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EXISTENCE RESULTS FOR UNILATERAL QUASISTATIC CONTACT
PROBLEMS WITH FRICTION AND ADHESION

Marius Cocu! AND REMI Rocca?

Abstract. We consider a two dimensional elastic body submitted to unilateral contact conditions,
local friction and adhesion on a part of his boundary. After discretizing the variational formulation
with respect to time we use a smoothing technique to approximate the friction term by an auxiliary
problem. A shifting technique enables us to obtain the existence of incremental solutions with bounds
independent of the regularization parameter. We finally obtain the existence of a quasistatic solution
by passing to the limit with respect to time.

Résumé. Nous considérons un corps élastique bidimensionnel soumis & des conditions de contact
unilatéral avec frottement et adhésion sur une partie de sa frontiére. Apres avoir discrétisé la formula-
tion variationnelle par rapport au temps, nous régularisons le terme de frottement dans un probleme
auxiliaire. Une technique de translation nous permet d’obtenir I’existence de solutions incrémentales
bornées indépendamment du parameétre de régularisation. Nous obtenons finalement I’existence d’une
solution quasi-statique en passant & la limite par rapport au temps.
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INTRODUCTION

Contact problems for elastic bodies with adhesion and friction appear in many applications of solids mechanics
such as the fiber-matrix interface of composite materials. In the present paper we consider the interface model
proposed by Cangémi et al. [1-3]. This model contains an internal variable 8 which represents the continuous
transition from a total adhesive state to a pure contact state with friction. Quasistatic contact problems with
Signorini’s condition and local Coulomb friction law have been recently studied by the authors (see [4-6]) and
Andersson [7]. There exists at least one solution to such problems if the friction coefficient is sufficiently small.
The aim of this paper is to extend the result when adhesion is taken into account at the interface.

In Section 1, we present the mechanical problem and we give a variational formulation P, written as an
implicit evolution inequality coupled with a differential equation which represents the evolution of the intensity
of adhesion. The body is perfectly bonded to the rigid foundation when § = 1 and there is no more adhesion
for 5 = 0. A time discretization is adopted by using a backward scheme for the implicit inequality and the
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differential equation. We consider a regularized problem associated to the previous one and we present a
suitable equivalent problem which allows us to obtain the existence of a solution.

In Section 2, the regularized problem is solved by using a fixed point argument in an auxiliary problem,
where the threshold of sliding is given (Tresca’s problem). The proof uses a shifting technique and a local
straightening of the boundary. By passing to the limit with respect to the regularization parameter, we obtain
the existence of a solution to the non regularized incremental problem.

In the last section, we obtain estimates for the difference of two consecutive incremental solutions and we
construct suitable sequences of functions for the displacement, the velocity fields and the intensity of adhesion
respectively. This enables us to obtain the existence of a solution for the variational formulation of the problem.

1. CLASSICAL AND VARIATIONAL FORMULATIONS

We consider an elastic body which occupies an open bounded connected subset  of R? and we denote
his boundary by 9. Let I';, T's and I'z three open disjoint parts of dQ such that 6Q = I'; UT, UT5 and
mes(I'1) > 0. We denote by u = (us,uz) , the displacement field, € = (e,; (u)) = 3 (s, + u,,.) , the strain tensor,
o = (04 (0)) = (ayr €x1(u)), the stress tensor with the usual summation convention where 7,7, k,l = 1,2. We
adopt the following notations for the normal and tangential components of the displacement vector and stress
vector Uy = UMy, U = U — UND, ON = Oy, Ny, (o1), = 0,yN,; — ONN, Where n = (n,) is the outward unit
normal vector to 99.

We suppose that decohesion occurs on I'; that is the intensity of adhesion is strictly decreasing when the
threshold &, is reached. The parameters Cn and Cr > 0 represent the normal and tangential stiffness of the
interface when the adhesion is complete that is 8 = 1. Let us denote by ¢ and v the densities of the body
forces and tractions respectively. The initial displacement of the body is denoted by u® in Q and a displacement
U = 0 is prescribed on T';.

Therefore the classical problem is as follows.

Problem P;: Find u = u(x,t) : Ox]0,7[— R?, 8 = B(x,t) : ['3x]0,T[— [0,1] such that

diveo(u) = —¢ in 2x]0,T7,
(029 (1)) = (ayymt i) inQ,
u=20 on I'; x]0, 77,
on =1 on I'sx]0, T7,
uny <0, oy + CN,BQUN <0, ’U,N(O'N + CN,BZUN) =0 on F3><]0,T[,
lor + CrB%ur| < —u(on + CnF?un) = ur =20 on I'3x]0, T,
lfTT + CTﬁQUTl = —u(oN + CNﬁ2’U,N) — dA>0,ur = —)\(O‘T + CTﬁQUT) on FgX]O,T[,
B =—[(Cnuk + Crlur|®)B8 — Ea]+ on I'3x]0,T7,
u(0) =u’ in Q,

L B(0)=p3° € [0,1] onT3

where p denotes the friction coefficient and [s]+ = max(0,s) Vs € R. We suppose that a,,x; € L*°(2), 1 < 4,7,k,1 < 2,
with the usual conditions of symmetry and ellipticity that is

Qoygkl = gkl = Qklyy, 1 < 2,7, k,1 < 2,
dmo > 0such that V ¢ = ({,;) € R*, with {; = (e, 1 <2,5 <2, aymileyCa > mo [C)2

We require also that a,r are C%%, 1 < 4,5,k 1 <2, 0<a< % in a neighbourhood of I's. We assume that
p € CH(I'3) with compact support in I's and the parameters C;, Cr belong to L>(I'3).
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The trace mapping will be denoted by v : H'(Q) — H32(dQ) with norm ||v|lo and the linear bounded

extension mapping by 7 : H2(8Q) — H'(Q) with norm ||7||;. The norm on HZ(8%) is the following (see for
example [12]):

(w(y) — w(=))?

Q J o |z —y|2 dz dy.

10l g0y = lliziom + |

We still denote by «y the following trace mapping v : H*(2) — L9(8Q) which is compact for 1 < g < oo, (see
e.g. [11]). Its norm will be denoted by ||7v||,-

We shall omit from now on the notations v and 4 in order to simplify the notation and we define V and
respectively K by

V={ve[H'(Q))?v=0 aeonl}, K={veV;uy <0 ae onl3}.

