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Modélisation Mathématique et Analyse Numérique Vol. 35, No 5, 2001, pp. 899–905

ON THE ONE-DIMENSIONAL BOLTZMANN EQUATION FOR GRANULAR
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Abstract. We consider a Boltzmann equation for inelastic particles on the line and prove existence
and uniqueness for the solutions.
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1. Introduction

The simplest models of granular flows are one-dimensional inelastic point particle systems (see e.g. [2] and
references quoted therein). If a pair of particles with precollisional velocities v and v1 collides, the outgoing
velocities v′ and v′1 are defined in such a way as to dissipate kinetic energy, preserving the total momentum. In
other words the collision law is:

v′ =
1
2

(v + v1) +
1
2

(v − v1)h; v′1 =
1
2

(v + v1)− 1
2

(v − v1)h, (1)

where h ∈ [0, 1] is the one-dimensional restitution coefficient and measures the dissipation of the relative velocity
(v′ − v′1) = h(v − v1).

Note that for h = 1 the system becomes free while for h = 0 we have the so-called sticky particle model:
after a collision the particles proceed with the same velocity given by the momentum conservation.

From (1) we also deduce:

v′ = v − ε(v − v1); v′1 = v1 + ε(v − v1), (2)

where ε = 1
2 (1− h) ∈ [0, 1/2] is another parameter measuring the degree of inelasticity of the collision.

Although h (and hence ε) are usually assumed to be constant, one can also argue that, for some materials,
when the relative velocity becomes very small, the collision is essentially elastic. Thus the restitution coefficient
should be a suitable function of the relative velocity. In this paper, following [6] and references quoted therein,
we assume the explicit phenomenological law:

h(|v − v1|) =
1

1 + a|v − v1|γ
, (3)
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where a > 0 and γ ∈ (0, 1) are constants depending on the material. However all the considerations presented
here can be easily extended to the case of any function h of the relative velocity behaving like (3) for small
|v − v1|.

We anticipate that in the present paper we do not consider the case γ = 0 (already considered in [3]).
In analogy with the standard (conservative) theory of rarefied gases, it is natural to derive a reduced descrip-

tion given in terms of a Boltzmann equation, which in our case reads as:

∂tf + v∂xf = Qγ(f, f) (4)

where
Qγ(f, f)(v) =

∫
dv1 |v − v1|

(
Jf∗f∗1 − ff1

)
. (5)

Here f = f(x, v, t) is the phase-space density function (as usual f(x, v)dxdv denotes the number of particles
in the cell [x, x + dx] × [v, v + dv] in the phase space), f, f1, f

∗ and f∗1 denote f computed on the arguments
v, v1, v

∗, v∗1 . Moreover, given the pair (v, v1), (v∗, v∗1) denotes the incoming velocities:

v∗ =
1
2

(v + v1) +
1

2h∗
(v − v1); v∗1 =

1
2

(v + v1)− 1
2h∗

(v − v1), (6)

where h∗ = h(|v∗ − v∗1 |). Finally:

J =
1

h∗(h∗ + (v∗ − v∗1)h′∗ =
1

h∗3(1 + a(1− γ)|v∗ − v∗1 |γ)
,

for which
dvdv1J |v − v1| = dv∗dv∗1 |v∗ − v∗1 |. (7)

In this paper we study the Cauchy problem for equation 4 and present a global existence theorem. The non-
homogeneous problem is considerably more difficult than the homogeneous one with regards to the standard
kinetic theory. The main difficulty, when an energy dissipation is present, is related to the absence of an a priori
entropy control, due to the fact that the system has the tendency to cluster. In the present paper we shall
consider only the case γ > 0 and this makes the clustering effect less effective. For the case γ = 0, considered
in [3], we have only partial results and the problem of giving a global existence result (or evidence of collapses
or blow-up) is still open for general initial conditions.

2. Formal properties of the solution

In this section we deduce some properties of the solutions (if any) to equation 4, which will be crucial in the
construction of the solution to the Cauchy problem. The main point is the control of the entropy of the system
which, in our dissipative context, is not trivial. Then, following a well known classical argument, we can derive
an uniform absolute continuity bound which allows us to pass from a short time to a globally in time result.
We only sketch this last part in Section 4 for sake of completeness.

