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MORE PRESSURE IN THE FINITE ELEMENT DISCRETIZATION
OF THE STOKES PROBLEM

CHRISTINE BERNARDI1 AND FRÉDÉRIC HECHT 1

Abstract. For the Stokes problem in a two- or three-dimensional bounded domain, we propose a
new mixed finite element discretization which relies on a nonconforming approximation of the velocity
and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete
spaces are compatible, in the sensé that they satisfy an inf-sup condition of Babuska and Brezzi type,
and we dérive some error estimâtes.

Résumé. Pour le problème de Stokes dans un ouvert borné bi- ou tridimensionnel, on propose une
discrétisation par un nouvel élément fini mixte, qui utilise une approximation non conforme de la vitesse
et une approximation plus riche de la pression. On prouve que les espaces discrets de vitesse et de
pression sont compatibles, au sens qu'ils vérifient une condition inf-sup de Babuska et Brezzi, et on en
déduit des majorations d'erreur.

Mathematics Subject Classification. 65N30, 76D07.
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1. INTRODUCTION

The Navier-Stokes équations modelizes the flow of a viscous incompressible fluid, and much work has been
done concerning their finite element discretizations. However the numerical analysis of such methods relies on
the study of the corresponding discret izat ions of the linear Stokes problem which is considered in this paper.
Since its formulation in the primitive unknowns of velocity and pressure results into a saddle-point problem,
the well-posedness of both this System and any Galerkin type discretization of it is derived from an inf-sup
condition of Babuska [2] and Brezzi [5] type, which ensures the compatibility of the spaces of velocities and
pressures. This condition is well-known for the continuous problem, see for instance [11, Chap. I, §2], however
proving it for the discrete problem is the key point for checking its stability.

In the finite element framework, the inf-sup condition has been proven for a large number of éléments including
the Crouzeix-Raviart element [8], the mini-element and the Taylor-Hood element. We refer to [11, Chap. II]
for an extensive review of these éléments and the corresponding inf-sup conditions. The idea of the proof is
similar in most cases: starting from fixed discrete spaces of velocities and pressures which have the desired
approximation properties, some further functions are added to the space of velocities in order to ensure that
there is no spurious mode for the pressure. An inf-sup condition linking the resulting space with the space of
pressures is then established. Most often the constant which appears in the inf-sup condition is checked to be
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independent of the discretization parameter. We also quote two arguments which are of great help for the proof
of this inf-sup condition: the Boland and Nicolaides idea [4] consists in proving this condition separately on the
spaces of restrictions of discrete velocities and pressures to local subdomains and on reduced spaces of velocities
and pressures on the whole domain; Verfürth's idea [14] allows for deriving the inf-sup condition from a first
one with wrong norms, thanks to local approximation properties. Both of them can be used, for instance, for
the inf-sup condition related to the Taylor-Hood element.

We start from a rather different point of view. We fix the discrete space of velocities to be the same as for
the Crouzeix-Raviart element and recall that the corresponding discretization is nonconforming, in the sense
that this discrete space is not contained in the variational one. Next, we assume that, in opposite to discrete
velocities, the discrete pressures are continuous and we intend to work with the largest possible space of such
pressures. The term "largest possible" must be understood in the sense that all the degrees of freedom of the
discrete velocities are needed to prove the inf-sup condition. As explained in [9] and [7] in the slightly different
framework of finite volumes, replacing the space of piecewise constant pressures of the Crouzeix-Raviart element
by this larger and smoother discrete space is essential when working with geophysical flows, where the Coriolis
accélération must be taken into account. The use of smooth pressures is then necessary to respect the geostrophic
equilibrium. It is also necessary for optimizing the geometry of the nuid domain when the optimization criterion
involves local gradients of the pressure.

This paper is mainly devoted to the proof of the inf-sup condition for this new element. In a first step, we
introducé a semi-orthogonal décomposition of both the spaces of velocities and pressures and investigate the
inf-sup condition for each discrete subspace of pressures. One of the proofs relies on Verfürth's argument. In a
second step, we dérive the final inf-sup condition by using a modal analogue of the Boland-Nicolaides proof. This
condition is not optimal, in the sense that it involves a constant which is not independent of the discretization
parameter, however we think that the result we obtain is the best possible one and we give heuristic reasons
for that. We deduce some convergence results and error estimâtes for the discrete velocity. In a final step, we
propose an algorithm for solving the discrete Stokes problem, relying on the space of discrete velocities which
are divergence-free in the finite element sense, and we characterize this space in the two-dimensional case.

An outline of the paper is as follows:
• In Section 2, we recall the variational formulation of the Stokes problem and we present the discrete

problem relying on the new finite element.
• In Section 3, we prove some key results on the discrete spaces and present their décomposition as a direct

sum of two subspaces.
• Sections 4 and 5 are devoted to the proof of inf-sup conditions related to the two subspaces of pressures.
• In Section 6, we dérive the global inf-sup condition for the Stokes problem from the results of the preceeding

sections, and we deduce the corresponding error estimâtes.
• In Section 7, we exhibit spaces of quasi-di vergence-free discrete velocities in the two-dimensional case and

describe the resulting algorithm for solving the discrete Stokes problem.

2. THE STOKES CONTINUOUS AND DISCRETE PROBLEMS

Let ft be a connected and bounded open set in Md, d = 2 or 3, with a Lipschitz-continuous boundary. We
consider the Stokes problem:

(2.1)

where the unknowns are the velocity u and the pressure p. The data are a density of body forces ƒ and, only
for simplicity, we take homogeneous boundary conditions on the velocity.

