, for which the 

ratios °w~/''/'' corresponding to the characteristic of order n of 

this system lying on the intégral and containing the given élément, 
assume any set of values given in advance. 

Thus in order that dy = o on any characteristic, it is neccessary 
that the coefficient of each dt0}n-j,j(j = 0, ..., n) on the right 
hand side of (14) be zéro : and then since dx ^é o on a. characte­
ristic, we may also equate to zéro the coefficient of dx in (i4)« 
Therefore in order that y i n a v be an invariant of the first system, 
it is necessary, and from the équation ( i4) it is also obviously 
sufficient, that y should be an intégral of the partial differential 
équations of the first order 

1 '=• 
( 1 5 ) 

tL & 4L — M. 
dto,n-i,i ' " <fais/l—z_i./ * dSi^n—tJ-l 

( 1 = 0 , . . . , n) 

and clearly an invariant of order n, of the other system, satisfies the 
same system with JJL4 and fjt2, v4 and v2 permuted. 

We may remark hère that from the définitions in chapter I of 
dy * 

the symbols -£ etc., and the équations such as (2) , chapter 1, the 

équation 

dy * d/ dy> 
dx dy dz 

is a direct conséquence of the équations ( i5). 
We will frequently be dealing with characteristics, and with 

invariants, of différent orders. Thus we will usually refer to the 
system of équations ( i5) as written, as the " System (i 5) of order n ". 
But w hen it is a question of distinguishing belween one system and 
the other, we simply refer to the system characterised by (10) as 
the " first system " and the system obtained by permuting f/t, 
arid /*2, v4 and v2 as the " second system ". 

We now prove two further results. 
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THEOREM 2. — Every characteristic of order /2 + 1 ( / 1 ^ 2 ) (of 
either system when the two are distinct) contains a characteristic 
of order n. 

For suppose that we know a characteristic of order n + 1 oi, say, 
the first system. Then along this characteristic, the équations (10) 
are satisfied, and also the équations of contact appropriate to any 
multiplicity of order n + 1 : that is to say, (3), (4) and (5). And 
therefore the équations (11) are also satisfied : for we have seen that 
when (10) are satisfied, (11) are conséquences of (4) and (5). 
Thus the multiplicity of order n contained in the characteristic 
multiplicity of order /2 + 1, is itself a characteristic multiplicity of 
order n : and the theorem is established. 

From this last resuit it follows at once that any " invariant of 
order n ", as defined above, is also an invariant of the ciiaracteristics 
of any higher order n-\~m. For a characteristic of order n + m 
contains one of order n + m— 1 : one of order n + m — 2 :. . . : 
and finally one of order n. And y being constant along the last, is 
also constant along the first. 

Suppose now (which is by no rneans always the case) that one 
system of characteristics, say the first, possesses three invariants £, 
n, Ç, of order not exceeding n(n^z), one at least of wrhich is of 
order n. Then by the corollary to theorem 2, we see that £, rj, £ 
are ail invariants of the first system of order n. Gonsider now any 
intégral of (1) , which wre have proved to be a locus of charac­
teristics of the first system. Let us then substilute for u and the 
partial derivatives of order up to and including n, in £, r\ and Ç, the 
values, in terms of x, y and z, appropriate to the intégral, and 
make the same substitution in /JL4, V4. We thus obtain three 
functions i\x, y, z), ~n(x,y, z), Ç(x, y, z). But since £, rt and Ç 
are, by hypothesis, constant along any characteristic of order n ot 

the first system, wehave, along the characteristic f the sy mbols j - e t c , 

now referring to the functions \ etc., after substituting for u and 

the partial derivatives J 

Jr di , d\ , d\ , 
d\ SES ~ dx -+- -j-: dy -f- -p dz s dx dy " dz 
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i. e. 

and similarly 

j h P i j 1" V, - r - = O, 
cte r o>j dz 

dr\ dr\ d't\ 

^ ^ ^S 
dx dy dz 

Hence, the values of u and ail partial derivatives having been 
replaced by the functions of x, y, z appropriate to the intégral, 
we have 

<*(£,*!,» = 0 . 
d(x,y,z) 

and therefore the given intégral satisfies an équation of the form 

(16) x(5,*i,Ç) = o, 

for some form of the function y. Thus, once again expressing £, Y?, 
Ç in terms of the éléments of contact of order n, we see that (16) is 
a partial differential équation of order n, which must be satisfied, 
for some form of the function y, by each intégral of (1) . This 
important resuit is entirely in accordance with the resuit for équa­
tions with two independent variables. 

Now the essence of Darboux's method, in the classical case, is 
that, given the data of Cauchy along a non-characteristic curve, and 
knowing two invariants of one system of characteristics, we may 
deduce a newr ordinary differential équation which enables the 
characteristics of the opposite system (or the single System, if the 
two be confluent) to be determined. W e shall therefore investigate 
the corresponding possibility. 

It is a well known resuit in Cauchy's problem, in three indepen­
dent variables, that if u and one of the derivatives of u of the first 
order be given at every point of an analytic surface, then in gênerai 
this data spécifies an unique intégral of ( 1 ) ; and the values of ail 
the derivatives of u of any order may be calculated at any point of 
the surface, by using the équations of contact, the équation ( 1 ) itsolf, 
and équations derived from ( 1 ) by partial differentiation (for 
example, this latter fact is obvious if u and $1,0,0 °e given as funcs 
tions oiy and z when x = o). One of the conditions sufficient in 
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order that this may be true is that the surface shall not correspond 
to a Monge characteristic of the intégral in question : and it is a 
standard resuit that the surface 3*(x, y, z) = o is a Monge characte­
ristic corresponding to a particular intégral of ( i ) if the function E 
satisfies the équation 

, N lâS\* ,sd~ld3 ndZdZ D ( ^ S ) s « d S d E n ( < * 5 ) 2 

(17) r +H-J-T-+GJ-T- + B T +F r T+C 7 =o, v J J (dx) dx dy dx dz ( dy ) dy dz (àz) 

in which we substitute for u and each of the derivatives of u the 
values appropriate lo the intégral in question. 

Thus we now assume that we are given the Cauchy data in such a 
manner that the problem is determinate. To be definite, we will 
suppose that the coordinates x, y, z of a point in a suitable closed 
région of the surface £(x, y, z) = o are expressed in terms of two 
parameters v and w, in such a way that not ail three of the 

Jacobians *\y* *\* àJ~-^^ dJi*9 yl* »«> zéro, throughout the corres-
d(v, w) d(v, w) d(vy w) 7 ° 

ponding région of the plane of v, w : and that from the given data, 
the équation ( i ) and the équations derived from ( i ), the values of u 
and ail the derivatives of u of order up to and including / i ( ^ a ) 
have been expressed as analytic functions of v and w throughout 
this région : and further that, putting in the value in terms of v 
and w of each of the appropriate variables, we have 

M'.-'-{Sf*B££*0 
dx dz 

( dy j dy dz (dz) 

W e have thus a two-dimensional multiplicity of order n : and for 
brevity we henceforth refer to this as the « initial multiplicity ». 

W e suppose ail along that the équation ( i ) wilh which we are 
concerned is of rank 2 or 1. Then we have seen, in the last chapter, 
that there are two Systems of one-dimensional characterislics of each 
order n, of the kind which we have discussed hitherto : and further-
more, that the intégral multiplicity of order n, corresponding to the 
required intégral, is a locus of characteristics of either system. 
Thus we may assert that this intégral multiplicity is in fact the 
locus of those characteristics of either system, contained in the 
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intégral multiplicity, which emanate from each élément of the initial 
multiplicity, provided that we can establish that thèse latter charac­
teristics do in fact form a multiplicity M3, and are not entirely 
contained in the initial multiplicity. To prove this point, we will 
prove that there is a ohe-one correspondent between the points of 
the spacc of x, y, z, and the points of the curves (12) which pass 
through each point of the surface £ = 0. In this connection, we 
nrny remark that since the given boundary data makes the problem 
determinate, w7e may regard u and each derivative of u as known 
analytic functions of x, y, z] and then, substituting thèse values 
in ]UL4, JJU, v4, v2, we mayr regard the équations (12) as defining a 
known system of curves, one of which passes through each point of 
the space of x, y, z : each curve, of course, corresponding to a 
characteristic contained in the required intégral multiplicity. 

Thus let us consider the curve of the system (12) which passes 
ihrough the point of the surface Z = o which is specified by the 
parameters (v, w). Let the position of a point on this curve be 
specified by a new parameter 0, chosen in anyr convenient way, 
which takes the value zéro at the point (v, w) on the given surface. 
For example, we could take 0 to be the arc-lengh along the curve, 
measured from the point (v, w) on the surface. Thus we may find 
a function "k(x, y, z) (différent from zéro, since dx^o) such that 
alonsr the curve we have 

*o 

dy dz dx w . ,n 
—j r = - 7 r = = \(X, r, Z) d0. 
\M(x,y, z) vi(x, y, z) 1 ' * 

Then clearly the point (x, y, z) on a curve passing through any 
point on the surface is entirely specified by the three para­
meters (0, v, w) : and we now proceed to calculate the Jaco-

bian », fl—{1 at any point on the surface Z = o, that is; at any 

point where 0 = o. To this end we remark that from the équa­
tions written above it is clear that for anyr values of 0, v, w, 
we have 

dx . dy , dz . 

while, on the surface, we obtain by differentiating Z = o with 
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respect to v and w respectively 

dZL dx dZ. dy GJE dz __ 
dx dv dy dv dz dv ' 

dZ dx cJE dy d~EL dz 
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dx dw dv dw dz dw o; 

and thus, solving thèse équations, we see that a function p(x, y, z) 
must exist, such that 

à(y, * ) <*E 
d(v, w) * dx 

d(z, x) dZ 

à(v, w) ' dy 
à(x,y) 
d(v, w) 

dZ 
P T~ > r dz 

and clearly p ^ o , since by hypothesis one of the three expressions 
on the left of thèse last équations is not zéro. Hence when 0 = o, 
we have 

X Xuii Xvx 

d(x, y, z) 
d(Q, v, w) 

dx dy dz 
dv dv dv 
dx dy dz 
dw dw dw 

, idZ dZ àZ) 
= ^P ! -; •" Pi ^ h v i T~ ' 

* \dx dy *** * 
dz 

But, putting in the values of H, G, B, F, C in terms of p , , fx2, v4, 
v2, in the expressions ài(v, w), we see that 

i'<"-«'>-(i)"+'":"(S)'--",""(i)* + <'"',''H,"'">(t)(5î) 
-<"—>(f)(IH—>(S)(f) 
- ( S - f - S K i - f - S H 

and therefore in particular 

dz. dz 
dx k dy ^Tz 

Therefore, since X ^ o, p ̂  o, we have 

à(x,y* * ) _ , 0 

whenever 0 = o and v, w lie in the prescribed région of the v, 
w plane. But since we assume that ail the functions with which we 
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are dealing are analytic, it follows that there is a région of the space 
of (0, v, w) which includes the région of the plane 0 = o in its 
interior, and throughout which the Jacobian is différent from zéro. 
Consequently, we may express 0, v, w in terms of x, y, z throug­
hout a région of the space of (x, y, z) which includes the given 
région of the surface Z = o : and there is thus an unique corres-
pondence between the points of the space of (x, y, z) and the points 
of the curves of the system (12) which émana te from each point of 
the initial multiplicity. 

By exactly the same reasoning we may establish the same resuit 
for the system of curves of the second system, obtained by 
writin^ /JL2, V2 for p.4, v4 in (12), emanating from each élément of 
the initial multiplicity; and the desired resuit is thus obtained. 
In other words, we may now assert that the required intégral multi­
plicity of order n is the locus of the characteristics of order n, of 
either system, which arc contained in the intégral multiplicity^ and 
emanate from each élément of the initial multiplicity. 

