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EXISTENCE RESULTS FOR UNILATERAL QUASISTATIC CONTACT
PROBLEMS WITH FRICTION AND ADHESION

MARIUS COCU1 AND RÉMI ROCCA2

Abstract. We consider a two dimensional elastic body submitted to unilatéral contact conditions,
local friction and adhésion on a part of his boundary. After discretizing the variational formulation
with respect to time we use a smoothing technique to approximate the friction term by an auxiliary
problem. A shifting technique enables us to obtain the existence of incrémental solutions with bounds
independent of the regularization parameter. We finally obtain the existence of a quasistatic solution
by passing to the limit with respect to time.

Résumé. Nous considérons un corps élastique bidimensionnel soumis à des conditions de contact
unilatéral avec frottement et adhésion sur une partie de sa frontière. Après avoir discrétisé la formula-
tion variationnelle par rapport au temps, nous régularisons le terme de frottement dans un problème
auxiliaire. Une technique de translation nous permet d'obtenir l'existence de solutions incrémentales
bornées indépendamment du paramètre de régularisation. Nous obtenons finalement l'existence d'une
solution quasi-statique en passant à la limite par rapport au temps.
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INTRODUCTION

Contact problems for elastic bodies with adhésion and friction appear in many applications of solids mechanics
such as the fiber-matrix interface of composite materials. In the present paper we consider the interface model
proposed by Cangémi et al. [1—3]. This model contains an internai variable (3 which represents the continuons
transition from a total adhesive state to a pure contact state with friction. Quasistatic contact problems with
Signorini's condition and local Coulomb friction law have been recently studied by the authors (see [4-6]) and
Andersson [7]. There exists at least one solution to such problems if the friction coefficient is sufficiently small.
The aim of this paper is to extend the result when adhésion is taken into account at the interface.

In Section 1, we present the mechanica! problem and we give a variational formulation Pi written as an
implicit évolution inequality coupled with a differential équation which represents the évolution of the intensity
of adhésion. The body is perfectly bonded to the rigid foundation when (3 = 1 and there is no more adhésion
for (3 = 0. A time discretization is adopted by using a backward scheme for the implicit inequality and the
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differential équation. We consider a regularized problem associated to the previous one and we present a
suitable equivalent problem which allows us to obtain the existence of a solution.

In Section 2, the regularized problem is solved by using a fixed point argument in an auxiliary problem,
where the threshold of sliding is given (Tresca's problem). The proof uses a shifting technique and a local
straightening of the boundary. By passing to the limit with respect to the regularization parameter, we obtain
the existence of a solution to the non regularized incrémental problem.

In the last section, we obtain estimâtes for the différence of two consécutive incrémental solutions and we
construct suitable séquences of functions for the displacement, the vélo city fields and the intensity of adhésion
respectively. This enables us to obtain the existence of a solution for the variational formulation of the problem.

1. CLASSIC AL AND VARIATIONAL FORMULATIONS

We consider an elastic body which occupies an open bounded connected subset ft of R2 and we dénote
his boundary by 9ft. Let Fi, F2 and F 3 three open disjoint parts of <9ft such that öft = Fi U F2 U F3 and
mes(Fi) > 0. We dénote by u = (iti, U2), the displacement field, e = (e%3 (u)) = \ (uti3 + u3tl), the strain tensor,
a = (a%3 (u)) = (atJki e/^(u)), the stress tensor with the usual summation convention where i,j,k^l = 1,2. We
adopt the following notations for the normal and tangent ial component s of the displacement vector and stress
vector UN — uzn%^ UT = u — it^n, <TN = crZ3nln31 (OT)% — CJijn3 ~ o'iv^ where n = (nz) is the outward unit
normal vector to <3ft.

We suppose that decohesion occurs on F3 that is the intensity of adhésion is strictly decreasing when the
threshold Ea is reached. The parameters CN and CT > 0 represent the normal and tangential stiffness of the
interface when the adhésion is complete that is (3 — 1. Let us dénote by <f> and rp the densities of the body
forces and tractions respectively. The initial displacement of the body is denoted by u° in ft and a displacement
U = 0 is prescribed on Fi.

Therefore the classical problem is as follows.

Problem P±: Find u = u(x,i) : ftx]0,T[-^ R2, (3 = /3(x,t) : r3x]0,T[-> [0,1] such that

divcr(u) = -(j> inftx]0,T[,
(0^(11)) = (al3ki efci(u)) in ft,
u = 0 onrix]0,T[,
an = ip onF2x]0,T[,
uN < 0, aN + CNP2uN < 0, uN(aN + CNP2uN) = 0 on F3 x]0, T[,

•CNp2uN) =>ùT = 0 onF3x]0,T[,{ ) ][
\<TT + CTP2uT =-fx(aN+ CN/32UN) = ^ 3 A > 0,üT = -A(crT + CT/32uT) onr3x]0,T[}

$ - - [(CNu2
N + CT\uT\2)f3 - £a]+ on F3x]0,T[,

u(0) = u° in fi,
l (3(0) =09 e [0,1] o n F 3

where \i dénotes t he friction coefficient and [s ] + = max(0 , s) Vs G R. We suppose tha t al3ki G I/°°(fî), 1 < i,j>kj < 2,
wi th t h e usual condit ions of symmet ry and ellipticity t h a t is

O'ijkl = &3%kl = CLkhj A <hj>kj <2,
3 m0 > 0 such that V < = (C.j) € R4, with ^ = Cjt, 1 < hj < 2, o.jwCjCfci > ™>o \C\2-

We require also that a%3ki are C°' a , 1 < i, j , fc, l < 2, 0 < a < \ in a neighbourhood of F3. We assume that
fi E C1(F3) with compact support in F3 and the parameters CN, CT belong to L°°(F3).
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The trace mapping will be denoted by 7 : iï1(Q) —> H^(dfl) with norm ||7||o and the linear bounded
extension mapping by 7 : Hï(dQ) —> Hx(fi) with norm ||7||i. The norm on #2(9^) is the following (see for
example [12]):

w

We still dénote by 7 the following trace mapping 7 : i?1(Q) —> Lq(dü) which is compact for 1 < q < 00, (see
e.g. [11]). lts norm will be denoted by \\j\\q.