—A

div

u =

u

u

Q

•f grad

= 0

P = ƒ in

in

on

ft,

an,



MORE PRESSURE IN THE FINITE ELEMENT DISCRETIZATION OF THE STOKES PROBLEM 955

It is well-known that Problem (2.1) admits the following equivalent variational formulation: Gnd (u,p) in
d x Lg(îî) such that

\fv e ff0W, a(u,v)+b(vyp) = <ƒ,«),

b(u,q)=0,

where the space LQ(Q.) is defined by

Lg(îî) = {qe L2(Q); f q(x) dx = 0} , (2.3)
JQ

and (•,•) dénotes the duality pairing between H~1(ft)d and ü o ( 0 ) d . The bilinear forms a(-, •) and &(-,-) are
defined on^{n)d x F x ( ^ ) d and ̂ ( f i ) * x

a(UjV) = / gradtt • gradvdcc, b(v}q) = — / g(diw)dx. (2.4)
Jci JQ

Their continuity on these last spaces is obvious.
The ellipticity of the form a(-, •) results from the Poincaré-Friedrichs inequality. And the following inf-sup

condition on the form &(-,-,) is standard [11, Chap. I, Cor. 2.4]: there exists a constant j3 > 0, only depending
on the geometry of O, such that

VqeLiïü), sup .blV'q) >P\\q\\L,{a). (2.5)

As a conséquence, for any data ƒ in H~l(Q,)d, Problem (2.1) has a unique solution (utp) in HQ (Q)d x

Remark. It is readily checked that

and the duality pairing in the previous line can be replaced by an intégral whenever v and q are smooth enough
(for instance, when gradg belongs to L2(Çl)d).

In order to write the discrete problem, we now assume that f2 is a polygon or a polyhedron and we introducé
a regular family (7^)^ of triangulations of Cl by (closed) triangles or tetrahedra, in the usual sense that:

• for each h, the intersection of two different éléments of Th, if not empty, is a vertex, a whole edge or a
whole face of both of them;

• the ratio of the diameter J%K of an element K in Th to the diameter of its inscribed circle or sphère is
bounded by a constant a independent of h.

As standard, h dénotes the maximal diameter of éléments K in Th-
We now fix two fmite-dimensional subspaces Xh and M£ of fonctions in L2(Ü)d and i71(Q), respectively,

which are polynomial on each element K of Th. Our discrete problem relies on the variational formulation (2.2),
it reads: find (uhiPh) in Xh x M^ such that

ah{uh7vh) + bh(vh,Ph) = / f(x) -vh(x)dx,
JQ

()

where ƒ is now taken in L2(ü)d while the forms a,h(-, •) and bh(-, •) are defined by

ah(uh,vh)= Y^ / gradua -gradvhdx, bh(vh,qh) = Yl / Vh ' grad^dx. (2.7)
K€Th JR KETh

 JK
/

K€Th JR KETh
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Note that the différence between a(-, •) and ah(*, •) only comes from the replacement of the intégral on Q by a
sum of intégrais on the K in 7^, while the modification of 6(-, •) involves a further intégration by parts.

We need some notation to describe the discrete space Xh- Let Sh stand for the set of all edges in dimension
d = 2, faces in dimension d = 3, of the éléments of 7^. We dénote by m e the midpoint, respectively the
barycenter, of each e in Sh- The space Xh is then the space of fonctions Vh in L2(fl)d such that:

• their restriction to each K in Th belongs to V\{K)d, where Vi(K) dénotes the space of affine func-
tions on K ;

• they are continuons at each point m e , e e ^ H O;
• they vanish at each point m e , e G 4 n dQ.

As already hinted, the corresponding finite element is exactly the one introduced in [8, Ex. 4].
However, the space M® is rat her different from that in [8]. We make it précise later on and just indicate that

it is a subspace with codimension 2 of the space

Mh = {qh E H1^); \/K € Th, qh\K e V(K)}} (2.8)

where V(K) stands for the space of dimension d -f 2 spanned by the polynomials in V\{K) and the bubble
function ^K defined as the product of the barycentric coordinates on K.

Since the space Xh is not contained in H1(ÇÏ)d, from now on, we work the mesh-dependent seminorm on Xh'.

We recall from [8, Lem. 2] that it is a norm on Xh- Note also that

Let us introducé the discrete kernel

Vh - {vh G Xh- Vqh e Ml bh(vh,qh) = O}. (2.10)

Then, for any solution (uh,Ph) in Xh x M® of problem (2.6), it is readily checked that Uh is a solution in Vh of
the finite-dimensional system

Vh, ah(uh,vh) = f f(x) • vh(x)dx. (2.11)
Jn

Moreover, as already recalled from [8, Lemma 2], the form a/l(-, •) is positive definite on Xh- So Problem (2.11)
has a unique solution uh in Vh-

Thanks to this result, the well-posedness of Problem (2.6) relies on the inf-sup condition that is estabhshed
later on.

3. FURTHER REMARKS ON THE DISCRETE PRESSURE SPACE

We begin by checking the uniform continuity of the form bh(-, •) on the discrete spaces (here, "uniform" means
that its norm is bounded independently of h). Throughout the paper, c, d, cff stand for generic constants that
may vary from a line to the next one but are aiways independent of h.

Lemma 3.1. There exists a constant c independent of h such that the following continuity property holds

\fvh e Xh, Vqh ^ Mh, \bh(vh7qh)\ < c\\vh\\Hih{n)\\qh\\L2{n). (3.1)



MORE PRESSURE IN THE FINITE ELEMENT DISCRETIZATION OF THE STOKES PROBLEM 957

Proof. Integrating by parts in the définition (2.7) of 6̂ ,(-, •) yields (we dénote by n the unit outward normal to K)

~ / Qh(àîv vh)dx+ ƒ vh - nqhdr ) .