Now it is clear that if by any means we could détermine thèse 
characteristics explicitly, the problem of finding the intégral would 
be solved. For if, with the notation which we have adopted in this 
chapter, we could solve for the various éléments of a characteristic 
of order n, emanating from the initial multiplicity, in the form 

x = x(ti, P, w), y=j (0, P, w), z = s ( 6 , p, w), u = a (6, v, w), 

* 1 À - I - 1 , I = * 1 A - i , - i , , ( 6 , ^, « 0 , £ < > , * - / , / = ' M - y , / ( e > v, w), 

(k = i, ..., n ; i = o, . . . , A — 1 ; j = o, . . . , A-) 

then since /, Q * ; 5^ o, we could élimina te 0, v, w from the first 
d(ft, v, w) ' ' 

four équations and obtain the required intégral in the form 
u = u(x, y, z). 

W e shall now see how, in certain cases, we mayr carry out this 
détermination : the method of procédure to be adopted being 
clearly suggested by Darboux's procédure for équations with two 
independent variables, and the results which we have obtained 
so far. 

Thus suppose for some integer n ( ^ 2 ) one or other of the 
Systems of characteristics possesses three invariants £, ri, Ç. Then 
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we have seen that when the variables involved take the values 
corresponding to an intégral multiplicity of ( i ) , £, ri, £ satisfy an 
équation of the form (16). Now we may détermine the précise 
form of the function y in (16) from the boundary conditions. For 
suppose that we substitute for each of the variables which make up 
an élément of contact of order n, the values in terms of the para-
meters v and w which thèse variables assume on the initial multi­
plicity, thus obtaining three functions \(v, w), ri(v, w), Ç(v, w). 
In gênerai (in other words, except possibly for spécial boundary 
conditions), we may then express one of thèse functions uniquely 
in terms of the other two, say 

?(P , i v ) - » - < p { 7 l ( p , w), 1(V, W)} = 0 , 

the form of the function 9 now being known; and since we have 
proved that there is a functional relationship betwreen £, Y?, Ç valid 
for ail x, y, z, it follows that the required intégral satisfies, for ail x, 
y, z, the équation 

(18) x s ç + ç ( t l > Ç ) = o ; 

and we may remark that y is itself an invariant. The foregoing 
reasoning would only be defective if every intégral of ( 1 ) were such 
that, on substituting for u and its derivatives their values appro­
priate to the intégral, there were always two or three functional 
relationships between £. n and Ç, so that either, say, £ = X(Ç), 
n =. Y(Ç), or else £, ri and Ç are constants. Both thèse circumstances 
we shall shortly show to be impossible. 

Since, by hypothesis, at least one of i, ri, Ç contains a derivative 
of order n, it is clear that, in gênerai, (18) is an équation of order n. 
But we must now prove, [denoling the left side of (18) by y], that 

in gênerai, one at least of -r - (i = p, 1, . . . , n — 1) is not 
° dSl}n—i-l,i 

zéro. For it is conceivable that, whatever the intégral of (1), the 
corresponding form of the function cp in (18) might be such that 
each ^ — = o, when we substitute for u and each derivative 

of u the values appropriate to the intégral, in terms of x, y z. 

Now intégrais of ( 1 ) exist admilting any arbitrary élément of 
contact of order n. Thus for gênerai values of the variables, we may 

MEMORIAL DES SC. MATH. — N° 142. 3 
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.1 * r ^s «h dY^ , . x 

suppose one at least ot-: - 5 -. ? (1=0,1,..., n—1), 
to be non-zero. For if this were not the case, it follows from ( i 5 ) 
that none of £, rj, Ç would contain a derivative of order n, contrary 
to hypothesis. Thus the matrix of n rows and three columns, 

1 *«u u«. dt fh\ dZ in the a f + i ' t h row and wnicn has ? 3 ? 
Osl,n—1—\,i (fs\,n—1—1 z v4 1, , , - , -1 , , 

respectively the first, second, and third column, is of rank 1, 2 or 3 . 
Let us therefore suppose, if possible, that for every intégral 

of ( 1 ) , the function <p in (18) is such that each ^ is zéro on 

the intégral. This requires 

d% dy dr\ dy dl _ 
cki,n-i—1,« àr\ ds^n-t-i^ dÇ ds^n-.t-.x , 

( ï = o , 1, . . . , * — 1 ) . 

If the matrix described above be of rank 3, then thèse n équations 
are inconsistent. If it be of rank 2, and if the équations be consistent, 

then we may solve them uniquely for -y- and -^ in terms of éléments 

of contact of order n. But since, by hypothesis, ri and Ç are inde­

pendent functions of thèse éléments, it follows that we may express 

two of the variables composing the élément of contact in terms 

of Y), Ç and the remaining variables. Doing this, we solve the n 

équations above, in the form 

vvhere A and B are functions of ri, Ç, and ail except two of the 
variables composing an élément of contact of order n. But since 9 
is a function of ri and Ç only, this is impossible unless A and B are, 
in fact, functions of ri and Ç only. Hence we suppose that we have 

But even if the integrability condition were satisfied, we would 
then have y in the form <p = U(rj, Ç) — X where the form of U is 
fixed, and 1 is an arbitrary constant. Thus we would have the 
resuit that every intégral of ( 1 ) satisfies an équation of fixed form 

RsÇ-hU(Ti , Ç)=X, 

for some value of "k ; and we observe that R is also an invariant. 



THE EXTENSION OF DARBOUX S METHOD. 3 l 

Now this is impossible. For suppose that R contains a derivative 
of order s^Ln, which we may dénote by p. Théo, for gênerai 

values of the variables, -7- must be non-zero. Hence, differentiating 

the équation R = / with respect to y or z, we obtain a linear 
relationship between the derivatives of order s + 1, containing at 
least one of thèse latter, and satisfied by every intégral of ( 1 ), 
contradicting the fact that intégrais of ( 1 ) exist, admilting any 
élément of contact of order s + 1. 

It remains only to examine the case w hen the matrix described 
earlier is of rank 1. If this be so, we see that, with our hypothesis, 
and again expressing two of the variables in terms of r,, Ç and the 
remaining ones, cp must satisfiy, for any intégral of ( 1 ), an équation 
of the form 

where A, B, C are functions of n, Ç, and ail but two of the variables 
composing the élément of contact of order* n, and at least one of A, 
B, C is non-zero for gênerai values of ihe variables. Clearly the 
équation can only be satisfied if one of A, B is non-zero. Since cp 
dépends only on ri and Ç, it is easy to show that either we deduce two 

équations of the form j - = Ai (ri, £), -^ z==Bi(n, £), which we have 

just shown to be impossible, or else the ratios A:B:G dépend only 
on Y2, Ç, so that we may rewrite the single équation satisfied by 9 in 
the form 

K ( r 1 . r ) ^ + L ( r J , o J = M(ri,Ç,)? 

not both of K and L being identically zéro. But such an équation 
may be integrated, in the form 

* = i*(*k, ;> + *! v(r„ ; ) t , 

where U(Y>, Ç) and V(Y), Ç) are functions i>f known form, and 4> is 
arbitrary. W e would thus have the resuit that any intégral of ( 1 ) 
satîsfies an équation of the form 

5n-U(n, ; ) - H * i M i , 0 ! = o , 
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or, writingP = £ + U(YÎ, £), Q = V(YJ, Ç), and noticing that P and Q 
are again invariants, 

P-h<&(Q) = o. 

Now if P and Q are not independent invariants, we have an 
équation P = Cte, satisfied by every intégral of ( i ), which we have 
shown to be impossible. If P and Q are independent, at least one 
must contain a derivative of u, otherwise we would have an expression 
for the gênerai intégral of (i) , containing only one arbitrary function, 
which is impossible. Thus without loss of generality we may suppose 
that the derivative of highest order in P or Q is of order n (n not 
necessarily being the same as before). Let this derivative be p. 

Then either -r- or - ^ must be non-zero for gênerai values of the dp dp ° 
variables, and therefore not both of-7-? -7-̂ ? and not both of -7-? - ^ 

dy dy dz dz 
are identically zéro. But, diflerentiating the équation P + ^ ( Q ) = o 
with respect to x, y and to z, and using ( 1 ) as ail along, we oblain 

7m + (1 , ' (Q) 
dp 
dx 

dP 
dy 
dP 
dz 

dQ' 
dx 

- * < Q > g - • 

• * ' ( Q ) 
dQ 
dz 

It follows that, for every intégral of ( 1 ), and therefore for arbitrary 
éléments of contact of order n + i, the matrix 

dx 
dP 
dy 
dP 
dz 

dQ* 
dx 
dQ 
dy 
dQ 
dz , 

must be of rank 1 : and this may be shown to contradict the hypo­
thesis that P and Q are indépendant invariants. 

W e have thus proved that, the function cp in (18) being chosen 
appropriately for any particular intégral of ( 1 ), it is impossible that 

each à* 
às^n—i-xi 

is always zéro. This may occur for spécial intégrais 
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of ( i ) : but for gênerai intégrais of ( i ) , we may suppose that at 

least one of the -r — is non-zero. 

It may happen that we know a number of invariants, say of the 
first system, of différent orders, and are thus able to form a number 
of équations such as (18), of différent orders, which the required 
intégral satisfies. W e shall therefore now show how, from an équa­
tion such as (18), of order n, we may deduce q + 2 new ordinary 
differential équations for the détermination of ihe characteristics of 
the opposite system of order n + q(q ^ o). Now, since the intégral 
which we are seeking satisfies (18), and since, on this intégral, ail 
variables are functions of x, y, z, it follows that the intégral must 
also satisfy the équation obtained by differentiating (18) any number 
of times with respect to x, y and z. No advantage is gained by 
differentiating with respect to x : for we have seen that the idenlity 

d/.* d*L dy 
dx ^^dy^Vldz^° 

is an algebraic conséquence of ( i5) , and thus, when we use ( 1 ) and 
the équations derived from (1), ail équations derived from (18) by 
differentiation are conséquences of those among them involving no 
differentiation with respect to x. 

Differentiating ( (8) q— k + 1 times with respect to y, and k times 
with respect to z (o ^ k ^ q + 1, q^o) we obtain 

n — \ 

n 

-*~ Z^~Â* *0,/Ï+7—/—A + l , /+£ — O. 
J^ Oio,n—j,/ 

But along any characteristic of order n-\-q, of the second system, 
we have 

dy = \LI dx, dz = v2 dx, 

and therefore 

dta}n-hfj-t—A,t-hk = ( *l,«+7—i-Â,*+£-+" P2*0, n+q—i—/v+l,/+A 

H- v2 *o, n+ff-i-k, *+A+i | dx 

(« = o, 1, . . . , n — 1; k = o, 1, ..., q-h\). 
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Since dxjéo, we may substitute for each SI^+V-I-ASI+A in the 
équations (19) from thèse last équations. Doingso, and rearranging 
with the help of the négative suffix convention, we obtain 

(^¾) dx + 2 ô^hT.i "••-«- ' -^ 

•+- 7 \ ~, P* "i v2 -\ . 
A J I ^ / o . H - / , / ds\.n-i-\,i ^ 1 , / 1 - / . / - 1 ) 

X rtJ? / 0 , fl + 7_/-/6+i, /+* = o. 

(A- = o, 1, . . . , Î + I ) . 

Then, taking account of ( i 5 ) , which are satisfied since y is an 
invariant of the first system, we have 

(20) 

(k = o, 1, . . . . <7 -+-1) . 