We shall omit from now on the notations 7 and 7 in order to simplify the notation and we define V and
respectively K by

v = O a.e. onTi}, K = {veV;vN <0 a.e. onF3}.

Let us equally define H^(Ts) by H2 (T^) — < w G iï"2(<9fi); w — 0 on <9£}\F3 >- equipped with the norm of

i

( , ) shall dénote the duality pairing on H^(F3),i2"~2(F3),

[ , ] " /x the duality pairing on ff*(dfl), H~^{dü) and

[ , ]2 " '' the duality pairing on

We suppose that 0 e ^ ^ ( O j T ; [L2(îî)]2) and i/> e ^ ^ ( O j T ; [i3"~i(ön)]2) such that there exists an open
subset denoted by T§ with supp(^(^)) C T§ C T°2 C T2, V i G [0,T].

We define the normal component of the stress vector crn on dQ, at time t as follows. Let u G [H1 (fi)]2 such
that div cr(u) = -<j>(t). Then crjv(u(t)) G H~i(dÜ) is given by

[CTN(U),TÜN] = a(u,w) - (0,w), (1)

V w G [HH^)]2 such that wT - 0 on öfi.
We shall use the notation [ 5 <TJV(U), WN ] = [ ̂ ( u ) , 5 Î AT ], V 5 G CQ(M2).

Let us introducé the function 9 G CQ°(R2) , 0 < 6 < 1, such that ö — 1 in a neighbourhood of Fs and 0 in a
neighbourhood of F§. Using Green's formula, we obtain a variational formulation of the problem Pi as follows.

Problem P2: Find (u,/3) G W^2(0,T;V) x W 1 ' 2 ^ ^ ^ 0 0 ^ ) ) such that u(0) = u°, /3(0) = /3° and for almost
allt €]0,T[ u(*) G /f and

a(u, v - ù) H- cT(/3, u, v - ù) + j(/3» u>v) ~ J(0iu'ù) t (0, v - ù) + [ -0, v - ü]2

+ [^(u),%-%)]V^]/, (2)

v - u ) > 0 VzGX, (3)

Sa}+ a.e.onF3, (4)

where a(u,v) = / a ^ ^ e ^ ^ e ^ ^ d x , cr(/3}u,v) = / CT/3 2 U T .V T ds, cjv(/3,u,v) = / CNf32uNvN ds and
JQ Jr3 Jr3

j(Pyu,v)=-{crN(u) + CNl32uN,ii\vTl
The bilinear form a(.,.) is continuous and coercive by Korn's inequality, as me5(Fx) > 0, that is a(.,.) satisfies:

3M>0, |o(u,v) |<M| |u | | [ H i (n)] 3 ||v||[Hi(n)]», V u, v € [Hl{ü)}2,

3m>0 ,a (v ,v ) > m||v||fHi(n)]2, V v e V.
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In order to solve Problem P2, we adopt the following time discretization. For ail n£M*,we set Ai = Tjn and
(j? = cj>(iAt), i/?i ~ip(iAt) for 2 = 0,..., n. We assume that the initial displacement u° belongs to K and satisfies
the following compatibility condition:

a ( u o , v - u o ) + c ( / 3 o , u o , v - u o ) + i ( ^ o , u o
1 v - u o ) > ( 0 o , v - u o ) + [ ^ o , v - u o ] 2 j Vvetf, (5)

where c = CT + CM- We use an implicit scheme which gives the following incrémental problem for i = 0,..., n — 1.

Problem P^n: For u* G K, fi G L°°(T3), find u i + 1 G K, 0i+1 G L°°(r3) such that

(0i+1, v - ui+1) + + [<7jv(ui+1),%iv - u^"1) ]

+Su^Sz-u^ 1 ) >0
V v G K, (6)

Vzeüf, (7)

a.e. on r3)(8)

where Au* = u î + 1 — u*. In order to solve the Problem P*'n, we consider the following regularized problem.

Problem P^n: For u* G K, 0i G L°°(r3) find ut+1 G iT , /%+1 € L°°(r3) such that

a ( u j + \ v - u ^ + 1 ) + c r ^ + S u t - * - 1 , v - u t + 1 ) + i , ( ^ + 1 , 1 f i \ \ ? 1 ',v -

> 0

V v e V , (9)

VzGüf, (10)

At .e. on

where j^(/?, u, v) — — (<TJV(U) + CNP2U]\[J /XÏ7I/(|VT|)) and the functions 77̂  with z/ > 0 have the following proper-
ties:

rju : [0, oo[—» [0, cx)[, 77̂  G Cx([0, oo[), ^ is convex,

0<vl<h ^(0)=^(0) = 0,
V 5 G [0, +oo[, 0 < s - 77̂ (5) < z/.

Proposition 1.1. Problem P^n is equivalent to each of the following problems.

Problem P ^ : For u* € K, (P E L°°(T3)} find UJ+1 6 î > /?t+1 € L°°(r3) such that

(12)

(13)

VwE V,

> 0 VzGX,

" £a ".e.

