Microlocalization of subanalytic sheaves
[Microlocalisation des faisceaux sous-analytiques]
Mémoires de la Société Mathématique de France, no. 135 (2013) , 97 p.

On définit la spécialisation et la microlocalisation pour les faisceaux sous-analytiques. En appliquant ces outils aux faisceaux des fonctions holomorphes tempérées et de Whitney, on généralise des constructions classiques. On démontre aussi que les microlocalisations des fonctions holomorphes tempérées et de Whitney ont une structure naturelle de module sur l’anneau des opérateurs microdifférentiels, et sont localement invariants par transformations de contact.

We define the specialization and microlocalization functors for subanalytic sheaves. Applying these tools to the sheaves of tempered and Whitney holomorphic functions, we generalize some classical constructions. We also prove that the microlocalizations of tempered and Whitney holomorphic functions have a natural structure of module over the ring of microdifferential operators, and are locally invariant under contact transformations.

DOI : 10.24033/msmf.445
Classification : 32C38, 35A27, 18F20, 32B20
Keywords: Algebraic analysis, specialization, normal deformation, microlocalization, subanalytic sheaves
Mot clés : Analyse algébrique, spécialisation, déformation normale, microlocalisation, faisceaux sous-analytiques
@book{MSMF_2013_2_135__1_0,
     author = {Prelli, Luca},
     title = {Microlocalization of subanalytic sheaves},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {135},
     year = {2013},
     doi = {10.24033/msmf.445},
     mrnumber = {3157166},
     zbl = {1295.32018},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2013_2_135__1_0/}
}
TY  - BOOK
AU  - Prelli, Luca
TI  - Microlocalization of subanalytic sheaves
T3  - Mémoires de la Société Mathématique de France
PY  - 2013
IS  - 135
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_2013_2_135__1_0/
DO  - 10.24033/msmf.445
LA  - en
ID  - MSMF_2013_2_135__1_0
ER  - 
%0 Book
%A Prelli, Luca
%T Microlocalization of subanalytic sheaves
%S Mémoires de la Société Mathématique de France
%D 2013
%N 135
%I Société mathématique de France
%U http://www.numdam.org/item/MSMF_2013_2_135__1_0/
%R 10.24033/msmf.445
%G en
%F MSMF_2013_2_135__1_0
Prelli, Luca. Microlocalization of subanalytic sheaves. Mémoires de la Société Mathématique de France, Série 2, no. 135 (2013), 97 p. doi : 10.24033/msmf.445. http://numdam.org/item/MSMF_2013_2_135__1_0/

[1] E. AndronikofMicrolocalisation tempérée, Mémoires Soc. Math. France, vol. 57, 1994. | MR | EuDML

[2] A. BeckContinuous flows in the plane, Grundlehren der Math., vol. 201, Springer-Verlag, New York-Heidelberg, 1974. | MR | Zbl

[3] E. Bierstone & D. Milmann« Semianalytic and subanalytic sets », Publ. IHÉS 67 (1988), p. 5–42. | MR | EuDML | Zbl | Numdam

[4] J. E. BjörkAnalytic 𝒟-modules and applications, Math. Appl., vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. | MR

[5] V. Colin« Formal microlocalization », C. R. Acad. Sci. Paris Math. 327 (1998), p. 289–293. | MR | Zbl

[6] —, « Specialization of formal cohomology and asymptotic expansions », Publ. RIMS, Kyoto Univ. 37 (2001), p. 37–69. | MR | Zbl

[7] M. CosteAn introduction to o-minimal geometry, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica.

[8] A. D’Agnolo & P. Schapira« Leray’s quantization of projective duality », Duke Math. J. 84 (1996), p. 453–496. | MR | Zbl

[9] M. Edmundo & L. Prelli« Sheaves on 𝒯-topologies », arXiv:1002.0690. | MR

[10] S. Guillermou« DG-methods for microlocalization », Publ. RIMS, Kyoto Univ. 47 (2011), p. 99–140. | MR | Zbl

[11] N. Honda & L. Prelli« Multi-specialization and multi-asymptotic expansions », Advances in Math. 232 (2013), p. 432–498. | MR | Zbl

[12] M. Kashiwara« The Riemann-Hilbert problem for holonomic systems », Publ. RIMS, Kyoto Univ. 20 (1984), p. 319–365. | MR | Zbl

[13] —, « 𝒟-modules and microlocal calculus », in Transl. Math. Monogr., Iwanami Series in Modern Math., vol. 217, Amer. Math. Soc., Providence, 2003.

