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REMOVAL INDEPENDENCE AND MULTI-CONSENSUS FUNCTIONS

Mark DWYER1, Fred R. MCMORRIS2,3, Robert C. POWERS1

RÉSUMÉ - Indépendance par suppression et multi-fonctions de consensus.
Vincke et Bouyssou ont montré que, si une procédure d’agrégation de préordres totaux

peut retourner plusieurs solutions, alors elle peut satisfaire tous les axiomes du théorème
d’Arrow sans être pour autant dictatoriale. Nous étendons cette approche aux hiérarchies
utilisées en classification. Dans ce contexte, on obtient des résultats qui peuvent différer
de ceux de Vincke et de Bouyssou.

MOTS-CLÉS - Théorie de la décision, consensus, multi-fonctions de consensus, hiérar-
chies, théorème d’Arrow

ABSTRACT - Work of Vincke and Bouyssou showed that if aggregation procedures
on weak orders are allowed to return more than one result, then it might be possible for a

procedure to satisfy all the axioms of Arrow’s Theorem yet not be dictatorial. This approach
is extended from ordered sets to n-trees, which are set-systems used in classifications theory.
Results in this context can differ from those of Vincke and Bouyssou.

KEYWORDS - Decision theory, consensus, multi-consensus function, hierarchies, Ar-
row’s Theorem

1. INTRODUCTION

Vincke (1982) and Bouyssou (1992) have given thought provoking interpretations
of the classical impossibility result of Arrow (1963). A central point of these papers
was that if aggregation procedures on weak orders are allowed to return more than
one result and Arrow’s axioms are extended to this situation, then "possibility"
rather than "impossibility" may occur.
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In the present paper we consider a class of hierarchies (called n-trees) rather
than the classical weak orders, and develop a program similar to that of Vincke
and Bouyssou. An n-tree, viewed as a hierarchical classification, might result
after the application of a clustering algorithm to appropriate data. If several of
the many available algorithms are used on the same data, the problem of producing
an overall summary (consensus) n-tree is clearly one of decision analysis. Since the
early 1970’s (as a sample, see Adams 1972, Barthélemy et al. 1986, Lapointe and
Cucumel 1997, Leclerc and Cucumel 1987) this approach has been used in an area
of biology called Numerical Taxonomy, for example. Because of the impact and
beauty of Arrow’s Theorem in the social sciences, this is often a target theorem
in more general contexts such as n-trees, but for n-trees a rich variety of results
can occur. Indeed, Barthélemy et al. (1995) have shown that there are at least 9
distinct versions of the independence of irrelevant alternatives axiom of Arrow. As
our starting point, we will use the analog of Arrow’s Theorem for n-trees proved
by Barthélemy et al. (1991) using the key axiom of "removal independence".

2. DEFINITIONS, TERMINOLOGY AND TECHNICAL BACKGROUND

Let S be a finite set with n elements. An n-tree on S is a set T of subsets of S

satisfying: S e T; 0 e T; ~x~ e T for all x e S; and X n Y E {0, X, Y} for all
X, Y E T. If X E T with 1  ~X~  n then X is called a nontrivial cluster of
T. T0 will denote the n-tree with no nontrivial clusters. For X any subset of S,
Tlx denotes the n-tree on S whose nontrivial clusters are the nonempty distinct
elements of {~4 D X : A is a nontrivial cluster of T}. Another very useful way
to realize an n-tree T is by its associated ternary relation (Colonius and Schulze
1981) where xylrz if and only if there is an A E T such that x, y E A, and z e A.
Elements in this ternary relation are called triads. The set of all n-trees on S
will be denoted by Tn. We let P(X) denote the set of all subsets of a set X, and
~m(X) denote the set of all subsets of X with no more than m elements.