(14)

(15)

(16)

j^(/3, u,v;w) = —(CTJV(U) + CJS[P2UN, V U,V,W G V, zs tte Gâteaux derivative of

u,.), d(v) =
|vT| - u \
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Problem R^jn: For u* e K, (P e L°°(r3), find uj,+1 G K, /%+1 e L00^) such that

a(ut+\v - ut+1) + c{fi+1,ui+1,v- ut+1) +jM+\ui+1,Avu
i;v- ut+1) >

(0 ï+1
Jv-ut+1) + [^ + 1 ,v -u t + 1 ] 2 Vveif, (17)

^ 7 ^ = - [ ̂ ( ^ t ö 1 ) 2 + C T K + T ) - fa ]+ a.e. on T3. (18)

Proof. By setting v = u^+1 ± Aw, A ̂  0, in inequality (9), dividing by A and passing to the limit, one obtains
relation (14). Conversely, the convexity of r)u implies that

77„(|(v - u*)r|) - 7?„(|A„uV|) > idA.uVI) (v - u ^ r - d ^ u * ) .

By setting w = v — u]^1 in (14), one obtains (9). It is clear that inequalities (14) and (15) implies (17). Using
Green's formula in relation (17), we obtain (14) and (15). •

We will prove the existence of a solution for Problem R\)n wit h bounds independent of the regularization
parameter in order to obtain the existence of a solution for Problem P^ n .

2. EXISTENCE OF A SOLUTION FOR PROBLEM P^n

2.1. Preliminary results

In order to prove the existence of a solution for Problem R])n we introducé an operator $0 and we give
estimâtes which ensure us that $0 h&s a fixed point.

As fi is Cfl(F3) it follows that the norm of the following mapping

Hi(T3) 3v^fiveH^(T3)

isboundedby ||MllHi(r3)-

777.
Lemma 2.1. Assume that \\fi\\ 1 < ——— —r—r- and there exists a solution (u^+1, Pl+1) to

^ 2 ( i 3 j [M + Cjv) ||7||o | |7| | i
Problem R])n. Then there exists a constant CQ such that

Proof. From (12) we have j ^ ( ^ + 1 , < + 1 , < + 1 - u*;-ut+1) < j(0t+1, ut+1, ut+1) so that inequality (17) with
v = 0 implies that

a(ul+\ ut+1) + c(t3i+\ ui+\ ut+1) < (0 i+1, K+1) + l V>i+\ K+1 h t\ t1

As mes(Fi) > 0, we obtain:

Relation (1) enables us to obtain that

So inequality (19) follows from the two previous estimâtes. D
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Let C*~ = \ g G ff"5 (F3); g is négative on F3 k For every g G C*~ we define the following contact problem

with given friction on the contact zone.

Prob lem Ryn: For u* G Ky $% G L°°(F3), find u*+1 G if, /%+1 G L°°(r3) suchthat

a ( u j + 1 , v - u ^ 1 ) + t ^ ^

• + [<0*+1, v - ul
g
+1}2 V v G K, (20)

^?)-£a)+ a.e. onF3 , (21)

where we use the notation A1 — ̂ ([(u^"1 — UZ)T\) d(u^+1 — ul) and ( ^ A \ VT) = (//#, A \ V T )

Lemma 2.2. Assume that there exists a solution (u*+1, Pp'1)
Ci > 0 such that for all g G C*= £&e solution of Ryn satisfies:
Lemma 2.2. Assume £/m£ i/iere exists a solution (tÇ1"1, /3^+1) ô Problem R^71. Then there extsts a constant

(22)

Proof. By setting v = u l in (20), we get

>o

The coercivity of a(.,.) enables us to conclude. D

We are going to prove that there exists a solution to Problem Ryn. We consider the following problem:
for P G L°°(F3), u1 G K, find ueK such that

a(u, v — u) -f c(/3,u, v — u) —(ngAz,vT — UT) > (0 ï + 1 , v — u) + [i/>ï+1,v — u]2 V v G K. (23)

It is obvious that the problem has a unique solution by a classical argument by using the convexity of 77̂ . We
consider equally the following problem.

For P% G L°°(r3), u G if, find (3 e L°°(rs) such that

P-P = -[P(CNu2
N + CT\uT\2) - Ea ]+ a.e. on F3. (24)

This problem has a unique solution which is given by

if (CNu% + CT\uT\2)? -£a<0,

i f (

Lemma 2.3. Lei (ui,U2) G K x K and /3i, /?2 the correspondmg solutions of (24). Let üi and Ü2 öe the
corresponding solutions of (23) with /3i, /?2- Tften t/iere exist two constants C2 > 0 and C3 > 0, independent of
(111,112) such that

- U2I |ui + U2I a.e. on F3)

< C3At||ui -

Thus there exists a unique solution to Problem Rl>n if At is small enough.
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Proof. The first inequality follows from the représentation of (3. Now in the following inequality equivalent to
relation (23)

a(u}v ~ u) ^ c(p,u,v ~ n) -^g,^{\vT - u'T\) ~ T]^\nT - uz
T\)) > ( 0 ï + \ v - u) + fo>t+1, v - u]2 V v e

we introducé v = Ü2 wit h f3 = f3\ and v = üi with f3 = (32 • Thus one obtains

a(üi - ü 2 l ü i - ü 2 ) +cT(/32,üi -Ü 2 ,Ü! - ü 2 ) < / CT(f3
Jv3

T(fi / 2 ) ( / i / 2 ) i T ( 2 T I T ) d s .
v3

By the coercivity of a(. r), we have

m||üi -ü2||[Hi(n)]2 < 2CT\\0i —

We conclude by the first relation of the lemma and by a contr action argument when At is sufficiently small. D

In the following, we shall write for the sake of simplicity (u, f3) instead of (u^+1, f3p~l).

Lemma 2.4. Let the mapping $0 from C*~ to H~^(Ts) defined by $o(<?) = <̂ "iv(u) + CNP2UN wzth (u, f3)
solution of Rl^n. For every g E C*~, ^o(^) belongs to C*~ and there exists a constant C > 0 such that if
At < m/C then $0 ^ | Hölderian on C*~.