Since at least one of the-; is non-zero, it is easy to see that 
dSitn-t-lti 

the matrix of the coefficients of the n + q + 1 differentials dt0)n-j+q,j 
(y = o, 1, . . . , /1 + 7) , in the 9 + 2 équations (20) is always of 
rank q + 2. Thèse équations are thus distinct, and we have 9 + 2 
new ordinary differential équations which are satisfied by the 
characteristics of the second system, of order n + q, contained in 
the required common intégral of ( 1 ) and (18). 

Suppose now that we have determined a number of invariants ot 
the first system, of order not exceeding n(n ^ 2), say £4, . . . , £,, ri, Ç, 
one at least being of order n. Then, using the boundary conditions, 
we may form s équations of the same form as ( 18), say 

/ J=? IH-? / ( •» ! , Ç) = °» 

the équations being of various orders, but at least one being of 
order n. Then, applying the procédure indicated above, we may 
construct a number of ordinary differential équations satisfied by the 
characteristics of order n, of the second system. Thèse équations 
will not, in gênerai, ail be distinct; but if there be n + 1 distinct 
équations, we may solve thèse latter for the /1 + 1 differentials 
dto,n-j,j(j = o, 1, . . . , n)] and, adjoining thèse new équations to 
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the équations of characteristics of the second system of order /*, we 
have a complète set of ordinary differential équations, which, inte-
grating and using the boundary conditions, détermines the required 
intégral. 

This is, in essence, the extension of Darboux's method, though 
there are a number of points still to be examined before we give 
examples of the method. 

W e notice that we may write down at once a number of first 
intégrais of the system of ordinary differential équations for the 
second system. Firstly, any invariant of the second system, of 
order not exceeding n is, by définition, a first intégral of this system. 
So that even though we may, in theoryr, solve the problem by using 
the invariants of the first system, in practice it is well worlh deter-
mining ail the invariants of the second system as well, in order to 
simplify the final intégration. Secondly, suppose that we are using, 
among others, an équation of the form ( 18) of order/? ^n, and that 
we are attempting to détermine the characteristics of order n of the 
second system. Then, in addition to the various ordinary differential 
équations satisfied by this system, we have the finite équation (18) 

itself, and - (n—p) (n—p + 3) other finite équations 

dyJ-}dzt = ° ( ' = '»2, ...,n-p;t = o, i, ...,s) 

which the common intégral of ( i ) and ( 18) must satisfy, and which 
are therefore satisfied, in particular, along the characteristics of the 
second system contained in the common intégral [if p = n we, of 
course, simply have the équation (18) itself]. Thèse équations 
and (18) itself, ail of which may easily be seen to be distinct, by 

virtue of the hypothesis that one of the -r is non-zero, may be 

solved for - (n —p + i ) (n —p + 2) of the variables composing the 

clément of contact of order n; and we may therefore reduce the 
number of ordinary differential équations by this number. 

In the particular case when p = n, so that we areseeking to déter­
mine the characteristics of order n, using an équation such as ( 18) 
of order n, we shall show directly that y is a first intégral of the 
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équations (20), which in this case reduce to two, namely 

<«> ï ^ t : / ' — ( ¾ ) *-<>, 
/ = 0 

n 

together with the équations of characteristics of the second system. 
Suppose that we calculate the variation of the function y along a 
characteristic of the second system, without assuming that the intégral 
satisfies (18). Then, by the reasoning by which we obtained (i4)> but 
permutingfzi and JUU, vt and v2 

n — 1 

* - \(îh - m + - (¾) -s u s y * £ + 
^"" ( vfo,n-/,/ 0*1 ,11—7-1, / vs\,n-;,j — \ ) 
/ - 0 

But again, ^ being an invariant of the first systern and satis­

fying ( i5) , we substitute for each ( *•— and for 

( ^ 7 - 2 ( ¾ ^ ¾ ) ¾ ^ from(l5)' 
1 = 0 

and obtain 

(23) ^=(^-^)12^^-^..^.,+(^)^1 

Therefore it is apparent from (23) that 

d-£ = o 

is a conséquence of the équations of characteristics of the second 
system, and the two équations (21) and (22). 

W e may remark from (23) that when the characteristics are 
distinct, so t int one of (p.2 — pi ) , (v2 — v t) ià non-zero, then instead 
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of the équations (21 ) and ( 2 2 ) , we may write one of thèse and thè 

équation dy = o. But it is better to write (21) and (22), and to 
solve the finite équation y = o for one of the variables Si^n-i-ij 

(i= o, . . ., n — 1 ), ( which is possible since one of the -: — is 
V ' \ r ds^n-t-ij 

non-zero j , and thence eliminate this variable from the system of 

ordinary differential équations. 
It may happen that an équation such as (18), in gênerai of order/?, 

may be of lower order for particular boundary conditions. For 
example, if £, ri, Ç are three invariants of the first system, £ being of 
order/? but ri and Ç being of order q <Cp, then in gênerai, an intégral 
satisfies an équation of the form 

7.(5, '1, ?) = o, 

of order/? : but a particular intégral may satisfy an équation of the 
form 

X ( " n > ï ) = o > or i)-h<p(Ç) = o, 

of order q <ip> This circumslance, when it arises, is highly advan-
lageous. For from the results established we see that the number of 
new ordinary differential équations which we can deduce for the 
characteristics of order n from an équation (18) of order q is (p—q) 
greater than the number deduced from an équation of order/?. If it 
should happen that the équation y = o contains only partial deriva­
tives of the first order, then this équation may always be solved, say 
by Cauchy's method, and we could thus obtain the required intégral 
of (1). Finally, if the équation contains no derivative, but contain u, 
we would have the required intégral of ( 1 ) explicitly. 

Just as in the case of équations with two independent variables [8] , 
there is an important simplification in the procédure when the two 
Systems of characteristics are confluent. For ail the reasoning 
hitherto applies whether the characteristics are distinct or confluent : 
but when they are confluent, every invariant is constant along the 
system of characteristics which we seek to détermine, by the method 
described above. From this remark it follows that, provided that we 
can détermine a sufficient number of invariants, we do not need ta 
détermine the exact form of the functions cp in the équations of thé 
form (18), in order to be able to integrate the system of ordinary 



38 D. H. PARS0NS. 

differential équations which détermine the characteristics. For if £, 
>î, £ are three known invariants of the single system of characteristics 
of order n, then for any function y(^y n, K) we have 

*A = tL â" + àJL ^ + !& < 
<tel,n-i-1,« ^? ^ l , » - i - l , / ^ ^ 1 , / i - f - l , i ^ ^ l , « - / - l , ï 

(« = 0, . . . , / I - — I ) , 

\ dy<?-*+i dz* ) dÇ\ dyv-*** dz* J 

<ty I dv+*Jj \,ày/ d't^l \ 
<̂1 \ 6 ^ - ^ i rfs*/ ^ W j ' ^ - ^ 1 dzk j ' 

Thus the lefl-hand sides of the q + 2 équations (20), or the two 
équations (21) and (22) if q = o, for the function x are the sums of 
three corresponding expressions for £, YJ, Ç (which do not dépend on 
the boundary conditions), the coefficients of the three expressions 

being-^? -^> -t£- But along a characteristic of the single system, £, 

n, t are constant; and thus Si -ri -4 are also constant. Hence if 
' 7 d% dr\ dÇ 

there are enough invariants for us to construct n + T new ordinary 
differential équations of order n, then we may integrate the system 
of ordinary differential équations thereby obtained, treating-^? -^ i 

~£ as parameters in the intégration, which may thus be carried out 

before the boundary conditions are specified. 

This is the basis of the extension of Darboux's method. W e see 
that the success or failure of the method dépends upon the existence 
of a sufficient number of invariants of one or other of the Systems of 
characteristics, of some order n. 

W e must observe that the procédure of deducing équations of the 
form (20), or as a particular case (21) and (22), is fondamental. 
There in no question of finding enough invariants, and thence enough 
équations of the form (18), of order not exceeding n, to solve thèse 
équations for the variables £0ill__/fy (/ = o, 1, . . ., n), in terms of the 
remaining variables, and integraling the équations of characteristics 
of order n, which would then be of sufficient number. For suppose 
that we have any number s, 5 ^ / 1 + 1 , of invariants of the first 
system of orders not exceeding n, say yi,y%, . . . , ys- Consider then 
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the matrix which has -:—^— in the j ' + l'th row and k1 Ui column 

(o ^-i^-n — i ), and has -r—^— in the n + / + Pth row and /d th 
\ / , àt0in-;,f J 

column ( o ^ / ' ^ / i ) . Then by virtue of ( i 5 ) , we see that every 
row of this matrix is a sum of multiples of the first n rows, and the 
matrix is of rank not exceeding n. Consequenlly, it is impossible 
to solve the équations y= o for the n + i variables t0,n-j,j(j = o, 
i, . . . , n). Similarly, we may see that if we find ail the invariants 
of both Systems, when they are distinct, of order not exceeding /i, 
and then form the équations such as (18) for both Systems, we can 
never solve the problem by solving thèse équations for ail the deri­
vatives of order /i, and then treating the équations of contact as an 
integrable system of total differential équations. For if we have any 
number of invariants yi, . . ., ys of one system, and S1 ? . . ., S r of 
the other system, of order not exceeding n, the matrix whose éléments 
are the partial derivatives of the invariants with respect to the in + i 
variables s l jn_i_i,/, ^0,^-/,7 is easily seen to be of rank not excee­
ding in, by virtue of ( i5) and the analogous system with JÛ  and JUL2, 

vt and v2 permuted. There is thus no analogue of the simplification 
which sometimes occurs in the case of équations with two independent 
variables. Another contrast with the classical case is that, whereas 
in the latter the knowledge of any two invariants of one system is 
sufficient to solve the problem, in this case the knowledge of three 
invariants is not. For we have seen that from three invariants of 
order not exceeding n, one at least being of order n, we deduce q + 2 
newT équations for the characteristics of order n -hq, while n-\-q + 1 
new équations are required. 

Thus we see that, given an équation of the form (1), the procédure 
is as follows : 

(i) W e form the déterminant A(chap. II, p . 10). If this déter­
minant is of rank 3 (i. e., not zéro), the method cannot be applied. 
If however the déterminant be of rank 2 or 1, we .proceed to the net 
step. 

(ii) We set up the équations ( i 5 ) of order 2 for one system of 
characteristics and, applying the standard procédures for solving 
Systems of linear, homogeneous, partial differential équations of the 
first ôrder, we find ail the intégrais of the system. If thèse be suffi-
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cient in number and of such a nature that we can deduce three 
distinct new équations, of the form (21) and (22) with n = 2 (having, 
of course, used the boundary conditions to détermine the form of the 
functions yi except, as explained above, when the characteristics are 
confluent) we may détermine the characteristics of the other system 
of order 2 by the aid of équations of the form (21) and (22). Failing 
the existence of enough suitable invariants to solve the problem in 
this way, wre 

(iii) repeat the procédure with the équations ( i5) appropriate to 
.the other system, in an attempt to détermine the characteristics of 
the first system of order 2. Failing this, we 

(iv) repeat the procédure with the équations ( i5) for the first 
system, and then the équations (i5) for the second system, of order 3 : 
and so on until the problem can be solved, if indeed such a stage 
can ever be reached. 

Just as in Darboux's original method, there is no way of telling in 
advance whether or not the method can be successful, nor of deter-
mining what order of characteristics we may have to consider, in 
order to solve the problem in those cases when the method succeeds. 