Let us equally define Hz(I's) by Hz(I's) = {w € Hz(8Q); w =0 on dQ\I's } equipped with the norm of
Hz(8Q).
(, ) shall denote the duality pairing on H 3 (T3),H —3 (T3),
[, ] e the duality pairing on H %(89), H _%(BQ) and
[, ] 7 the duality pairing on [H 2 (8Q))%, [H ™% (89)]%.
We suppose that ¢ € WH2(0,T; [L*(Q)]?) and % € W1H2(0,T; [H~2(89Q)]?) such that there exists an open
subset denoted by I'J with supp(¥(t)) C I'§ C fg cIe,Vtel0,T].
We define the normal component of the stress vector on on 82 at time t as follows. Let u € [H*(£2))? such
that div o(u) = —¢(t). Then on(u(t)) € H-2(89) is given by
[on(u),wn | = a(u,w) — (¢, w), (1)

Vw e [HYQ)]? such that wp =0 on 9.

We shall use the notation [ s onx(u),wy | =[on(u),s wn ], Vs € CL(R?).

Let us introduce the function § € C§°(R?),0 < # < 1, such that § = 1 in a neighbourhood of T's and 0 in a
neighbourhood of ]."—g. Using Green’s formula, we obtain a variational formulation of the problem P; as follows.

Problem P»: Find (u,3) € WH2(0,T; V) x Wh2(0,T; L°°(I'3)) such that u(0) = u®, 8(0) = 3° and for almost
allt €]0,7[ u(t) € K and

a(u,v—il)+cT(ﬁ,u,v—1’1)+j(,8,u,v) —j(ﬂ,u,ﬁ) Z (¢,V—l'l)+[’(/),v—l.1]2

+[on(u),0(vn —un) ]V VEYV, (2)

[on(u),0(zy —un) ]+ env(B,u,v—u) >0 VzeK, (3)

B=—[B(Cnuk +Crlurl?) - &a), ae.onTsy, (4)

where a(u,v) :/aijkleij(u)ekl(v)dx, cr(B,u,v) = | Crf*ur.vr ds, cn(B,u,v) = | CnB*unvn ds and
Q F3 P3

3(187 u, V) = _<0N(u) + CN,quNa /"'!VTD'
The bilinear form a(.,.) is continuous and coercive by Korn'’s inequality, as mes(I'1) > 0, that is a(.,.) satisfies:

IM >0,a(w,v)| < M|ullz@ye IVl @, Vu,ve H Q)P
dm > O,G(V,V) > m“V“[2H1(Q)]2, VveVv
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In order to solve Problem P, we adopt the following time discretization. For all n € N*| we set At = T'/n and
@' = P(iAt), ' =1 (iAt) for i = 0,...,n. We assume that the initial displacement u® belongs to K and satisfies
the following compatibility condition:

0

a(u,v-—uo)+c(ﬁ0,u°,v—u0)+j(ﬂ0,uo,v—uo)2(¢>0,v—u0)—|—[1[)0,v—-u0}2, VveK, (5)

where ¢ = cr + ¢n. We use an implicit scheme which gives the following incremental problem for ¢ =0, ...,n — 1.

Problem P®": For u’ ¢ K, 8 € L*(T'3), find u**! € K, 8" € L>°(T'3) such that

a(uH-»l:V . u’i+1) + CT(ﬂH’l,u“‘l,v _ ui+1) + j(,ﬁi+1, u'M-l v — ui) _ j(ﬁH_l i+1’ Aui) >

(¢z‘+1,v — it 4 ,(/)'H—l v —utl)y + [on(uttl), 6(vy — ulﬂ) ] VveV, (6)

[on (W), 0(zn —uf ™) |+ en (B, 0tz —ut1) 20 vze K, (D)
i+1 7 .

ﬁ At ﬂ [ﬁH—l(C (ut+1 2 + CTIII?[:HP) —&, ]+ a.e. on F3,(8)

where Au? = uit! — u’. In order to solve the Problem P, we consider the following regularized problem.

Problem P}": Foru* € K, 8* € L>(I'3) find uit! € K, it € L>°(T3) such that

v

a(ui, v — ui) o ep (B ul v - ubt) G (B v - wt) — (5 it uf! — u) >

(", v —uit) + [ v — z+112+[mv( B, 0(on — uphy) ] Vvev, (9)

[on(ust),0(zy —uii) 1+ en (857 uitt z — ubtt) >0 Vze K, (10)
i-+1 13

B AT —5 _ -[Bf,“l‘l(C (u erl) + Cr |ul+1|) Ea l+ a.e. on ['3,(11)

where 7, (83, u,v) =—(on(u) + CnB%un, un.(|vr|)) and the functions n, with v > 0 have the following proper-
ties:

ny : [0, 00[— [0, 00[, n, € C*([0, 0[), 7, is convex,

0<n, <1, 7,(0) =1n,(0) =0, (12)
Vse[0,+oof, 0<s—n.(s) <. (13)

Proposition 1.1. Problem Pin s equivalent to each of the following problems.
Problem P.": For u' € K, 3t € L>(T'3), find uit! € K, git1 € L>®°(T'3) such that

a(uitt, w) + ep (B85, ubtt w) + j, (85, uit, A uh w) =

(@™, w) + [, wle + [on(uit?), Ouwy ] Vwev, (14)
on (U, 0(zy —utt ) |+ en (B ubtt 2z —uitl) >0 VzeK, 15)
vN v
ﬁ”l 51 i+1 Ut i+12 .
NI —[ B CN (B + Cpluli ) — &4 )+ a.e. on I's, (16)
where j,(B,u,v;w) = —(on(u) + C’NﬂQuN,un:,([vTDwT.d(v)) Y u,v,w €V, isthe Giteaux derivative of

g (Byu,.), d(v) = ‘—% and Ay u’=uit! —ut.
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Problem RL™: For ' € K, 3 € L*>*(T3), findust! € K, Bir! € L>°(I'3) such that
a(uyt, v —upth) + (B0 uitt, v — uitt) 45, (60, uptt A ut v — ) >
(@™, v —utt) 4 [ v — uitl), Vvek, (17)

gz+1 }67, 1 i1 il
AL —[ B (CNn (Ul ) + Crlulit ?) — &a |+ ae.onT3.  (18)

Proof. By setting v =u%™! £ Aw, X\ # 0, in inequality (9), dividing by A and passing to the limit, one obtains
relation (14). Conversely, the convexity of 7, implies that

2 (I(v —u)z) = . (|Avu'z]) = n, (18007 ) (v — uit)r.d(Au?).
By setting w = v — u’"! in (14), one obtains (9). It is clear that inequalities (14) and (15) implies (17). Using
Green’s formula in relation (17), we obtain (14) and (15). |
We will prove the existence of a solution for Problem R:™ with bounds independent of the regularization

parameter in order to obtain the existence of a solution for Problem P%™.