Proof Let pj j = 1,2 and u3 the corresponding solutions. By setting v = u2 in the equivalent inequality to
relation (20) with g — g\ and v — ui in the equivalent inequality to relation (20) with g = <?25 we get:

a(ui - u2, ui - u2) + c(/3i, ui - u2, ux - u2) < - (

- u2N)\ds.

It follows that:

By using (1) we have

(O-N(UI)-O-N(U2),WN} = a(ui - u 2 ï w ) < C2||ui ~

Ultimately, we obtain:

Let v = u + w, w e [H1^)]2 such that wy = 0, WN = 0 on 9n \F 3 and WN\T3 < 0. Then we have

(aN(u) + CNp2uN}wN) =a(u,w) + cAr(/?îuîw) - ( 0 ' + \ w ) > </i p A*, vT - uT) = 0 .

By the arbitrariness of WN, we deduce that $o(g) G C*~. D
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2.2. Existence of a solution for Problem R])71

2,2 1. Case of the strip

We consider in this part that Ü = ils = ix]0 , r [ , r e]0,+oo[, Ti = M x {0}, Y2 = 0, r 3 =
equally assume that the coefficients atJki are C°'a smooth in £ls.

We define the space Hlta(ft3) = {w e H1^); \\w\\Hi « (ns ) < +00} , for 0 < a < 1, where

{r} and we

2
dw dw

with v-h{%\->E2) — v{x\ + h,X2), for x — (xi,x2) G M2 and /i E ÏÏL
We consider equally the space Ha(R) ~ {w e L2(R); \\W\\H<*ÇR) < +00} with

h) - w(xi))2

We consider cQ(a) such t ha t |C | 2 a c 0 ( a ) = /
Jm1

transform of w, we have that

exp(^ /i C) — 112

n+L i ' ^ C ̂  ^ and denoting by F[w] the Fourier

ll^ll2
 R) = f |FH(C)|2(1 + co(a)|C|2a) dC (see [9]).

JR

We define H~a(R) as the dual space of Ha(R). Thus its norm satisfies

M I H - « ( R ) = / |^M(C)|2(l + co(-a)|Cr2a)-1dC (see e.g. [10]).
JR

For u solution of R^n with g £ C* H C1(M), we can obtain, by applying a shifting technique as in [9] and [5],
that for an arbitrary e > 0

with fci (e, a) a positive constant depending on e and a. Therefore we have

+ k2(e,a) [\\cy+1\\[LHQs)]2 + ||u||[Hi(ns)p] • (25)

Lemma 2.5. Let (u, /3) 6e o solution of iî*1" wztt g € C4~ n CX(R). Tften /or an arbitrary e > 0 we

m0 a(u-fe - u, u_fe - u) s
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Proof. If we set v = u_^ in (20), v-^ = u in the shifted inequality derived from (20) and if we adopt the
notation A = A% then we have

+ c(/3, u, u-h - u) + c-h(/3-hl u-h, u - u_h). (27)

Then by using the Cauchy-Schwarz inequality we have the following estimate for 0 < a < 1 — 2a, as 0 < /3 < 1:

J\h\<sJ* l/il1-" " J\\h\<sJ* l/il1-" J\h\<6\J* W1-"

7 l^-rte

By integrating inequality (27) with respect to h and using the previous estimate, we get (26) with similar
arguments as in [5]. •

Theorem 2.6. Let (u, (3) be a solution of Ryn with g G C*~ n CX(R).
m

(28)

/ƒ ̂  satisfies also ^^L°°{TZ) < ^/mo/2M, i/ien Problem R];71 has at least one solution for Q =

Froo/. Inequalities (19), (25) and (26) imply (28), which is valid for all g e C*-nH~i+a(R) because C^IR) is
dense in H-ï+a(R).

If ||At||Loo(r3) < (mo/2M)2, there exists e0 > 0 such that (l + eo)(2M/mo)2 \\^\\L^(r3) < 1- Thus by (28) there

exists r0 > 0 such that $ 0 maps C*" H BrQ into itself, where S r o = ( ^ e #~^+a(M); ||p|| _ i + a / . < ro\ .
^ iï 2 (R) J

By using Lemma 2.2, we obtain that $0 is weakly continuous. Indeed, let (gq)qeN* such that gq —^ g in
iJ~i+a(M). As ji has a compact support we deduce that \igq —> jig in i?~^(E) so that $0(9q) —> ̂ o(p) m

JÏ-i(R). The density of JÏ3(R) into H^a(R) implies that $0($g) ~" $(g) in iJ-^+ a(M).
Hence, we can apply the second Schauder's fixed point theorem (see [13] p. 452) to the mapping <3>o and

there exists at least one solution to Problem R])n in Çls. D
2.2.2. Case of a gênerai domain

In order to apply a shift ing technique, we shall adopt the following notations:

Qö,r = { x = (xi ;x2) E M2;|x!| < 5 and \x2\ < r} ,
Qjr = I x = {xux2) G M 2 ; | X I | < JandO < x2 < r} ,

Let XQ € F3 and J7 be a neighbourhood of XQ such that the coefficients dijki are C0)^ smooth in U. For w G V
with supp(w) c U and such that w + u G K relation (20) becomes for v = w + u with g £ C*~ n C1(F3)

)dx-\- / /5 2 (CTUT .WT + CNUNWN)ds ~ / figA.v/rds > / 0 ï+1.wdx (29)
Jr3nt/ Jr3nu Jnnu



