Entropy of meromorphic maps and dynamics of birational maps
[Entropie des applications méromorphes et dynamique des applications birationnelles]
Mémoires de la Société Mathématique de France, no. 122 (2010) , 103 p.

On étudie la dynamique des applications méromorphes sur les variétés kählériennes compactes. Plus précisément, on donne un critère simple qui permet de produire des mesures d’entropie maximale. On peut appliquer ce résultat pour borner les exposants de Lyapounov. Ensuite, on étudie le cas particulier d’une famille générique d’applications birationnelles de k pour laquelle on construit les courants de Green et la mesure d’équilibre. On utilise pour cela la théorie des super-potentiels. On montre que la mesure est mélangeante et qu’elle n’a pas de masse sur les ensembles pluripolaires. En utilisant le critère on obtient que la mesure est d’entropie maximale. Cela implique finalement que la mesure est hyperbolique.

We study the dynamics of meromorphic maps for a compact Kähler manifold X. More precisely, we give a simple criterion that allows us to produce a measure of maximal entropy. We can apply this result to bound the Lyapunov exponents. Then, we study the particular case of a family of generic birational maps of k for which we construct the Green currents and the equilibrium measure. We use for that the theory of super-potentials. We show that the measure is mixing and gives no mass to pluripolar sets. Using the criterion we get that the measure is of maximal entropy. It implies finally that the measure is hyperbolic.

DOI : 10.24033/msmf.434
Classification : 37Fxx, 32H04, 32Uxx, 37A35, 37Dxx
Keywords: Complex dynamics, meromorphic maps, super-potentials, currents, entropy, hyperbolic measure
Mot clés : Dynamique complexe, applications méromorphes, super-potentiels, courants, entropie, mesures hyperboliques
@book{MSMF_2010_2_122__1_0,
     author = {De Th\'elin, Henry and Vigny, Gabriel},
     title = {Entropy of meromorphic maps and dynamics of birational~maps},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {122},
     year = {2010},
     doi = {10.24033/msmf.434},
     mrnumber = {2752759},
     zbl = {1214.37004},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2010_2_122__1_0/}
}
TY  - BOOK
AU  - De Thélin, Henry
AU  - Vigny, Gabriel
TI  - Entropy of meromorphic maps and dynamics of birational maps
T3  - Mémoires de la Société Mathématique de France
PY  - 2010
IS  - 122
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_2010_2_122__1_0/
DO  - 10.24033/msmf.434
LA  - en
ID  - MSMF_2010_2_122__1_0
ER  - 
%0 Book
%A De Thélin, Henry
%A Vigny, Gabriel
%T Entropy of meromorphic maps and dynamics of birational maps
%S Mémoires de la Société Mathématique de France
%D 2010
%N 122
%I Société mathématique de France
%U http://www.numdam.org/item/MSMF_2010_2_122__1_0/
%R 10.24033/msmf.434
%G en
%F MSMF_2010_2_122__1_0
De Thélin, Henry; Vigny, Gabriel. Entropy of meromorphic maps and dynamics of birational maps. Mémoires de la Société Mathématique de France, Série 2, no. 122 (2010), 103 p. doi : 10.24033/msmf.434. http://numdam.org/item/MSMF_2010_2_122__1_0/

[1] E. Bedford & J. Diller« Energy and invariant measures for birational surface maps », Duke Math. J. 128 (2005), p. 331–368. | MR | Zbl

[2] E. Bedford, M. Lyubich & J. Smillie« Polynomial diffeomorphisms of 𝐂 2 . IV. The measure of maximal entropy and laminar currents », Invent. Math. 112 (1993), p. 77–125. | MR | EuDML | Zbl

[3] E. Bedford & J. Smillie« Polynomial diffeomorphisms of 𝐂 2 : currents, equilibrium measure and hyperbolicity », Invent. Math. 103 (1991), p. 69–99. | MR | EuDML | Zbl

[4] —, « Polynomial diffeomorphisms of 𝐂 2 . III. Ergodicity, exponents and entropy of the equilibrium measure », Math. Ann. 294 (1992), p. 395–420. | MR | EuDML | Zbl