From the results obtained, it appears thats as n increases, so does 
the number of invariants which are required. But though this might 
seem to make the work involved quite prohibitively long, we shall 
later see how the knowledge of invariants of a certain order enables 
us to détermine new invariants of higher order. And indeed there 
are a number of results, most of them similar to corresponding 
results for équations with two independent variables, which may be 
used to simplify the search for invariants, and in certain cases to 
place an upper limit on the number of invariants pf each order which 
could exist [9 ] . Some of thèse we shall obtain in chapter V. 

Meanwhile, we notice that there are certain aspects of the theory 
which are not entirely satisfying. The crucial fact, on which the 
success of this method dépends, is the vanishing of the variables 
representing derivatives of u of order n + q + 1, from the ordinary 
differential équations which lead to the équations (20). At first 
sight there seems to be an élément of luck in the fact that the coeffi­
cients of thèse variables convenienlly vanished. And in order to 
obtain a full understanding of the theory of thèse équations, we 
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follow the line of investigation adopted by Goursat [ 1 0 ] , in dealing 
with équations with two independent variables : in other words, we 
extend the conception, originated by Sophus Lie [H]» of « équations 
in involution ». In doing so, we shall also see how the knowledge 
of a number of invariants, in itself inadéquate to détermine the 
characteristics of any order, may y e t b e used to détermine an infinity 
of intégrais of ( i ) , depending upon an arbitrary function. 

CHAPTER IV. 

EQUATIONS IN INVOLUTION : COMMON INTEGRALS OF SUCH ÉQUATIONS : 

COMMON SYSTEM OF CHARACTERISTICS FOR A SYSTEM IN INVOLUTION. 

Suppose now that we are seeking a common solution of the équa­
tion ( i ) and another partial differential équation of order n(^i). 
W e may always assume that the second équation contains no partial 
derivatives of u which involve more than one differentiation with 
respect to x) for we may always substitute for thèse derivatives their 
values in terms of the other variables, obtained from (1 ) and équa­
tions obtained by differentiating ( 1 ) . Thus we write the second 
équation in the form 

(?4) ySx-> •••» 'o.O.n) = o, 

and we suppose this équation to be of fully reduced form. Then 
since on a common intégral, whose existence we assume, ail the 
variables involved are analytic functions of x, y, z, the derivatives 
of u of order n-\- 1, appropriate to such an intégral, satisfy firstly 
the various équations obtained by differentiating (1) n — 1 times, and 
secondly the three équations 

& = < > • 5¾ = o - 5¾ = 0 . 
dx ' dy ' dz 

Then, as mentioned above, ail variables r2)Jj/t may be expressed 
by means of ( 1 ) and équations derived from ( 1 ) and substituting for 
thèse variables in the first of the three équations written above, we 
have finally three équations relating the 2 n + 3 variables $1,^-1,^ 
^0,/,-7+1,7(/ = 0, . . . , n;j = o, . . . , /i + i ) , namely 

*l* = 5¾ = 5¾ = 0 . 
dx dy dz 

Using the expressions of the form ( 2 ) , Chapter I, we may write 
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thèse équations more fully in the form 

K } dx \dx) AàKdr'-t-idzt/àsi.n-t-i.i 
i— o 

+yj ^ L _ __„ *^__G *L_ \ 
ÀmÀ\ dtçn-1,1 dsin-i-yti OTi.n-t.f-l ) 

_yj 15_iL_+F ^ L _ + c +½—^,,,-/+,/=0 
^ ( dslitl^/-i / ^ 1 , / 1 - / . / - 1 ^ 1 . / 1 - / - 1 . / - 4 ) 
/ = 0 

/=» /=(» 

/ - 0 

Définition. — Now extending the well known définition, given by 
Goursat [12] for équations with two independent variables, we say 
that the équations (i) and (24) are « in involution » if the 
équations (25), (26), (27), regarded as linear équations in the 2 n + 3 
variables which represent the derivatives of u of order n + 1 , 
reduce to two distinct équations, in the neighbourhood of an 
arbitrary élément of contact of order n satisfying (24). 

In order that this may be so, it is clearly necessary and sufficient 
that three functions of the éléments of contact of order n, X. p., v 
should exist, not ail zéro, and such that 

(28) ,,J' J + V J . S , 
v dx dy dz 

First of ail we dismiss the possibility that X = o. For suppose 
that X = o, but that one of JJL, V is not zéro; say the former. Then 
equating to zéro the coefficients of Si,n_/,f and £0.71-/+1,/» we obtain 

dy d/ 
v* 1, n—i \ 1 vs 1, n -i, z— l 

dy dy 
tf'O.zi-/. / 0*0. n—/M. /—t 

and putting i = o, . . . , » — 1 successively, and j = o, . . . , n 
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successively, and using the négative suffix convention, we obtain 

dy d/ 
-r — - = j = o ( / = o , . . . , n— 1,-./ = 0, . . . , n). 

But the équation (24) is, by hypothesis, of fully reduced form, 
so that the partial derivative of y with respect to at least one of the 
variables composing the élément of contact of order n, is not zéro. 
We may therefore suppose (24) solved for one of thèse variables, 
which clearly does not affect the property of being in involution 

with ( i ) , as defined, and consequently if each - ^ — and -r-—-— 
x ' T- J ds1}n-i-.i>t ^0 , / * - / , / 

be zéro for values of the variables, which are arbitrary subject to (24) 
being satisfied, they must be identically zéro, and not merely zéro 
as a conséquence of (24). It follows that (24) contains no deri­
vatives of u of order n, contrary to hypothesis. Hence we must 
have X -?é o; and we may divide (28) by X, or ehe take X = 1, which 
is the same thing. Thus taking X = i, and equating to zéro the 
coefficient of each $i,n_,-,,-, £0,/2-7+1,7 in (28), and also equating to 
zéro the term independent of thèse variables, we obtain 

1=0 

<3o> gr* - - * ! 1 -" )à S
 dL .+^-^à/7',. = ° ('=0.•••»»»), 

Ototn—i,i OS\,n—i-l,i vSl,n—i,i—l 

(3 1) P T*— h v T* B 1 
</tO,/i—/,/ vto,n—/+1,/-1 vsl,/i—/-1,/ 

- F - j — £ £ CÂT^JL = ° ( > = o , . . . , « + !). 
OS\, n—/, /—1 <Wl ,/z—/+l 5 /—2 

Then, substituting from the équations (3o) in each équation (3i) , 
we have 

(32) ( j x * - Hfx + B) — ^ + (2 f iv - Gf, - Hv + F ) d'L 

^1,/1-/-1,/ 0*\.jl—jii—\ 

+ ( v 2 - G v + C ) - = 0 0 = o, . . . , # n - i ) 
*Wl.n—/+1,7—2 

If (|j.2—Hp + B) is not zéro, we put J= 0 ,1, . . . , /1 — i 
successively; if(v2—Gv + C)is not zéro, wetakey = n + 1, n, . . . , 2 
successively; while if both the preceding expressions are zéro-
but (2 /JLV — Gju. — Hv + B) is différent from zéro, we take/ = 1, . . . /&. 
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In any of ihese three events, taking account of the négative suffix 
convention, we see that 

ày 
— (2 = 0 , . . . , 7 1 - 1 ) ^*1 , / i—j—1,1 

and thence from (3o) 

à*. 
(iïo,n-/,/ 

(J = o, . . . , n) 

Thus, by the same reasoning as before, the hypothesis that the 
équation (24) is of order n is contradicled, unless we have 

({JL2— HJJL-4- B) = 0 , 

( 2 fj.v — G[x — Hv -4- F ) = o, 

( V 2 _ G V - + - C ) = 0 , 

équations which we recognise at once as the équations (7)-(9)7 
chapter II. Thus the reasoning of chapter II follows at once; and 
in particular we see that it is impossible for the équations (1) and (24) 
to be in involution unless the condition A = o is satisfied : in other 
words, unless the équation (1) is of rank 2 or 1. If this condition 
be satisfied, the quantilies H, G, B, F, G have the values found in 
chapter II. Then if we choose ĴL = /UL± , v = v4, and substitute thèse 
values in (29) and (3o), we obtain precisely the équations ( i5 ) , 
chapter III; while from the way in which we obtained the 
équations (32), it is clear that équations (3i) are conséquences 
of (3o) and (7)-(9). Similarly, the choice /ut. = /UL2, V = V2 leads to 
the .équations ( i5) , with /JL4 and /JL2, vt and v2 permuted. 

There is, however, a significant différence in the way in which we 
interpret the équations ( i5) . In order that y might be an invariant 
of order n of the first system, it was necessary for y to satisfy the 
équations ( i5) identically, since intégrais of (1) exist for which the 
variables which figure in ( I D ) of order n assume arbitrary values, 
and characteristics of each system emanate from any élément of 
contact contained in an intégral of (1). But in order that (1) 
and (24) may be in involution, it is clearly sufficient that the 
équations ( i5) , or the System obtained by permuting /uij and JJL2T 

v4 and v2, should be satisfied as a conséquence of the équation (24) 
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itself. Thus we may summarise the resuit in the slatement of the 
following theorem : 

THEOREM 3. — In order that the two équations (i) and (24) be 
in involution, it is necessary and sufficient : 

(i) that the équation (1) be of rank 2 or 1 ; 

(ii) that the function y should satisfy either ( i5) , or ( i5) 
with f*i and p.2, vt and v2 permuted, either identically or as a 
conséquence 0 / ( 2 4 ) itself. 

It is an immédiate conséquence of this resuit that any équation of 
the form (18), that is to say an équation y = o in which the func­
tion y is an invariant of either system, is in involution with (1). 

W e now proceed to show that two équations in involution have a 
system of common intégrais, which dépend on an arbitrary 
function [13]. 

Suppose that we are given, instead of the full Cauchy data, the 
value of u in terms of the two parameters v and w, at each point 
of the surface 2 = o (see chap. III). Then we will now show that 
if the équations (1) and (24) are in involution, we can détermine a 
common intégral of the two équations, such that u takes the given 
values on the surface S = o. 

W e assume for one of the derivatives of u of the first order, an 
undetermined form, say 

5 i ,o ,o= S ( r , w). 

Then, as explained in chapter III, we may calculale by means of 
the équations of contact, the équation (1) itself and the équations 
derived from (1) by differentiations, the values of ail the derivatives 
of u of order up to and including n, in terms of v, w, S(v, w) and 
the partial derivatives of S with respect to v and w, of orders in 
gênerai up to and including n — 1. Substituting thèse values, 
togelher with the given values of u, and the values of x, y, z in 
terms of v and w, in the équation (24), we obtain in gênerai a 
partial differential équation of order n — 1, with one dépendent 
variable S, and two independent variables v and w : though in 
particular cases it may happen that the order of the équation is 
lower than n — 1, or even that the équation is a finite équation 

MÉMORIAL DES SC. MATH. — N° 1 4 2 . 4 
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for S. The intégrais of this équation dépend in gênerai upon n — i 
arbitrary functions of one variable : that is, we can in gênerai 
specify the values of S and n — 2 partial derivatives of S along a 
curve in the plane of (v, w). 

But selecting any intégral whatever of the latter partial differen­
tial équation, we have in conjunction with the given value of u in 
terms of v and w, the data of Cauchy in the usual form : and this 
data spécifies uniquely an intégral of (1), provided that it does not 
correspond to a Monge characteristic. This latter event might 
arise for a particular surface S — o and for a particular spécification 
of u on the surface : but in gênerai it cannot occur : for from the 
équation (17), chapter III, we observe, for example, that a 
plane x = Gte can never be a Monge characteristic. And from ihe 
way in which we have calculaled the boundary conditions which the 
intégral satisfies, it is clear that if we substitute for ail the variables 
in the function y on the left hand side of (24), the value appropriate 
to this intégral of (1), then at any point on the surface £ = 0 we 
have 

X = °-

But we have seen that any intégral multiplicity of ( i ) is the locus 
of characteristics of either system, emanating from each élément of 
the initial multiplicity associated with the surface S = o. 

