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MULTIDIMENSIONAL MAPPING OF PREFERENCE DATA

W.J. HEISER*
J. DE LEEUW*

I. INTRODUCTION

The analysis of preferential choice data has attracted the attention of

methodologists in the social sciences for a long time. The classical ap-

proach, starting off from the work of Fechner on experimental esthetics

(Fechner, 1871), and formulated as a theory of choice by Thurstone in his

famous Law of Comparative Judgment (Thurstone, 1927, 1959), involves the as-

sumption of an unidimensional utility continuum and normal distributions of

utilities. Pairwise choice frequencies are then accounted for in terms of

properties of the utility distributions: means, standard deviations and cor-

relations.

A rigorous statistical treatment of Thurstonean scaling is given by
Bock and Jones (1968). Further interesting developments in the theory of

individual choice behaviour were made by Luce (1959, 1977), Tversky (1972)

and Fishburn (1974); for an analysis of social choice behaviour and many re-

lated topics, see Arrow (1951) and Davis, De Groot and Hinich (1972). An

authorative review of the method of Paired Comparisons is David (1963) and,

more recently, Bradley (1976); an up-to-date bibliography on this method is

given by Davidson and Farquhar (1976). These ’statistical’ approaches will

not interest us here, however. Instead, we will focus upon ’data-analytic’

approaches that have been advocated in recent years. They are multidimen-

sional in nature and emphasize the graphical display of data.

The first approach we will discuss is very much in line with Thursto-

nean theory. In fact, it starts from the general Law of Comparative Judgment

*Department of Datatheory, University of Leiden, Holland
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but avoids the customary restrictive case V assumptions. It then aims at a

multidimensional analysis of the comparatal dispersions. The second approach

is made up of what we call decomposition techniques. Here we assume transi-

tivity for each subject and a ’latent’ cognitive or evaluative structure,

common to all subjects. The individual utilities are then decomposed into

the common structure and a set of points or vectors which represent the sub-

jects. Finally, a third class of techniques will be discussed which tries to

map the individual utilities into a known common structure straight away. We

will call these projection techniques (Carroll (1972) uses the terms intern-

al and eternal analysis for decomposition and projection respectively, but

these terms do not clarify much the completely different nature of the tech-

niques involved).

II. SOME TERMINOLOGY AND NOTATION

The several kinds of data that will be considered in the next sections can

all be thought of to be derived from (or actually computed from) the central

three-way datablock in figure 1.

Figure 1. Central three-way datablock
with three derived matrices

For convenience, we will interpret the general element (i) to be the pre-P g Pjk t

ference strength of subject i with which he prefers object j to object k.
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The collection of objects may be anything: odours, crimes, concepts, politi-
cal parties, commodity bundles, persons etc. Moreover, we use the word pre-
ference in its broadest sense: any judgment or behaviour which indicates

that, according to subject i, object j is nicer than, wilder than, heavier

than, or more valuable than object k will be suited for our analyses. And of

course, when we say that the ’third way’ pertains to subjects, we do not

want to imply that this couldn’t be replications, occasions, conditions,

groups or any other datasource.

So, we consider a set of n objects, a set of m subjects and a measure

of preference strength P8k. In many applications/ , the experimental set-up
J (j)calls for a preferential choice, so that the individual are dichotomous

Jk
variables, simply indicating whether or not subject i prefers object j to

object k. Sometimes however, we want to incorporate indifference judgments
(trichotomous case) or quantitative measures of preference strength (graded
pair comparisons). The marginal table P is defined as follows:

So P is simply the mean preference strength and is the usual input to a

Thurstonean or Bradley-Terry-Luce analysis. No attempt will be made to de-

scribe these procedures here in detail, since they are well documented and

summarized elsewhere (Thurstone (1927), Mosteller (1951), Luce (1959), Brad-

ley and Terry (1952), David (1963), Torgerson (1958), Bock and Jones (1968)).

For a treatment of the trichotomous case, see Glenn and David (1960) and

Greenberg (1965); for an analysis-of-variance approach to graded pair comp-

arisons, see Scheffé (1952) or Bechtel (1976).

We shall discuss two types of generalized Thurstonean analysis in sec-

tion III. There we also need the matrix K, which contains the so-called

comparatal dispersions. The remainder of the paper will be devoted to tech-

niques to analyse the matrix U, defined as follows:

Thus uij indicates to what extent subject i prefers j over the other objects
1.J

(centered at zero). The table U will be referred to as the matrix of utizi-

ties and the u.. as the individual utilities (these are sometimes called
1J

preference ratings or individual (affective) values). The fact that we re-

duce the to u.. does not imply that we are unwilling to accept intrans-J 1.J 
P Y g P

itive choices; we just don’t "model" them. If intransitivity is around, it
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will introduce ties or a decrease of variance in the rows of U. Of course,

the individual utilities may be collected by any ordering or rating scale

methed right from the start. Transitivity is assured then and we might re-

construct the other matrices by the rule

where F is a suitably chosen monotone increasing function.

III. MULTIDIMENSIONAL ANALYSIS OF COMPARATAL DISPERSIONS

Our concern with the multidimensional analysis of a pair comparison matrix

is motivated by two lines of thought: in the first place, there is the theo-

retical argument that choice models should incorporate parameters which ac-

count for ’ambiguity’ or ’similarity’ of the objects, apart from their ’po-

pularity’. This goes back to Thurstone’s earlier work (for a specific dis-

cussion, see Thurstone (1945)) and was taken up by Sj6berg and his collabo-

rators. The second, more data-analytical argument is that people are used to

analyse correlation- and dissimilarity matrices with a lot more parameters

than they tend to do with pair comparison matrices, without very compelling

reasons to do so. This last type of motivation, including an alternative

derivation of one of the models to be discussed here, may be found in Car-

roll (1980). But first, we focus on Thurstone and Sjöberg.

III.I. Why comparatal dispersions?

According to the Thurstonean model for pairwise choices, the set of objects

corresponds with a multivariate discriminal process U29 ..., Un1, with
parameters pi (j = 1, ... , n) and o., (j,k = 1, ... , n). Thus it is as-

J J
sumed that any two choice objects, j and k, give rise to partly overlapping

normal utility distributions (see figure 2).

Figure 2. Marginal utility distrib utions for j and k.
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Assume that, in a pairwise choice, the object with the larger utility is al-

ways preferred; more precisely, if j and k are compared, the subject samples
from the process and prefers j to k if U. &#x3E; Uk. By standard statistical re-

J k

sults, the difference process Uk} will be normally distributed withJ k
mean pi - uk and varianceJ 

Following Gulliksen (1958), we call the K. comparatal dispersions (the G.
J J

are called discriminal dispersions). Let the probability that the utility
of j is larger than the utility of k be denoted by then

j

where ~ is the univariate standard normal distribution function. Furthermore

if Pjk estimates TIjk and Zjk is the corresponding unit normal
J J J J

deviate, we get

This is Thurstone’s Law of Comparative Judgment (Thurstone ( 1927) ) . A basic

difficulty in the model is that there are too many unknowns. We may attempt

to resolve this difficulty in at least two different ways:

a. by imposing restrictions on the parameters, such as that all com-

paratal dispersions are equal (case V), or that all covariances are

equal and the variances are almost equal (case IV).

b. by deriving more equations accounting for the same experimental
data (using tetrachoric correlations between pairs) or slightly
different equations accounting for slightly different experimental
data (category judgments of size of difference).

The first approach is by far the most popular. In its usual form, however,

it has two major drawbacks. As Mosteller (1951) and Torgerson (1958) have

pointed out, statistical tests for the goodness-of-fit of these highly re-

stricted models are insensitive to violations of the assumption of equal

comparatal dispersions. Unequal dispersions may or may not cause high chi-

square values. So we have nothing to evaluate the seriousness of faulty

assumptions. In the second place, we might have theoretical and practical
reasons to be interested in the comparatal dispersions themselves. This po-

sition has recently been advocated strongly in the work of Sj6berg (1975).
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Remember that the probability of choosing one object over the other is a

function of both the mean difference in utility and the standard deviation

of the differences. Now, consider the distributions of utility differences

Uk} in figure 3. In 3a, the mean utility difference is posi-
J k J k

Figure 3. Three distributions of utility differences.

tive and the proportion of minority votes ff kj . corresponds to the shaded
j

area, the proportion of majority votes to the unshaded part. There are two

quite different mechanisms whereby the relation between minority and majori-

ty votes may be changed. The first is illustrated in figure 3b. By a change

in the mean utility difference the proportion of minority votes has decreas-

ed. Here the model simply says that the more popular an object gets, the

more votes it will obtain. This is so close to common intuition that we can

not expect to learn many qualitative new things from a case V analysis
alone (nor could we from the various alternatives that have been proposed,

which assume different distribution functions but stick to unidimensionality

and, by the way, arrive at virtually indistinguishable estimates of the

utilities, cf. Mosteller (1958) and Noether (1960)).