[5] J.-Y. Briend & J. Duval« Deux caractérisations de la mesure d’équilibre d’un endomorphisme de P k (𝐂) », Publ. Math. Inst. Hautes Études Sci. 93 (2001), p. 145–159. | MR | EuDML

[6] D. Burguet« A proof of Yomdin-Gromov’s algebraic lemma », Israel J. Math. 168 (2008), p. 291–316. | MR | Zbl

[7] S. Cantat« Dynamique des automorphismes des surfaces K3 », Acta Math. 187 (2001), p. 1–57. | MR

[8] E. M. ChirkaComplex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, 1989. | MR

[9] D. Coman & V. Guedj« Invariant currents and dynamical Lelong numbers », J. Geom. Anal. 14 (2004), p. 199–213. | MR | Zbl

[10] H. De Thélin« Sur la construction de mesures selles », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 337–372. | MR | EuDML | Numdam

[11] —, « Sur les exposants de Lyapounov des applications méromorphes », Invent. Math. 172 (2008), p. 89–116. | MR

[12] —, « Ahlfors’ currents in higher dimension », in appear in Ann. Fac. Sci. Toulouse. | Zbl | Numdam

[13] J.-P. Demailly« Monge-Ampère operators, Lelong numbers and intersection theory », in Complex analysis and geometry, Univ. Ser. Math., Plenum, 1993, p. 115–193. | MR | Zbl

[14] —, « Complex analytic and algebraic geometry », http://www-fourier.ujf-grenoble.fr/~demailly/books.html, 1997.

[15] J. Diller« Dynamics of birational maps of 𝐏 2 », Indiana Univ. Math. J. 45 (1996), p. 721–772. | MR | Zbl

[16] J. Diller, R. Dujardin & V. Guedj« Dynamics of meromorphic maps with small topological degree I: from cohomology to currents », preprint arXiv:0803.0955, to appear in Indiana Univ. Math. J. | Zbl

[17] —, « Dynamics of meromorphic maps with small topological degree II: Energy and invariant measure », preprint arXiv:0805.3842, to appear in Comment. Math. Helvet.

[18] —, « Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory », preprint arXiv:0806.0146, to appear in Ann. Ecole Norm. Sup. | Zbl | Numdam

[19] J. Diller & V. Guedj« Regularity of dynamical Green’s functions », Trans. Amer. Math. Soc. 361 (2009), p. 4783–4805. | MR | Zbl

[20] T.-C. Dinh & C. Dupont« Dimension de la mesure d’équilibre d’applications méromorphes », J. Geom. Anal. 14 (2004), p. 613–627. | MR

[21] T.-C. Dinh & N. Sibony« Dynamique des applications d’allure polynomiale », J. Math. Pures Appl. 82 (2003), p. 367–423. | MR

[22] —, « Regularization of currents and entropy », Ann. Sci. École Norm. Sup. 37 (2004), p. 959–971. | MR | EuDML | Zbl | Numdam

[23] —, « Dynamics of regular birational maps in k », J. Funct. Anal. 222 (2005), p. 202–216. | MR | Zbl

[24] —, « Green currents for holomorphic automorphisms of compact Kähler manifolds », J. Amer. Math. Soc. 18 (2005), p. 291–312. | MR | Zbl

[25] —, « Une borne supérieure pour l’entropie topologique d’une application rationnelle », Ann. of Math. 161 (2005), p. 1637–1644.

[26] —, « Decay of correlations and the central limit theorem for meromorphic maps », Comm. Pure Appl. Math. 59 (2006), p. 754–768. | MR | Zbl

[27] —, « Distribution des valeurs de transformations méromorphes et applications », Comment. Math. Helv. 81 (2006), p. 221–258. | MR

[28] —, « Geometry of currents, intersection theory and dynamics of horizontal-like maps », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 423–457. | MR | EuDML | Zbl | Numdam

[29] —, « Pull-back currents by holomorphic maps », Manuscripta Math. 123 (2007), p. 357–371. | MR | Zbl