Hence if y be an invariant, say of the first system, and therefore 
in involution with (1), then if we substitute the values of ail variables 
in y, appropriate to this particular intégral, we have along each 
characteristic of order n of the first system, emanating from the 
initial multiplicity, 

dy = o; 

and thus since y = o on the surface Z — o, it follows that the 
équation (24) is satisfied at every point by the intégral which we 
have determined, which is thus a common intégral, taking the 
specified values on the surface S. = o. 

If, however, the function y is not an invariant of either system, 
although the équations (1) and (24) are in involution — that is, if the 
function y satisfy the équations ( i5) (or those obtained by 
permuting p.4 and JJI2, vt and v2), not identically, but as a conséquence 
of (24)» then we have to proceed rather differently to establish this 
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resuit. Let us suppose, for definiteness, that y satisfies ( i5) of 
order n as a conséquence of (24). Having determined the intégral 
of (1) by the procédure of the last page, and having seen that the 
équation (24) is satisfied al any point of the surface 2 = o, suppose 
that we substitute in the function y the values of each variable, 
appropriate to a point on a characteristic of the first system, 
contained in the intégral multiplicity which we have determined, 
and emanating from the point on the initial multiplicity specified by 
the parameters c, w. And let us suppose that the point of this 
characteristic is specified by the parameter 0, as in chapter III. y is 
then a function of 6, whose derivative we require to calculate at any 
point of the characteristic. But before doing so, we may place 
certain restrictions on the form of the function y. 

We may always regard the équation (24) as solved for one of the 
variables Si,/t_/__i,i, i=o, . . ., n—1. For if, for arbitrary values 

of the variables, satisfying (24), each - - were zéro, then since y 
dS\} n—i—l 1 

by hypothesis satisfies the équations ( 15), each -r—-— (j = o, . . . , n) 

would also be zéro, and by the same reasoning as earlier, the 
hypothesis that (24) is of order n would be contradicted. Suppose 

then that for some particular integer p, -r yé. o. We may 
us\,n—p—\ p 

thus solve the équation (24) for S i , , , - ^ 1 , ^ and from the définition 
which we have adopted, it is clear that solving for one of the 
variables cannot affect the property of being in involution with (1). 

Thus we may write the équation (24) in the form 
( 3 3 ) y~- Si / ï_ / U_ l ,y t yH-cp(j", . . . , f0,u,/i) = 0, 

in which the function cp does not contain sif/l_P-i,{)> Then substi-
tuting this value of y in the équations ( i5) , chapter III, we obtain 

«> (è)\*($H(S) 
2 J \ dy"~l ! dz1 /<**,,„-,-,,, \ dy«-P-i dzP ) 
1=9 

in which the term i = p is omitted from the summation; and also 
( dz do dy 
\ 1 u , 1 v2 1 = o 

( 3 5 ) {dton-u ' - ^ » i « - 1 - 1 , 1 <wi ,*- i<- i 
( ( / = o, . . . n : i s- p : 1' ^ p -+- 1) 
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and finally 
n , x dy dy 
(36) — 1 ^ - V S T 1 

do, n—p,p a&i,n—n,p—i 

(37) 
dy dy 

dto,n—p—i.p-\-\ dS\n— p—*, p-\-\ 

Now if n> 2, it is clear that Siin-p—i,p does not occur in any of 
the équations (35), (36), (37) : and therefore thèse équations 
cannot be satisfied as a conséquence of (33). Thus they must be 
satisfied identically by <p. But, by hypothesis, y satisfies (34)-(37) 
only as a conséquence of (33) : and thus (34) must be a conséquence 
of (33). That is, 9 must be such that (34) is satisfied identically 
when we write —cp for Si,,,__,,_!,;,. 

Again if n = 2, we may still arrange that Si,n-/>-i,// does not occur 
in W, ]ULI, /i.2, vj, v2. For we may then substitute for siin_p-ilP 

(which is in this case one of the variables h, g) in the équation (1) 
fram the équation (33) itself, in terms of the remaining variables. 
And from the définition which we have adopted, it is clear that this 
procédure does not affect the fact that the two équations are in 
involution. Hence once again we see that the équations (35), (36), 
(37) are satisfied identically, but (34) only as a conséquence of (33). 

Furthermore, whether n >> 2 or 11 = 2, we may observe that 

since Si,n_p—iiP does not occur in W, only the terms ( , , , . . ^ ^ 1 p 

( , n u „) in (34) c a n contain SI,/I-/Î-I,/>- And this being so, 

we may see at once by writing the expressions for thèse quantities 
in full, that each is at the most a quadratic expression in si)Tl-p-iiP, 
so that only the first and second powers of $1,n-p- i iP can occur in (34). 

W e now turn our attention to calculating the derivative of y 
with respect to the variable 8, at any point of a characteristic of the 
first system contained in the intégral multiplicity of order n, asso­
ciated with the intégral of (1) which we have determined by the 
procédure described above : the value of each variable in terms of 
the parameter 0, which spécifies the position of an élément of the 
characteristic, having been, as explained earlier, substituted in the 
function y. 

Then using the expression (i4)? chapter III (which gives the 
variation of any function y containing derivalives of u of order n 
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but no higher, along a characteristic of order n of the first system), 
but putting in (14) the particular form of the function y written on 
the left of (33), using the équations (35), (36), (37), which, as we 
have seen, are satisfied identically by 9, and dividing by rfO, we 
have 

& 
dô 

(38) 

={(â)*-.($H(â) 
V* / d'l~*W \ fo _ ( d"-*W \\dx 
2a \ dy»-'-i dz* ) dst n_z_!, \ dyn~P-i dzP ) { d§ 
1=0 ' / 

(i = p being omitted from the summation). 

But the first factor on the right hand side of (38) is the same as 
the left hand side of (34); and is therefore zéro whenever (33) is 
satisfied : that is, whenever y = o. Furthermore, we have seen 
that the left side of (34) is of degree not exceeding 2 in siin-p-ltP. 
Thus if we write 

si,n—p—i,p = y y 

in (38) we see, remenbering that ail the variables involved are 
analytic functions of 0 along the characteristic, that w7e may write (38) 
in the form 

(39) § = P(e)x + Q(°)x2, 

P and Q being analytic functions of 0. 
But we know that y = o when 0 = o; that is, on the initial 

multiplicity. And it follows from the usual existence theorem for 
ordinary differential équations of the form (3g), that the only 
solution of (3g) which is zéro when 0 = o is 

Therefore ^ = o a t every point of the characteristic, and therefore 
throughout the intégral multiplicity. In other words, the intégral 
of (1) which we have determined, and which takes the prescribed 
values on the surface S = o, satisfies the équation (33) at every point : 
and the required resuit is thus established. 

W e may observe that instead of assigning the value of u at each 
point of the surface E = o, and then calculating the value of one of 
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the derivatives of u of the first order in such a way as to make -y zéro 
at every point of the surface, we could reverse the procédure. That 
is to say, given the value at each point of S = o of one of the deriva­
tives of u of the first order (corresponding to a direction not tangen-
tial to the surface), we could détermine u by a procédure exactly 
analogous to that which we employed to détermine /, leading to a 
partial differential équation with two independent variables, ol 
order n, instead of the équation of order n — i obtained earlier. Ail 
the rest of the argument would then appty unchanged. 

We may summarise thèse results in the following brief statement. 

THEORE3I ht. — / / the équations ( i) and (24) are in involution. 
there are an infinity of common intégrais of the two équations, 
depending on an arbitrary function. 

Next we consider the characteristics of équations in involution. 
Suppose that the function y in the équation (24) satisfies the équa­
tions ( i5) of order n, chapter III, either identically or as a consé­
quence of the équation (24) itself. Then the reasoning of chapter III 
applies unchanged, to show that along any characteristic multiplicity 
of order n + q of the second system, contained in an intégral multi­
plicity associated with a common intégral of the two équations, 
the q + 2 équations (20), or if q = o, the équations (21) and (22), 
chapter III, are satisfied. 

Now in deriving thèse latter équations, we do not substitute for 
any of the variables, values derived from the équation (1). Further-
more, although we have shown that there are an infinity of common 
intégrais of (1) and (24), the équations (20), or (21) and (22) are 
entirely independent of the particular common intégral with which 
the characteristic of the équation (1) in question is associated. Thus 
we see that ail the conditions of the définition of a characteristic of 
order n-\-q of chapter II, are satisfied in relation to the équation 
(24) : and therefore every characteristic of the second system of 
order n + gr, q^o, associated with a common intégral of the two 
équations, is also a characteristic of the équation (24) [1^]- And 
hence we may state the following very important resuit; bearing in 
mind that by exactly the same reasoning we may establish that if y 
satisfies ( i5) , with /jt4 and /a2, v4 and v2 permuted, then the characte-
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ristics of the first system associated with a common intégral are 
characteristics of (24) : 

THEOREM 5. — If the two équations (1) and (24) are in involution, 
there is a common system of characteristics of each order n + q,, 
q^o, associated with the common intégrais : if the function y on 
the left of (24) satisfies ( i5) , then the common characteristics 
belong to the second system; while if y satisfies ( 15) with f*4, and JJ.2 , 
v4 and v2 permuted, the common characteristics belong to the first 
system. 

This resuit now fully explains why il is that the knowledge of an 
équation in involution with (1) enables us to write down further ordi­
nary differential équations for the détermination of characteristics on 
the required intégral of (1). 

It should be noticed that we have not proved thaï when y satisfies 
( i5) , every characteristic ofthe second system is a common cha­
racteristic : and indeed this is obviously not true. For we may 
take any élément of contact of order n, for which y^o. Then there 
are intégrais of (1) admitting this élément, and therefore characte­
ristics of both Systems which are not characteristics of (24). The 
resuit of theorem 5 applies only to characteristics contained in a 
common intégral multiplicity. 

It may happen that we know a number of équations, each in invo­
lution with (1), the function on the left of each satisfying the same 
system of équations, ( i5) , chapter III, though not necessarily ofthe 
same order. Suppose that the one of highest order is of order n. 
Then by the methods of chapter III, we may construct, from each, a 
number of ordinary differential équations for the détermination of 
characteristics of order n of the second system [ofthe first system, 
if /jt! and /JL2, V± and v2 are permuted in ( i5 ) ] , together with a number 
of finite équations. Thèse équations may be inconsistent, in which 
case the system has no common intégral. On the other hand, it may 
happen that they are consistent, and of sufficient number to détermine 
the characteristics of order n, in terms of a number of arbitrary cons­
tants, so that each of the variables is expressed as a function of a para-
meter, representing displacements along the characteristic, and a 
certain number of arbitrary constants. 

If thèse constants be two or more in number, say p + 2 
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p ^ o, and if two of them, and the parameter of the characteristics, 
may be eliminated in such a way as to express u and the various 
partial derivatives in terms of x, y, z, and JP arbitrary constants, then 
the characteristics so determined form a multiplicity M3, depending 
on p arbitrary constants. From the way in which this multiplicity 
is determined, and the hypothesis that the various équations are 
consistent, it follows that the équations in involution with (i) are 
satisfied throughout the mutiplicity M, : and we thus have a common 
intégral of the system in involution, depending on p arbitrary cons­
tants (p ^ o). But if there be only one arbitrary constant, or none, 
the system has no common intégral : for every intégral multiplicity 
M3 is a locus of one-dimensional characteristics, which must there­
fore dépend on at least two arbitrary constants. 