2. EXISTENCE OF A SOLUTION FOR PROBLEM P%"

2.1. Preliminary results

In order to prove the existence of a solution for Problem R:™ we introduce an operator ®, and we give
estimates which ensure us that ®( has a fixed point.
As p is C1(T'3) it follows that the norm of the following mapping

H%*(I'3) 3 v — pv € H?(T3)
is bounded by ||#||H2(p )

m

1 < p
, H2(T3) = (M +Cn) |[7llo 17111
Problem R%™. Then there exists a constant Cy such that

Lemma 2.1. Assume that ||u|| and there exists a solution (uitl, Bit) to

I ooz < Co (16 llpaqye + 19 (19)

[H‘%(am]?) '

Proof. From (12) we have j, (851, uét!, uit! — u'; —uitl) < j(BeH! uit! uitl) so that inequality (17) with
v = 0 implies that
a(uy Ml oG ult uptt) < (@ ult) + [ ult o + (80wt up ),

v ?

As mes(T'1) > 0, we obtain:

i+1 A 1) i+1 ~ 1+1 i+1\2, i+1
i ey < 16 a1y 3 gy + Wl oy 11 lon (i) + On (B2 oy o

Relation (1) enables us to obtain that

o @) ey, < Illo (167 lagaye + M [0S e o)

So inequality (19) follows from the two previous estimates. O
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Let C*~ = { geEH -3 (T'3); g is negative on Fg}. For every g € C*~ we define the following contact problem
with given friction on the contact zone.

Problem R}™: For u* € K, 8" € L*(T'3), find u}™ € K, 8;*! € L=(I'3) such that
a(uyt, v —uftt) + (85wt v — uitt) — (ugA', v —ult) >
(@ v —ugth) + [ v — gt VvEK, (20)
ﬁz—l—l IBZ

o = (BT O (i) + Criugi ) — €. )+ a.e.on s, &)

where we use the notation A* = 7]:,([(u;+1 —u')7|) d(uyt —u*) and (ugA’,vr) = (ug, A" .vr).

Lemma 2.2. Assume that there emists a solution (uy™, Gyt') to Problem Ry™. Then there emists a constant
C1 > 0 such that for all g € C*~ the solution of Ry™ satisfies:

s ™ ez < G ( ||z @z + 107 iz + 1] (22)

{H*%(am;?) '
Proof. By setting v = u® in (20), we get

a(u;—i—l’ uzg+1 _ z) + c(ﬁz+1 z+1 1—3—1 z) _< gA'L z+1 7:,1_‘) < (¢2+1’u';+1 . 117') + [ ¢z+1:u;+l —u ]2'

>0

The coercivity of a(.,.) enables us to conclude. O

We are going to prove that there exists a solution to Problem Ry™. We consider the following problem:
for 8 € L*°(I'3), u* € K, find u € K such that

a(u,v —u) 4+ ¢(B,u,v —u) —(ugA", vy —ur) > (¢, v —u) + v —ujy VveK. (23)

It is obvious that the problem has a unique solution by a classical argument by using the convexity of n,. We
consider equally the following problem.
For 3* € L*°(T'3), u € K, find B € L>®(I'3) such that
ﬂ - /82 . 2 2
A —[,B(CNUN+CTIUT| ) - &, L’r- a.e.on's. (24)
This problem has a unique solution which is given by
B if (Cnud + Crlur|?)B* — &, <0,

A= B+ E,At
1+ At(C’Nu?V + CT|UT|2)

f (CNU%\, + CT|UT|2),BZ - &, >0.

Lemma 2.3. Let (uj,uz) € K x K and 1, B2 the corresponding solutions of (24). Let iy and iy be the
corresponding solutions of (23) with By, B2. Then there emst two constants Co > 0 and Cs > 0, independent of
(uy,uz) such that

|61 — B2| < C2Atjuy —uy| |ug +uz|  a.e onTs,

61 — oz ()2 < C3At|ur — vf[jm (@)

Thus there exwsts a unague solution to Problem Ry™ 1f At 1s small enough.
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Proof. The first inequality follows from the representation of 5. Now in the following inequality equivalent to
relation (23)

a(u,v —u) +c(8,u,v —u) ~ g, ((vr —up)) ~m(ur —uz)) > (@ v-uw)+ BT v-us Vvek,

we introduce v = iy with 8 = ; and v = 11; with 8 = 35. Thus one obtains
a(iy — g, 4y — 0g) + cr(f2, 01 — G, 1) — Ug) < / Cr (1 — B2)(Br + B2)ur.(Uer — Q17) ds.
T3
By the coercivity of a(.,.), we have

m|[a; — a1 )2 < 207|181 — B2llL2ry) Q1] Lar,)-
We conclude by the first relation of the lemma and by a contraction argument when At is sufficiently small. [
In the following, we shall write for the sake of simplicity (u, 8) instead of (uj**, gyt1).

Lemma 2.4. Let the mapping ®o from C*~ to H™2(T's) defined by ®o(g9) = on(u) + CnB2un with (u,B)
solution of Ry™. For every g € C*7, Do(g) belongs to C*~ and there exists a constant C' > 0 such that of
At < m/C" then ®g 1s & Hélderian on C*~.

Proof. Let g, 3 = 1,2 and u, the corresponding solutions. By setting v = uy in the equivalent inequality to
relation (20) with g = g; and v = u; in the equivalent inequality to relation (20) with g = g3, we get:

a(u; —ug,u; — uz) +c(Br,uy —ug,uy —uz) < —(u(gr — 92), M (Juer — uyp|) — n (Juir — uipl))

"
+ [ [Cr8 = 32)(Br + B (s ~ var) + O (B = B2)(61 + BoJuan(wny — uaw)] .
s
It follows that:
(m —C'At)|lur — uz|f oy < Cillgr — 92ll -3 (g [0l oz + lluzlliz @z + 0|z @))2)-
By using (1) we have
(on(ur) = on (u2), wn) = a(wy — vz, w) < Colluy — Wl @pelwnll ;g o

Ultimately, we obtain:

[N

1®o(g2) — Po(g1)l ;-4 1,y < C3llg2 — g1 Vgi,92€ C*.

H™3(T3)
Let v=u+w, w € [H}(Q))? such that wr = 0,wy = 0 on N\I'3 and wy|r; < 0. Then we have
<UN(u) + CNﬁzuN?wN> = a(u,w) + CN(,B, u, W) - (¢1+1,W) > <H gA', vy — uT) =0.