Cjv/3 UNV^Jdx ,
r

We shall dénote by b%3ki the coefficients which satisfy the following relation

w v f T dü% dwk

6(u,w) = ƒ ®l3kllf~~Q—dXt

By using the C0"0 property of , x° , we have that
OX\

We extend any function ƒ deflned on Uô,r(xo) onto Rx]0,r[ by /(x) = /(P^(x)), where

if Ipol < ^
if |po| > à.

if x = (po,^) GMx]0,r[.
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As Ta is C1 '^ smooth we have that there exists a local représentation of the boundary £Xo G C1'^(3R) with
%2 = Cxo(^i) having the following properties. If we set Ug^fao) = {(xi,x2) G M2; \xi\ < <J, \x2 - Cxo(^i)l < r} ,
then the mapping H ^ r : Us^i^o) ~> Qô,r deflned by ( x i , ^ ) —• (#1,^2 — Cco(^i)) 'IS s u c n that

n5tr(u6tr(xo) n ÎÎ) - Q+r, H6ir(^,r(xo) n r3) = Q° r .

For any mapping ƒ deflned on C/$)7.(xo), we dénote by ƒ the mapping ƒ — ƒ o H"1 .
Therefore, inequality (29) for U = Us,r(^-o) yields

â(û, w) + 6(n, w) + c(/3,û, w) - / JIgJÂ-"wTdx > ^ + 1 • w dx (30)

for ail w such that w + u G X,

where â( ï ï ,w)=

w , f - f dm dwi <9Cxo oui ÔZUI oui 9^i \ 9Cx0 ,
6(u, w) = / a i m -— -———- - -— —- - — —-°-dx,

JQt \OX2 OX2 OX\ ÖX2 OXi GXi OX2 J UXi

Lemma 2.7. Let p be a functton such that p € C^ÇM2) with 0 < p < 1, and supp(p) C Us^i^-o)- Let (u, ff)
be a solution of Ryn with g G C*~ n C 1 ^ ) . T/ien w;

llpJffll̂ j+a^ + Mc.aîfci^^M^,^1,^1,^) (31)

with e(ö) —>• 0 tü/ien 5 —> 0 ancZ /c1( . , . , . ) a constant which dépends on | |u z | | [T^I(Q)]2.
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Proof. For h G M, \h\ < 5/4 we dénote by L_^ the rotation around n~h A n which transforms U-h into n.
Therefore L-^u.^ G K so that we can set w = p2(L-/i ü"-^ — ü") into inequality (30). We equally set
w-h = ~pLh(Li_h ü~ ~ u_h) into the shifted inequality derived from (30). By dropping the bar for the sake of
simplicity, we obtain

-f 6(Ah(pu), Ah{pu)) < (p</>ï+1, pCL^u-* - u))
1)_k, p_^(Ll^u - u_h)) + (a - a_/l)(p_hu_/l) p-^u.^ - pu)

+ d' (u, pfL-hU-ft - u)) + a(pu, pL-^u-^ - p ^ u - ^ )

+ d'_^(u^^, p_^(Ll^u - u-h)) + a_h((pu)_^ p^/.Ll^u - pu)

+ d (u, p(L_/lu_^ - u)) + 6(pu, pL^hU-h - p-h\x-h)

+ / fe(u-Aï p_^(Ll^u - u_h)) + b_/l((pu)_feï p_^Ll^u - pu)

+ (6 - b-h)(p-hu-h, p-h^-h ~ pu)
+ c(/3, pu, p(L_^u_h - u_^) + c-h((3-h, (pu)-h, p-hQLZlu - u)

+ c(/?,pu?p(u_^ - u) + c-h(/3-hi (pu)^hip-h(u - n-h) + A (32)

where

d' (u, v) = a(u, pv) - a(pu, v), d (u, v) = 6(u, pv) - 6(pu, v)

and

À = -{tigJA, (1 - p2)uT + p 2(L_ hu_ h) r - uT>

) - h , (uT)-h + P-fc(LlhU - u_/ l)T - (uT)~h)-

Next we have

' )_hp
2_h, (Ll^u)T - uT)

- {{iig JA), (1 - p2)uT + p2(uT)_h - uT)

) - h , (1 - p2_h)(uT)-h + P2-hnT - uT>.

Therefore we obtain

A < - ({fj,gJA)p2, (L„hu-h)T - ur-h) - {{ixgJA)_hp
2_h, (Ll^u)T - uT)

)_k, (p_h - p)uT> - {{jigAp), (p^h - p)(nT)-h)

) , {p\iT)-h - PUT). (33)

All the expressions in (32) and (33) can be estimated by the Lipschitz continuity of the data (see [9] for L)
excepting the last one in (33). By integrating the inequality (32) with respect to h, one obtains:

J\h\<6/4

,Ah(pn))+b(Ah(pu),Ah(pu))
1, ii , n Cl/l

) ^ h - puT )
( }
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As in the case of pure friction (see [5]), we have the following estimate:

_h - (figJAp),f/
J\

da < f 1 + ejcoia)n ii4-9^

lh l 1 + 2 a (è )
w +fc(6,a) || puT f^^ (35)

Using that HUT||[HI+C*(E)]2 < (1 + e)Hull[ifi+«(R)]2 + fe(e)||u||[L2(M)]2 and (34), (35) one obtains (31). D

Lemma 2.8. Let p be a function having the same properties as in Lemma 2.7. Let (u, 0) be a solution o
with g G C*~ H Cx(r3). Then we have

\\pJ^(û)\\i < (1 + e) ( fM f, [
\J co{a) co(5 -a)

+ k2(e,a) fc;(/O,<5,M,/U,0i+1,.0i+1,ui) (36)

with e = e(ö) —» 0 when 5 —» 0 and fc3(.,.,.) a constant which dépends on Hu^l^i^p.