Next consider figure 3c. Again the proportion of minority votes has

decreased, but for a completely different reason. The mean utility differ-

ence has remained the same, whereas the variance of the distribution has
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diminished. If we want to understand this effect, one possibility is to

assume

i.e., the usual case III assumption of zero correlations between discriminal

processes. A possible interpretation of a2 and U2 is,in terms of ambiguity
i k

and the model now says that the object in the majority will gain votes from

a decreased ambiguity of one or both objects, whereas the object in the

minority will lose by it. Certainly, this is only one possibility; we will

treat others later. It is clear that we get a richer theory of preference
behaviour if we do not restrict the more interesting parameters in the model

so heavily.

The second approach is not using restrictions but deriving more equa-
tions. This is exemplified by the work of Sj6berg. At first, he suggested
that the tetrachoric correlations between pairs contain information about

the correlations between utility distributions (Sjöberg (1962)). Although it

was found that they do give some useful information, Sj6berg (1967) remarks

that his methods are cumbersome to use even with a moderate number of ob-

jects. He therefore switched over to an analysis of graded pair comparisons,
which require the subject to give a response richer in information, and

proposed a method which utilizes this increased information to obtain esti-

mates of the comparatal dispersions up to a constant. In the next subsection

we will review Sj6berg’s method and some of his empirical findings. After

that, we will discuss a new method which uses the restriction approach again

(but with a more general class of restrictions).

111.2. Comparatal dispersions and similarity.

The procedure proposed by Sj6berg (1967) calls for preference ratings on all

possible pairs of objects. It is not assumed that and add up toP P J jk kj 
P

some constant for all j and k, as is usually done; this would ruin the pos-

sibility to estimate the dispersions. The experimental set-up typically runs

as follows. Subjects are instructed to consider for each pair first which

object they prefer. Then they are asked to check to what extent they like

the chosen object better. A possibility of checking a category of equal pre-
ference is mostly provided. So, if seven categories of size of difference

are used, the subject is asked to mark one of the figures in the string
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If the raw data are collected in the then we may derive injk 9 y

this case several matrices which indicate the proportion of times
j

that j is preferred to k at least the amount (P, = 1, ... , r). The number

of ’threshoZd’ parameters t tmay be chosen in accordance with the presumed
judgment accuracy of the subjects (in the example above, r = 7). To get a

Figure 4. The effect of a threshold parameter.

rough idea about the way the method works, we will consider the case r = 1

(this is analogous to trichotomous pair comparison data, it allows for the

judgments j &#x3E; k, k &#x3E; j and indifference).

, 
Consider figure 4. Here we have the unit normal cumulative distribu-

tion function; on the y-axis we have the usual proportions p.k and pkj9J k J
which are symmetric around 0.5, and on the x-axis we have their correspon-

ding unit normal deviates z .k - (p. - and which
j j j j j j

are symmetric around 0.0. The key assumption is, that the effect of the

threshold will be to decrease all utility differences U. - Uk by an amount t

. 

j
(this implies that utility differences have to be bigger to produce the same

proportion of preference votes). This decrease doesn’t affect the variance

of the utility differences, but it does affect their mean. For the new nor-

mal deviates we get

Subtracting (8b) from (8a) gives us:
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adding (8a) and (8b) gives

For identification purposes, we may set t = 1 and estimate the comparatal

dispersions by

and the mean utility differences by

Once the differences are known, it is a routine matter to-find the mean

utilities themselves. In the general case, we add r parameters and find that

the number of equations has been multiplied by 2r. This gives us a strongly
overdetermined system, which is solvable by standard methods.

In line with the view that the estimation of comparatal dispersions
wouldn’t be of much theoretical interest if we couldn’t connect them with

other characteristics of the choice objects, Sj6berg and his collaborators

(Sjoberg (1975a,b), Sjoberg and Capozza (1975), Franz6n, Nordmark and Sjo-
berg (1972)) sought empirical evidence for the conjecture that correlation

between utility distributions correspond to rated subjective similarity.
This notion is motivated by the general argument that two objects which are

considered to be very similar by many people are often found to be correla-

ted in many attributes, so their utility distributions should be correlated

too. Similarity judgments in some form are taken as a basic approach to fin-

ding a map’, which in turn is supposed to influence the prefer-
ential choice process.

In the studies cited above, the estimated comparatal dispersions are

taken to be "inversely related to the correlations". So instead of the case

III assumption of constant covariances, as in (7), it seems that constant

variances are assumed. I.e., if, according to (4),
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where p.k is the correlation between the utility 
distributions of j and k,

J
then some assumption like

is necessary to arrive at a (linear) inverse relation

for some constant c. However, the way in which Sj6berg e.a. try to verify
the conjecture suggests an alternative reparametrization of the K.k’s. For,J

they perform a multidimensional scaling analysis both on the estimated K.k’sJ
and on the rated similarities, say s.k. This means that they try to repre-

J
sent the choice objects as points in p-space, in such a way that small in-

terpoint distances correspond to small comparatal dispersions (cq. large

similarities), and larger distances correspond to larger dispersions (cq.
smaller similarities). If Y is the p-dimensional cognitive map derived from

the similarities data and X the p-dimensional representation of the choice

objects derived from the comparatal dispersions, then the conjecture may be

stated as "X = Y".

The alternative reparametrization thus would be, to write the disper-

sions as a function of X. This is possible, because the variance-covariance

matrix la ik I may be decomposed into the formJ

as can be done with any positive semi-definite matrix, and therefore

So the comparatal dispersions may be interpreted as distances between points
in n-space. This new system is still unrestrictive, but as usual we throw

away n - p dimensions. This means that that we replace the 2n(n-1) parame-
ters K(jk by ’the np parameters x.. Thus the comparatal dispersions are ac-

J Ja
counted for by a p-dimensional representation X, which should resemble the

p-dimensional cognitive map Y obtained from other data.

As an illustration, we take a study of political preference in Italy

by Sj3berg and Capozza (1975). The choice objects were the seven political
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parties listed in table 1.

Table 1. Choice objects from Sj6berg
and Capozza (1975).

The subjects were 195 students of the university of Padua, Italy. The rele-

vant experimental tasks were similarity rating on a seven-category rating
scale and preference rating on a fifteen-category rating scale, both for all

pairs of parties. The estimated comparatal dispersions are given in table 2.

Table 2. Standard deviations of utility differences,

total group (Sj6berg and Capozza, 1975).

The derived two-dimensional structure is given in figure 5a (the multidimen-

sional scaling program TORSCA was used), and the two-dimensional cognitive

map derived from the mean similarity judgments in figure 5b. Clearly, the

Figure 5. Two derived structures from Italian data (expl. see text).
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the two structures are globally the same, as conjectured, although figure 5a

appears to be a bit more ’bended’ version of the usual political left-right
dimension emerging in figure 5b.

III.3. A new formulation: restricted multidimensional scaling.

We now return to the restriction approach for the general Thurstonean model,

using (17) or a similar assumption. We suppose the z.k are given numbersJ
satisfying Zkj’ and we want to fit the model (cf. (6)):

J J

where the d.k are euclidean distances defined on the rows of X. Such a para-
j

metrization implies that the restrictions should be imposed on the x. , in-
Ja

stead of directly on the Gjk. This gives us the advantage that we obtain a
J

much broader class of models compared with the classical ’cases’. In the

first place, if X is any n x p matrix, we have a case very similar to the

one in the last section and a model which is essentially equivalent to Car-

roll’s (1980) ’wandering vector’ model. Furthermore, if X is n x n and dia-

gonal, we get

corresponding to the usual case III assumption. And if we restrict X to be

of the form

we obtain a model in which the comparatal dispersions are associated with

both ’common’ (X ) and ’unique’ (x.) dimensions, i.e. something comparable
c J

with the factor-analytic model. With X of the form (21) we obtain a simplex

model, different from the one proposed by Bloxom (1972), who defines an

order relation on the utilities. In our case, if X has pattern (21) then

the matrix of squared distances exhibits the pattern (22), for n = 4; i.e.,

if we move successively further from the main diagonal, the comparatal dis-

persions increase. Note that this may be a reasonable alternative for the
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case III or the case VI assumption (cf. Bock and Jones (1968), p.65)

Many more special structures may be imposed on X, giving just as many
’cases’ for Thurstone’s Law. To fit this family of cases, we will first sym-
metrize (18) by taking absolute values; we define

i.e., Xjk (p) is the distance between the mean values on the utility conti-jk
nuum. Furthermore, we define a second transformation of the data:

This gives us the transformed model of preference strength

which still incorporates the two basic mechanisms mentioned in section III.1

Note that the choice objects are associated with two sets of parameters: 11
and X. Increase in distance on the utility continuum (involving p) heightens

the preference strength, whereas increase of distance on the cognitive map

(involving X) lowers it. A loose way of stating the relationship between

these mechanisms is: incomparabzes tend to be confused, even though their

utilities may differ a Zot, and things that are alike tend to be contrasted

if one has to choose between them.
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The direction of preference strength only involves p (we have to be a

bit careful here, because the ’direction’ of the one-dimensional continuum

implied by (23) is not determined; mostly, however, a quick look at the end-

points will suffice to identify the ’good’ and the ’bad’ side). For estima-

tion purposes, we employ the least squares loss function

which may also be written as

This is a function of two sets of parameters and we can use the Alternating
Least Squares (ALS) principle to minimize it. The ALS principle is a general

rule to tackle least squares problems. It says that we first have to find a

partition of the total set of parameters into ’nice’ subsets, such that the

minimization of the loss function over each subset alone, with the remaining

parameters regarded as fixed, is relatively simple. Then we may cycle

through a series of simple least squares subproblems and repeat that process
until convergence. For a general discussion of ALS in a somewhat different

context, see de Leeuw, Young and Takane (1976).

In our case, the ALS principle suggests that we must alternate the

minimization of two subproblems: minimization of L(X,p) over p for fixed X

and minimization of L(X,P) over X for fixed p. For convenience, we suppress
reference to the set of fixed parameters and state our two subproblems as:

and

The first subproblem is the unweighted, metric, one-dimensional case of a

Multidimensional Scaling problem; i.e., we want to find p such that the

(one-dimensional) distances A. (p) are as much as possible equal to theJ

quantities vjkdjk . The second subproblem is a weighted, metric, restricted
J J

MDS problem; i.e., we want to find X such that it satisfies conditions like

(19), (20) or (21) and at the same time the distances d.k(X) should be asJ
much as possible equal to the quantities where the deviations from

J J
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perfect match are weighted by vjk. Both subproblems can be conveniently
j

solved by exploiting the general multidimensional scaling approach of de

Leeuw and Heiser (1980).

To illustrate some of this, we use another set of data collected by

Sj6berg (1967). It concerns the nine choice objects listed in table 3. These

were judged by 106 psychology students on the attribute ’immorality’ (graded

pair comparisons on a 20-point scale). To remove the,grading and the indif-

ference judgments, we used (9) and got the proportions listed in table 4.

Table 3. Nine choice ob j ects f rom Sj6berg (1967).

Table 4. Proportion of times j was judged being

more immoral than k (reconstructed).

Two analyses were done with the ad-hoc APL program PAIRS. One utilized as-

sumption (18) with X two-dimensional (’case I’), the other (19) (’case III’).

We have listed the obtained mean utility values in table 5, together with

the values reported by Sj6berg and the ordinary case V values based on
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Table 5. Estimated mean utility values and dispersions.

Figure 6. Utility scales from table 5.

table 4. For ease of comparison, all scales are linearly transformed such

that the most immoral action gets a value of 1 and the least immoral one a

value of 0. An alternative representation of these results is given in fi-

gure 6. The discriminal dispersions which we get from the analysis under the

case III assumption are also listed in table 5, and the two-dimensional con-

figuration X which best reproduces the comparatal dispersions is displayed
in figure 7.

A global interpretation of these results is that all utility scales

show the same order of actions, the discriminal dispersions seem to increase

with extremeness of utility in both directions, and that the cognitive map
contrasts physical harm with material damage on the one hand, and reckless

actions with intentional actions on the other. There are some interesting

details too. If we compare the case III utility values with those of case V,

it seems as if the extremes have been pushed away. This is compensated for

by higher values of the discriminal dispersions for these actions (which ap-

pear in the denominator of (25)). Maybe this gives us a somewhat nicer in-

terpretation of the scale: actions 2, 1 and 3 are really bad, action 9 is no

offence at all, but to which extent this is true is controversial among the

subjects. A similar reasoning applies to the case I values, where we have,

say, the unforgivable things against accepted offences, and correspondingly

increased distances (between 2, 1, 3 and the others) on the cognitive map.
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Figure 7. Cognitive map obtained from the immorali-

ty judgments in table 5 (L(X,u) = 0.0511).

A more subtle interpretation arises here if we consider two pairs which are

about equally distant on the utility scale. Compare for example the pairs

1,2 (drunken driver vs foster-parents) and 4,6 (swindler vs moon-shining).
Action 2 is a bit worse than 1, as is 4 compared with 6; but the proportion
of times that swindler has been judged worse than moon-shining is much

greater (.779) than the proportion for foster-parents and drunken driver

(.583), due to the fact that swindler and moon-shining are much more com-

Figure 8. Cognitive map obtained from Sj6berg’s esti-

mates of the dispersions (stress - .17244).
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parable on the cognitive map. Similarly, motorist and drunken driver are

about as much worse than teenager, but drunken driver is judged more unani-

mously worse (p15 - .972 versus p35 - .913), because for both drunken driver

and teenager about the same recklessness is involved. These conclusions do

not change if we look at fitted proportions instead of observed ones.

Finally, we want to compare figure 7 with figure 8, which shows an-

other cognitive map, derived from the comparatal dispersions as estimated

by Sj6berg (for this purpose we used SMACOF-1, a metric multidimensional

scaling program described in de Leeuw and Heiser (1977). The reckless versus

intentional contrast seems to be the same, but this time we do not have phy-
sical harm contra material damage, but something like physical harm -
material damage - no damage. Note that the extreme position of elderly per-
son corresponds with an increased distance between 9 and the others on the

Sj6berg-scale of figure 6, compared with the case I scale.

IV. DECOMPOSITION TECHNIQUES

It is not always plausible to assume that the individual subjects in a pre-

ference study essentially all sample from the same underlying process; to

put the matter more strongly, sometimes we are convinced that individual

choices are not alike because individual utilities are not alike in some

fundamental sense.

Imagine a group of friends who have decided to go to the wintersports

together. On their first preparatory meeting, they settle upon the charac-

teristics of the ideal skiing resort: it should be high, but not too high;
there should be at least 70 kilometres of skiing tracks; the place should be

cosy, not too crowded, cheap, sunny and there should be other skiing possi-
bilities in the immediate neighbourhood. They also want to stay in a com-

fortable chalet, close to the centre of the village, not too expensive, etc.

Where to go? One of them then asks several travel agencies for information

and comes out with eight possibilities, none of which is completely satis-

factory, of course. To make up their mind, they all compare all resorts in

pairs and perform a Thurstonean analysis.

This is a perfectly sensible thing to do. The objects here are selec-

ted and seen as imperfect approximations to one ideal. Consequently, the

subjects are supposed to utilize the same appropriateness-for-the-winter-

sports continuum, on which each resort gets a scale value indicating its

distance from the ideal. In fact, their task is to estimate and combine all

kinds of subtle differences; the use of a probabilistic choice model re-
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flects the expectation, that these subtle differences are estimated diffe-

rently by different subjects.

A completely different situation arises if we consider the preference
behaviour of, say, all customers of one particular travel agency on one par-
ticular day, who ask for information regarding wintersports. Suppose that

the travel agency gives them all the same traveller’s guide, which com-

prises information about eight selected wintersport resorts. Moreover, sup-

pose that we ask the customers to read and think a while and after that to

give us all their pairwise preferences. Certainly, the present subjects are

a much less homogeneous group and the present objects will show a much less

restricted range of characteristics compared with those in the first situa-

tion. Some people prefer sophisticated places to simple ones, others don’t;
some want to make fast descents, others primarily want to make tours; some

like ’curling’ and do not intend to ski at all, others like skiing in virgin
snow and do not intend to stay in the village at all; for some, the more

disco’s the better, for others the other way round, etc. All these different

requirements will result in different preferences. How can we decribe these

individual differences?

IV.1. The concept of a multidimensional joint utility space.

We might conveniently imagine that each object can be represented by an

appropriately selected point in a space of one, two, three or more dimen-

sions. We don’t know yet, how many dimensions this space should have and

where the points representing objects will be located; we want the data to

give us a clue to that. To capture the individual differences in the model,
we use the notion of an isochrest (this is in analogy with ’isobar’ or

’isotherm’; Carroll (1972) uses the word ’isopreference contour’, an some-

what unfortunate name as preference is usually understood in terms of pairs
of points). An isochrest is a curve which connects points of equal utility.

Consider the psychological map of eight resorts presented in figure 9.