Bounding the first term is obvious:

ƒ qh(d\vvh)dx

As far as the second one is concerned, we consider an edge (d — 2) or face (d — 3) e in Eh and we agrée to
dénote by tZJ| the mean value of any polynomial Wh on e. Indeed, if e is contained in d£ly since Vh - n is affine
on e and vanishes in the midpoint of e, we have

vh • nqhdr= vh • n(qh- qe
h) dr.

Je Je
(3.2)

If e is not contained in dû, the intégral in e appears twice in the previous sum on the K in Th, so it can be
replaced by | Jgl^/i * w] 37i dr (hère. [•] stands for the jump of a function through e with appropriate sign) and,
since now [vh • n] is affine and vanishes in the midpoint of e,

n]qhdr= - j [vh • n] (qh - qe
h) dr.

So, we have proven that

KeTheCdK

vh • n(qh-q
e
h)dr. (3.3)

Next, on each edge e in 5^, we have

vh • n(qh- qe
h) dr = ƒ (vh -v

e
h) n (qh - qe

h) dr = / {vh -v
e
h) • n qh dr.

Je Je Je

Now, assume that e is an edge or face of an element K of 7 ,̂. If HK dénotes the diameter of K, we use the affine
mapping that sends K onto a référence element K and e onto the edge or face ê of K: with standard notation,

vh • n(qh-q
e
h)dr < chjf1 \v-ve

h\\q\dr,
Je Je

and using the équivalence of norms on the finite-dimensional space on the référence element yields

Vh • n(qh -qe
h)dr :/

Je

ud-l
\v- vl\\H1{k)d\\q\\L2{Éty

Let Yi stand for the space

Yê - Iw G H\K)', [

It is readily checked that the only function w in Yg that satisfies \w\H1^ — 0 is zero. So, due to the compactness
oîH1{K) in L2(K), applying the Peetre-Tartar lemma [11, Chap. I, Th. 2.1] yields that the semi-norm
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is a norm on Yg, equivalent to the norm || • H^i^)- Since the meanvalue of Vh on e is the same as the mean-value
of v on ê, applying this result to v — ve

h which belongs to Yjt gives

\jvh *n(qh-q
eh)dT < ch^1 \v\H1{È)d\\q\\L2{ky

Going back to the triangle K yields

n (qh - qe
h) dr 1 (h>K 2 {VhlwiKyKhlC2 \\Qh\\L2(K)) =

which, combined with (3.3) and a Cauchy-Schwarz inequality, leads to the desired result.
The proof of the inf-sup condition for the Crouzeix-Raviart element, where the space of velocities is exactly

the same space Xh and the space of pressures is made of piecewise constant functions, see [8, §6], relies on the
following operator 11^: for any smooth enough vector field v vanishing on <9i7, UhV belongs to Xh and satisfles

/ Uhv dr = ƒ v dr. (3.4)
Je Jef e Je

It follows from the formula

meas (e

that this operator is well-defined. In the following lemma, we state and briefly prove its main properties that
are needed later on.

Lemma 3.2. The operator n^ is continuons on Hl{ÇÏ)d. Moreover, there exists a constant c independent of h
such that

i { ) { r (3.5)

and

Vv G Hù(n)d, VK G Thi \\v - ïlhv\\L2{K)d < chK \v\HHK)*. (3.6)

Proof. Due to the standard trace theorem, the continuity of the operator 11̂  is clear. To go further, we fix a
function v in H^fl)4 and an element K oï Th, and we use the affine mapping that sends K onto a référence
element K: with standard notation and obvious local définition of the operator ft,

— — i ^

l« - ^hv\Hi{K)d < ch2
K |ü - Uv\H1{È)d.

We observe that the operator n is equal to the identity on all affine functions on K} hence on all constants, and
also that it is continuons on iï"1(Â")d thanks to the trace theorem on K. So, if c stands for its norm, we have

\v — IKulzj-ific\d < chh inf \\(ld —TL)(v — \)\\TTlfT>^d < c(l-\-c)hh inf \\v — )

Applying the Bramble-Hilbert inequality [6, Th. 14.1] and going back to the element K gives

\v — Hhv\Hi(w^d < d hft \v\Hi/K)d < df \v\Hi(K)d,
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which yields (3.5). The proof of (3.6) is exactly the same, relying on the inequality

d ^

\\v - Iihv\\L2{K)d <ch\ \\v -

The next step consists in introducing a décomposition of both spaces Xh and Mh into two subspaces. With
each edge or face e of £^ we associate one of the unit normal vectors to e, which we dénote by ne. This allows
us to eut the space X^ into two parts

xh =

Xj? =
Xh; Ve G £h, (vh - ne)(me) =

Xh- Vee£h, (vh x ne)(me) =
(3.7)

It is readily-checked that X^ is the direct sum of Xj[ and
Similarly. we introducé the following spaces M^ and

Ml = {qhe.{ q h ^ ) ;
M? = Span {Vie; K &Th}.

; \/K e Th, qh]K G
} (3.8)

We dénote by M/f° and M^° the intersection of LQ(Q) with M^ and M^, respectively. The degrees of freedom
of the new spaces X£ and M^, resp. X^ and M^, are illustrated in the left, resp. right, part of the following
figure (with arrows for the spaces X^ and X^ , black dots for the spaces M j and M^). The idea of this
décomposition is explained in the next lemma.

FIGURE 1.