A consensus function on Tn is a function F: 7~ 2013~ Tn, where k is a positive
integer and 7,-,’ is the k-fold cartesian product. Elements of 7-nk are called profiles
and are denoted by P = (tel, ... , Tk), P’ _ (Tl, ... , Tk) and so on. For X E P(S)
and profile P = (Tl, ... , Tk), we let Plx - (Ti ( x, ... , Tklx). In the classical

theory of Social Choice initiated in Arrow (1963), 7~ is replaced by the set of
all weak orders on S, and consensus functions are called social welfare functions.
As mentioned in the Introduction, there has been a good deal of work studying
various forms of consensus functions for tree structures. A nice summary of this

work, including more than 90 references, can be found in Leclerc (1998).

Most of the axioms for social welfare functions have analogs. For example,
a consensus function F satisfies the Pareto condition if, for any profile P =

(Tl, ... , T~); A E Ti for all z, implies that A E F(P), i.e. n Ti C F(P). F is

said to be independent, (o f irrelevant alternat2ves) if, for any two profiles P, P’;
Plx - P’Bx implies that F(P)lx == F(P’)Bx. The immediate analog of Arrow’s
Impossibility Theorem would read: If a consensus function satisfies the Pareto
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condition and is independent, then it is a dictatorship, where F is a dictator con-
sensus function if there exists a j such that for all profiles P; A E Tj implies
A e F(P). In Barthélemy et al. (1991) an example was given showing that this
straightforward translation of Arrow’s theorem is not true and that the indepen-
dence axiom needs to be modified. Indeed, in Barthélemy et al. (1995), several
versions of independence that can be defined for 7-, were studied. For a non-

trivial subset X C S and T e Tn, let Tjx - X denote the n-tree Tlx without
the cluster X. As expected, for a profile P we write P~X - X for the profile

F satisfies removal independence when for every X C S
and profiles P, P’; Plx - X = pllx - X implies that F(P) lx - X = F(PI)/X - X.
The main result in Barthélemy et al. (1991) states that if F is a consensus func-
tion on Tn that satisfies the Pareto and Removal Independence conditions, then
it is a dictator consensus function. It is this result that we will place in the con-
text developed in Vincke (1982) and Bouyssou (1992) where a consensus function
is allowed to be set-valued. Specifically, a function F : T ~ -~ ~ (Tn ) - ~ ~ ~ is a

multi-consensus function on Tn. A multi-consensus function F is an m-consensus
function if it maps F : 7~ 2013~ 7~~ (7~) 2013 {0}. Thus a 1-consensus function is just
an ordinary consensus function.

We now give straightforward generalizations of the axioms of Pareto and Re-
moval Independence to the multi-consensus case labeling them (P) and (RI).

Let F be a multi-consensus function on Tn. Then F satisfies the Pareto condi-
tion (P) if, for every profile P = (Tl, ... , T~); A E lll for every i implies that A E T
for every T E F (P). F satisfies rerrzoval independence (RI) if, for every X E S’ and
profiles P and P’; Plx - X = P’Ix - X implies that, for each T e F(P), there
exists T’ e F(P’) such that

As first observed by Vincke (1982) in the context of consensus functions on
weak orders, the dictator axiom has two very natural extensions to multi-consensus
functions. Obviously this is the case here also. F is a (strong)dictator (D) multi-
consensus function if there exists a j such that for every profile P = (Tl, ... , T~),
there exists a T e F(P) with T~ C T. F is a weak dictator (WD) multi-consensus
function if there exists a j such that for every profile P = (Tl, ... , Tk), ll§ C
UTEF(P) T. Clearly condition (D) implies condition (WD) and that for 1-consensus
functions they both are equivalent to the standard definition of a dictator consensus
function.