We will not pay attention to the way in which this particular location of

points was chosen (it certainly does not correspond to a geographical map).

An imaginary subject told us, that among these eight places his first choice

would be: Selva or Obergurgl; his second: Saas Fee, Cervinia or les deux

Alpes; his last choice would be: Gerlos, Kitzbuhel or Chamonix (for ease of

presentation, we gratefully acknowledge the presence of ties). The iso-

chrests labelled 1, 2 and 3 represent these choices. Of course, for another

subject we would have to draw other curves.
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Figure 9. Psychological map of winter-

sport resorts, with isochrests

In general, we could take any arbitrary location of points and repre-
sent any series of utility values by drawing a set of isochrests. This would

portray the data, but in a disorderly and trivial way. So we want to tighten

up the requirements, such that they impose restrictions on the data. This

can be done in several ways, usually called ’models’. All of them involve

the idea that the isochrests should be a family of regular curves, defined

on one unique configuration of points:

a. the vector model : each subject is represented by a vector and his

isochrests are parallel lines (planes, hyperplanes) perpendicular
to his vector, in the order (and spacing) of his utilities.

b. the unfolding model : each subject is represented by a point and his

isochrests are concentric circles (spheres, hyperspheres) around

this point, in the order (and spacing) of his utilities.

c. the weighted unfolding model : each subject is represented by a

point and his isochrests are concentric ellipses (ellipsoids)

around this point, in the order (and spacing) of his utilities.

d. the compensatory distance model: each subject is represented by a

point and his isochrests are parallel lines (planes, hyperplanes)

perpendicular to the line connecting this point with the origin of

the space. This time the utilities are reflected by the distances

between the subject point and the parallel lines.

We will call the joint space of object points {y.a} and subject points (or
J

vectors) (x.) (multidimensional) joint utility space (Coombs (1964), who
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Figure 10. The mapping Qf reference and utility.

developed the concept into its present form, just calls it ’joint space’ or

’joint scale’; in his pioneering 1946 paper, Guttman talks about ’quantify-
ing comparisons’, confining himself to the vector model). For the first two

models it is possible to devise a decomposition technique, which recon-

structs from a given table of utilities a multidimensional joint utility

space such that the requirements of the model are as much as possible ful-

filled. We will discuss this in more detail in sections IV.2 through IV.5.

We will describe the models as alternative ways to map the data and will not

address the intricate question whether or not one model is more ’true’ than

the other. Also, we will refrain from technicalities. The weighted unfolding
model is discussed in Carroll (1972) and the compensatory distance model in

Coombs (1964) and Roskam (1968). For both, however, no reliable decomposi-
tion techniques are available and we omit any further discussion.

Our development is summarized in figure 10. As Bechtel (1976) has

pointed out, the representation of subjects and objects in multidimensional

joint utility space is in the testtheoretic tradition of joint or dual

parametrization, which emphasizes rather than obliterates information about

individual and intergroup differences. The decomposition models as we treat

them here do not contain probabilistic notions, they are in a sense just
’the deterministic bridge’ between individual utilities and joint utility

space. If we were willing to accept distributional assumptions, we could try
to connect joint utility space directly with the individual preferences (cf.

Zinnes and Griggs (1974)). Another interesting approach we will not discuss

is to partition the subjects into classes, with homogeneity of utility with-

in classes (summarized in one or more ’local’ preference orders) and hetero-
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geneity between classes (cf. Hayashi (1964), Lemaire (1977)).

IV.2. The vector model.

In the vector model, the subjects are represented by vectors, each of which

supports a set of parallel isochrests. This is illustrated for one subject

in figure 11. From this figure we may infer that this particular subject (in

Figure 11. Wintersport map with parallel isochrests

the same map as before) orders the wintersport resorts as: les deux Alpes,

Obergurgl, Selva, Chamonix, Cervinia, Saas Fee, Gerlos and, finally, Kitz-

buhel. The subject vector not only implies a particular order among the ob-

ject points, but also a specific spacing between each of them, which corres-

ponds with the distance between the isochrests along the subject vector. If

we move the vector in figure 11 I a bit, we get the same order but a different

spacing (e.g., with respect to the dotted vector, Selva and Obergurgl are

more separated, whereas Cervinia and Saas Fee nearly coincide). In fact, if

we go on moving around the vector (keeping the map fixed), we will encounter

56 different orders, but an infinite number of differently spaced orders.

More generally, the number of different orders that can be ’explained’ by
the vector model (with any non-degenerate configuration of points) is finite,

depends on the dimensionality of the space and the number of points we want

to accomodate in it, and is very small compared with the total number of

different orders that may be formed (Bennett (1956), Coombs(1964)).

Let’s now look at the structure of the model more closely. Mathematically,
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the decomposition may be expressed as

where u.. denotes the utility of subject i for object j, the Ix ill’ 11.31 x. }1J 1 1P
are the coordinate values of the vector representing subject i and the

{y.t,..., y. } the coordinate values of the point representing object j. To
J JP

simplify the discussion, we will confine ourselves now to two dimensions and

consider one subject only, with utilities lu ,..., u.,..., un}. This simpli-l J n

fies (27), and we get the system

where fxl,x21 is the subject vector. To see how the isochrests come in, it

is convenient to transform (28) into

which is a series of n parallel straight lines through the points fyj,,,yj2 Ijl j2
with slope v = x /x and shift ul = u./x2. Clearly, if for two objects we1 2 i i 2

have u. = uk, then u’ = uk and they must be situated on the same straighti i Ui
line.

In a similar way, another subject is associated with another set of

parallel straight lines or, equivalently, with another direction in utility

space. If we regard the coordinate axes as fixed ’psychological dimensions’,
we may say that each subject these dimensions differently to arrive

at his utilities. In this reasoning, all subjects ’use’ all dimensions of

joint utility space, but in a different way (or to a different degree). This
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implies the idea of compensation: two objects may be far apart, but if this

happens to be in (a) direction(s) perpendicular to the vector of subject i,

that particular subject still gives them equal utility (compare in figure 11

Selva with Obergurgl, which have nearly equal utility, with Selva and les

deux Alpes which are closer together but more saliently differentiated). On

the other hand, suppose two objects get the same utility (u. = uk), thenJ

using (29), and this implies

In words, (31) says that a dominance of j over k on the second dimension is

compensated for by a dominance of k over j on the first one.

Another interpretation of the decomposition could be that each subject
selects just one direction in joint utility space and disregards all p - I

other ones. According to this point of view, we need not to commit ourselves

to an interpretation in terms of projections on some set of (arbitrary) co-

ordinate axes, but may look at ’the picture as a whole’ and use notions like

contiguity vs separation and circular ordering (cf. Lingoes and

Borg (1977)) as well. Consider for example another possible map for the ski-

Figure 12. Alternative wintersport map showing
a circular ordering (circumplex).
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ing resorts in figure 12. This structure could very well arise in practice.
After all, Chamonix in many respects resembles Kitzbuhel but it is more sty-

lish and you can ski there in summertime; les deux Alpes is less expensive
than Chamonix and more attractive for the ’young’ jet-set; Cervinia does not

have that many ’après-ski’ possibilities and is less attractive for begin-

ning skiers than les deux Alpes; in Selva you don’t have summerski possibi-
lities as in Cervinia, but better touring possibilities; Obergurgl is attrac-

tive for people of all ages, but there are less ’cross-country’ possibili-
ties than in Selva; Gerlos is more attractive for beginners than Obergurgl,
but less sporting; in Saas Fee there are less touring possibilities compared
with Gerlos, but more skilifts; and again Kitzbuhel is bigger and has more

’cross-country’ than Saas Fee, but is also more expensive. Of course, these

qualifications should not be taken too seriously, they only try to illus-

trate the idea of a circular order (circumplex structure): neighbouring

points share many aspects and differ in a few; if two points are far away

along the circle, they share very few aspects and differ in a lot. In a case

like this, it is not so natural, or even very difficult, to pick out two

orthogonal psychological dimensions for interpretation, whereas the ordering
without beginriing or end may be perfectly convincing on its own. The vector

model here says, that each subject may have an ideal combination of correla-

ted aspects somewhere upon the circle, and that his utility decreases evenly
in both directions.

We now turn to the matter of estimation. We want to be brief about it.