We underline once more that the entropy inequality we are able to obtain holds only for γ > 0.
We observe preliminary that:∫

dvφ(v)Qγ(f, f)(v) =
1
2

∫ ∫
dvdv1|v − v1|{φ(v′) + φ(v′1)− φ(v) − φ(v1)}f(x, v, t)f(x, v1, t). (8)

Note that if φ is convex, then {φ(v′) + φ(v′1)− φ(v)− φ(v1)} in (8) is negative so that:

d
dt

∫
dv
∫

dxφ(v)f(x, v, t) ≤ 0 (9)
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and this expresses the tendency of the system to cluster. In particular the total kinetic energy is decreasing in
time.

In constructing the solution it is crucial a control of the Entropy functional (which can increase in our context)
to avoid concentration.

Entropy inequality

Defining

H(t) =
∫

dx
∫

dvf log f(x, v, t) (10)

we have
Ḣ(t) ≤ 1

2

∫
dx
∫

dv
∫

dv1(J − 1)|v − v1|f(x, v, t)f(x, v1, t). (11)

The proof of (11) is consequence of a direct computation using (8) and the inequality:

(log h− log k)k ≤ k

ξh+ (1− ξ)k (h− k) ≤ (h− k) (12)

which is valid for any h, k ≥ 0 and some ξ ∈ (0, 1).
Using the explicit form of J ,

J − 1 = a|w∗|γ 2 + γ + 3a|w∗|γ + a2|w∗|2γ
1 + a(1− γ)|w∗|γ ≤ c

(
|w∗|γ + |w∗|2γ

)
,

where w∗ = v∗ − v∗1 and c is a constant depending on a and γ. Being |w∗| ≤ |w| (1 + a|w|γ) we obtain, as
corollary of inequality (11),

Ḣ(t) ≤ C
∫

dx
∫

dv
∫

dv1

(
|v − v1|1+γ + |v − v1|1+4γ

)
f(x, v, t)f(x, v1, t), (14)

where C is a constant depending on a and γ.
Therefore to control H we must try and control the quantity

Iα(T ) =
∫ T

0

dt
∫

dx
∫

dv
∫

dv1|v − v1|1+αf(x, v, t)f(x, v1, t) (15)

for α ∈ (0, 1].
We estimate Iα by extending an argument due to Bony [4].

Define, for any odd function φ:

Iφ(t) =
∫

dx
∫

dy
∫

dv
∫

dwX (x < y)φ(v − w)f(x, v, t)f(y, w, t) (16)

where X is the characteristic function. Then

İφ(t) = −
∫

dx
∫

dv
∫

dwφ(v − w)(v − w)f(x, v, t)f(x,w, t)

+
1
2

∫
dx
∫

dy
∫

dv
∫

dv1

∫
dw|v − v1|(X (x < y)−X (y < x))f(y, w, t)

f(x, v, t)f(x, v1, t)[φ(v′ − w) + φ(v′1 − w) − φ(v − w) − φ(v1 − w)]. (17)

We shall use this identity for φα = sgn(v)|v|α.
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Integrating with respect to time, we have:

Iα(T ) = Iφα(0)− Iφα(T )

+
1
2

∫ T

0

∫
dx
∫

dy
∫

dv
∫

dv1

∫
dw |v − v1|(X (x < y)−X (y < x))f(y, w, t)

f(x, v, t)f(x, v1, t)[φα(v′ − w) + φα(v′1 − w)− φα(v − w)− φα(v1 − w)]. (18)

Note that, if α = 1, using the momentum conservation, the last term in the right hand side of equation (18)
vanishes and we have (see [4]):

I1(T ) = Iφ1(0)− Iφ1(T ). (19)

For α < 1 we need to estimate the last term in the right half side of equation (18). In doing this we arrive to
an inequality (see Eq. (24) below) which involves Iα′ with α′ > α. The idea is to iterate this relation to arrive
to α = 1 and hence to estimate Iα in term of Iφα .