3. EXAMPLES

In this section we first present an example showing that it is possible to have a
multi-consensus function that satisfies (P) and (RI) but not (WD) [and hence also
not (D)]. This contrasts with the situation in Vincke (1982) for weak orders, where
it is shown that every multi-consensus function on weak orders satisfying Pareto
and Independence must satisfy (WD).
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EXAMPLE 1. For an exarrzple we let 5 == {X1,X2,X3,X4,XS}, Sl = txl ~ X21 X3, X4 1,
and S2 = fX2, X3, X4, Set M(Si) to be the set of all 5-trees T on S where

= T and T has exactly one cluster of size 2 and 3. Note that ] =
12. Let M(Sl) = IT1, ..., T12} and ~I (S2) _ IT13, ..., T241- Consider the profile

Now for 25  i  48 set

Define . by

Clearly F satisfies (P). To see that F does not satisfy (WD) we need only look at
the profile P. For every j E {1,.... 12} and T E F(P), we have 
Tj B T, while for every j E f 131 ..., 241 and T E F(P) we have fX2, X3, X4, X51 E TjBT-
To check that F satisfies (RI) requires a tedious but straightforward case by case
analysis.

Example 1 used profiles of length 24 for the domain. It would be interesting
to find the smallest k for which there exists a multi-consensus function F : T~ 2013~

{0} satisfying (P) and (RI) but not (WD).

In the next section we show that it is impossible to construct a function as in
Example 1 if we restrict ourselves to 2-consensus functions. This then raises the
question as to whether there is a 2-consensus function satisfying (P) and (RI) but
not (D). Our next example shows that this is indeed the case, and parallels the
work by Bouyssou (1992) for weak orders.

. 
EXAMPLE 2 . Let S = {~l~2~3~4~5,~6} the 6-trees on S

defined as follows (only listing the nontrivial clusters):

Set P = (T1,T2).Define by

1

Clearly F satisfies (P). To see that F does not satisfy (D) we need only look at
the profile P and observe that neither T1 nor T2’ is a subset of T3 or T4. An even
easier case argument shows that F satisfies (RI).
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4. A DICTATORSHIP RESULT

The goal of this section is to state carefully and prove our main result which was
mentioned in the context of Section 2.

THEOREM 3 . Let 181 = n &#x3E; 4 and let k &#x3E; 3. If
and (RI), then F satisfies (WD).

satisfies (P)

What now follows is a series of technical results, eventually leading to the proof
of Theorem 3, although we feel that several of these results are interesting in their
own right.

Let F : 7-k T~(T~) 2013{0} be a multi-consensus function that satisfies (RI) and
(P). Since the consensus output F(P) is a set of n-trees we will write A EV F(P) if
A E T for some T E F(P). Moreover, we will write A EÂ F(P) if A e T for every
T E F(P). This notation will be extended to triads. So ablc cv F(P) means that
ablTe for some T E F(P) and abjc EÂ F(P) means that ab/Te for every T E F(P).
If Pl f a,b,cl - f a, b, cl = la, b, cl, then, since F is removal independent,

EV F(P) implies cv F(P’). Since this situation occurs frequently we
will only write the conclusion: able cv F(P) implies able EV F(~). The reader
should understand that we are applying the axiom of removal independence and
that the hypothesis, = holds true. Finally,
let (T0, ..., T0) and PA = (TA, ..., TA) be notation for constant profiles where

We will assume throughout this section that F : 7~ 2013~ satisfies (P) and
(RI). The first lemma, however, is true even if we replace P2(T n) by P(T n) - {0}.

LEMMA 4 . If abjc cv F(P0) for some a, b, c E S, then xylz EV F(P0) for all
x, y, z E S.

Proof. We are given that ab 1 c EV F(P0) for some a, b, c E S. Let z b, c}.
Then ab 1 c EV F(P0) implies ab 1 c EV Since f c, z 1 EÂ it follows

that C’ Now ablz EV implies ablz cv F(P0). So ablz cv
F(P0) 
Let E ~B fa, b, cl. Then ablc cv F(P0) implies ablc ev Since

ta, xl CA it follows that xblc Eiv Now cv implies
xblc cv F(P0). So xblc EV F(P0) for all x E S B (b, cl.