Lemma 3.3. The following orthogonality property holds

f, bh(vh,qh)=0. (3.9)

Proof. It sufEces to check that, for all K in Th)

So, let K be any triangle in Th. Since the support of ipK is ÜT, it follows from the définition of bh(', •) and by
intégration by parts that, for ail Vh in X^}

bh{vhyî(jK) = ƒ vh • gradipKàx = - / ^ ( d i v vh)dx
JK JK
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Next, we observe that div vh is constant on each K. Moreover, by intégration by parts, we have (with appro-
priate choice of the directions of the rae)

(div Vh)\Kme&${K) = / div Vh dx = V^ / vh • nedx.
^K eCdK^e

Since Vh • ne is affine on each edge of dK and vanishes in the midpoint of this edge from the définition of X^ ,
these intégrais are equal to zero. So, (div VH)\K 1S zero, which implies the desired orthogonality property.

Remark. As a by-product of the previous proof, we have checked that all functions of X^ are divergence-free
on each element K oiTh.

Let us recall from [6, (25.14)] two formulas that will be of great use in what follows (they can also be proven
by going to a référence element):

f dl f 2d+1 dl

JK ** dx = (2dTï)imeas{K)' L ^ dx = WTw-
We now exhibit "spurious" modes, separately in Mj£ and in

Lemma 3.4. The space of functions qh in M^ such that

h) = Q, (3.11)

contains the function 1. The space of functions qh in M^ satisfying (3.11) contains the function iph defined by

Proof Erom the définition of bh(-,•)> it is obvious that the function 1 satisfies (3.11). So, we now consider the
function iph and, since it vanishes on all the dKy K G Th, we have for any Vh in Xh

b(vh:iph) = - ^ (div vh)\K

Using (3.10) gives

The previous sum can be rewritten as a sum on all edges in dimension d = 2, faces in dimension d = 3, of the
K. Such an edge or face e is either contained in dfl or in the intersection of two éléments K: in the first case,
Vh • ne is affine and vanishes in the midpoint of e, in the second case the jump [vh • ne] that appears in the
intégral is affine and vanishes in the midpoint of e. So in all cases, the intégral on e is equal to zero, which
yields

b(vh,il>h) - 0 .

Fortunately, neither the function 1 nor iph belongs to LQ(Ù). SO, we décide to work with the subspace M£
defined by

M% = MP®M™. (3.13)
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The idea is now to prove inf-sup conditions first between the spaces X^ and M^0, second between X^ and
Mfr°. As a by-product, these inf-sup conditions imply that the spurious modes exhibited in Lemma 3.4 are the
only ones.

Remark. Prom (3.10) and [6, (25.14)], it can be checked that

This means that the angle between M/f and M^ in L2(Q) is larger than a parameter K independent of h. In
contrast, the intersection of X^ and X^ is reduced to {0}, however the angle between them for the scalar
product associated with the norm || • ||#i(n) may tend to zero with h. Indeed, the function v\ H- v^ equal to 1
in each midpoint of an edge or barycenter of a face internai to Q satisfi.es

l i T^ l (3.15)

whence

V grad v\ > (1 - c2 h2 ( inf
Kerh

4. THE INF-SUP CONDITION FOR THE FIRST PAIR OF REDUCED SPACES

We first prove an inf-sup condition between X^ and M^° î where the constant is not independent of h. It
requires a further assumption on the triangulation 7^ that we now state.

Hypothesis 4.1. The boundary dû contains at most one edge in dimension d = 2, at most two faces in
dimension d — 3, of the same element K in 7^.

The proof of the next lemma is very similar to that used for proving the inf-sup condition for the Taylor-Hood
element, see [11, Chap. II, Th. 4.2].

Lemma 4.2. If Hypothesis 4.1 holds, there exists a constant PTO independent o f h such that the following
inf-sup condition holds

\fqh e M™, sup h&tdbl > pT0 ( inf hK) | | ^ | | L a ( n ) . (4.1)
% I K I I I Kerh

Proof. Let qh be any element in M^°. From the définition of M^, gradg^ is constant on each element K, so
that for ail Vh in

2h)\K • / ^hda?.
^— •* n

Let us recall that, for any function w in Vi(K),

meas (üf)

This gives
meas (K)
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Since all VH • Tie vanish in me from the définition of X^ and since the tangential part of grad qh is continuous
through each e, the idea is to take

(vh x ne){rne) =

which yields
i f \ sr^ meas ( i ^ ) v ^ ,. , N l9

bh(vhiqh)= 2^ d + l 2^ |(grad^)|X x ne\\
K€Th eCdK,eÇldn

Thanks to Hypothesis 4.1, in the case of dimension d — 2, at least two edges of the same triangle K are not
contained in dCl} so that the unit tangential vectors to these edges form a basis of M2; moreover the angle
between them belongs to an interval Jrç, TV — rj [, where 7] only dépends on the parameter o that measures the
regularity of the family (Th)h. Similarly, in dimension d — 3, at least two faces e and e' of K are not contained
in dft. The unit vector T on their common edge and the vectors orthogonal to r in e and e' form a basis of R3

and the angle between e and e' also belongs to an interval ]?7, TT — ?y[ which is analogous to the previous one. So,
we obtain

Kerh

or, equivalently,

bh(vh,qh) > cM^i ( n ) , (4.2)

where the constant c only dépends on a. Next, using the Lagrange function /^e which belongs to V\(K) for all
K 'mTh and vanishes in all the midpoints of the edges, respectively the barycenters of the faces, of éléments K
in Th but in me where it is equal to 1, we dérive by going to a référence element that

\t*e\w{K) <chr\ (4.3)

where he stands for the diameter of e. This yields

whence
ll^ll^(n) < c^mf^tf)-1 \qh\m(Q)-

Due to this inequality, we dérive from (4.2) that

s u p lïTl! c L i n t hK^ ̂  H

By combining this estimate with the standard Bramble-Hilbert inequality [6, Th. 14,1]

Vq €

we obtain the desired result.