Proof Let w G y such that supp(w) c U and such that tif̂ v = 0 on dfl\U. The local straightening of the
boundary and (1) yield

(âN(u), J ~p wN) = â(p îï, w) + b(p û, w) + d' (n, w) -h d"(û, w ) - ( p ^ , w).

As the coefficients aijki are C0;^ in Î7<5)r(xo), we have

(b h - 6)(û h , w) < Ci x d ^ ) l|ü|

(d'_ft - d ' ) ^ ^ , ^ ) < Ca x(\hf) ||û| ]

té-h -<f)(û-h,vr) < Cl x(\hf) ||û||[jffi(na)]2 \\w\\[Hi{Qs)]2.

We conclude by the same method as in the case of the strip. D

Let T G ff~5(r3) such that supp(T)c T3. Let (Uj)jei a finite covering of T3 and (pj)jei the C°° partition of
unity subordinate to the finite covering. It is well known that the norm ||| ||| defined by

^f ||2

is equivalent to the norm || T \\ - i + a r (see e.g. [9]).

Let us dénote by zu a function such that

VÜ G CS°(R2)} supp(zu) C B (Sp/2), w - 1 on B (6^/4)

where ö^ — dist(supp(/x), 9fï\r3), and B(a) = {x € M2; 3 y G supp(/x), |x — y| < a} .

Theorem 2.9. Let (u,/3) 6e a solution of R^n with g G C*~ n C 1 ^ ) and assume that
m

< 777—^ ... n—TÏ̂ TT- ^ e ^ /̂iere exists a finite covering (Uj)lEj ofT3 and a partition of unity
[M + Gjv)||7llo ||7||i

subordinate to the finite covering such that

; (37)
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Thus Problem P^n has at least one solution if HMIIL00^) <

Proof. There exists a finite covering {U3)3ei of F3 such that

y3 el, Uj = uÔ3tr(x

993

, U3 = 0 or U3 n (dÜ\T3) = 0,

with 5 — max Jo.

For j G / such that U3 n supp(tz7) = 0 as supp(pj) n supp(^) = 0, we have that

< (38)

For j e / such that C/̂  n supp(ro) = 0 we deduce from inequalities (31) and (36) that

+ fc2(e,a)fe;(5J,M,M>^+1,'0î+1,uî). (39)

Therefore from (38), (39) and (19) one obtains (37). The results follows as in the proof of Theorem 2.6. D

2.3. Existence of a solution for Problem
mi

Theorem 2.10. /ƒ ||MllHj(r3) <
1) o/ P*'

m

)ll 11

| H - i + a ( r 3 ) <

a solution

(40)

;^ . , . . . ) Z5 a constant which dépends on W^^1 \\, _ i p J ||</>î+1||[L2(n)]2î S and the previous norms of fi.

Proof. For each v > 0, there exists u^+1 solution of Problem P^n where u^+1 satisfies inequality (37) with
g = crjv(u^+1) + CJV(/Ö^+1)2U^+1. There exists a subsequence (u^1)^^^* which converges weakly in V towards a
limit denoted by u ï+1 . We still dénote by (u^+1) this subsequence.

By a compact imbedding argument, we have that (/5^+1)^ converges strongly towards a limit denoted by f3%+1

and we obtain relation (7).
The weak convergence of (UJ+1) towards u ï + 1 implies that

We have equally

< liminf a « + 1 , u t
0+

= lim

(41)

(42)

A s r\v s a t i s f i e s t h e r e l a t i o n ( 1 3 ) w e h a v e I r ^ d v r — u l | ) — | V T

l i m j 1 / ( # + 1 , u : + 1 , v - u l ) = l i m - + 1

+ l i m

< u, Mv > 0. So we obtain

2u^),Vl/(\vT - u*T\) - |vT -

, u ï + 1 , v - u1 (43)
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Similarly, we have

l i m m f > ( ^ + 1 X + \ u î + 1 - u1) = liminf J G 9 J + 1 , U 1 + 1
) U ^ 1 - xï). (44)

The strong convergence of tucr^(u^+1) towards züajy(ul+l) in i ï = i (F 3 ) due to the compact imbedding of
H~i+a(rs) into H-i(T3) and the convexity of j{(3, u l + \ . ) in i f - i ( r 3 ) imply that

liminf j ( ^ + 1 , < + 1 , < + 1 -u*) > j(/?+\u*+ 1 ,u*+ 1 - u*). (45)

By Green's formula it is easy to see that inequalities (6,7) and (9,10) of Problems Phn and P^n are respectively
equivalent to the following ones:

-find nt+1 e K such that

and
—find u^+1 G K such that

By using estimâtes (41) to (45), we can pass to the limit in (47) so that one obtains (46). Relation (40) is
obtained by passing to the limit in (37). D

3. EXISTENCE OF A SOLUTION FOR PROBLEM P2

vn i
Lemma 3.1. /ƒ ||/i|| i < — ————-—-—— and \\fi>\\L,°°(r*) < v m o / 2 M then there exists a positive

^ 2 ( r 3 ) (Af+ Civ)||7||o ||7||i v Z)

constant DQ such that

\H)V [ H h m } (48)

where u1 and u î + 1 are solutions to Pt%n and P%~1'ri.

Proof. By setting v = uz in inequality (46), we have

a(nl+1, Au1) + c (^ + 1 , u ï + 1 , Au1) + j ( ^ + 1 , u ï + 1 , Au») < (0 Ï + 1 , Au1) + [^+1, Auz]2.