It now follows that ev F(P0) for all x, y, z E S. 0

PROPOSITION 5 . F(P0) == {T0}.

Proof. Assume F(P0) i- ~T~~. Then there exists a, b, c E S such that ab 1 c EV F(P0).
By Lemma 4, ev F(PO) for all e S. In particular, there exist three
pairwise incompatible triads in at most two n-trees which is a contradiction. D

The next lemma is a "Co-Pareto condition" on triads.
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LEMMA 6 . Let P = (Tl, ..., T~) E T~. EV F(P) for some a, b, c E 5, then
b|c E T1 U T2 U ....U

Proof. Assume ab Ji Let

Then EV F(P) implies ab)c cv F(P). Since Ti E for i =

1, ...,1~, it follows that

where E S B ta, b, cl. Since ablx e’ F(P0) it follows that ablx ev F(P). Note
that ablc EV F(P) and ablx e vF (P) imply F(P). Let

Note that Ti E for i = 1,..., k. Now E’ F(P) implies ax 1 c C’ F(P).
So axlb cv F(P) or bxlc cv F(P). If ax|b EV F(P), then axlb EV F(P0)’ If

bxlc cv F(P), then bxlc EV F(Pm). In either case we contradict F(P0) == 
Let K denote the set {l, ..., For any D C K and x, y E S, let

where Ti = for i E D and Ti = T0 for i E K ~ D.

LEMMA 7. 

Proof. This result follows immediately from Lemma 6. D

Let D= {D Ç K : EV F(Plx,yl;D) for some x, y e SI. Since F satisfies

(P) it follows that K E D.

LEMMA 8 . If M is a minimal set belonging to D, then = 1.

Proof. Assume there exists a minimal set M belonging to D such that IMI &#x3E; 2.

Since there exist a, b E S such that ta, b~ ev Let c E S B ta, bl
and j e M. Define P = (Tl, ..., Tk) as follows: Ti = Tta,bl; Ti = for

Let dES B cl and set P’ = (~,..., T~) -
{a, b, Note that Tf = for i E M and T’ = T0 for i E K 1 M.

So f a, bl Ev F(P’). Now ab 1 d c’ F(P’) implies that ab d Ev F(P). Since ax 1 d e
Tl U .... U Tk for all x E S B {a, b, c, d} it follows from Lemma 6 that axld ftv F(P)

Thus ta, bl Ev F(P) or (a, b, cl EV F(P).
If {a, bl Ev F(P), then ab)c ev F(P). Now Ev F(P) implies that cv

since = ta, b, c~. It follows from the previous lemma
that fa, bl ev So { j ~ E D contrary to the minimality of M.
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If ta, b, cl Eiv F(P), then EV F(P). Now E" F(P) implies that E"
since tb, c, dl. It follows from the previous

lemma that ~b, cl C’ So M B E D. This again contradicts the
minimality of M and completes the proof. D

Since D is nonempty it contains at least one minimal set. For convenience we
will assume that {1} e D. So ~a, b~ EV for some a, b e S.

LEMMA 9. For any 1

Proof. Let y E S B la, bl and set P = ..., i Ttb,yl) - If z E S B ta, b, y 1,
then EÂ F(P). Now EV implies that C’ F(P). Putting
together c" F ( P) and EV F(P) we get cv F(P). The latter implies
that ev F(Pfa,yl;fll)- So ~a, y~ EV F(Pta,yl;fll) for any y la, bl. If we
fix y, then, by symmetry, lx, YI ev for any x E S. The result now
follows. D

LEMMA 10 . For any x, y E S and D C K with 1 E D, lx, yl ev 

Proof. Let x, y e S and D C K with 1 E D. Define P = (Tl, ..., Tk) as follows:
Tl = Tfxlyl; Ti = Tfxly,zl for i E Ti = T0 for i E K ~ D. Then Eiv F(P)
since = Since ywlz e for all w e S ~ 
it follows from Lemma 6 that ywlz ev F(P) for all w E S B lx, y, So ?/} C-’
F(P). In particular, xy 1 w EV F(P) where w E S B t x, y, z 1. Now xy 1 w E" F(P)
implies that ev By Lemma 7, lx, yl ev F(Pf.,YI;D). D

It follows from the last lemma that for any D C K, with 1 E D, D E D.