It must be observed that the détermination of characteristics in 
this way can never be effected when we only have one équation in 
involution with ( i ) . For suppose that we have a single équation of 
order n, say (24), in involution with (1), y satisfying ( i5) , chapter 
III, and suppose that we are attempting to détermine the characteris­
tics of the second system of order n + q(q ^ o). Then we have seen 
that we may deduce the q + 2 équations (20), chapter III, for the 
characteristics in question, whereas we require n + q + 1 new ordi­
nary differential équations, which could be solved for the differentials 
^0,/1+7-./,/, y — °i c> •••> n-\-q. W e also have q-{-1 finite 
équations, 

which contain the variables representing derivatives of order n-{- q ; 
and we might conjecture that the équations dy(q, k) = o provide 
new ordinary differential équations of the kind required. But this 
is not so. For, forming the équations dy(q, k) = o, the terms 
containing the differentials of the variables representing derivatives 
of order n-\- q constitute a linear form in thèse differentials, which, 
using ( i5) , chapter III, may easily be shown to be a sumof multiples 
of the linear forms in thèse differentials on the left of two of tho 
équations (20), chapter III, and on the left ofthe équations of cha­
racteristics of the second system of order n + q, i. e., ( 11 ) chapter II, 
writing n-\~q for n and fxt, vt for JJU, V2. Thus the équations 
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dy(q, k) = o are not distinct from the ordinary differential équations 
already known for the characteristics of the second system of order 
n + q, in accordance with the resuit which we proved earlier for the 
spécial case q = o. 

CHAPTER V. 

SOME RESULTS REGARDING THE INVARIANTS : 

SOME SPECÏAL DEVICES FOR SOLVING THE PROBLEM IN PARTICULAR CASES. 

Reverting to the actual extension of Darboux's method, the theory 
of which we have established in chapter III, it is obvious that the 
difficulty of determining whether a sufficient number of invariants of 
a certain order exists, and of finding thèse invariants when they do 
exist, is much greater than is the case when dealing with équations 
with two independent variables. And just as in the latter case, there 
is no test to establish whether or not the method will be successful 
in dealing with any given équation of rank 2 or K There are, 
however, a number of results which are useful, mostly analogous to 
corresponding classical theorems for équations with two independent 
variables [15]. 

Suppose firstly that we have three invariants £, TQ, Ç of the first 
system, of order n, at least one actually containing a derivative of 
order n. Then we have seen that every intégral of (1) satisfies an 
équation 

7.(5, *h 0 = o, 

for some form of y. And conversely, for any form of y, it is clear 

that y is itself an invariant, and from the results ofthe last chapter 

it follows that the équation (1) and the équation y = o are in involu­

tion, and therefore possess an infinity of common intégrais. But any 

common intégral must also satisfy the équations obtained by differen­

tiating with respect to y and to z (we have seen, chapter III, that the 

équation j | * = o is an algcbraic conséquence of ^ = o, - ^ = o, 

so that no further information is obtained by differentiating with 
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respect to^J , that is, the équations 

d* dy df\ dy 

dy d* dy di\ dy d^ _ 

d\ dy à<\ dy dl dy 

<j\ dz ~1~ dr\ dz^ dÇ dz 

Since y is an arbitrai^ function of £, ri, Ç, we see that 3y> :̂  > ; p 

can take arbitrary values, and in particular none is identically zéro. 
Thus, solving the above équations, wre have 

dy dg, S) 

in — d(y*z^ 
& d(^ » ' 
d$ d(y,z) 
ày d(j, n) 
dZ _ d(y,z) 
dy d(-n, » ' 

Now any characteristic of the first system of ordèr n + i is, by 
définition, contained in at least one intégral multiplicity, and there­
fore associated with at least one choice of y above, and also contains 
a characteristic of order n (theorem 2) , along which £, y}, Ç, and 

therefore -~^ -̂ = > -~ are constant. ' It therefore follows at once that 
dç dt\ dl, 

d(tj, Q d(*. ïj) 

the functions ,, ? y > ./ »v are new invariants of the first system 

<tf(y, z) rf(y, z) 

of order n + i. 
It can be shown [16] that, slarting with three invariants of order n, 

we may deduce q + i distinct invariants of order /i + q : and from 
this, and the results of chapter III, we might conjecture that we 
could find i(q + i) new ordinary differential équation for the déter­
mination ofthe characteristics of the opposite system, of order n-\-q, 
contained in the required intégral. But this is not so, for the 2 ( ^ + 1 ) 
équations will not be distinct. 

In fact, knowing the three invariants £, r\, Ç, we have seen that we 
may détermine the form of y in the équation yfo rt, Ç) = o from the 
boundary conditions. Then it is easy to show [16] that the only 
new ordinary differential équations, for the characteristics of 
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order n + q of the opposite system, which may be deduced from the 
knowledge of the three invariants t, n, Ç of order n, of the first 
system, are precisely the q + 2 équations (20), which are deduced, 
after determining the form of y, by the procédure of chapter III. 

Nevertheless, although deducing further invariants of higher order 
from three known ones gives no theoretical advantage, in practice it 
is well worth while. For if we are trying to détermine a system of 
characteristics of order n, we require a number of invariants ofthe 
opposite system, of order not exceeding n, which nécessitâtes the 
intégration of a simultaneous system of linear partial differential 
équations, i. e., ( i5) . The more intégrais of this syslem we know, 
the easier is the task of finding the remaining intégrais. Hence if we 
know three, of order less than n, it is well worth deducing, by a 
process which, as we have seen, requires only differentiations, 
further intégrais of each order up to and including n. 

Next we discuss an artifice which is often very valuable when one 
or other of the syslems of characteristics of order 2 possesses at least 
ihree invariants, whether or not there are enough invariants of order 2 
to solve the problem directly. Suppose that £, ri, Ç are three distinct 
invariants of, say, the first system of order 2, one at least of which 
contains a derivative of u of order 2. Then we have seen that by 
using the boundary conditions we may détermine an équation 

(4o) / ( E , ^ 0 = o 

which is satisfied by the required intégral : and in gênerai, that is, 
except possibly on exceptional intégrais of ( 1 ), the reasoning of chapter 

III shows that one or other or both of -^5 - ^ is not zéro. 
dh dg 

Now it may well happen that it is easier to solve the boundary 
problem for the équation (4o) than for the équation (1). In such an 
evenl, it may be desired to apply the extension of the method of 
Darboux, which we have developed, to (4o) : and accordingly we 
will now show that this équation is of rank 2. 

£, n, Ç, and therefore y, being invariants of the first system of 
ôrder 2, and therefore satisfying équations ( i5) of order 2, we have 
[writing /1 = 2 and ¢0,2,0=6 etc., in the équations ( i5) as written 
in chapter III, and taking account of the négative suffix con-
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vention] 

( 4 0 

and therefore 

2 àh 

2 àg 
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tl 
db 

*! 
à/' 

àh 

'•àg 

à*. 

à/, 
'dh 

L'ïl 
2 àh 

àb 

LU: 
2 à/ 

làx 
2 àg 
1 ÏL 

de 

LU, 
i dh 

•l àg K1** 

2 dh 

*1 
àh 

2 àg 

Ht 

àX il 
à h ) 

v2 
dy 

o; 

for sublracting JUL2 times the first row from the second, and v2 times 
the first row from the last, we obtain a déterminant whose second 

and third rows are proportional. But since one or both of -~? - ~ 

is non-zero, we see that one or both of the minors obtained by omit-
ting the second row and column, or the third row and column of the 
discriminant, is not zéro, and the équation is therefore of rank 2. 
Thus we may always attempt to find the required intégral by 
applying the method which we have developed to (4o) : and we 
also have the curious resuit that the characteristics of ( 4 ° ) a r c 

always distinct. 
W e now establish a most important resuit, which in certain cases 

greatly facilitâtes the finding of the required solution of ( i ) : once 
again, this resuit généralises a classical theorem, due to Goursat. 

THEOREM 6. — If one system of characteristics of order 2 pos-
sesses five distinct invariants, then (whether the characteristics be 
distinct or confluent) the required intégral of the équation ( i ) can 
always be found by the intégration of a partial differential 
équation of the first order. 
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To prove this, let us for definiteness suppose that £t, <*2,£3, *î, Çare 
five distinct invariants of the first system of order 2. Then by using 
the boundary conditions in the usual way, we form three distinct 
équations, say 

(42) /j(Si, *n, 0 = x«(5*> *i, Q = ~/j(^„ •*, ï) = o 

each ot which the required intégral of (1) satisfies. 
Now the functions yi, y2, y% are themselves invariants ofthe first 

system of order 2, and therefore each satisfies the three équations (40-
From this it follows that each of the last three rows of the matrix 

i/A 'lli (ilA 
dh dh dh 
dyj dy2 dfr 
àg àg dg 
à'/j àyn dys 
db db db 
i/± ày± à]L} 
àf àf àf 
à Xi ày2 dy-x 
de de de 

is a sum of multiples of the first two rows; and the matrix is therefore 
of rank not exceeding 2. 

Therefore it follows that we may eliminale the five derivatives h, 
g'> l>i fi c between the three équations (4 2 ) 5 obtaining either one 
équation or two équations of the first order, which must be satisfied 
by the required intégral of (1). Hence this intégral may always be 
found by the intégration of this équation (or of either one, if there be 
two) of the first order. W e shall consider an example of this type 
in chapter VII. 

Lastly, we mention another circumstance which sometimes arises 
for particular boundary conditions, which may enable us to solve the 
problem, even when the number of invariants is inadéquate to do so 
in gênerai. If we have three invarianls, \, ri, Ç say, ofthe first system, 
of orders not exceeding n, then it may happen, for particular boun­
dary conditions, that on the initial multiplicity there are two func­
tional relationships between g, n, Ç, instead of one, say 

E-+-?(C) = °» ^-+-4^) = 0-
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Then since £ + <p(Ç) and TQ + ^ ( Ç ) are also invariants, and are 
therefore constant along the characteristics of the first system of 
order n emanating from the initial multiplicity, we may assert thaï 
both thèse équations are satisfied throughout the required intégral. 
Proceeding as before, we are then able to deduce new ordinary diffe­
rential équations for the characteristics of the second system from 
both thèse équations; and clearly we may obtain a larger number for 
this particular intégral than would be the case for gênerai intégrais 
of ( i ) , which satisfy only one équation of the form y(%, n, Ç) = o. 
This larger number of ordinary differential équations may enable us 
to détermine the characteristics ofthe second system, for this parti­
cular intégral, even when we have not enough invariants of the first 
system to do so in gênerai. 

Similarly, it may even happen, for spécial boundary conditions, 
that \, ri and £ are constant on the initial multiplicity, say 

î = a, ij = 3, Ç = y, 

where a, (3, y are constants. Then, since £ — a, r}— (3, Ç — y are 
also invariants, by the reasoning ofthe last paragraph we may assert 
that thèse three équations are satisfied throughout the required 
intégral, and deduce three new sets of ordinary differential équations 
for the characteristics ofthe second system. 

CHAPTER M . 

CHAR\CTFRISTICS OF THE TIRST ORDER. 

The theory of characteristics of order 2 and above, which we have 
built up in preceding chapters, has been sufficient for us to extend 
the method of Darboux to équations with three independent variables, 
provided that they be of rank 2 or 1, in accordance with the défini­
tion of chapter II. But the theory would be incomplète without a 
mention of the corresponding généralisation of the idea of characte­
ristics of the first order. This latter topic is closely linked with the 
extension of the method of Monge-Ampere to équations with three 
independent variables, which has been fully discussed elsewhere, 
particularly by Vivanti. Thus we will deal very briefly with charac-
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teristics of the first order : but it is of interest to see how thèse are 
related to the characteristics which we defined in chapter II ; and we 
shall also see how the équations of characteristics ofthe first order 
may sometimes be useful in determining -certain invariants of the 
characteristics of higher orders. 