Many techniques have been proposed, primarily differing in generality and

elegance of presentation (see Guttman (1946), Slater (1960), Tucker (1960),

Carroll and Chang (1964), Hayashi (1964), Benz6cri (1967), de Leeuw (1968),

Bechtel (1969), Carroll (1972), de Leeuw (1973) and Nishisato (1978)). For

our purposes, it suffices to say that they all seem to amount to minimizing

the loss function

under certain normalization requirements. Thus, for given {ui} we want to1J
find both and {y. } such that L(X,Y) is as small as possible. In its

1a Ja

simplest form, the problem can be solved by routine methods (a truncated

singular value decomposition); the solution for X and Y will be unique up

to a joint rotation, which mostly will not bother us. A more general ap-

proach to handle the problem, where each row of U may be transformed with

any monotone transformation to maximize the fit, can be found in van Rijcke-
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vorsel and de Leeuw (1979). Unfortunately, there are cases where these gene-
ralized algorithms converge to undesirable solutions (unique axes for cer-

tain individuals), so they are really not yet suited for standard usage.

IV.3. Application of the vector model.

A number of succesful applications of the simple vector decomposition have

been published. We name a few scattered examples. In the area of marketing

research, Green and Rao (1972); in political science, Daalder and Van de

Geer (1977) or de Leeuw (1973); in experimental psychology, Mc Dermott

(1969); in clinical psychology, Slater (1965); in esthetics, Fenelon (1971);

in the area of population studies, Delbeke (1968); in sociology, Seligson

(1978). We will analyse a fresh example here, adopted from Dijkstra (1978),
and illustrate some aspects of data manipulation which are not really a part
of the method but nevertheless important from a data-analytical point of

view.

The data concern the motivation to work in an academic setting; each

of 47 subjects from the Department of Philosophy and Social Science of the

Technical University Eindhoven indicated their preference order among ten

aspects of job satisfaction (these are summarized in table 6). We analysed

---- - - ---------------------- ---- ------

Table 6. Ten aspects of job satisfaction.

these utilities with the popular program MDPREF (Carroll and Chang (1968)).

Using standard options, we get the two-dimensional solution of figure 13.

The subject vectors extent over a range of about 215 degrees, due to the

fact that WELF and PLEA are generally being judged low and never chosen

first. Still, there is considerable interindividual variation, but we have

to be careful: the vectors just indicate directions in utility space (MDPREF

standardizes all vectors to have equal length) and don’t tell us whether or

not a particular subject fits in well or badly. Therefore, we adjusted the



65

Figure 13. Two-dimensional MDPREF solution for job satisfac-

tion data (’explained’ variance 58%).

the length of the vectors in such a way that they reflect the goodness-of-

fit of each individual with respect to the two-dimensional solution (their

’communality’). This is plotted in figure 14.

Because the program standardizes the configuration of object points
such that their projections on each axis have sum of squares one and are

mutually orthogonal, we have the important property that solutions in diffe-

rent dimensionalities are nested: the first p axes of the (p+q)-dimensional
solution are identical to the p-dimensional solution. We may interpret the

adjusted subject vectors as projections out of a high-dimensional space into

p-space such that their average length is as large as possible. This implies
that we should evaluate ’short subjects’ differently from ’long subjects’.
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Figure 14. Two-dimensional MDPREF solution for job satisfac-
. tion data with adjusted vector length.

Thus we see that subject 47 does have quite a different point of view,
but most of all he is pointing in still another direction out of this two-

space (his first choices are SALA, WELF and SECU, but his last three are

HEAD, MAKE and PLEA; fitted isochrests would dramatically reveal here the

mismatch with the data). For similar reasons, subjects 24, 34, 32, 16, 4, 2,

5, and 35 apparently also don’t fit in well.

Dijkstra (1978) suggests that PART, IMPO, PROV, RESP and MAKE are in-

trinsic, whereas SECU, HEAD, PLEA, SALA and WELF are extrinsic motivations.

This dichotomy comes out nicely along the horizontal axis. The vertical

axis could be something like oriented to the future (MAKE, PROV, HEAD), ver-

sus or2ente d to the present (IMPO, RESP, PLEA). This is not very satisfac-
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factory and we may look at something else.

Note that the configuration of object points vaguely exhibits a horse-

shoe form: we could look at it as a curved dimension, on which the points
are ordered as PLEA, WELF, SECU, SALA, HEAD, MAKE, PROV, PART, RESP, IMPO.

Also note that the subject vectors predominantly point into the direction

(north-)west. It turns out that the mean utility values of the objects (com-

puted here as mean rank numbers, and very closely related to Thurstone case

V values) along the horseshoe are: 7.9, 7.7, 6.5, 5.0, 5.3, 4.8, 3.3, 3.9,

5.0, 5.5. Thus, starting with PLEA (7.9) and going counter-clockwise, the

mean values first decrease down to the most popular PROV (3.3) and then rise

again. We may argue that this direction of mean utility (a direction in

space approximately going from PROV to PLEA) certainly represents something

important (common opinion, norm, academic hypocrisy), but also obscures the

typical nature of the individual differences.

We can remove the effect of mean utility by taking deviations from

column means. Analysis of these deviation scores (again with adjusted sub-

ject length) gives us the result in figure 15. The intrinsic-extrinsic di-

chotomy is still there, but there are changes on the vertical axis (IMPO and

RESP are more differentiated, as well as PROV and PART; WELF and SALA are

closer together, as are PLEA and HEAD). The pleasing thing about the distri-

bution of subject vectors is, that they now cover the whole range of direc-

tions. We have marked four regions in figure 15 which divide the total group

into four typical subgroups:

The modest (I): SECU, WELF and SALA are evaluated relatively high in

this group, IMPO and PROV relatively low. These people are just making

a living and some of them probably have settled down in this univer-

sity for the rest of their lives.

Opporturc2sts (II): here MAKE is relatively high and RESP is relatively
low. This group is more ambitious than group I, but they want to keep

away from duties.

The hopeful (III): typically, PROV and IMPO are important and ’materi-

al things’ are not. They are eager to make their own way in science.

Managers (IV): here RESP, PART (and IMPO) are dominant, whereas SECU

and MAKE are not. These probably are the people in high positions (or

a certain class of paid students?).

It is possible to accomodate most subjects in one of these four groups. Some

of the subjects which don’t fit in very well actually conform to the general

norm (cf. subjects 1, 10, 11, 21 in figure 14); others are in fact differen-
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Figure 15. Job satisfaction data in deviation from column

means (MDPREF, ’explained’ variance 51%).

tiated in the third dimension of the deviation scores solution (this direc-

tion contrasts IMPO, SALA, MAKE with PROV, HEAD, PART and the two little

subgroups are subjects 4 and 5, the autonomous careerists, versus 14 and 16,

the dedicated scholars).

. This rather exhaustive interpretation of the obtained joint utility

space would require validation through careful examination of background
characteristics of the subjects. Also, reanalysis on subsets of the set of

objects or on particular subgroups of subjects could prove to be useful, but

this would lead us outside the scope of this paper.
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IV.4. The unfolding model.

In the vector model, the family of isochrests was characterized by vectors

pointing in different directions. This kind of representation has its roots

in the long-winded Spearman/Thurstone factor-analytic tradition within

psychology or, quite independently, in the French data-analytic tradition

(Benzécri (1976)). It yields a very strong kind of model and there have been

several attempts to generalize it. One of these was to specify the family of

isochrests as a set of parallel curves (Carroll (1972)), but the properties
of this polynomial model have never been worked out in detail.

A completely different proposal originated with Coombs (1952, 1964),

although here too Thurstone’s pioneering work on attitude scaling is rele-

vant. The key notion is, that the dimensions of joint utility space should

correspond to fundamental dilemma’s. If we were to consider a collection of

cars which differ on two attributes only, say price and safety, any ’ratio-

nal’ man would choose a car which is cheap and safe over an expensive and

unsafe one. But the very thing which generates individual differences and

which may be of practical or theoretical interest, is the trade-off between

opposing benefits (Coombs and Avrunin (1977) discuss this in terms of so-

called approach-approach, approach-avoidance and avoidance-avoidance con-

flicts).

The assumption that people do make different trade-off’s (which in the

example is reflected by the amount of money they are willing to pay for

safety) leads to the concept of a point of maximum subjective utility or

ideal point. An ideal point corresponds with an imaginary object which would

be preferred to all other available ones. This subjective ideal need not to

be ideal in an absolute sense, but it represents the best possible eompro-
mise. And joint utility space, as conceived here, will not reflect all at-

tributes which characterize the objects at hand, but only the ones that are

relevant in the sense of urging people to make different trade-off’s. Fur-

thermore, if a particular subject is confronted with two objects, he will

prefer the one which is closest to his own ideal; put differently, joint

utility space is constructed such that the individual utilities are repro-

duced by the distances between the object points and the ideal point.