Remark. Let us associate with any vertex a of an element in 7^ the union Çla of all éléments K in Th that
contain a. We recall [11, Chap. I, §A.3] that there exists a finite number of référence subdomains such that each
Qa can be mapped onto one of them by a continuous piecewise affine mapping. So a scaled Bramble-Hilbert
inequality on the Q,a can be derived by going to the référence subdomain. Thus, if Hypothesis 4.1 holds, the
same arguments as previously lead to an optimal inf-sup condition (i.e. with constant independent of h) between
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the space X^ of restrictions to Ha of functions in X£ which vanish in the midpoints of the edges contained in
dVta and the space Mj° = M j n i g ^ o ) ) where M j dénote the space of restrictions of functions in M/f to Qa.

Remark. The constant in the inf-sup condition (4.1) is not independent of h and exhibiting a counter-example
to prove the optimality of this condition in the case of triangular finite éléments seems difficult. However, let us
for a while consider the bidimensional case of a rectangle Q =] — 1, l[x]0,1[, provided with a "quadrangulation"
made of 27V2 equal squares with edges parallel to the coordinate axes, as illustrated in Figure 2 (the length of
each edge is -k= = TV"1). Let also K stand for the référence square with vertices ( T ^ O ) , (7757 "To)' (TTO' TTo)

and (0, - t ) . We consider the space X^ defined as previously, except that V\{K) is replaced by the space

where Q±(K) stands for the space of functions on K which are affine with respect to each variable and FK is one
of the mappings in Qi(K)2 that maps K onto K, We work with the fonction qh equal to the fixst coordinate
x, which belongs to LQ(ÇÏ). Then, the best inf-sup constant 0£ between X£ and any space containing q^ is
smaller than the ratio ||^fr||Hi(n)/ik/i||L2(fi)ï where Wh = (whxywhy) is the only solution inf X^ of the problem

ah(wh,vh) = bh(vh,qh) = ƒ vhx(x)dx.
J-L

It can be checked that this solution satisfies Why — 0 and also that Whx vanishes on the midpoints of all edges
of the K which are parallel to the y-axis. So, by applying a scaled Poincaré-Friedrichs inequality on each
square K (derived by going to the référence element), we can prove that 0^ is smaller than ch. In view of this
counter-example, we think that the constant in (4.1) is of best possible order.

FIGURE 2.

Even if the inf-sup condition (4.1) is not optimal, it provides the following resuit.

Corollary 4.3. If Hypothesis 4.1 holds, the space of functions qn in M^ such that

X j , bh(vh,qh) - 0 , (4.4)

has dimension 1 and is spanned by the function 1.

Remark. Hypothesis 4.1 is not very restrictive, and it is necessary for the assertion of Corollary 4.3 to be true.
Indeed, consider the case where the domain ft is a hexagon and a mesh T^ is built by joining one vertex out
of two of the hexagon (see the next figure). In this situation, the space M^ has dimension 6, while the space
Xfr has dimension 3. So, Corollary 4.3 does not hold. This counter-example can be extended to much more
gênerai geometries and meshes, built from the previous one by adding iteratively one exterior point and joining
this point to the two endpoints of one edge of the boundary.
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FIGURE 3.

Next, we prove a slightly different version of Lemma 4.2 by very similar arguments.

Lemma 4.4. If Hypothesis 4.1 holds, there exists a constant /?TO independent of h such that the following
inf-sup condition holds

\/qh e M%°, sup > (3T0 ( £ h\ \qh\\1{K\ - (4.5)

Proof Following the same lines as in the previous pro of, we now choose the function v^ in X^ which satisfies

ne)(me) = hl (grad^) j j K x ne ,

where he stands for the diameter of e. It follows from the regularity of the family of triangulations that, for
each K in Th containing e,

l he

So, by the same arguments as previously, we dérive
< he <

bh{vh,qh) > c h2K\Qh\2
H {K)

and

whence

\\vh\\Hi{n)<c

\KGTh

This yields the desired result.
The inf-sup condition (4.5) does not involve the right-norm on but the mesh-dependent semi-norm

(4.6)
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It is readily checked that the quantity || • \\I,2(Q) is a norm on M^° and also, by using the standard inverse
inequality, that the following équivalence property holds

\/qh e Ml\ ch \\qh\\L2(Q) < ||gh||L»(n) < cIMIi^n), (4-7)

where the constant c does not depend on h. Unfortunately, the largest possible constant Ch is not independent
of hy but satisfi.es

c( inf hic) < Ch < c' h,
KÇT

(the first inequality follows from Bramble-Hilbert one, the second one is obtained by taking qu equal to a global
affine function).

We now prove an optimal inf-sup condition between X& and M/f°, which relies on condition (4.5) combined
with Verfiirth's argument [14].

Proposition 4.5. If Hypothesis 4.1 holds, there exists a constant (3? independent of h such that the following
inf-sup condition holds

sup
vhexh

(4.8)

Proof Let Qh be any function of Mj°. Since Qh belongs to LQ(CI)7 it follows from (2.5) that there exists a
function v 'm i?o(0)d such that

divi? = -qh and - (4.9)

The idea is now to take the function Vh equal to II^v, where the operator IT^ is defined by (3.4). Indeed, we
write

, Qh) = bh{v: qh) - bh(v - UhV, qh).