LEMMA Il . Let

ablc cv F(P).
If E Ti and bcla tt then

Proof. Now Tl 1 t,,,b,,l - ta, b, cl = and - la, b, cl E Tf a,,,l 1
for i = 2,..., k. Let P = cl and set P = la, b, dl. Note
that P = with 1 E D. By the previous lemma, la, bl cv F(P). So

ev F(P). Now EV F(P) implies_that EV F(P). Since bcld e 
it follows from Lemma 6 that bcld ev F(P). So ab c Eiv F(P). Now Eiv F(P)
implies that ev F(P) . D

By symmetry we could replace bcia in the previous lemma by ac b.

LEMMA 12 . Let If ablc E Tl, then ablc e’ F(P).

Proof. Let ~a, b, c} and set P’ _ (T’~,...,~) where T{ = and

Tl = {a, b, c} for 2 = 2,..., k. If {a, c, d} = p" _ (Tl’, ..., ~),
then adle E Ti’ and By the previous lemma, ad~c e~ F(P"). The
later implies that adle EV F(P’). Since adlb rt. it follows from Lemma 6 that

adBb tf-v F(P’). Now ad~c EV F(P’) and F(P’) imply that F(P’).
Finally, able EV F(P’) implies that able EV F(P). D
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LEMMA 13 . The set D conta2ns at most two minimal sets.

Proof. By Lemma 8, a minimal set from D is a singleton set. We know that
{1} e D. Assume that D contains at least two other minimal sets besides ~ 1 } .
For convenience we will assume that {2}, {3} E D. It follows from the previous
lemma that EV F (P) where P = Since

2 we obtain a contradiction. n

We know that {1} e D. By the previous lemma, D contains at most one other
singleton set. This means that there are at least k - 2 singleton subsets of K that
do not belong to D. For convenience we may assume that f Z« 1 e D for i = 3,..., k.
Thus {2} may or may not be an element of D.

The next lemma is an improvement of Lemma 6.

LEMMA 14. Let If ablc C’ F(P), then ablc E Tl U T2.

Proof. Now ab 1 c E‘’ F(P) implies that ab 1 c E’ F (P 1 f a, b,,l - 1 a, b, c}). It follows from
Lemma 6 that abld C’ ta, b, cl) {a, b, c~. Now abld EV

la, b, cl) implies that abld C’ where 

(a, b, d) . It follows from Lemma 7 that {a, b} EV 80
D E D. It follows from the previous lemma that either 1 e D or 2 E D. Thus

n

LEMMA 15. Let If ablc E Tl f1 T2, then ablc EÂ F(P).

Proof. Define P’ _ (TI, ..., T~) as follows: Tl = T2 = and T’ = U

tia, b, cll for i = 3,..., k. So ~a, b, CI = c~. Note that
abld E T’ for i = 1, ..., k. It follows that ab | â E/B F (P’ ) . Since Tl U T2 it

follows from the previous lemma that ev F(P’). So ablc E/B F(P’). The later
implies that abjc E/B F(P). D

For the next lemma we will use the following notation. For any T E 7-k and
nonempty subset A of S we let

LEMMA 16 . Let P = T~. Let A be a maxirrzal cluster in Tl which
is not properly contained in a nontrivial cluster in T2. Then A C’ F(P).

Proof. Let 7~ F(P). If A E T, then we’re done. If A tt T, then AT D A. We now
assert that AT = S.