By the arbitrariness of wy, we deduce that ®o(g) € C*~. O
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2.2. Existence of a solution for Problem Rfj’"
2.2 1. Case of the strip

We consider in this part that Q@ = Q; = Rx]0,r[,7 €]0,+oo[, I'1 =R x {0}, I'y =0, I's = R x {r} and we
equally assume that the coefficients a,;x; are C%® smooth in .
We define the space H*(Q,) = {w € H'(); |wll g1 a(q,) < 400}, for 0 < a < 1, where

ol ooy = Il + [ [ lh‘lmz{(axl) h (g;)}zdxdh,

with v_p(z1,22) = v(x1 + h,z2), for x = (z1,22) € R? and h € R.
We consider equally the space H*(R) = {w € L*(R); l|lw|| g ®) < +00} with

2
Ilfe ey = ooy + | [ (w(z +|,j(1+2a W@ 4y g,

h.¢) — 1|2
| eXpﬁLll fQ)a | dh, ¥ (¢ € R and denoting by F[w] the Fourier

We consider co(a) such that [¢[?®co(ar) = f
Rl

transform of w, we have that
(0lffoqey = [ PP+ co(@)IC) dC - (see 1),
We define H~*(R) as the dual space of H*(R). Thus its norm satisfies
[l = [ IFwlOF 1+ co(-0)l¢2%)7 dC - (sce e [10).

For u solution of R%™ with g € C*~ N C*(R), we can obtain, by applying a shifting technique as in [9] and [5],
that for an arbitrary e > 0

Ma(u_p —u,u_ H .
(u—s ) dh> +ki(e,a) (16" |22y + llullz 2] -

low (@l -y ey < 1+ E)< r co(a) co(z — a) |h|*F2e

with ki(e, @) a positive constant depending on € and «. Therefore we have

"Ma(u_p —u,u_p —u) 3
I 209} ly-vam s A+ €)<-/R co(a) co(5 — o) |1 T2e dh>

+ ka(e, @) [0 I ip2qo 2 + Il @u2] - (25)

Lemma 2.5. Let (u, 8) be a solution of Ry"™ unth g€ C*~ N C*(R). Then for an arbitrary € > 0 we have

( mo a(u_p —uw,u_p —
R

1
w) 1
dh 1 oo 1
2co(@)co(3 — a)lh[*+22 < @+ llpllecrs) 9l - 3+0

(R)

+ kale,0) (167 aqaye + Il aye] - (26)
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Proof. 1f we set v = u_p in (20), v_;, = u in the shifted inequality derived from (20) and if we adopt the
notation A = A® then we have

a(u—p —u,u_p —u) < ((ugA)-p — (BgA),u_pr — ur)
+ (¢ - uy —u) + (an —a)(u_p,u—u_p)
+ c(B,u,u_p —u) + c_p(B_p,u_p,u —u_p). (27)

Then by using the Cauchy-Schwarz inequality we have the following estimate for 0 < a <1-2a,as0< < 1:
2 3 2 7
ook o= [ () ([ )
|hl<s T hi<s \J= |h|'~= R [|h[H2ete
uZ / UN — U_ ¥
< / / N__dz'dh / / N w)? AN T RN Gadm |
Inj<s Jr |R['—* |nl<s ||t +2ate!

By integrating inequality (27) with respect to h and using the previous estimate, we get (26) with similar
arguments as in [5]. O

Theorem 2.6. Let (u, ) be a solution of Ry™ with g € C*~ NCH(R).

m
I < —
Hilys oy < GET e oL

then we have for an arbitrary € > 0

120N ;- § gy (L + €)(2M/mo)2 [|ull 2o (0g) 9N - 4 e gy T Fale, @) 16" lrza(uye- (28)

(R)
If u satisfies also ||p||pos(ry) < v/Mo/2M, then Problem RY™ has at least one solution for Q = Q.
Proof. Inequalities (19), (25) and (26) imply (28), which is valid for all g € C*~ N H~2+2(R) because C'(R) is
dense in H™2+2(R).

If || ll Loo(rgy < (mo/2M)?, there exists ¢y > 0 such that (14€0)(2M/mq)? |4l Lo (rsy < 1. Thus by (28) there
exists rg > 0 such that ®; maps C*~ N B, into itself, where B, = {g € H 3t%(R); ||g||H_%+a(R) < ro} .

By using Lemma 2.2, we obtain that ®( is weakly continuous. Indeed, let (gq)qen~ such that g, — g in
H~3%%(R). As p has a compact support we deduce that pg, — ug in H~7(R) so that ®4(g9) — Polg) in
H~3(R). The density of H3(R) into H2~*(R) implies that ®¢(g,) — ®(g) in H~ 3 (R).

Hence, we can apply the second Schauder’sA fixed point theorem (see [13] p. 452) to the mapping @, and
there exists at least one solution to Problem R:™ in £2;. O

2.2.2. Case of a general domain

In order to apply a shifting technique, we shall adopt the following notations:

Qsr = x = (z1,%2) € R% 21| < § and |z2| <7},
Qs, = {x=(z1,22) €ER%|z1| <dand 0 <z <7},
gﬂ, = {x=(z1,22) € R% x| < 6 and 2o = 0}.

Let xo € I's and U be a neighbourhood of xq such that the coefficients a;;x; are C%P smooth in U. For w € V
with supp(w) C U and such that w + u € K relation (20) becomes for v = w + u with g € C*~ N CY(T's)

/ Qijkl €i5(0)ep(w)dz +/
QNU

B%(Cpur.wr + Cyunwy)ds —/ ugA.wrds > o owdz (29)
I'snU

TanlU QNU
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As I'z is C1# smooth we have that there exists a local representation of the boundary ¢, € CY#(R) with
T2 = (g (1) having the following properties. If we set Us »(x0) = {(z1,22) € R?; |z1| < §, |22 — (o (@1)] < 7},
then the mapping H;, : Us r(x0) — Qs,- defined by (z1,22) — (21, 22 — (z4(21)) is such that

H;s, (Usr(x0) N Q) = QZT, H; - (Us,r(x0) NT3) = QF,..