In two dimensions, the model implies that the family of isochrests

consists of sets of concentric circles. In figure 16, one subject is put in

with an ideal point very close to Selva; the order of his utilities appa-

rently is: Selva, les deux Alpes, Obergurgl, Saas Fee, Cervinia, Chamonix,

Gerlos, Kitzbuhel. If we move around the ideal point a little bit, the order
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Figure 16. Wintersport map with circular isochrests.

doesn’t change but the intervals between reproduced utilities do. A set of

points which all generate the same order of utilities is called an isotonic

region. With enough object points relative to the number of dimensions, iso-

tonic regions tend to be compact and very small, at least in the interior of

space. On the exterior, they are fan-shaped and extend to infinity. This

gives us a geometrical hint that the unfolding model is a generalization of

the vector model. For, if we imagine an ideal point moving outwards, then

beyond a certain limit circular isochrests generate the same order of utili-

Figure 17. Equivalence of circular and straight isochrests

when the subject point moves outwards.
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ties as do parallel straight lines perpendicular to a vector pointing at the

ideal point, This is illustrated in figure 17. For clarity, only four

isochrests have been drawn. Note, however, that this notion of ideal points

freely moving outwards is a bit overoptimistic: for in practice, we have to

standardize the joint configuration of object- and subject points to some

fixed value and as a consequence, the more subject points are moving out-

wards, the more the configuration of object points will relatively shrink.

In the limit, all object points coincide, a situation which is intuitively
undesirable but frequently encountered in practice, especially with badly

fitting data.

Some results concerning the maximum number of preference orders gene-
rated by n objects in r dimensions can be found in Coombs (1964) or, more

completely, in Good and Tideman (1977). In our example, with n=8 and r=2,

this number turns out to be 351. Thus the unfolding model accomodates much

more preference orders than the vector model does, but still a lot less than

the number of possible orders (n!).

We have said that in the present model utilities are reproduced by

distances. More specifically, the decomposition rule is mostly assumed to

be euclidean:

where 6.. denotes the disutility of object j according to subject i, related
1J

to the original utility value by

where H is a suitably chosen monotone decreasing function. In metr2e unfol-

ding, we usually take

In sympathy with the general strategy of Coombs (1964) to treat all data in

the social sciences under the weakest possible assumptions, unfolding virtu-

ally has been equated with row-conditional non-metric unfolding: one wants

to reproduce the rankorder of the utilities only, and moreover is not wil-

ling to assume intersubjective comparability of these ranknumbers. This

leads to a modification of (34) into
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where hi are optimally chosen monotone decreasing functions. Although there
have been many attempts to find satisfactory algorithms for this relaxed

version of the model, these do not seem to have been very succesful (cf.

Kruskal and Carroll (1969), Heiser and de Leeuw (1978)). For the one-dimen-

sional case, there are even weaker versions of unfolding which only try to

find an ’ordered metric scale’ for the objects (cf. Phillips (1971), Mc

Clelland and Coombs (1975)). Here, we will consider the more tractable

metric multidimensional case only.

The assumption of euclidean distance is vital to arrive at circular

isochrests; i.e., if we look at all points for which (dis)utility is con-

stant, (33) tells us that in two dimensions

which is the general equation of a circle with centre and radius

c. In case we had chosen a non-euclidean decomposition rule, such as the

so-called metric

a set of square instead of circular isochrests would have come out. This

kind of metric may have theoretical plausibility (cf. Coombs (1964), p. 206)

but the algorithmic problem it poses is largely unsolved.

In the unfolding model, the idea of compensation no longer holds,
since y.2 in (37) cannot be regarded as a single-valued function of y.l, as

j j
could be done in (29). Furthermore, (im)popularity of objects is represented
as eccentricity : popular objects will be close to the centroid of the ideal

points, controversial ones nearby the edge. To see this, consider the mean

squared disutility of object j:

which we may take as a measure of impopularity. Applying (33), we get
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We will now assume without losing generality that the configuration of sub-

ject points is centered, i.e. ~x. - 0, and that its sum of squares Xxx~ia ia

equals some unknown value m.C. We get

Thus if an object is very popular, p. will be low and according to (41) the
J

sum of squares of its coordinate values will be relatively small; if an ob-

ject gets more controversial, its p. value will be higher and its distanceJ
to the origin increases, etc. If there happens to be an object which is al-

ways dominated by almost all other objects, it usually ’needs a dimension

on its own’ (it might be better to discard it for further analysis).

Two kinds of decomposition techniques have been proposed to estimate

the parameters of the metric unfolding model. One of these uses an algebraic

analysis of the squared distances implied by (33). This approach goes back

to a conjecture of Coombs and Kao (1960); other contributors are Ross and

Cliff (1964), Sch6nemann (1970) and Gold (1973). The second kind of techni-

que tries to minimize the least squares badness-of-fit function

over jointly normalised X and Y, by means of a specialized multidimensional

scaling algorithm (cf. Heiser and de Leeuw (1979), who also compare several

different algebraic methods as to their suitability to provide a good ini-

tial configuration for the iterative minimization of (42)).

We conclude this section with the remark that the name ’unfolding’

plastically describes the problem which the decomposition techniques have

to solve: imagine joint utility space depicted on a handkerchief; pick it

up in some ideal point i and pull it through a ring. The object points will

come out in the order of the utilities of subject i; thus an individual

preference order is produced by joint utility space, folded at point i. Ob-

viously, the decomposition problem is to unfold all preference orders simul-

taneously.

IV.5. Applications of the unfolding model.

Unfortunately, not many applications have been reported in the literature.
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There are some small pioneer studies such as in Coombs (1964), Roskam (1968)

and Sch6nemann (1970), and some more substantial ones, such as Daalder and

Rusk (1972), Green and Rao (1972), Levine (1972), Davison (1977) and Delbeke

(1978). Some of the reported results exhibit suspiciously ’degenerate’ clus-

terings of points, probably due to the fundamental weakness of the non-metr-

ic unfolding approach. We think this disappointing state of affairs can be

remedied to some extent by adopting a metric approach or by imposing re-

strictions on the parameters of the model. We will discuss two analyses per-

formed with the metric program SMACOF-3 (Heiser and de Leeuw (1979)), using
data from Gold (1958) and Delbeke (1978).

The first example concerns the evaluation of power characteristics by

eight different groups of middle-class american children. Among other things

Gold’s study yielded the datamatrix reproduced as table 7. The groups are

labelled A-H; the details of data collection and group composition do not

bother us here. The 17 row objects represent possible properties of children

Table 7. Ranks of items by per cent of times they were rated ’very

important’ (low value: most important); from Gold (1958).
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Figure 18. Map of power resources (Gold, 1958), obtained

with SMACOF-3 (stress = 0.0299).

which, when valued highly in a group, supposedly contribute to the social

power of children who possess them. Thus, IDEAS, FRIEN and PLAYS are very

important to exercise power in group A, whereas GOPER, DOING and GAMES are

required in group B, etc. Note that SMART and STRON are never appreciated

very much and we expect that they will turn up at the edge of utility space.

The result of the SMACOF-3 analysis is presented in figure 18. As expected,

SMART and STRON are far away from the centroid of the group points. Further-

more, the so-called social-emotional resources FRIEN, GOPER, ASKIN, NOTEA,

HOWTO and DOING are all close to the centroid of the group points (with

NOTEA, HOWTO and FRIEN far away from B and GOPER and HOWTO far away from A).

A tentative interpretation of the configuration of object points might be

based on the concepts of French (1956) and French and Raven (1959). Reward

power is based on the ability of the actor to administer positive valences

and to remove or decrease negative valences. Clearly, HAVIN, GIVIN, NOTEA

and HOWTO exemplify tliis. is based on a liking or identifi-
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cation relationship; LIKES, PLAYS and IDEAS are typical (but SMART and STRON

also). The third direction indicated in the figure concerns expert- and co-

ere2ve power, based on the belief that someone has greater resources (know-

ledge or information) within a given area (SMART, MAKIN, GAMES) or can medi-

ate punishments (FIGHT, STRON). The obtained joint utility space could be

used to check whether children which are independently characterized as po-

werful within their group do exhibit group-typical power properties.

The second example is a reanalysis of Delbeke’s (1978) data concerning

preferences for family composition. The objects here are all combinations of

number of sons and number of daughters, ranging from 0 to 3. Thus (2,1 ) in-

dicates two sons and one daughter, (0,3) no sons and three daughters, and so

on. In the theory regarding family composition preferences (cf. Coombs, Mc

Clelland and Coombs (1973), two new variables are defined in terms of the

old ones, viz. number of children and sex bias (see table 8). The theory now

says, that each subject employs two unimodal utility functions over the na-

tural order of these characteristics and that his overall utility for family

number of children

Table’8. Family composition: change of variables.

Table 9. Example of a perfect order for family types.

types may be obtained by simple summation (up to a monotonic transformation).