We equally set v — u2+1 in the inequality (46) corresponding to Problem pz-1>n^ So that we obtain

a(u\ Au1) + c(p\ u\ Au1) + j(/52, u \ u ï + 1 - u ^ 1 ) - j ( ^ , u% Au î=1) > (</>\ Au2) +

Using that {u^1 — u^T1! < |Au^| + lAu^T1! and adding the two last inequalities we have

«(Au', Au1) + c{(3l+\ Au', Au1) + j{(?+\ Au1, Au1) <

(/ Z ) ^ ^ ) ^ K } ) O ^ ) ( ^ / ) 5 v « 1 - uV) ds
r3
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Therefore we obtain that

|j(/?\Au\Au*)| < MHi(ra) bll

Relation (1) allows us to deduce that

\\aN(Au*)\\H_kr3) < H7IU (M ||

We have also

Hence (48) results from the coercivity of a(.,.). D

We consider the séquences of functions (f3n)nen*, (un)Tl€N* ) (ün)n G N*, (</>n)neN*, O0JneN* defined on [0,T]
by Pn(t) = P+\ nn(t) = u*+1, ün(t) = u* + ( t - t t ) ( u * + 1 - u*)/A*, 0 n ( t ) = </>l+\ ^ n ( t ) = ^ + 1 for

n(0) = ^ ° , u„(0) = ün(0) = u°, </>n(0) = 0° , ^ n ( 0 ) = -0° .

Lemma 3.2. Let % — 0,1, ..,n — 1 and 0 < ti < £2 ^ T. Then there exist positive constants D\, D2, -D3

/

< D2 At J (l + ||0(t)||fL2(n)]2 + Ù(t)\\2
[H-i(an)]^ dt, (50)

mm(t2+At,T)

Proof. Inequality (48) and the absolute continuity of functions (f) and ip imply relation (49). We obtain esti-
mate (50) by using Cauchy-Schwarz inequality in relation (49). Let 0 < 1 < j < n suchthat t\ G ]tz,iz+i],

771=1+1

so that (51) holds. •

Lemma 3.3. There exist two subsequences (unk)keN*i {^nK)k£N* ̂ nd an element u G W1'2(Q,T;V) such
that for all t E [0,T] (unk(t))ken* converges weakly m V towards u(t) and (ûnk)k^n* converges weakly m
W^2(09T;V) towards u.
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Proof First by (50) we have

I,% 112 f (•*
i=Q

At
dt

dr ) dt < +oo
hl -02

A t

Next by using an argument similar as in [8], we obta in the existence of ( u „ ) n 6 N . , ( Ü „ ) „ € N * and an element
u € W1>2(0,T;V) such t h a t (un(t))nen- converges weakly towards u(t) V i e [O,?1]. Moreover for all $ £
L2(0,T;V) we have

(nn
T ( l + \\4>(t)\\[L*m* 2dt ,

so that (ünfc — unfc,î9) —> 0 V te [0,T]. As (unfc(t))fc6^* converges weakly towards u(t), V t G [0,T] we finallyfc fc))
obtain that (ünfe)fcGN* converges weakly in W1)2(0, T; F) towards u.

From now on, we still dénote by (un)nGN*5 (ü r i)n€N* ; ( 0 J n € N * ;

and

D

)nen* and (/3„)neN* the subsequences

Lemma 3.4. There exists a unique /3 G W1 '2(0,T; Z/2(F3)) solution of (4) corresponding to the weak lirait u.

Proof. Let X = \ P £ C°([0,T]; £2(F3)); sup [exp(-fct) ||/3(*)||L2(r3)] < +oo). X is a Banach space for the

norm ||jS||x = SUP [exp(—/et) ||/2(*)IU2(r3)]- Let T : X -* X be the mapping defined by
t€[0,T]

We have

= P o - [ [(CNu2
N

T/32(i)|
2<I?; f\cNu2

N - /32)
2dr.

As u(t) belongs to [Hi+a(T3)}
2 for ail t e [0,T], u(t) is continuous on T3. Thus we obtain that

<

It follows that

There exists k sufficiently large such that T has a fixed point /3. D
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Next we are going to show that (u,/?) is a solution of the quasistatic problem. First, we prove that (pn)neN*
converges strongly towards ƒ? in L°°(0,T; L2(F3)).

L e m m a 3 .5 . We have the followzng result: lim m a x Ile* l l ^n - \ = 0 where e\ = f3{t%) — (31.

Proof. We introducé the following notation

y(J3(t)Mt)) = -l(CNU2
N(t) + CT\uT(t)\2)p(t) - £a}+.

The following relation holds

e?1 = e\ + At

+/ 1 ) ,u( t ï + 1 ) ) ]dr . Therefore we get
u

) < IKIU^rs) + Ai 4 ' IK+1 | |L»{T3) + 4 ' At ||u2(t ï+1) - K+ 1)2 | | [ Z / 2 ( r 3 ) ] 2

We choose At < l/D2 and we obtain

Il4+1|| <

Using the relation 1 + x < exp(x), V x £ t and He^H^^) = 0, we obtain that

^ ^ ] [ Ai ||u2(ife+1) - (ufe

As (3 e Wx'2(0,T; L2(T3)) we have for r e [tk,tk+i]

\\j3(r) - P(tk+1)\\L2{r3) < max ||/?(r) - /3( t ) | | i 2 ( r 3 ) =«;(/?, At) with lim u;(/3, At) = 0.
T )i£ [0 j ± J, | %-—Tl^At Zit >\J

Therefore one obtains

/

We deduce that

, At) + / D5 ||u2(r) - u2(ifc+1)||[L2(r3)]2dr.

KIU2(r3) < E e x p [ ^ (U-tk+l)} [Dl At ||u2(tfe+1) - (uk+1)2\\[LHr3)], + D^ Atw(p,At)

+ J D5 ||u2(r) - u2(tfc+i)||[ ia(r,)]adT|J
We conclude that

max < exp [ _ J ^ _ T | / \D3 ||Û2(T) - i£(T)||[ia(ra)]2 + ü'i w{f3,At)

where u„(t) = u(tfe+i), V t € ]tfe, tfc+i] and ûn(0) = u(0). To conclude we pass to the limit a sn -> +oo. •
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Theorem 3.6. We have the following convergence: lim max \\ft{t) — /?n(^)||L2(r3) = 0-

Proof. First we have

so that

11/3(0 - Pn

max Mi) - pn(t)\\LHr3) <

< W{t) - K+ 1 | |L 2 ( r 3 ) )

max |

and passing to the limit

lim max max | = 0.