The first term is évaluâted from (4.9) by intégration by parts:

Next, we have thanks to the Cauchy-Schwarz inequality

\bh(v-Uhv,qh)\< ] P \\v

and using (3.6) yields

It foilows from (3.5) and (4.9) that

\bh(v-Tlhv,qh)\ ^

-

we dérive

vhexh
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where the constants c\ and c<z are independent of h. Next, Verfürth's trick consists in comparing this estimate
with (4.5) and noting that

Vt > 0, sup{pTot,ci\\qh\\L2(Q) -c2t}> \\qh\\mn)>
PTO + C2

which gives the desired inf-sup condition.

5. THE INF-SUP CONDITION FOR THE SECOND PAIR OF REDUCED SPACES

We are now interested in proving the inf-sup condition between the spaces Xj^ and Mj^°. However, we prefer
to begin with a slightly different space of pressures, namely

M?* = {g,, e M?; J qh^h da; = 0 J , (5.1)

where iph is the function introduced in (3.12).
Our proof relies on the graph theory. We refer to [3] for the gênerai notion of graphs and trees, and to [13]

for its application to finit e element meshes. We only give a very restricted définition. A tree Th associated with
a triangulation Th is a finite family of segments such that:

• the first segment starts from a point on d£l (the root of the tree), more precisely from the midpoint of an
edge or barycenter of a face of an element K in Th which is contained in d£l and goes to the barycenter
of this same element K\

• at each barycenter of an element K in Th, either the tree stops or at most d lines start from this barycenter
and go to the barycenters of adjacent éléments Kf in Th by crossing the midpoint or barycenter of the
common edge or face of K and K';

• the graph contains no cycle;
• each element K in Th intersects the graph.

This définition is illustrated in the following figure. We refer to [13] for slightly different but equivalent
définitions.

FIGURE 4.

The existence of such a tree for any triangulation Th is proven in [13]. For completeness, we sketch the proof.
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Lemma 5.1. For any triangulation % ofQ, there exists a tree associated with Th.

Proof. Let T& be any triangulation of ft, and let Nh be the number of éléments of 7^. We recall [13] that, since
Q, is connected, the éléments Ku . . . , KNh of Th can be numbered so that Ki fï dû is an edge (d = 2) or a face
(d = 3) of Ki and that, for each n, 1 < n < Nh, the interior Ctn of U'm=1Krn is connected. The proof now relies
on an induction argument over n.
1) If n is equal to 1, the tree associated with the triangulation {Ki} is trivial.
2) Assume that there exists a tree associated with the triangulation {i^i , . . . , Kn-i} of ttn-i and consider the
element Kn. There exists an element Km, 1 < m < n — 1, such that Kn and Km share an edge or a face. Then
the tree can be extended to {i^i, . . . ^Kn} by adding the line which goes from the barycenter of Km to the
barycenter of Kn.
This ends the proof.

We are now in a position to prove an inf-sup condition between X^ and M^*.

Lemma 5.2. There exists a constant /3/v* independent of h such that the following inf-sup condition holds

e M?*, sup lh{Vh>qh) > - f ^ - ( inf hKf ||gh|Ua(n). (5.2)
* \\vh\\Hl{n) meas(Ü) Kerh

Proof Let qh be any element in M^*. We wish to exhibit a function Vh in Xf^ such that

Vrh G M?, ^ K , r h ) = / g ^ d x . (5.3)

Prom the définition of M^, this is equivalent to

f - f
' J K JK

hence, by intégration by parts, to

\/KeTh, -(àivvh)iK / ipKdx= / qhipKdx.
JK JK

Next, applying the Stokes' formula gives (the orientation of the n e is implicit throughout this proof)

m.e8is(K) (div Vh)\K — / div Vhdx = VJ meas(e)(vh • ne)(me).

Moreover, if a dénotes the constant (2ri+i)p w e know from (3.10) that

/ ipxdx = ameeis(K). (5.4)
JKIK

So, we want to choose VH such that

\/K <ETh, a ^T meaLs(e)(vh • n )(me) = - / qhipKdx. (5.5)

This is achieved in the following way. Let T/j be any tree associated with Th (its existence follows from
Lemma 5.1). We take the (VH * ne)(me) equal to zero for all e that do not intersect T^.
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1) We start with the endpoints of this tree. Each endpoint is the barycenter of an element K and the line
crosses dK inside one edge or face e. We thus take

1 f
(vh • ne)(me) = — ƒ

ameas(e) JK

2) We go back from this element along the tree. For any element K but the one which contains the root, the
part of the tree issued from the root intersects dK in one edge or face e and the part of the tree going to the
endpoints intersects dK in k other edges e*, 1 < z < fc, with 1 < k < d. Assuming by induction that the
(vh - nei)(mei)i 1 < i < k, are known, we take

1 (l f k

(vh • ne)(m€) = — - / qhij)K dx + y^
meas(e) \a JK ^

• riei)(mei)\ .

3) For the element K\ that contains the initial point, we know from the définition of M^* that

= 0.