For any mapping f defined on Us -(xg), we denote by f the mapping f = fo H™1.
Therefore, inequality (29) for U = Us,(x0) yields

7K-Wsz'2/+ 7 wdo (30)
Qs

Q|

E@WH@W+@@Wi/ﬁ
Q3.

for all w such that w +u € K,

where a(ti, w) :/ Tkl €y (W)er(W)de,
Q

+
8,7
— = _ ouy 8@1 BCXO oy ow, 8%1 owy 8(x0

(W) = /Q;T fan (8:1:2 B2 Om1  Owa Oz my Ozz ) By
ET(B,ﬁ, W) = CTBZﬁT.VTdeJ,,

Qg r
CcN (Es ﬁ3 W) = / CNﬁzﬁNﬂdewla

Q3

2
E(‘a -3 ) = ET(" .y ) + EN('v ) ) and 72 =1+ (8C10> .
81:1

We shall denote by Ewkl the coefficients which satisfy the following relation

S — ou, 0wy,

b(u, W) = /Q;r bUkl——a—z—J— aml dz.
ICxo
8371

By using the C%P property of , we have that

| b(E, ) [ < Cy 6 ullzrs e [Wllier oy
We extend any function f defined on U, (zo) onto Rx]0,7[ by f(x) = f(P2(x)), where

200y _ | (po,2) if |po] <6,
P‘S(")‘{ (6,2) if |po| > 6,

if x = (pg, z) € Rx]0,r|.

Lemma 2.7. Let p be a function such that p € C§°(R?) with 0 < p < 1, and supp(p) C Us,(x0). Let (u, B)
be a solution of Ry™ with g € C*~ N C'(I'3). Then we have

a(An(p0), An(PT) + b(An(p ), An(pT)) . \2
( /ETO 2¢o(a)co(1/2 — o) |h|1+2e : dh) < (T+e+e(@)lpllpe(rs)

157Gl gy v gy + K6 0) k(02 6, M, p, 1 45 u) (31)

with €(8) — 0 when § — 0 and k,(.,.,.) a constant which depends on |z ()2
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Proof. For h € R,|h| < §/4 we denote by L_; the rotation around n_; A @ which transforms n_j; into 1.
Therefore L_p,u_; € K so that we can set W = p°(L_; U_; — U) into inequality (30). We equally set

W_n =72, (L, W - T_) into the shifted inequality derived from (30). By dropping the bar for the sake of
simplicity, we obtain
a(An(pu), Ar(pw)) + b(Ar(pu), An(pu)) < (p¢* ™, p(L_pu_p —u))

+ (09" ) —hs p—n(Lhu = u ) + (@ — a—p)(p-nU—h, p—pU—_p — pu)

+d (0, p(L_pu_p, — 1)) + a(pu, pL_pu_p — p_pu_p)

+ d_p(u-n, p-r(L7hu = u-p)) + a—n((pw)-h, p-n LT} u — pu)

+d (u, p(L_pu_p, — 1)) + b(pu, pL_pu_p — p_pu_p)

+d p(un, pon(LThu = up)) + bor((pw) -, p-nL"ju — pu)

+ (b= b-p)(p—pu—p, p~pu—p — pu)

+ (B, pu, p(L_pu_p, — u_p) + c_n(B-n, (pu)—n, p-n(LZ,u —u)

+ (B, pu, p(up, — 1) + c_n(Bn, (P1)—n, p-n(u — u_p) + A (32)

where
d (u,v) = a(u, pv) — a(pu,v), d (u,v) = b(u, pv) — b(pu, v)
and

A = —{ugJA,(1-p*)ur + p*(L_pu_p)r — ur)
—((ugIA)—n, (ur)-n + p2 4 (L2 0 — u_p)r — (ur)-s).

Next we have
A<= ((ugJA)p?, (L_pu_p)r — ur_p) — (g JA)_np® , (L= u)r — ug)

— ((ugJA), (1 — p*)ur + PQ(UT)—h —ur)
— ((ngJA)=n, (1 = p21)(ur)—p + p2pur — ur).

Therefore we obtain
A < —{(ugJA)p*, (Lopu_p)r — ur—p) — ((gJA)_pp? 1, (L7h0)r — ur)

— ((ugAp)-h, (p—r — p)ur) — ((ngAp), (p—r — p)(ur)—p)
+ ((ugAp)-n — (ngAp), (pur)—n — pur). (33)

All the expressions in (32) and (33) can be estimated by the Lipschitz continuity of the data (see [9] for L)
excepting the last one in (33). By integrating the inequality (32) with respect to h, one obtains:

/ a(An(pu), An(pu)) + b(An(pu), Ap(pu)) dh < klg(p 8, M, ¢i+1 ,,’bi—i—l ui)kl(e a)
|h — b b b ) 3 b 3

|<8/4 ||t +2e

(g JAp) 1 — (ngJAp), (pur)-p — pur )
+(1+¢€) /|h|<<s/4 dh. (34)

Ih|1+2a
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As in the case of pure friction (see [5]), we have the following estimate:

((rgJA)—n — (ugJ Ap), (pur)—pn — pur ) (60(% - a))E
. dh < (L +€)co(e) | ——=
/h.]<<5/4 thtt2e ( Jeo(@) co(3 + )
. , 9
Using that HuTH[HlM(R)]2 < (1+e)f|u adremy T k3(€)|lul[z2(w))2 and (34), (35) one obtains (31). O

Lemma 2.8. Let p be a function having the same properties as in Lemma 2.7. Let (u, 3) be a solution of Ry™
with g € C*~ NCY(I'3). Then we have

S A(An P U, AppU) +b(Ar P, Ap 1) :
J | 1., < 1 M
ITon @l 4, < 0 ( | (@) cols —a) 2

+ kale, @) ky(p, &, M, p, o1, ¥ u) (36)

with € = €(8) — 0 when § — 0 and ky(.,.,.) a constant which depends on a2 )2

Proof. Let w € V such that supp(w) C U and such that wy = 0 on 9Q\U. The local straightening of the
boundary and (1) yield

-
Pé W

En@), T pwn) =a(pa, W) +b(pu, W) +d (0,w) +d (u,w)— ,W).

As the coefficients a;;x; are C%P in Us,r(x0), we have
(b n—b)(T W) < C; x(BP) [T .y W] (0,2

(d_p — d)(T-n, W) < Cy x(IWP) [0l 9] a2
(@ —d" )T, w) < Cy X(RP) [Tl g2 W1 )2

We conclude by the same method as in the case of the strip. O
Let T € H~2(I'3) such that supp(T)C I's. Let (U;)jer a finite covering of I's and (p;);jer the C partition of
unity subordinate to the finite covering. It is well known that the norm ||| ||| defined by
12 __ =TT 12
TP =227 T ey
j

is equivalent to the norm || T “H—%M(r ) (see e.g. [9]).
3
Let us denote by w a function such that

w € C§°(R?), supp(w) C B(8,/2), w=1on B(d,/4)

where 6, = dist(supp(p), dQ\I's), and B(a) = {x € R* 3y € supp(p), |x — y| < a}.