Lemma 3.7. For ail v G L2(0,T; V) we

dt=

lim f ( 0 n ( t ) , v ( t ) - ^

lim ƒ foM*), v(t) - ^

lim / j(f3n,un(t),v(t))dt= f j({3M

hm f a(un(t)Mt))dt= f a(u(t))

lim / c(/3n(t),un(t)Mt))dt= f c

~ ù(t)]2 dt,

D

(52)

(53)

(54)

(55)

(56)

Proof. Inequal i ty (52) and (53) are obta ined by the s t rong convergence of (</>n)neN* and (t/>n)neN* ^ o w a r d s <t>
and respectively t/>. T h e weak convergence of ( u n ( £ ) ) n E ^ * towards u( t ) , V i e [0,T] proves inequalities (54),
(55) and (56). D

Lemma 3.8. We have the following relations:

ƒ
im inf/ a
+oo 70

im f c(

lim inf

lim

(57)

(58)

(59)

Proof First, we have

" (l3
dt.
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As w(<Tiv(un) + C^P^UnN) converges weakly towards OT(<JJV(U) + CN02UM) in H~^+OL{T^) for all t we have

J im^ \\w(aN(un - u) + CN {02
nun - P2^))\\H-i{rs) = 0.

The result follows by Lebesgue's theorem and the fact that as in [8], we have

lim inf / j(/3(t),u(t),^ün(t))dt> f j{0(t)Mt)Mt))dt.
n^+oo Jo dt Jo

The proof of inequality (58) is similar to the one of [8].
By the compact imbedding of Hï (dÜ) in L2{dVt)) we have that (un(£))n6N* converges strongly towards u(t)

in [L2(F3)]2 for almost all t. The same convergence property holds for (j9nUn)neN*) thus relation (59) follows.
Therefore the proof is complete. D

Theorem 3.9. The éléments (u,/3) saüsfy Problem P^.

Proof. First, we show that the unilatéral condition is satisfied. For allt € ]0,T], it follows from the définition
of (tOnçN* and inequality (46) that

a(iin(t), v(t) - un(*)) +c(/?n(t),un(t),v(t) - un(t))+j(Pn(t),un(t),v(t) - nn(t - - ) )
Tb

- j ( / 3 n ( t ) , u „ ( t ) , u n ( i ) - u n { t - - ) ) > ( 0 n l v ( t ) - u „ ( * ) ) + [ - 0 n , v ( t ) - u „ ( t ) ] 2 V v e K ( 6 0 )
Tl

We have also the following estimate for all $ G V, by using (51)

- ) - u(t),tf) < ||u„(i - - ) -
Tb Tb

/
rmri(t+ — ,T)

(1 + H0(r)||[L2(n)]2 + \\i>(T)\\[H_im)]d) dr
+ (u„(t)-u( t ) ,ö) .

T
so we obtain that un(t ) converges weakly towards u(£) in V. By passing to the limit in (60) we have

n

a(u(t),v -u(*)) +c(/9(t))u(t),v -u( t ) ) + j(^(t),u(t),v - u(t)) > (0 ( t ) ,v - u(t)) + [^ ,v - u(t)]2 Vv e AT

which implies by Green's formula that for all t € [0, T]

[ 9aN(u(t)), vN - uN ] + cyv(/?(i), u(t), v(t) - u(t)) > 0 V v ë K

Now, as (o-w(uï+1) + C;v(/3ï+1)VJ^
1) € C*~ and u ' e J f w e have:

Therefore by setting v = v' Ai + u* in (6), we deduce for alH = 0,.., n, the following inequality:
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By integrating the previous inequality with respect to time we obtain:

J {(a(un(t),v (t) - ^(t))+c(l3n(t),un(t),y'(t) - ^(t)) + j(pn(t),un(t),v' (t))

àt > jT(*B(t), v (t) -

+ J li>n(t),v'(t) - ^(*)]2 dt + J {[ 0aN(un(t)),vN} + cN(/3n(t),un(t),v')} dt.

By passing to the limit in the previous inequality using Lemmas 3.7, 3.8 and the following relation obtained by
the unilatéral contact condition

[daN(u(t)),ùN(t)} + cN(0(t),u(t),û(t)) = 0,

we hâve

(<f>(t),v(t)-ù(t))dt

fT fT ( ' 1
+ / h/>(t),v (t) -û(t)]2 dt+ / <[0aN(u(t)),vN-ùN(t)]+cN(0(t),u(t),v -û(t))}dt.

Jo Jo l J

If we set in the previous estimate v G L2(0,T; V) denned by v (r) = w for r G [£,£ + h] and v(r) = ù(r)
otherwise, we obtain:

1 /ïi+'1 f
- ^ |a(u(r) , w - ù(r)) + c{$(r), u(r), w - ù(r)) + j(^(r), u(r), w)

- j(/3(r),u(r),ù(r))J)dr>^i+ (0(r), w - ù(r)) dr

l rt+h 1 .̂t+h r 1̂
+ X / ^ ^ ' W " Ù ^ 2 àrJth V OaN<<u(Tïï>w " ÛN(T)} + CN(I3(T), u(r), W - Ù(T)) I dr.

Passing to the limit as /i —» 0+, we obtain by Lebesgue's theorem that inequality (2) is satisfied for almost ail
t€]0,T[. •
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