The définition of chapter II may be extended to the case 
when n = i, without any change whatever : in this case the équations 
of contact (3), reduce to the single équation 

(43) du — 5i>0}o dx — t»tit0 dy — /o,o,i dz = o 

(we avoid denoting the derivatives of u of the first order by /, m, n, 
owing to the possible ambiguity with the integer n), while corres­
ponding to (4) and (5) are 

( 4 0 <fri,o,o = — U?"dx -hhdy-h g dz, 
i dtQ>l}o = hdx -+- b dy -+- f dz, 

^'^ \ dt0,o,i= gdx-hfdy-hcdz. 

Now tbe équation (44) is ^n gênerai not linear in the five deri­
vatives of u of the second order, h, g, b, f, c, and therefore we 
cannot apply ail the arguments of chapter II unchanged. Never-
theless, if dx, dy, dz have the values appropriate to a characteristic 
of the first order, which we suppose known, and if dx, dy, dz and 
the variables making up an élément of contact of the first order be 
regarded as constants, then the argument of chapter II, page 12, in 
which we substitute the phrase Cl independent functions of the 
derivatives of u of order 2 " for " linearly independent forms ", 
shows that the three expressions on the right hand sides of (44) 
and (45) cannot be independent functions of the five variables h, g, 
b, / , c. Furthermore, this being so, the reasoning of chapter II 
applies unchanged, writing n = 1, to show that the condition that 
the three expressions are not independent requires dx^o. 

From the usual theory of Jacobians, the condition that the three 
équations (44) and (45) cannot be solved for three of h, g, b,f, c 

is that the matrix 

r dy — H dx dz — G dx —Hdx —¥dx — G dx "1 
j " dx o dy dz o j 
L o dx o dy dz J 
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should be of rank 2 (clearly it is not of rank 1, since dx^£o). 
Thus equating to zéro the déterminants formed respectively from the 
first three columns, from the first, second and fourth, and from the 
first, second and last, we obtain (after dividing by dx ^é o) 

dy2 — H dy dx H- B dx* = o, 
2 dy dz — Gdydx — H dz dx -h F dx2 = o, 

dz1 — G dz dx -f- C dx"- = o. 

But writing dy = pdx, dz = vdx, we have precisely the équa­
tions (7)-(9), chapter II ; and reasoning exactly as in chapter II 
we see that there can be no characteristics of the first order unless 
the équation (1) is of rank 2 or 1. Furthermore, we again see 
that dx, dy, dz must satisfy the équations 

(46) dy—[JLI dx = o, dz — vxdx = o, 

or else 

(47) dy — JJL2 dx = o, dz — v» dx == o, 

(jut-i, Vi) and (|m2, v2) being the two pairs of solutions of (7)-(9). 
Now in this case, since in gênerai the équations (46) and (47) 

contain derivatives of u of order 2, we cannot in gênerai regard 
thèse as being total differential équations appropriate to charac­
teristics of the first order. Neverlheless, it may, under spécial 
conditions, occur that we can eliminate h, g, b, f, c between the 
five équations of one or other, or both, of the sets (44)> (4^)» (46) 
and (44)? (45)> (47)» obtaining thus one or more total differential 
équations (not necessarily linear), satisfying the conditions of the 
définition, where n = 1. 

In gênerai this élimination cannot be carried out : and thus in 
gênerai the équation (1) lias no characteristics of the first order. 
But if it should occur that the élimination can be carried out, for ail 
values of the variables which compose an élément of contact of 
order 1, for one or other of the sets of équations mentioned in the 
last paragraph, then we say that there is a system of characteristics 
of the first order associated with the first system, or with the second 
system as the case may be : if the élimination be possible for both 
sets, there are two Systems of characteristics of the first order. 

W e are not primarily concerned with the conditions for the 
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existence of characteristics of the first order. But if one or two 
Systems of this kind exist, that is to say, if certain total differential 
équations which satisfy the conditions of the définition are identical 
conséquences of one or both ofthe Systems of équations (44)» (4$)» 
(46) and (44)? (4^)> (47)* t n e n t n e reasoning of chapter II applies 
unchanged, to establish that thèse characteristics are of one 
dimension only, and that the intégral multiplicity of the first order 
associated with any intégral of (i ) is a locus of characteristics of the 
first order (of either system, if two distinct Systems exist). 

Furthermore, we know that along any characteristic of order 2, of, 
say, the first system, the équations (44)? ana< (45) together with (46) 
are satisfied. Hence if a system of characteristics ofthe first order 
exists, associated with ihe first system, then we may at once extend 
the resuit of theorem 2, showing that every characteristic of the first 
system of order 2 contains exactly one characteristic of the first 
order of the same system. Again, since a characteristic ofthe first 
order is by définition contained in at least one intégral multiplicity 
of the first order, which in turn is contained in a multiplicity of the 
second order, and since the équations (46) or (47) are satisfied, for 
the values of the derivatives of the second order appropriate to the 
intégral in question, it follows that every characteristic of the first 
order is contained in at least one characteristic of the second order. 

Now suppose that either one or two Systems of characteristics of 
the first order exists; and suppose that one system possesses an 
invariant. That is, suppose that there is a function y of the 
éléments of contact of the first order, such that 

dy = o 

is a conséquence of the ordinary differential équations which the 
system of characteristics of the first order satisfies. Then since 
every characteristic of the second order of the corresponding system 
contains a characteristic of the first order, it follows at once that y is 
also an invariant of this system of characteristics ofthe second order; 
and therefore y satisfies ( i5) of order 2, or else the corresponding 
system with y.^ and /JL2»

 VI
 and v2 permuted. 

Conversely, suppose that y is an invariant of the system of charac­
teristics of order 2, of the same system as the characteristics of 
order 1 whose existence we assume, but that y dépends only on 

MÉMORIAL DES SC. MATH. — N» 142. 5 
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éléments of contact ot the first order. Then since every charac­
teristic of the first order is contained in at least one of the second 
order, along which latter y is by hypothesis constant, it follows 
that y is also an invariant of the system of characteristics of the first 
order. 

We assume always that there are not three invariants of a system 
of characteristics of the first order; for if there were, the solution 
of ( i ) could always be effected by the method of Monge-Ampere 
extended, with which we are not concerned. Nevertheless, we have 
shown by the reasoning of the last two paragraphs that when a system 
of the first order exists, we may find ail those intégrais of the 
corresponding system ( i5) , which dépend only on éléments of 
contact of the first order, by setting up the diflerential équations of 
the characteristics of the first order, and seeking invariants 
directly. 

And when one or two of thèse exist, it may in certain cases be 
simpler to find them in this manner rather than by starting with (i5) 
of order 2. Furthermore, knowing thèse one or two intégrais in 
advance, we may use them to simplify the intégration of the 
system (i5) . In this lies the only utility of characteristics of the 
first order in relation to the extension of the method of Darboux : 
and it will be noticed that ail the results which we have obtained in 
this chapter are analogous to classical results, for équations with two 
independent variables. 

CHAPTER VII. 

EXAMPLES. 

To illustrate the foregoing theory, we now consider two examples, 
the solutions of which exhibit ail the essential features ofthe method. 
For the sake of brevity, we now revert to the convenient notation Z, 
m, n for the derivatives of u of the first order $1,0,05 '0,1,o? '0,0,1, 
respectively, since there will now be no risk of ambiguity between 
the derivative n and the integer n. 

EXAMPLE 1. — It is required to find a solution of the equa-
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tion 
à* u d* u ( à*u 

d2u dxdy dxdz \ dxdy 
dôê* H d^vT"*"J d*îr 

i r—r- h — dydz \ dydz J 

such that when x = o, u = - s 2 and -r- = j ^ a + ^ . 

Writing the given équation in the notation which we have adopted 
ail along, we have 

(48) ^ - ^ j - A ^ o ; 

so that 

^ _ hg , 2 A» R r A-

and since each term obtained in differentiating (48) once with 
respect to y or z must contain a derivative of u of the third order, 
we have in accordance with the définition of thèse symbols in 
chapter I, 

/dW\ /dW\ 
(dï) = {-dz-)=°-

Thus the équations (7)-(9), chapter II are in this case 

* ( i - / ( i - . / ) 2 

h ( g 2h \ \ hg 2A» ) 

h 

v î _ _ _ v = 0 > 

which we may rearrange as 

r ( g *h n f h \ jav = o, 

J , - h ) 

This latter form of the équations shows clearly that they are consis­
tent, so that there is no need to verify that the équation (48) is of 
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rank 2. Thus we have two pairs of values 

g ih 

and 
h 

{ 1 2 = 0 , v2 = 

The équations ( 15 ) of order 2 are therefore in this case writing / 1 = 2 

and to,2,o = b etc., in the équations (15) as wrilten in chapter III, and 

putting in the values of /JL4, V4, y.2
 V2? ( w~" ) ' ( ~1~ ) l n e following four 

équations : 

(I—f)*àl L (I—/ ( I - / ) 2 ) J^w 

Li—^ (1—y>2 J 

V.(X)-â-o, 

V U X ; <te i—fdg ' 

Forming the équation 

V a { V 1 ( X ) } - V 1 { V î ( x ) J = o , 
we obtain at once 

V.(X)-£-o; 
and thence the combination 

V . { V i ( x ) ) - V i { V . ( x ) ) = o 

gives 

V.<X)-£-o. 

Then, using the équations V 5 (x) = V6 (x) = 0, we see that the 
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équation V t ( ^ ) = o becomes 

Next we form the équation 

V4{V,(x)}-V 7 {V*( X )}=o, 

which leads to the équation 

and using this last équation, the équation V7(x) = o becomes 

• V 9 U ; - < * s ( i - / ) 2 àl i-fdn ° " 

and it may readily be verified that the system of seven équations with 
twelve independent variables 

VÎ(X) = V 3 ( X ) = V * ( X ) = V , ( X ) = V . (X) = V . ( X ) = V 9 ( X ) = O 

is a Jacobian system, which therefore possesscsjfoe intégrais. Thèse 
intégrais are easily found. The équation V 3 (^) = o, in which only 
the two variables h a n d / o c c u r , is easily found to admit the intégral 

-A and clearly this function satisfies ail the other équations. Next, 

the équation V*(y) = o, in which h and y may be treated as cous­
in 

tants, admits the intégral g -\- c __ A and once again this function 

clearly satisfies ail the équations of the system. Thirdly, the équa­
tion V9(y) = o may be treated as an équation with constant coeffi­
cients, since x, l, n do not occur in the coefficients, and hence we 

see that this last équation admits the intégrais 2 /4- /1-—y» 
h 

n -f- 2 x _ f and y. Then taking account of the équation V8 (y) = o, 

we see that the équations 

V.(x) = V.(x) = o 

admit the common intégrais il-\-(n—y) ——^and n—y -f- 2 x -3 -y ; 
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and in view of the intégrais which have already been found, thèse 
functions are both seen to satisfy ail the équations of the system. 
Finally it is obvious that the system admits the intégral z; and thus 
we have the seven common intégrais, which we now tabulate for 
convenience as follows : 

r h h h 
ïi = TZZy-î l 2 = = ^ + c 7 Z 7 î l3 = 2 / - + - ( / i — < ^ ) ; — ^ ; 

i h T 

I4 = ^ - ^ + 2^-^---A h=z. 

Now to establish the three équations which the required intégral 
of (48) satisfies, and which can be deduced from thèse five invariants, 
we use the given boundary conditions as follows : 

When x = o, u = -z1 and / =y2 + yz : and therefore 

m = o; n=z; b=f=o; c = i ; 7i = iy-+-z; g=y. 