Theorem 2.9. Let (u, ) be a solution of R,™ with g € C*~ N C*(I's) and assume that
m

I ] < —
Wt o) < 1+ )T T
(pj)ijer subordinate to the finite covering such that

Then there exists a finite covering (U;),er of I's and a partition of unity

Il @ @o(g) |1l < (1 + e+ e(8)(mg ' 2M) 3 ||l pooqry) i g [I| + ke, ) ky (6, M, p, ¢, 067H). (37
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Thus Problem P}™ has at least one solution of ||p||poe(ry) < \/™Mo/2M.

Proof. There exists a finite covering (U, ),er of I's such that

Viyel, Uy =Us,r(x),
V3 €el, U Nsupp(w) =0 or U, N (OOQ\I's) = 0,

with § = max$4,.
j€l

For 7 € I such that U, Nsupp(w) = 0 as supp(p,) Nsupp(x) = @, we have that

@705 TN (Wl - jrag < kelea) ks (8, M, p, 6", 4t ). (38)

For 7 € I such that U, Nsupp(w) = 0 we deduce from inequalities (31) and (36) that

15 8,7, Fn (W] 3 gy < (L + €+ €(8)) (mg 2M)? || tl| oo () 17

(®) — H™ 5t m)

+ ka(e, @) o (6, M, p, ¢ 9 0). (39)
Therefore from (38), (39) and (19) one obtains (37). The results follows as in the proof of Theorem 2.6. d

2.3. Existence of a solution for Problem P%™

m
Theorem 2.10. If||,u|iH%(F3) < ESICER and ||pl|Leo(ryy < v/mo/2M then there exists a solution

(u*t1, gty of P»™ such that

” L'J(ON( z+1)+C (,37'+1)2 z-l-l) ”H §+Q(F : —kl ((5 M i, ¢2+1’¢2+1) (40)

where k7 (., .,.) s a constant which depends on. |||

3 oay” ||¢z+1”[L2(Q)]2, 6 and the prewous norms of p.

Proof. For each v > 0, there exists u’t! solution of Problem P»™ where u’t! satisfies inequality (37) with
g =on(ust) + Cn(B571)2ul. There exists a subsequence (u H'1) ken+ which converges weakly in V towards a
limit denoted by u**t!. We stlll denote by (u%"!) this subsequence.

By a compact imbedding argument, we have that (1), converges strongly towards a limit denoted by 3***
and we obtain relation (7).

The weak convergence of (u%!) towards u**! implies that

a(u uth) <11rn1nfa( ARV il (41)
=0+
We have equally
o8 w0 ) = i (B u ) (12)
v—0

As n, satisfies the relation (13) we have |1, (jvr — u*]) — |[vpr —u%| | <v, Vv > 0. So we obtain

lim g, (87 v - w) = lim—(u(on (ul) + O (8P, (lve — wpl) = Ivr = wh)

+ 1ir(I)1+3(;3f,+1, wl v —u') = (T u v —uh). (43)
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Similarly, we have

liminf 7, (857, uttt, us — w*) = liminf 9(B5*, ust wbt! — u). (44)
v—0t v—0+

The strong convergence of woy (us™!) towards won (u*) in H~#(I's) due to the compact imbedding of
H~z%(I'3) into H~2(I'3) and the convexity of 7(8,u*™!,. ) in H~%(I's) imply that

liminf 7 (877, up, gt — w) 2 5(67, wt wt - ), (45)

By Green’s formula it is easy to see that inequalities (6,7) and (9,10) of Problems P*™ and P»™ are respectively
equivalent to the following ones:
—find u**! € K such that

a(u""l,v _ uz+1) 4 C(I[)n+1’uz+l’v o uz+1) +j(/81+1,uz+1’v _ uz) _J(52+1,u1+1,Auz) >
(¢z+1,v_uz+l)+ [,l/)z+1,v_uz+1]2 VveK (46)

and
—find u¥t! € K such that

a(uptt, v —ul) + (B wt v —utth) + 5, (BT, ul T v - ut) — (85wt Aa) >
(", v—utt) + [ v—utl]y VveK. (47)

By using estimates (41) to (45), we can pass to the limit in (47) so that one obtains (46). Relation (40) is
obtained by passing to the limit in (37). O

3. EXISTENCE OF A SOLUTION FOR PROBLEM P,

m

Lemma 3.1. If ||u| 2 < — and ||p||pe < v/mg/2M then there exists a positive
I ||H2(F3) (M + Cn)lIvllo 17l lellz==ra) / P
constant Dy such that

| Aoz < Do {186 liz@ye + 1A% +at}, (48)

H™E (@)
where u* and u**! are solutions to P*™ and P*~b",

Proof. By setting v = u’ in inequality (46), we have
a(w AuY) + (61, ut L, Aut) + (8wt Aw?) < (¢, Au?) + [T Au,.
We equally set v = u**! in the inequality (46) corresponding to Problem P*~17" 5o that we obtain
a(u’, Aut) + ¢(8*, 0, Au*) + 3(8%, 0, 0" —u ) — 3(B4 ut, Aut ) > (¢f, AuY) + [, Au')s.

Using that jujt* — u% ! < |Auy| + |Au’!| and adding the two last inequalities we have

a(Au', Au’) + (B, Au', Au') + (6, Au?, Au') < (uOn [(84) = (8] uy ', |Aug|)
+ [ Cp(B' = 4B + B ui(ur ! —uf) + COn (B = B (B + 0 uly (uy ' — uly) ds

+ (A@, AuY) + [A%, Au')s.
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Therefore we obtain that
(6% &', Au)| < [lull 3 o,y [7ll0 llow (Au') + CN(ﬂl)Zuﬁv“H%(ra)||Auz|||[H1(n)]2'
Relation (1) allows us to deduce that
lon (Al -3,y < 1Al (M 1AW || @2 + A" 22()2)-
We have also
182 — || L2(rs) < Dy At.
Hence (48) results from the coercivity of a(.,.). a
We consider the sequences of functions (Bn)nen<, (Un)nen*; (Un)nen+s (@, )nen+, (¥, )nen~ defined on [0,T]

by ﬂn(t) = .BH'l: un(t) = uH_l, ﬁn(t) = u* + (t_ tz)(uH_l_ uz)/At, ¢n(t) = ¢z+1; 1/’n(t) = "/JVH for
t € Jty, top1], with t, = 2.At, 2 =0,.. .,n — 1 and $,(0) = 8°, u,(0) = 0,(0) = u°, ¢,(0) = ¢°, ¥,(0) = °.