So, since (5.5) now holds on all éléments K but K\^ summing it on all these éléments, we obtain

f i j v - f
I qh WK\ d x = — > I qh WK dcc
/ K ^-^ I\r

= 2_^ a 2_j meas(e)(v^ • ne)(me)
ee£h,eCdK

meas(e)(i;/l • ne)(me).= -a

So this function vh satisfies (5.3).
Now, we must bound the norm ||v/i||i/i(n)' We observe that, for each edge or face e of an element of %,,

meas(e) \(vh • ne){me)\ < -
a

Using twice the Cauchy-Schwarz inequality and the fact that
see (3.10), we obtain

\(vh • ne){me)\ <chl

Combining this with (4.3) yields

equal to a constant times meas(T^) 2,

K€Th

Taking r^ equal to qh in (5.3) and using this estimate leads to the desired result.
We now prove the inf-sup condition with M^* replaced by
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Lemma 5.3. There exists a constant PNQ independent of h such that the following inf-sup condition holds

bh(Vh,qh) ^ Kivu / . r u \d M il /r a\

sup ^ n > —(m.ïhK) \\qh z,
2(n)- (5.6)

Proof Let us introducé an operator L^ from M^* int o M^° deflned by

Indeed, if L^{q^) is zero, multiplying the previous formula by ̂  and integrating on Q implies that

hence q^ is zero and the operator L^ is one-to-one. Moreover, since bot h M^ 0 and M^* have codimension 1
in M^, it is an isomorphism from M^* onto M^°. Next, we dérive from (3.10) that

f
I i (n) / ̂ d

which, combined with the Cauchy-Schwarz inequality, yields the stability property

1 tori -\- IV2 i

d + 2)| V hthna). (5-7)

Let now qn be any function in M°. The idea is to take q^ — (L^)~1(qh)- Indeed, since qh — q^ is equal to a
constant times tfth, we dérive from Lemma 3.4 and from Lemma 5.2:

= s u p

which combined with (5.7) gives the desired inf-sup condition.
Exactly as in Section 4, Lemma 5.2 (or Lem. 5.3) has a first and obvious conséquence.

Corollary 5.4. The space of functions qn in M^ such that

VvfcGX^, bh{vh>qh) = 0, (5.8)

has dimension 1 and is spanned by the function iph.

Unfortunately, we are not able to prove the inf-sup condition between X^ and M^° with a constant inde-
pendent of h. However, in a final step, we establish an optimal inf-sup condition between Xh and M^°. Its
proof relies on Fortin's trick [10], combined with the approximation properties of the operator n^ stated in
Lemma 3.2.

Lemma 5.5. There exists a constant (3N independent of h such that the following inf-sup condition holds

M?0, sup ^ ( 7 ' q h ) >f3N\\qh\\LHa). (5.9)
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Proof Let qh be any function in M^° It admits the expansion

so that, thanks to (3 10),

T E ^ m e a s ( X ) (5 10)
}

Smce qh belongs to Lo(fi), it follows from (2 5) that there exists a function v m HQ(Çt)d such that

divu = -qh and \v\Hi{n)d < - \\qh\\mn)

The idea is now to take Vh = n^v, for the operator 11^ defined by (3 4) Indeed, with this choice, smce
vamshes on all dK, integratmg by parts and usmg once more (3 10) yield

iPKdx = ~ r2d+1y Yl A ^ m e a s

We also have
f r

meas (K) (diWh)\K — ƒ divy/ ldx= ^ J Vh nedr
J JlC r\ -ff </ g

GK_ÖJ\

Thanks to the définition of ü^, see (3 4), this yields

v^ f f
meas (K) (d\vvh)\K = / . I v nedr — I divudx,

so that

bh(vh,qh) = / o , 1 x l y , ^ K ^ K

Moreover, from (3 5), we obtam

which gives the desired condition

Remark. Let us consider once more the union i7a of all éléments K m Th that contam a fixed vert ex a of an
element in Th The same arguments as for Lemmas 5 2 and 5 3 lead to an optimal mf-sup condition between the
space X^ of restrictions to Çta of functions m Xj^ which vamsh m the midpomts of the edges or barycenters
of the faces contained m düa and the space M^° — M^ n Lo(fîa), where M^ dénote the space of restrictions
of functions m M^ to Qa Next, combmmg a modified version of Lemma 5 6 with the Boland and Nico laides
argument [4] yields an optimal mf-sup condition as (5 9), but with Xh replaced by the sum of X^ and a smaller
subspace of.

Remark. Let P^ dénote the operator which, with each Vh m Xh, associâtes the only element P^Vh of X^
such that Vh — Phvh belongs to X^ and let \ih stands for lts norm (the spaces Xh and X^ being provided
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with the norm || • HH1^))- Then, we dérive from Lemmas 3.3 and 5.5 the inf-sup condition

Mr\ sup lh[Vh>qh) >^ | | g h | |L a ( n ) . (5.11)
Vh£X* \\vh\\Hl(n) V>h

However, it follows from (3.15) that fih is not bounded independently of h.

6. THE GLOBAL INF-SUP CONDITION AND ITS CONSÉQUENCES

Thanks to the previous results, we are now in a position to establish the inf-sup condition between the spaces
Xh and Mfr, however with a constant depending on h, Its proof relies in fact on a modal analogue of the Boland
and Nicolaides argument [4]. For any qn in M/j, we agrée to dénote by (q^ 7 qf^) the only pair in M^ x M^ such
that qh = qT + qN.

Theorem 6-1. If Hypothesis 4.1 holds} there exists a constant J3 independent of h such that the following inf-sup
condition holds

Vqh G M°, sup ^frfc'fr) >0(]n£ hK) \\qh\\L^y (6.1)

Proof Let qh be any function in M£. Setting for a while h- = inÎKeTh hx, w© know from (4.1) that there
exists a function vj^ in X^ such that

anc* \\vh Hiji(fi) < -Q— \\Qh IU2(n)> (6.2)

and similarly, from (5.9), we know that there exists a function Wh in Xh such that

bh{wh,qh) = \\Qh\\2L2(Q) and | | i ^ | | H i ( f i ) < — - | |^| |L2(n). (6.3)

The idea is now to take Vh = v^+jiWh for a positive constant JJL. Indeed, using (6.2), (6.3) and the orthogonality
property (3.9), we have

bh(vh,qh) = h- l l ^ l l ^ m ) +fJ>\\qh\\2L2(Q) + jJ.bh(wh,q%).