So, if a subject has a sex bias -1 and number bias 5, he might order the
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Figure 19. Map of family compositions, obtained with SMACOF-3.

family types as in table 9. Note that there are several ’perfect’ orders

possible, depending on the scale of the two utility functions. In each co-

lumn of the table, disutility decreases (and eventually rises again, as in

column 3); the same is true for each row.

For this kind of data, we expect unfolding to do well if we are wil-

ling to assume that differential weighting of dimensions is neglectable.
Delbeke used 82 psychology students at Leuven University as subjects. The

result of the SMACOF-3 analysis (stress = 0.1669) is plotted in figure 19.

In this figure we have connected the object points with isobias- and iso-

sizecontours. The expected grid comes out well, except for the point (0,0),
which is very unpopular among these belgian students (only 3 first choices

of male biased persons). Overall, there is a bias towards larger families

and towards males.

We may compare this with the results obtained by Delbeke with the

non-metric program MINIRSA (Roskam (1975)), given in figure 20. Here the

grid doesn’t come out at all; most subjects are clustered together inside
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Figure 20. Map of family compositions, obtained with MINIRSA.

the triangle in the middle of the plot and their utilities are (monotoni-

callyl) transformed into constants for all objects except (0,0). Stress

approaches zero in this case, but the solution is not very informative.

V. PROJECTION TECHNIQUES

The techniques from section IV all tried to map the complete table of uti-

lities simultaneously into two sets of entities, according to some decompo-
sition rule. Our task would be greatly simplified if one of both sets was

known in advance. In Thurstonean attitude scaling, for instance, scale

values for the object points are determined by a separate experimental pro-
cedure and the problem of finding attitude scores for the subjects, given

their list of ’endorsements’ or utilities, can be simply solved by a weight-
ed least squares procedure. In general, the task that remains is to project
a vector of utility values into some prescribed subspace. Apart from clas-

sical two-step attitude scaling, in which situations do we expect to be

interested in connecting utilities with some known configuration?
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V.I. Mapping the utilities into a known structure.

Although any respectable researcher ’should know something’ about the ob-

jects under study, frequently this something is not enough to specify the

exact position of the object points in p-dimensional space. That’s why we

have specific kinds of applications in mind, such as:

- trade-off studies: suppose we have a collection of objects known to dif-

fer on two negatively correlated desirable traits, e.g. a set of insuran-

ce policies different in prize and in cover. We now may want to characte-

rize subjects in terms of safety bias on the basis of their utilities.
- multidimensional psychophysics: suppose we have a collection of objects

chosen as to differ on two physical attributes, e.g. a set of taste mix-

tures, say alanine and glutamic acid combined in various concentrations,

which are to be judged as to their sweet-sourness; or a set of odour mix-

tures, say jasmin and bergamot in various concentrations, to be judged on

their hedonic tone.

- impression formation studies: here the objects are varied on psychologi-
cal attributes; typically, one confronts the subject with hypothetical
’stimulus persons’, differing on, say, intelligence and dominance and

asks for a judgment of overall Zikeableness. A large amount of research

has been dedicated to the discovery of the rule by which a subject com-

bines different pieces of information into one final impression (see

Rosenberg (1968), van der Kloot (1975)).

In all these applications we need not necessarily to assume monotonicity of

utility with each of the independent (i.e., varied or selected by the ex-

perimenter) variables. Moreover, we will be primarily interested in ques-
tions like: "what is the psychological effect of simultaneous variation?" or

"what kind of individual differences will turn up under simultaneous varia-

tion ?". Applications of a slightly different type are:

- discriminant and convergent validation studies: suppose we have at our

disposal a psychological or cognitive map of the objects (e.g., derived

from a previous multidimensional scaling analysis of judged overall simi-

larity) ; we now may ask ourselves how well the utilities can be connected

with this particular configuration (cf. Abelson (1955), Jaspars e.a.

(1972)). Another possibility is, that we have a previously derived joint

utility space and we want to connect it with background variables of the

subjects, or with actual characteristics of the idealized objects (e.g.,
in the Gold study (see figure 18), we may ask whether children which are

independently chosen to be powerful within group B are indeed better at
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games with running and throwing, at making things, etc. and no good in

knowing how to act so that people will like them).
- cross-validation studies: we may split up our original sample into two

randomly chosen subsamples (or consider two independent samples right

away). We then derive a joint utility space for the first (sub)sample and

and regard the obtained configuration of object points as fixed for the

second one (cf. Bechtel (1976), p. 74 - 77). This provides us with a

check whether the obtained configuration does indeed accomodate all pos-
sible individual utilities.

In the next section we will consider some elementary techniques for display-

ing individual utilities in two-dimensional space. After that, we will dis-

cuss how to fit some specific models in possibly more dimensions by regres-
sion techniques.

V.2. Elementary techniques in two-dimensional space.

The most obvious way to display individual utilities in a known configura-
tion of points is to label all points according to their corresponding uti-

lity value. A somewhat nicer representation is obtained if we plot iso-

chrests. Note that, in contrast with the situation in section IV.], this is

no longer trivial as the configuration of points is no longer free to vary.

Would the isochrests show up in a disorderly or criss-cross way, this would

simply mean that our conjecture about the coherence between utilities and

object map is falsified.

To illustrate this procedure, we take the data of one particular sub-

ject from a study by van Asten (1979) about the attitude towards differen-

tiation and delegation of tasks in primary schools. The relevant tasks are

summarized in table 10. There are two kinds of data: similarities between

pairs of tasks and utility ratings for all tasks separately (also given in

table 10, for one subject). First we computed an individual cognitive map
with the program SMACOF-1, plotted in figure 22; we then drew isochrests,

aided by computing for a lot of points, regularly spaced on a grid, the in-

terpolated utility

where a and b are suitably chosen constants. In words, (43) says that the

utility of an arbitrary point k in the map may be obtained by a weighted

average of the utilities of the fixed points, with the weights inversely re-
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Table 10. Tasks used in van Asten (1979); uti-

lities of one subject in parentheses.

Figure 22. Individual cognitive map of educational tasks.
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lated to the distances to these points.

There are several things to note about this rather exhaustive descrip-
tion of an individual case. In the first place, the north/south direction

seems to contrast non-professional versus professional tasks; those on the

right/below involve all kinds of supervising activities, those on the left/

above all kinds of preliminaries. The tasks in the centre (LA, ST, IS, SL,

TP, SU, DB, GR) apparently are seen as the core of the job. Furthermore, the

isochrests indicate that the professional/non-professional distinction is

primarily responsible for the differences in utility, but not monotonically

(HD and LP may be typical, but not very pleasant). Note that, although the

psychological distances between the pairs (LM,LI) and (LM,ST) or (IF,WA) and

(IF,GR) are roughly the same, their utility differences are very different;

this may be seen as a possible source of stress or cognitive dissonance.

Finally, note that TP and SU are ’out of place’; they lie in an area of uti-

lity 3, whereas their actual value is 4, ’disharmony’ again.

Whether or not this kind of representation, though plausible, has any

practical or theoretical value is an open question. It certainly needs re-

plication, to arrive at reliable maps and stable isochrests.

The second technique we want to demonstrate is to delineate isotonic

regions, i.e. regions in the map which account for one particular rankorder

of utilities. We will utilize a smaller set of dissimilarities and utilities

borrowed from Jaspars e.a. (1972); for another secundary analysis of this

material, see Bechtel (1976). The purpose of the Jaspars e.a. study was to

clarify the development of national stereotypes and attitudes in children,

with notions from Heider’s theory of cognitive balance. We will use only

part of their data here, in an attempt to represent it more thoroughly.

The essential ingredients are again a SMACOF-I scaling solution and a

rankorder of utilities (see figure 23). The objects are: the Netherlands (N)

England (E), the United States (A), France (F), the USSR (R) and Germany (G)

and the subjects are second-grade Dutch children; their overall rankorder of

utility is: N - E - A - F - R - G. According to Jaspars e.a., nationalism

implies that one’s own country is perceived as closely resembling the ideal

country. If this is true, it follows that the more a country is perceived as

different from one’s own country, the less it is preferred over the other

countries. This conjecture was checked by computing the correlation between

the utility of the five ’other’ countries (Thurstone case V values) and the

distance from the Netherlands in the cognitive map. For this particular sub-

group the correlation is close to zero, which need not surprise us in view
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Figure 23. Second-grade children’s cognitive map
of nations with three isotonic regions

of figure 23. If we just want to describe the rankorder N - E - A - F - R -

G in terms of any ideal point or an isotonic region in the cognitive map,

we should look somewhere in region I, which is the set of points which are

closer to the Netherlands than to any other country. But the remaining part
of the utility order (E - A - F - R - G) can be represented perfectly by all

points in region II, which is disjunct from region I; so we may not hope for

a good representation of the complete rankorder (we could say: disregarding
the Netherlands, which is chosen first anyway, an ideal point can be located

anywhere in region II, reflecting a World War II direction). Alternatively,

we could look for a ’perfect’ anti-idealpoint; it turns out that every point
in region III (including Germany) has a rankorder of distances G - R - F -

A - E - N, precisely the reverse utility order. This implies that the utili-

ty order doesn’t reflect nationalism, but anti-Germanism.