Namely for α < 1, assuming v′ > v (the other case v′ ≤ v can be handled analogously), we have:

∫
dy
∫

dwf(y, w, t)[φα(v′ − w)− φα(v − w)] =
∫

dy
∫ v′

v

dwf(y, w, t)[. . . ] +
∫

dy
∫ v

−∞
dwf(y, w, t)[. . . ]

+
∫

dy
∫ +∞

v′
dwf(y, w, t)[. . . ]. (20)

Moreover, if w ∈ (v, v′):

[. . . ] = |v′ − w|α + |v − w|α ≤ 2|v′ − v|α = 2εα|v − v1|α ≤ 21−αaα|v − v1|(1+γ)α (21)

If w < v:

[. . . ] = |v′ − w|α − |v − w|α = |v − w − ε(v − v1)|α − |v − w|α

= εα|v − v1|α
(
| v − w
ε(v − v1)

− 1|α − | v − w
ε(v − v1)

|α
)
≤M2−αaα|v − v1|(1+γ)α (22)

where M = maxξ∈R(|ξ − 1|α − |ξ|α). The term w > v′ can be treated in the same way.
In conclusion: ∫

dy
∫

dwf(y, w, t)[φα(v′ − w)− φα(v − w)] ≤ Cm|v − v1|(1+γ)α (23)

where C is a constant and m =
∫

dx
∫

dvf(t) is the total mass of the system.
Inserting this estimate in the right hand side of equation (18) we readily arrive to the inequality:

Iα(T ) ≤ Iφα(0)− Iφα(T ) + CmI(1+γ)α(T ), (24)

from which:

Iα(T ) ≤
n−1∑
k=0

(Cm)k(Iφ(1+γ)kα
(0)− Iφ(1+γ)kα

(T ) + (Cm)nI(1+γ)nα. (25)

Setting αn = 1
(1+γ)n , using (19) we obtain:

Iαn(T ) ≤
n∑
k=0

(Cm)k(Iφ(1+γ)k−n
(0)− Iφ(1+γ)k−n

(T )). (26)
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Note now that

|Iαn(T )| ≤ C
(∫

dx
∫

dv|v|αf(x, v, t)
)2

≤ C
(∫

dx
∫

dv(1 + |v|2)f(x, v, t)
)2

and hence:
Iαn(T ) ≤ C(m,E) (27)

where C(m,E) is a constant depending only on the mass m and the energy E = 1
2

∫
dx
∫

dvv2f0(x, v) of the
initial datum f0.

Finally, for any α ∈ (0, 1] we can find n such that α ∈ [αn+1, αn]. Since

Iα ≤ Iαn + Iαn+1 (28)

we conclude that:
Iα(T ) ≤ C(m,E). (29)

Another property of the solution we are going to use is the following. Suppose that v2 > v2
1. Then

v′
2 = v2[(1− 2ε) + ε2] + ε2v1 + (2ε− 2ε2)vv1 ≤ v2[(1− 2ε) + ε2] + (2ε− 2ε2)v2 ≤ v2 (30)

therefore the collision mechanism cannot increase the largest velocity. Hence if

f0(x, v) = 0 when |v| > V (31)

for a given V > 0 then:
f(x, v, t) = 0 when |v| > V for t > 0. (32)

As consequence, under condition (31) we have, for α > β:

Iα(T ) ≤ (1 + V α−β)Iβ(T ) (33)

and by (14) and (29) we can control the entropy production. In conclusion:

Proposition 1. Suppose f = f(x, v, t) be a classical solution to equation (4) with initial datum f0 satisfying
(31) and such that H(f0) =

∫
dx
∫

dvf0 log f0 < +∞. Then there exist a constant C depending on m, E and
H(f0) for which H(t) ≡ H(f(t)) ≤ C.

3. The Cauchy problem for small data

We shall now sketch a global existence and uniqueness result for the solution of equation (4) for small values
of
∫

dxdvf0(x, v) (see [1] and [3]). In the next section we will use this result and the a priori estimate for the
entropy production, in order to obtain the global existence and uniqueness theory for all initial data.

Theorem 1. Let f0 ∈ L∞(R), f0 ≥ 0. Then, if the total mass ‖f0‖1 is small, there exists an unique mild,
bounded solution in L∞ of (4) with initial datum given by f0.