Lemma 3.2. Let 1 =0,1,..,n—1 and 0 <t <ty <T. Then there exist positwe constants Dy, Ds, D3 such
that

bt . .
AW [z )2 < D1 /t (1 + @ lz2 oy + ||1/’(t)||[H_%(aQ)]2) dt, (49)
fit . .
8w e < D2t [ (14 16O R + 19O, g ) (50)
man(te+At,T) . .
() =t e < Ds | (14 16w + 1Bl -3 o) - QY

Proof. Inequality (48) and the absolute continuity of functions ¢ and 1 imply relation (49). We obtain esti-
mate (50) by using Cauchy-Schwarz inequality in relation (49). Let 0 < ¢ < 7 < m such that t1 € |t,,t,+1),
ta € Jt;, 1),

¥
lun(t) = wn(t)llpr @ < D ™ = 0™l oy,
m=1+1

J tmt1 . .
<0 3 [T (14 16Ol + 19Ol ogya)

m=1+1
t341 . .
< 2 1
< D, /+ (1 10z + Ol - s g ) A
so that (51) holds. O

Lemma 3.3. There emst two subsequences (U, )ken+, (Un, )ken+ and an element u € Wh2(0,T;V) such
that for all t € [0,T] (un,(t))ken~ converges weakly wn V towards u(t) and (Gn, )ken~ converges weakly mn
Wh2(0,T;V) towards u.
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2
1853 200,mv) < / (”“n(t)ll[Hl(Q) 2+ l' “n(t)l > dt
0 (@)
dt

<D,T+ Z /
HHL(Q))2
141 D2 tota
<
D4T+Z/I (/ <1+||qb H -~ H‘/)( )ll H‘§(60)12> dT) dt < o0

Next by using an argument similar as in [8], we obtain the existence of (up)nen*, (Un)nen+ and an element
u € Wh2(0,T;V) such that (u,(¢))nen~ converges weakly towards u(t) V ¢ € [0,7]. Moreover for all ¥ €
L?(0,T;V) we have

Proof. First by (50) we have

2

tat1 7,+1 z

|
|
|

T ] ) 3 T 2
[(Tny — Un,,P)| < D5 At (/0 (1 + @) Ifz2qy2 + Il (t )||2H 3 (89)12>dt) X (/0 ||19(t)”[2H1(Q)]2dt> )

so that (U, — Up,, ) = 0V te [0,7]. As (un, (t))ken converges weakly towards u(t), V¢ € [0,7] we finally
obtain that (i, )ken+ converges weakly in WH2(0,T; V) towards u. O

From now on, we still denote by (un)nen<, (Un)nen+, (@n)nen+s (Wn)nen and (8,)nen» the subsequences
(unk)kGN"7 (ﬁnk)kEN*7 ((bnk)kEN‘! (wnk>k€N* a‘nd (ﬁnk)kEN*~

Lemma 3.4. There exists a unique 8 € WH2(0,T; L?(I'3)) solution of (4) corresponding to the weak limit u.

Proof. Let X = { BeCo0,T]; L3(T3)); sup [exp(—kt) ||B(t)]lr2rs)] < +oo}. X is a Banach space for the
t€(0,T)
norm ||B||x = sup [exp(—kt) {|B(t)|lz2(rs)]- Let T : X — X be the mapping defined by
te{0,7]

t
TB() = Bo — / (Ol + Crlur[2)8 — Ea]dr.
0
We have
¢
T B (t) — TB(t)|]? < D, / (Cnuk + Criur?)*(By — B2)%dr.
0

As u(t) belongs to [H2+(I'3)]? for all ¢ € [0, T}, u(t) is continuous on I'z. Thus we obtain that

t
1T5.(t) — Tﬁz(t)uiz(m) < Dy HUH%N(ZO,T[XF:;) / | 1 — B2 !]%2(1*3)(15

2 exp(th)_

< D, llullLeo(]oT xrg) | 1 = P2 | 2k

It follows that

/D,
76:(t) —TB()]x < 2: |2 go,rixray | B1 = B2 llx-

There exists k sufficiently large such that 7 has a fixed point 3. O
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Next we are going to show that (u, 8) is a solution of the quasistatic problem. First, we prove that (8,)nexn+
converges strongly towards 8 in L°°(0,T; L*(T'3)).

Lemma 3.5. We have the following result: hm max llenllL2(rg) = O where e}, = B(t.) — B*.

400 1=0

Proof. We introduce the following notation

y(B(t),ut)) = —[(Cnvuk (t) + Crlur(t)*)B(t) — Eal+-

The following relation holds

enft = el + At [y(B(tuir), ultesr)) — y(B7, w )] + 6,
tz-rl
with ¢, = / [w(B(1),u(r)) — y(B(tisr1), ults41))] d7. Therefore we get
t.

et pacrsy < llebllzaers) + At Dy [lest | Laqry) + Da At [Ju?(tg1) — (@) 222 (rgyjz + el z2ery)-

We choose At < 1/D; and we obtain

. 1 2 " 7
||en+1||L2(F3) < 7 “ en||L2(F3) + D3 At Hu2(t1+1) - (11 +1) ”[LZ(FS)J2 + ”6 ’ILZ(Fs)
DY)

Using the relation 1+ z < exp(z), V= € R and ||e3 | L2(r,) = 0, we obtain that

1—1 "

2 D 1"
lesllzarg) < Y exp L‘_‘ﬁ(tz - tk+1)} [Dg At flu(ter1) — (W) lLawsy + ||€Z+1||L2(r3)] :
k=0 2

As B € W12(0,T; L?(T'3)) we have for 7 € [tk, tx+1]

16(r) = Bltis)llusen < o max_18(7) = A©)|zawy) = w(B, A1) with Jim w(B, A1) =0.

Therefore one obtains

1" tk
lenllzarsy < Dy At w(B, At) +/ Dj [[0*(r) = u?(t)lliperged-

t

We deduce that

1
_D 17" "
llerllersy < ) exp l 2 —(t, tkfl)} [Ds At [[0®(trs1) — (@52 (z2(rgyz + Dy At w(B, At)

= 1—- D, At
bt 5 5
+/t Dg [[u®(7) —u (tk+1)“[L2(F3)]2dT] :
k

We conclude that

1"

o D Te W ‘ "
Jnax [leplrary) < exp [l—_ﬁﬂ /O [Ds 182 (7) — w2 (7)llz2 ey + Dy w(B, At)

+Dy [|u3(r) — &2(M)ll iz | dr,

where 0, (t) = u(te41), V t € Jtx, tg+1] and 6, (0) = u(0). To conclude we pass to the limit as n — -+oc. O
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Theorem 3.6. We have the following convergence: hrf trrf(a)mx 18(t) — Bl 2(rs) = O.