And thus on the kt initial multiplicity", we have 

I i = 2 j K - + - z ; 

I2=z3y-+-z\ 
h = z(3y + z); 

i* = *—,r; 
iB = 3 . 

From thèse expressions we deduce at once the functional relationships 

Ii-+- 2 I 4 — 3 I 5 = o, 

I2-+- 3 I 4 — 4 I g = o, 

1 3 + 1 5 ( 3 1 4 - 4 1 3 ) = 0 . 

Thèse relationships are satisfied throughout the required intégral 
multiplicity : and thus we see that the required intégral of (48) satis­
fies the three équations 

•\n—y-+-2xïzrf\- • 33 = o. 
1 - / 

g-hc j — -+- 3 j n — y -+- 2x j—f\ — 4* = o, 

s/-h(/i— y) ——-+-Z 3 j / i — y + *xjzTf\ --4-3 = 0 , 
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which afler rearranging we write in the form 

/ 1 = ( 1 - + - 4 ^ ) - 3 ^ - ( 2 7 - + - 3 ^ - 2 / 1 ) = o, 

Xs = (c-+- 6 a?) j — . -+- g — (3y -h 4* — 3/i) = o, 

X3 = ( 6 £ # — 7-+- /1) ^ - ( 3 7 , 2 - + - 4 ^ 2 _ 3 ^ ^ - 2 / ) = 0. 

the functions yt, y2, y* being, of course, invariants of the first 
system of order 2. 

Now we observe straight away that in accordance with the resuit 

of theorem 6, chapter V, we may eliminate the ratio __ ,belwen the 

équations yi= o and y* = 0, thereby obtaining an équation of the 
first order, which the required solution of (48) satisfies. And clearly 
this is the most direct, and therefore the best, procédure to use for 
this example. Neverlheless to illustrate the gênerai method, we first 
of ail effect the solution by determining the characteristics of the 
second system of order 2, by the method of chapter III, using certain 
of the simplifications discussed in chapter V. W e will then dérive 
the same solution by the direct method of theorem 6, which is, of 
course, only applicable by virtue of the fact that there are, in this 
particular case, five invariants of order 2 of the first system. 

Before going on to complète the solution of the problem, it is 
worth mentioning that it may easily be shown that the only inva­
riants of the second system of order 2 are y and (m — z). The 
calculations are similar to those for the first system, and there is no 
particular point in reproducing them. 

Solution by the gênerai method. — W e begin by forming, from 
the équation yl = o, the two équations corresponding to (21) and 
(22), chapter III, in which we write n = 2. Differentiating yi with 
respect toy and to z, and omitting the terms involving derivatives of 
order 3, we see that 

(£)—,(.-/); (£)—(3-„>; 
and thus the two équations are 

l±A^db-2(i-f)dx = o, ^JZTJ df-(3-2c)dx = o. 
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Next we form, from the équation ^ 2 = o , the équation correspon­
ding to (22), chapter III. In this case wehave 

(£)-«-»•>. 
and thus the équation is 

c -+- 6x 
' - / 

df-h de — (4 — 3c) dx = o. 

Then solving thèse three ordinary differential équations for db, df, 
de, and dividing by dx, we see that the characteristics ofthe second 
system of order 2, contained in the required intégral multiplicity, 
satisfy the ordinary differential équations 

db = a ( i - / ) » 
dx 1 -+- 4 x 

/ / o v ><*/ __ ( 3 - 2 0 ) ( 1 - / ) 
( 4 9 ) <dx-—T^r&—:' 

de __ 2 ( c 2 — 3c -h 2 — a?) 
dx ~~ 1 - + - 4 ^ 

To thèse we adjoin the équations (10), (11), of order 2, chapter II, 
and the équations of contact, which in this case, after putting in the 

values o f^ i , p2, Vi,va, ( -3c ) ' ( -55)» a r e 

dy = o, 

dz .dx = o, 

t /w — \ l H 7. /Z > â?a? = O, 

¢// -+- } -, dx = o, 

rf//l ,.£&£ = O, 

dfa — # -h C y > dx = O, 

and thus we have a complète set of ordinary differential équations 
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for the détermination of the characteristics of the second system of 
order 2. As regards the initial values to be used in the intégration 
of the system, let us suppose that on the characteristic in question, 
when x= o, z = v. Since dy = o, y may be treated as a parameter 
in the intégration. And thus, using the conditions written on page 66, 
we have the initial values : 

x = o; z=t>; M = - p 2 j / — j'ï-f-^p; m — b=f=o; n = t>; 
1 

/I = 2 J - + - P ; g = y; c = i. 

The intégration of the system thus expresses ail the variables, and 
in particular, u and z, in terms of x, y and v : and élimination of the 
parameter v will then express u in terms of x, y, z. 

To simplify the intégration, we use two artifices described in 
chapter V. First of ail, we have mentioned that the second system 
of order 2 leads to the two invariants y, (m — z), which are thus 
first intégrais of the syslem written above (which indeed is obvious 
directly). Therefore, using the boundary conditions we have 

m — z = — p, or m = z — v. 

Secondly, we may solve the three équations 5^ = 0, y2=o, y 3 = o for 
h, g, and / in terms of the remaining variables, obtaining thus the 
three équations 

h _ 2y -\- 3 z — 2n 
1—/ i - M # 

h Sy-h^z— 3 AI — 2zx 
^ 7 = / = TTÏÏ ' 

h r 2 + 3 y z + 2z2 — xz* — /i2 

/ H . /1 = ^ *• 

1 — / i-+-4« 

Substituting from thèse last équations in the second, third and 
sixth ofthe équations written on the last page, we have finally a system 
of six ordinary differential équations to express the six variables z, 
u, n, b, f, c in terms of x, y (which is treated as a parameter throu­
ghout) and the parameter v\ namely the three équations (49) which 
contain only the variables x, b,f, c, together with the three équations 

dz __ 2 y -+- 3 z — 2 n 
dx ~~ 1 •+• t\x 
dn __ 3^-+-4^ — 3/2 — 2zx 

(5°) \dx~ rr^ ' 
du y2 -+- 3yz -h 2 z- — xz1 — n* 
dx ~" i - M # ' 
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The first two of thèse équations (which are linear in z and n) 
contain only x, z, n and (as a parameter) y ; and thus thèse may be 
integrated to express z and n in terms of x, y and the parameter v 
introduced by the initial values : after this has been done, the third 
équation gives u by a quadrature, also in terms of x, y, v. Thus we 
eventually obtain expressions of the form 

u = U, (x, y, 9), z = Z(x, y, v), 

and the élimination of v leads to the required expression 

u = U(x, y, z). 

The first two of the équations (5o) cannot be solved in terms of 
elemenlary functions ; but nevertheless we have reduced the problem 
to the solution of two simultaneous linear ordinary differential équa­
tions with two dépendent variables, followed by a quadrature; and 
thus we regard the problem as solved. 

Alternative solution, by the spécial method of theorem 6. — 
Reverting to the équations ^4 = o, y2 = o, y\ = o on page 67, we 

h 
eliminate the ratio ^ between the first and last of thèse équations, 
obtaining at once the équation 

(5 i ) ( i - + - 4 # ) Z — n2-+-(2y -+• 3z) n — y 2 — 3yz — 2£2-+- ztx = o, 

which the required intégral of (48) must satisfy. 
Now if we solve this équation of the first order by Cauchy's 

method, the équations lo the Cauchy characteristics are 

dx dy __ dz _ du 
i - + - 4 # ~ ~ o ~" 2 / + 3 ^ — 2/1 ~~ (l-+- (\X) l — 2/l2-h ( 2jp-+- 3z) n 

dl dm dn 
— (4 / -+-^ 2 ) 2y-\-3z — 2/i 3y-t-/\z—2zx — 3/i 

The two combinations dy= o, d(m — z) = oareobvious; and thus 
taking the iiiitial conditions as before, we have 

m = z — v, 

and using the équation (51) to express / in terms ofthe other variables, 
and treating y as a parameter, the équations written above reduce to 
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the three équations 

dx __ dz dn __ 
i-f- \x "" 2y-h 3z-—2n ~~ 3y-+- 4z — 2zx — 3n 

_ du 
~~ y1-+-3yz-*-2z2 — xz2 — n2 

Thèse équations are identical with the équations (5o); and with 

the initial conditions x = o, z = n = v, u = i v2, the solution follows 

as before. 

EXAMPLE 2. — As another illustration of a solution rapidly effected 
by the method of theorem 6, we consider (to'save répétition ofthe 
routine work involved in determining the invariants) once more the 
same équation (48), which was considered in example 1; but this 
time we choose boundary conditions for which it is possible to solve 
the problem explicitly. 

Suppose that it is required to find a solution of the équation (48). 

such that when x = o, « = o a n d ^ =yz. Then from thèse con­

ditions it follows that when j? = owe have 

u = o; *>=yz\ m = n = b=f=c = o\ h = z; g = y. 

The invariants being, of course, those written on page 66, it is thus 

clear that when x = o, 

ll = z; T2 = 7 ; I3 = ^ ; U = — y, U= z. 

At once we may write down the functional relationships 

^ - 1 - = 0, I j - + - l 4 Ï 5 = o , 

(and of course, the équation I 9 + h= o, which we shall not use in 
this example), showing that the required intégral satisfies the two 

équations 
h 

h ( h ) 
X3^2/-+-(n--r)737 + ̂ j^~^+2^r=7l = 0 ' 

Eliminating - A - between thèse two équations, in accordance with 
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the resuit of theorem 6, we obtain the équation 

(52) Z -+- zn -+- xz- — yz = o. 

This is a non-homogeneous linear équation of the first order, which 
the required solution of (48) satisfies : and we solve it in the usual 
way by considering the ordinary differential équations 

dx __ dy __dz __ du 
i o z yz — xz2 

From thèse équations we form the integrable combinations 

( z2, z2x\ u—yz— —-h — J = o ; 

and thus the gênerai intégral of (52) is of the form 

u=yz-h ^ - ^ - + - ^ , ze~x). 

To détermine the form of the function ^ appropriate to the parti­
cular intégral in question, we have from the boundary conditions 

o==yz+ - - + - ^ , z); 

and thus finally we have 

z2 Z2X 

u=yz+j - yze-- ( ? ) • 
It may easily be verified that this is the correct solution, satisfying 

the équation (48) and the prescribed boundary conditions. 

CHAPTER VIII. 

GENERAL CONCLUSIONS AND REMARKS. 

The whole of the results which we have obtained may be summa-
rised by the statement that ail the classical theory of characteristics, 
of équations in involution, and of Darboux's method of solution, may 
be generalised to apply to an équation of the second order wilh three 
independent variables, provided that it be of rank 2 or i (chap. II) . 
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But if the équation be of rank 3, i. e., if the discriminant be différent 
from zéro, the classical theory has no counterpart. 

And the results which we have obtained may be generalised to 
deal with équations having any number of independent variables. 
The extension of the fundamental idea of the rank of an équation of 
the second order, with m independent variables, is obvious : and it 
may be shown that, exactly as in the case with which we have dealt, 
the équation has no characteristics, two distinct Systems, or a single 
system which may be regarded as two confluent Systems, according 
to whether the rank is 3 or greater, 2, or i respectively. The 
extension of Darboux* s method may again be made, provided that 
the équation be of rank 2 or 1. The method may also be extended 
to suitable équations of higher order. 

Throughout ail the foregoing work, we have shown that, in order 
to extend Darboux's method, it is sufficient for the équation to be of 
rank 2 or 1. But it may also be proved [17] that this condition is* 
also necessary, i. e., that there is no other way in which the method 
can be extended, and ah>o that there is no possible way of extending 
it to équations of rank 3. 
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