Proof. Let f#(x, v, t) = f(x+ vt, v, t). It is easy to realize that f# satisfies

f#(x, v, t) ≤ f0(x, v) +
∫ t

0

ds
∫

dv1|v − v1|Jf#(x+ (v − v∗)s, v∗, s)f#(x+ (v − v∗1)s, v∗1 , s). (34)

Let
F (x, v) = sup

t≥0
f#(x, v, t). (35)



904 D. BENEDETTO AND M. PULVIRENTI

From (34):

‖F‖1 ≤ ‖f0‖1 +
∫ ∞

0

ds
∫

dxdv dv1|v − v1|JF (x+ (v − v∗)s, v∗)F (x+ (v − v∗1)s, v∗1). (36)

Coming back to the precollisional variables of integration, using (7) we have that:

‖F‖1 ≤ ‖f0‖1 +
∫ ∞

0

ds
∫

dxdv dv1|v − v1|F (x+ (v′ − v)s, v)F (x+ (v′ − v1)s, v1). (37)

Putting y = x+ (v′ − v)s, and z = x+ (v′ − v1)s, by elementary computations we obtain:

dxds|v − v1| = dy dz, (38)

then

‖F‖1 ≤ ‖f0‖1 + ‖F‖21, (39)

and therefore

F ≤ 1
2

(
1−

√
1− 4‖f0‖1

)
, (40)

if

‖f0‖1 <
1
4
· (41)

Now we are able to prove an L∞ a priori estimate on f(x, v, t).
Let

G = sup
x,v,t≥0

f#(x, v, t)

From (34):

G ≤ ‖f0‖∞ +G

∫ ∞
0

ds
∫

dv1|v − v1|Jf#(x+ (v∗ − v∗1)s, v∗1 , s). (42)

We change the variables (s, v1)→ (y, v∗1), with y = x+ (v − v∗1)s.
Taking into account that

∂v∗1
∂v1

=
2 + a(3− γ)|w∗|γ + a2(1− γ)|w∗|2γ

2(1 + a(1− γ)|w∗|γ)
,

and that |v − v∗1 | =
1+h(|w∗|)

2 |w∗|, we obtain

J |v − v1|ds dv1 =
2Jh(|w∗|)

1 + h(|w∗|)
∂v1

∂v∗1
dy dv∗1 = 4

(1 + z)2

2 + z

1
2 + (3− γ)z + (1− γ)z2

dy dv∗1 ,

where z = a|w∗|γ . By an explicit estimation of this expression, from (42) we conclude that

G ≤ ‖f0‖∞ + 2‖F‖1G.

Therefore G is bounded if

‖F‖1 <
1
2
. (43)

With this a priori bound the construction of the solutions is standard.
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4. The Cauchy problem for arbitrary data

Theorem 4.1. Let f0 ∈ L∞(R), f0 ≥ 0, f0(x, v) = 0 if |v| ≥ V . Then there exists an unique mild, bounded
solution in L∞ of (4) with initial datum given by f0.

The proof of Theorem 4.1 follows from Theorem 3.1 by using the entropy bound in Proposition 1, and an
argument due to Tartar [5] which we repeat here for completeness.

Proof. Being f(x, v, t) = 0 for |v| > V and any time, the solution at time t̄ in x̄ depends only on f0(x, v)
restricted to the interval x ∈ (x̄− V t̄, x̄+ V t̄). We can choose t̄ such that

sup
x̄

∫ x̄+V t̄

x̄−V t̄
dx
∫

dv f0(x, v)

is sufficiently small in order to verify the inequalities (40), (41) and (43). This gives a small time existence
result for all initial data.

The entropy estimate in Proposition 1 allows us to choose t̄ independently from f0. Namely, let I be an
interval of R, with meas I = |I| < 1:∫

I

dx
∫

dvf(x, v, t) =
∫

dv
∫
I∩{f≤|I|−

1
2 }

dxf(x, v, t) +
∫

dv
∫
I∩{f>|I|−

1
2 }

dxf(x, v, t)

≤ 2V |I| 12 +
2

| log |I| |

∫
dxdv f(x, v, t)| log f(x, v, t)|.

We conclude the proof by noticing that the last estimate depends only on the entropy and the total mass, and
then the proof of the local in time existence can be iterated to reach any time.
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