Proof. First we have
18(t) — Bu@llz2(rs) < N1B(E) — Bloas) 2y + len i L2(rs),
so that

t < t) —
e 156) = Ba@llzawsy < | omax | B(0) = BO)lzary + max ez

and passing to the limit
T
lim  max [|B(t) — Bn(t)llL2rs) < lim w(B, n)+ lim r{)lax ez, ||L2(p3) =0.

n—-+o00 te[0,T] n—-+oco —+00 1=

Lemma 3.7. For all v € L?(0,T;V) we have:

T T
i [ (@0, v(0) - G0t = [ (600),v0) - aoar

n—+oo 0

T d T
lim i [ (1), V() — i (®))2 dt = /O [(t), v(t) —a(t)]2 dt,
) T B T
Jim [ (B0, v0)e = [ 58,0, vo)
Jim [ a(un(©), v(0)dt = /0 a(u(t), v(t)dt,

T

T
im [ c(Bu(t), un(t), v(t))dt — /0 c(B(1), u(t), v(t))dt.

n—+oco 0

(52)

(55)

(56)

Proof. Inequality (52) and (53) are obtained by the strong convergence of (¢, )nen+ and (¢, )nen+ towards ¢

and respectively 1. The weak convergence of (u,(t))nen+ towards u(t), V ¢t € [0,T] proves inequalities (54)

(55) and (56).

Lemma 3.8. We have the follounng relations:
T d T
tim inf [ 5(8(0) un(0), 3000t > [ (B0, u),0(0) )t
T d T
lim inf / a(un(t), Sin(0))dt > / a(u(t), u(®)dt,
0 0

T——+00
T

T
tim [ e(Balt), un(t), S 0a(1))dt = /0 c(B(t), u(t), ().

n——+o0 0

Proof. First, we have

<

i / (5a0), mn(0), () = 2(B(2), m(), S n(0)) )t

T d
[ e ot =)+ o (GBunse = )3,y x| e

dt.
H7(Ts)

|
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As w(on(u,) + CnB2u,n) converges weakly towards w(on (u) + CyB2un) in H=2+*(I'3) for all ¢ we have

lim ||w(on(u, —u) + Cn (Bun — ﬂzu))“

n—+o00 H™ % (T's) =
The result follows by Lebesgue’s theorem and the fact that as in [8], we have
T

L d . T .
tim inf [ 5(8(0), u(t), a0 > [ (60, u(0), w(0)at.

n—+oo

The proof of inequality (58) is similar to the one of [8].
By the compact imbedding of Hz (8Q) in L2(852), we have that (u,(t))nen- converges strongly towards u(t)
in [L2(['3))? for almost all t. The same convergence property holds for (8,un,)nen-, thus relation (59) follows.
Therefore the proof is complete. O

Theorem 3.9. The elements (u,3) satisfy Problem P;.

Proof. First, we show that the unilateral condition is satisfied. For all ¢ € ]0, T, it follows from the definition
of (un)nen- and inequality (46) that

a(un(t), v(t) = un(t)) + c(Bn(t), un(t), v(t) — un(t)) + J(Bn(t), un(t), v(t) — un(t - %))
— J(Bn(t),un(t), un(t) — un(t - %)) 2 (@5, v(t) —un(t)) + (¥, v(t) —un(t)le VveK. (60)

We have also the following estimate for all ¥ € V, by using (51)

(unlt— ) = u(®),9) < Junt— ) ~ ulo) oo 19l o + (aa(e) — u(e),9)

man(t+L,T)

IA

Ds [[6]lgzr a2 /

+ (un(t) - u(t)> 9).

(1 + e llizz@p + 19 -3 ogye) 97

33

so we obtain that u,(t — %) converges weakly towards u(¢) in V. By passing to the limit in (60) we have
a(u(t),v —u(t)) +c(B(t), ut), v — u(t)) + j(B(t), u(t),v —u(t)) = (¢(t),v—u(t)) + [¥,v-u(t)]: Vve kK
which implies by Green’s formula that for all ¢ € [0, T
[Gon(u(t)), vy —un ] +en(B(E),u(t),v(t) —ut)) >0 VveK.

Now, as (on(u*t?) + Cn(B1)2uif!) € C*~ and u* € K we have:

1y ' USA—% 1 A 1,/ 1 1/
{GJN(U” Yoy — —| +en(fHutt v — T) > [fon (), uy] +en (BT uttt v,

Therefore by setting v = v' At + u? in (6), we deduce for all i = 0, .., n, the following inequality:

+ Au’ r Aw? o . / . 1 Au’
CL(UH'I,V _E)+c(ﬁz+lauz+l’v - At)+J(ﬂ+l7u+lav)_J(ﬂ+17u+17A_t)Z
’ A 1’ ’ K ’ ’ 1
("t v — A‘: Y+ [t v — AA‘; 2 + [ Bon (u ), un] + en (B u V) Vv eV
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By integrating the previous inequality with respect to time we obtain:

T i , a ,
[ {(@(aa (0 ® = GE0) + eBa(t),0n(0), ' 6 = T2 +5(Ba(0), 000,V ()
0
~ T ~
= 5(8u(e), w0, GO } bt > [ @0V (0 - ) a

[ a3 0 = Gt [ {(Bon(n(0), 6] + en (B0, un(0v) }

By passing to the limit in the previous inequality using Lemmas 3.7, 3.8 and the following relation obtained by
the unilateral contact condition

[on(u(t)), un (t)] + en (B(2), u(t), u(t)) =0,

we have

T
/0 {a<u(t>,v’ (t) — a(t)) + c(B(1), ult), v (t) —a(t)) + §(B(t), ut),v ()
T 7
i), ul), ﬁ(t))} a2 [ 60,50 - 50 o
0
T T
+ / W(6), v (£) — ()] dt + /O {{ b0 (u(t)), vy — i (8)] + en (B(E), u(t),v' — u@))} dt.

If we set in the previous estimate v’ € L2(0,T;V) defined by v'(7) = w for 7 € [t,¢t + h] and v(7) = u(r)
otherwise, we obtain:

t+h
% /t {a(u(T), w —u(7)) + c(B(7), u(r),w — a(1)) + 5(B(1),u(r),w)

t+h
- Jatn ) P dr > ¢ [ 0w - i) dar

t+h t+h
o3 [ W w—aohare g [T o) w - a0+ (30, ) w - i)} ar,

Passing to the limit as h — 0%, we obtain by Lebesgue’s theorem that inequality (2) is satisfied for almost all
t €0, 7. O
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