[30] —, « Equidistribution towards the Green current for holomorphic maps », Ann. Sci. Éc. Norm. Supér. 41 (2008), p. 307–336. | EuDML | Zbl | Numdam

[31] —, « Super-potentials of positive closed currents, intersection theory and dynamics », Acta Math. 203 (2009), p. 1–82. | MR | Zbl

[32] —, « Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms », preprint arXiv:0804.0860. | Zbl

[33] R. Dujardin« Laminar currents and birational dynamics », Duke Math. J. 131 (2006), p. 219–247. | MR | Zbl

[34] C. Favre« Points périodiques d’applications birationnelles de 𝐏 2 », Ann. Inst. Fourier (Grenoble) 48 (1998), p. 999–1023. | MR | EuDML | Zbl | Numdam

[35] C. Favre & M. Jonsson« Brolin’s theorem for curves in two complex dimensions », Ann. Inst. Fourier (Grenoble) 53 (2003), p. 1461–1501. | MR | EuDML | Zbl | Numdam

[36] J. E. Fornæss & N. Sibony« Complex dynamics in higher dimension. I », Astérisque 222 (1994), p. 201–231. | MR | Zbl

[37] —, « Complex dynamics in higher dimensions », in Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., 1994, p. 131–186. | MR | Zbl

[38] J. E. Fornaess & N. Sibony« Complex dynamics in higher dimension. II », in Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud., vol. 137, Princeton Univ. Press, 1995, p. 135–182. | MR | Zbl

[39] M. Gromov« Entropy, homology and semialgebraic geometry », Astérisque 145-146 (1987), p. 225–240, Séminaire Bourbaki, vol. 1985/86, exposé no 663. | MR | EuDML | Numdam

[40] —, « Convex sets and Kähler manifolds », in Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, p. 1–38. | Zbl

[41] —, « On the entropy of holomorphic maps », Enseign. Math. 49 (2003), p. 217–235. | Zbl

[42] V. Guedj« Courants extrémaux et dynamique complexe », Ann. Sci. École Norm. Sup. 38 (2005), p. 407–426. | MR | EuDML | Numdam

[43] —, « Entropie topologique des applications méromorphes », Ergodic Theory Dynam. Systems 25 (2005), p. 1847–1855. | MR | Zbl

[44] V. Guedj & N. Sibony« Dynamics of polynomial automorphisms of 𝐂 k », Ark. Mat. 40 (2002), p. 207–243. | MR | Zbl

[45] A. Katok & B. HasselblattIntroduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge Univ. Press, 1995. | MR | Zbl

[46] S. ŁojasiewiczIntroduction to complex analytic geometry, Birkhäuser, 1991. | MR

[47] R. Mañé« A proof of Pesin’s formula », Ergodic Theory Dynam. Systems 1 (1981), p. 95–102. | MR | Zbl

[48] A. Russakovskii & B. Shiffman« Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J. 46 (1997), p. 897–932. | MR | Zbl

[49] N. Sibony« Quelques problèmes de prolongement de courants en analyse complexe », Duke Math. J. 52 (1985), p. 157–197. | MR | Zbl

[50] —, « Dynamique des applications rationnelles de 𝐏 k », in Dynamique et géométrie complexes (Lyon, 1997), Panoramas & Synthèses, vol. 8, Soc. Math. France, 1999.

[51] Y. T. Siu« Analyticity of sets associated to Lelong numbers and the extension of closed positive currents », Invent. Math. 27 (1974), p. 53–156. | MR | EuDML | Zbl

[52] H. Skoda« Prolongement des courants, positifs, fermés de masse finie », Invent. Math. 66 (1982), p. 361–376. | MR | EuDML | Zbl

[53] G. Vigny« Dirichlet-like space and capacity in complex analysis in several variables », J. Funct. Anal. 252 (2007), p. 247–277. | MR | Zbl

[54] P. WaltersAn introduction to ergodic theory, Graduate Texts in Math., vol. 79, Springer, 1982. | MR | Zbl

[55] Y. Yomdin« Volume growth and entropy », Israel J. Math. 57 (1987), p. 285–300. | MR | Zbl

Cité par Sources :