For the other subgroups in the Jaspars e.a. study, comparable conclu-

sions can be reached with this kind of approach. For larger problems (more

objects, more subjects, or both) or if our cognitive map has more dimensions

the method gets bothersome and we need a mathematical formulation of the

problem.
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V.3. Fitting a family of isochrests by linear regression.

In this section we will first discuss the problem of finding one ideal point

in a fixed p-dimensional configuration of object points; the procedure can

be repeated for any number of ideal points. After that, we will briefly indi-
cate the possibilities of fitting other families of isochrests and discuss

some applications in section V.4. A complete account of the present topic
can be found in Carroll (1972), who introduced it under the name external

analysis of preference data, and Bechtel (1976); also, see Davison (1976a,b).

We start with an assumption like (36) in section IV.4, which says

that the distance between ideal point i and object point j is a monotone

decreasing function (specific for subject i) of the utility of object j.

As we are dealing with just one subject here, we suppress reference to the

subscript i and specify as our decreasing function:

where a and S are arbitrary constants (provided that a &#x3E; 0 and 8 ? max (u.)).J
The choice of this particular decreasing function is no coincidence; it

allows us to write

and to get rid of the square root in the euclidean decomposition rule (33),

by which we get

Here the u. and y,are known and the a, 8 and xa are the unknown parameters.J Ja a

Now the second basic trick in this approach is to introduce the change of
variables:

for all j = 1, ... , n and the reparametrization :
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which makes it possible, using (46), to arrive at the transformed model

This is a set of n non-homogeneous linear equations in p+2 unknowns, which

in general has no solution, but may be approximately solved (resorting to

the least squares principle again) by standard multiple regression methods.

Once estimates of the y’s have been found, (48) may be invoked to find esti-

mates of the original parameters.

We can imagine the z. as n points in (p+2)-space, in which we want to
J

find a direction (vector) y such that the projections of the {z.a} onto yJ
are approximately equal to the lu11; i.e., we want to fit the ’vector model’

J
to a fixed set of transformed coordinate values. This way of looking at the

approach immediately suggests how we would fit in a vector for each subject
instead of an ideal point: by not transforming coordinate values.

Now consider a family of isochrests consisting of concentric ellipses
instead of circles: in one direction utility decreases faster than in the

other one. In terms of a decomposition rule:

Carroll calls this the weighted unfolding model: each subject may weight the

axes differently. We can use a change of variables and the corresponding re-

parametrization again to transform the problem into the form (49); instead

of two extra variables we will now get p+1 extra variables in the regression.
An even more general model is obtained if we allow each subject to have his

own orientation of ellipses: the general unfolding model. It is tempting to

call this ’Carroll case I’, as the number of parameters here easily outgrows

the number of independent datavalues. Indeed, Carroll emphasizes the fact

that the various models form a h2erarehy, in which each simpler model is a

special case of all the more general ones, obtained by imposing restrictions

on their parameters.

This brings us to a final remark concerning the problem of connecting
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a set of utilities with a known configuration of object points. In general

it is possible to combine a decomposition technique with a projection tech-

nique : our objective would be to decompose a table of utilities under speci-
fic restrictions upon the configuration of points. It seems to us that this

approach is the most promising one, because that way we stay in one and the

same (weighted least squares) framework, instead of using different ad-hoc

methods for different variants of analysis. An example is given at the end

of the next section.

V.4. Applications of projection techniques.

Carroll’s hierarchy of models is implemented in the program PREFMAP (Carroll

and Chang (1967)). Applications (sometimes using other programs) include

Green and Rao (1972), Funk e.a. (1974), Bechtel (1976), Davison and Jones

(1976), Nygren and Jones (1977), Bechtel (1976), Delbeke (1978) and van As-

ten (1979).

We will first discuss fitting in vectors, using data from Funk e.a.

(1974), concerning stereotypes about ethnic groups in the U.S.A. For this

purpose, we use a cognitive map obtained with SMACOF-1, which appears to be

more informative than the one obtained by Funk e.a. (an essentially three-

cluster structure). The map is presented in figure 24, together with seven

directions, computed with PREFMAP, which represent the independently obtain-

ed rating scale data in table 11. Fourty-nine University of North Carolina

Table 11. Mean ratings of ethnic groups on 7 attributes

students were subjects in this study. The seven attributes were selected so

as to cover a wide range of personal impressions. In the figure, the length

of the vectors is again proportional to the goodness-of-fit (indicated by

multiple correlations here). The attributes seem to fall into two groups



87

Figure 24. Cognitive map of ethnic groups
with seven attribute vectors.

(activist, aggressive, emotional) and (affZuent_, patriotic, industrious) in

opposite directions, with intelligent in between. Note, however, that some

groups are high on all attributes (AN), others low everywhere (CH,IN). If we

interpret this as an overall judgment affect, we may take deviations from

the row means (after standardization of columns to make the scales compara-

ble). The deviation scores are given in table 12. In an attempt to improve
fit and interpretability, we use the three-dimensional SMACOF-I solution

(see figure 25). Note that AN for example is typified most strongly now by

Table 12. Deviation scores from table 11.
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Figure 25. Three-dimensional solution for Funk e.a. data

(first dimension horizontal, second vertical

above, third vertical below). Vectors: table 12.

intelligent and not so much by affZuent or aggrgssive, on which others have

high scores too. The first two dimensions of the three-dimensional solution

are roughly the same as the two-dimensional one, as is true for the attri-

bute directions. The third dimension contrasts ME and PU with NE and BL on

the ’coloured’ side of space with a typical difference on the attribute emo-

sional. It contrasts IT and GE (PO) with AN and JE on the ’white’ side, with

accompanying effects of znte222gent and affluent.

Our last example concerns fitting in ideal points, following a re-

stricted multidimensional scaling approach (a general treatment of this can

be found in de Leeuw and Heiser (1980)). Thus combining a decomposition

technique with a projection technique, this approach is in between an ’in-
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ternal’ and an ’external’ analysis. We consider Delbeke’s data regarding

preference for family types again, and utilize the special factorial struc-

ture of the objects to reduce the number of free parameters. This is done by

adopting the following simple-minded model:

with F(u) = (16 - u)2. Here x. is is the ideal point of subject i on the ’son

axis’ and xid his ideal point on the ’daughter axis’; zks is the common va-

lue of having k sons and z the common value of having t daughters. F(u) is

a fixed monotone decreasing transformation for I  u ~ 16. Instead of the

general theory of section IV.5 we have: "each subject employs two quadratic

(single-dipped) disutility functions over some quantification of the varia-

bles ’number of sons’ and ’number of daughters’, and his overall utility for

family types may be obtained by simple summation (up to the function F)".

Note that, although all monotonic parts of the general formulation

have been replaced by simple specific functions, we have not constrained the

order of zks and i.e., we do not require

It will be clear that we can fit (51) by performing a metric two-dimensional

unfolding analysis with equality constraints on the object coordinate values.

More specifically, we must constrain Y to have elements

From the general SMACOF algorithm model it follows that we can achieve this

by projecting each unrestricted update (from the basic SMACOF-3 iteration

step) onto the space of permissible configurations defined by (53a,b); this

space can be made smaller by requiring in addition (52a,b).

With an ad-hoc adapted version of SMACOF-3 we get the result of figure

26. Our restrictions have forced the family points to lie on a grid, but

the length of the spikes was still free to vary. The stress (0.2026) is only

slightly higher than in the unrestricted case (0.1669), although the number
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Figure 26. Restricted unfolding of family compositions.

of free parameters for the object points is 8 instead of 32. At the end of

the iterative process, the program rotates the joint configuration to its

principal axes, so that we may conclude that the subjects differ most on

their preference for family size. Just like in figure 19, the son and daugh-

ter quantifications turn up in their natural order without being constrained

that way. Of course, a similar analysis could be done with ’sex bias’ and

’number bias’ as basic variables.

We hope that this type of ’confirmatory’ scaling analysis, which lacks

the rigour of mathematical statistics but enjoys the flexibility which is

needed so badly in data analysis, will help researchers in the social scien-

ces to develop closer connections between ’theory’ and ’method’.
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