Assume AT C S. Let x e AT ~ A and z Then e T for all y e A.
By Lemma 14, e Tl U T2 for all y E A. Since A is maximal in Tl, xy 1 z Tl
for all y E A. So E T2 for all y E A. This means that T2 has a cluster that

properly contains A contrary to the hypothesis. So AT - S.
Let M = {X E X C A and X is maximal }. That is, M contains the

maximal clusters in which are subsets of A. Since AT = S’ it follows that

IMI &#x3E; 2.
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Let X, X’ E M. For any x E X, y e X’ and z E S B A, xylz e T. (Otherwise,
there exists Y E T such that x, y e Y and z e Y. Then A n Y e Tj A intersects two
maximal clusters in T 1 A.) So E T’ where T’ E F (P) B {T}. For any x, x’ e X
and z E E T’ since xy 1 z and x’y 1 z belong to T’ where y E X’. It follows

SoAET’. Hence A E’ F(P). r-1

LEMMA 17 . Let Let A be a maxzmal cluster in Tl which
is properly contained in a nontrivial cluster B in T2. Then A C’ F (P) .

Proof. Take B to be the smallest cluster in T2 that properly contains A and let
P’ = B = (Tl, ..., Tk) - Then A E Tl is maximal and it is not properly
contained in a cluster from T2. By the previous lemma, A ev F(P’). So A C’

for some X Eiv F(P). If there exists x e XBA, then
x e B. Thenx,yeXandz eX. Soxy|zev F(P).
By Lemma 14, E Tl U T2. If xy 1 z E Tl, then there exists Z E Tl such that
x, y E Z and and A contrary to the maximality of A.
So xylz e Ti . If T2, then there exists Z E T2 such that x, y e Z and z e Z.
Note that B n Z 7~ 0 and Z g B. Also, B g Z since z e Z. So B and Z can not
belong to the same n-tree. In sum, there does not exist x E X B A. So X Ç A.
But A = X n B implies that A C X. So A = X. Hence A EV F(P). 0

It follows from the previous two lemmas that, for any P = (T1, ..., T~), i A E‘’
F(P) whenever A is a maximal cluster in Tl. We can now complete the proof of
Theorem 3.

LEMNIA 18. Let then A EV F(P).

Proof. Let A e Tl . If A is a maximal cluster, then, as we j ust observed, A EV F ( P) .
So we may assume that A is not maximal. Then there exists a chain of j &#x3E; 2

(nontrivial) clusters A2 D ... D Aj in Tl such that A1 is maximal, Ai+1 is a
proper subset of Ai for i = 1, ..., j -1, and Aj = A. Further, we want this chain
to be maximal in the sense that there does not exist a chain with j + 1 clusters
satisfying the previous properties. From Lemmas 16 and 17, Ai cv F(P) , so our
next goal is to show that F(P).

Let P’ = PIAI - (Tl, ..., T~). Note that A2 E Tl is maximal and so

F(P’) Thus A2 ev Al. So A2 = X for some X C’ F(P). If

A1 and X are contained in the same n-tree in the output F(P), then X = A2 and
we’re done. So we may assume that A, e T and X E T’ where F(P) = IT, Tl.

We may assume that there exists x e X B A2. Now for any y E A2 and
z E A, B A2, F(P) B Tl. So E T2 for all y E A2 and z E A, B A2. It

follows that T2 contains a cluster Z such that A2 C Z and Z n (~4i B A2) = 0. Note
that e Tl n T2 for all a, b E A2 and c C AI B A2. By Lemma 15, able EÂ F(P)
for all a, b e A2 and c E A2. In particular, abjc E T for all a, b e A2 and
c E A2. Since A1 E T it follows that e T for all a, b e A2 and c E S’ ~ A1.
In sum, able E T for all a, b e A2 and c e S B A2. Thus A2 cv F(P).

This argument can be repeated to establish that Ai EV F(P) for i = 2, ..., j. In
particular, A = Aj ev 
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