[14] M. Kashiwara & P. SchapiraSheaves on manifolds, Grundlehren der Math., vol. 292, Springer-Verlag, Berlin, 1990. | MR

[15] M. Kashiwara & P. SchapiraModerate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, vol. 64, 1996. | EuDML | Zbl | Numdam

[16] M. Kashiwara & P. Schapira« Ind-sheaves », Astérisque 271 (2001). | Zbl | Numdam

[17] M. Kashiwara & P. Schapira« Microlocal study of ind-sheaves I: microsupport and regularity », Astérisque 284 (2003), p. 143–164. | Zbl | Numdam

[18] M. Kashiwara & P. SchapiraCategories and sheaves, Grundlehren der Math., vol. 332, Springer-Verlag, Berlin, 2006. | Zbl

[19] M. Kashiwara, P. Schapira, F. Ivorra & I. Waschkies« Microlocalization of ind-sheaves », in Studies in Lie theory, Progress in Math., vol. 243, Birkhäuser, 2006, p. 171–221. | MR | Zbl

[20] S. Łojaciewicz« Sur le problème de la division », Studia Mathematica 8 (1959), p. 87–136. | EuDML

[21] B. MalgrangeIdeals of differentiable functions, Tata Institute, Oxford University Press, 1967. | MR

[22] —, Équations différentielles à coefficients polynomiaux, Progress in Math., vol. 96, Birkhäuser, 1991.

[23] A. R. Martins« Functorial properties of the microsupport and regularity for ind-sheaves », Math. Zeitschrift 260 (2008), p. 541–556. | MR | Zbl

[24] G. Morando« An existence theorem for tempered solutions of 𝒟-modules on complex curves », Publ. RIMS, Kyoto Univ. 43 (2007), p. 625–659. | MR | Zbl

[25] —, « Tempered solutions of 𝒟-modules on complex curves and formal invariants », Ann. Inst. Fourier 59 (2009), p. 1611–1639. | MR | EuDML | Zbl | Numdam

[26] L. Prelli« Sheaves on subanalytic sites », Thèse, Universities of Padova and Paris VI, 2006. | Zbl

[27] —, « Microlocalization of subanalytic sheaves », C. R. Acad. Sci. Paris Math. 345 (2007), p. 127–132. | MR | Zbl

[28] —, « Sheaves on subanalytic sites », Rend. Sem. Mat. Univ. Padova 120 (2008), p. 167–216. | MR | EuDML | Zbl | Numdam

[29] —, « Cauchy-Kowaleskaya-Kashiwara theorem with growth conditions », Math. Zeitschrift 265 (2010), p. 115–124. | MR | Zbl

[30] —, « Microlocalization with growth conditions of holomorphic functions », C. R. Acad. Sci. Paris Math. 348 (2010), p. 1263–1266. | MR | Zbl

[31] —, « Conic sheaves on subanalytic sites and Laplace transform », Rend. Sem. Mat. Univ. Padova 125 (2011), p. 173–206. | MR | EuDML | Zbl | Numdam

[32] P. SchapiraMicrodifferential systems in the complex domain, Grundlehren der Math., vol. 269, Springer-Verlag, Berlin, 1985. | MR | Zbl

[33] P. Schapira & J. P. Schneiders« Index theorem for elliptic pairs », Astérisque 224 (1994).

[34] J. P. Schneiders« An introduction to 𝒟-modules », Bull. Soc. Roy. Sci. Liège 63 (1994), p. 223–295. | MR | Zbl

[35] SGA4 – Séminaire Géom. Algébrique du Bois-Marie by M. Artin, A. Grothendieck, J.-L. Verdier, Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972.

[36] Y. SibuyaLinear ordinary differential equation in the complex domain: problems of analytic continuation, Transl. Math. Monogr., vol. 82, Amer. Math. Soc., Providence, 1990. | MR

[37] G. TammeIntroduction to étale cohomology, Universitext, Springer-Verlag, Berlin, 1994. | MR | Zbl

[38] L. Van Den DriesTame topology and o-minimal structures, Lecture Notes Series, vol. 248, Cambridge University Press, Cambridge, 1998. | MR | Zbl

[39] I. Waschkies« Microlocal perverse sheaves », Bull. Soc. Math. de France 132 (2004), p. 397–462. | MR | EuDML | Zbl | Numdam

[40] A. J. Wilkie« Covering definable open sets by open cells », in O-minimal Structures, M. Edmundo, D. Richardson, and A. Wilkie, eds, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag, 2005.

Cité par Sources :