Using the continuity property (3.1) and once more (6.3), we dérive

whence

bh{vh,qh) > -y-

Taking \i = C2~ yields

bh(vh,qh) >inf <j ^ ,
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On the other hand, using (6.2) and (6.3) yields

Q) < — \\q

Combining the previous properties together with the triangular inequality

leads to the desired inf-sup condition.
The constant m the inf-sup condition (6.1) is not independent of h. Even if counter-examples are rather

difficult to exhibit, numerical experiments conflrm this lack of optimality of the discretization. Moreover,

• as explained in Section 4, improving the inf-sup condition between X^ and M^° does not seem possible,
• if all the degrees of freedom of the space Xh are needed for proving optimal inf-sup conditions for bot h

the subspaces M^° and M^°, the fact that the angle between M^ and M^ is bounded from below
independently of h (see the final remark of Section 3) makes the optimal global inf-sup condition unlikely.

So, the main conséquence of Theorem 6.1 is the well-posedness of Problem (2.6).

Corollary 6.2. If Hypothesis 4.1 holds, for any data f in L2(Q)d, problem (2.6) has a unique solution (uh,Ph)
m Xh x M°. Moreover, this solution saüsfies

\\uh\\Hl(Q) + y ^ ^ ) WPhU^Q) < c\\f\\L2{Q)d, (6.4)

for a constant c independent of h.

As proven in [11, Chap. II, Th. 1.1], the second conséquence of this condition is that the following version
of Strang's lemma holds in this case: if ph stands for the constant ƒ? (inf ̂ 7 ^ hx) of (6.1),

- qh\\L2{n)

where the constant c is independent of h and the notation [•] for the jump through an edge or a face inside Q
is extended to edges or faces contained in dCt to dénote the trace. The first two terms in the right-hand side
represent the approximation error; while the last one represents the consistency error. This consistency term
can be evaluated in a standard way, by noting that each jump [wh] is orthogonal to the constants in L2(e).

We also recall the estimate which still relies on condition (6.1), see [11, Chap. II, (1.16)]

inf \\u-vh\\Hi{Q) < c ( l + /3~1) inf \\u-wh\\Hi(n). (6.6)

But this last estimate is unsufricient to prove the convergence of the discretization, even for the velocity. So we
must évaluât e the distance of u to Vh "by hand".

Proposition 6.3. There exists a constant c independent of h such that the following estimate holds for all
functions u %nVD fP+ 1(fi)d

; 0 < s < 1;

U ~ Vh^HlW ~ chfS Hwll^+1(^)d- ( 6 J )
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Proof. It is performed in two steps.
1) By intégration by parts, it follows from (3.10) that, for all K in 7^,

L^K) = — (divn^it)]^ / ipK dx
JK

_ dl f . __ dl y-^ f
(2d + l)! JK

 1V hU X~ (2d+l)! IrLJe
• n e dx .

IK " [2d+L)\ e^KJe "

Then using the définition (3.4) of Uh yields

„ r d\ r
- 0 .

So, we dérive

^ r ^ ) = o . (6.8)

Moreover, since 11^ leaves invariant ail functions of Xh, combining the approximation properties of the con-
forming space Xh H HQ (Q)d with (3.5) leads to

\\u - Uhu\\Hih{Q) < chs \\u\\HS+i{n)d. (6.9)

2) The idea is now to take Vh — II/jU + v\, where v^ is a function in X£ satisfying

l e M?\ bh(vl, ql) = -bh(Uhu, q*). (6.10)

Indeed, thanks to (6.8), (6.10) and the orthogonality property (3.9), the corresponding function Vh belongs to
V .̂ AlsOj from the inf-sup condition (4.1), system (6.10) has a unique solution v^ in the orthogonal of Vh j
in X£. Moreover, since u belongs to V, we have

l) < ^ \\u-Tlhu\\L2{K)\ql\Hi{K).
Kerh

So, due to the identity

u - Uhu = (Id - Hh)(u - ILhu)y

applying (3.6) and a Cauchy-Schwarz inequality yields, for the norm || • ||i/
2(n) defined in (4.6),

-bh(ILhu,qh) <c\\u~ Uhu\\Hi(n)\\qh L^n) -

So it follows from the inf-sup condition (4.5) (see [11, Chap. I, Lem. 4.1]) that the solution vj^ of (6.10) satisfi.es

\\VÏ\\H^Q) <-£^\\U- nhu\\Hi{Q). (6.11)

The desired estimate follows by inserting (6.9) and (6.11) in the triangular inequality

u ~

Combining Proposition 6.3 with (6.5) leads to the first estimate on the velocity.
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Theorem 6.4. If Hypothesis 4.1 holds, for any data ƒ m L2{ÇÏ)d and %f} moreover, the solution (u,p) of
Problem (2.1) belongs to the space Hs+1(Q)d x Hs(£l) for a real number s, 0 < s < l, there exists a constant
c independent of h such that the followtng error estimait holds between the velocity u of Problem (2.1) and the
velocity Uh of Problem (2.6):

ll« ~ uh\\Hl(n)* < chs (||tt||jï*+i(fi)d + blU*(n)). (6.12)

Proof. Estimating the first term in the right-hand side of (6.5) is performed in Proposition 6.3 and estimating
the second term follows from the standard approximation properties of the space M^°. As already hinted, the
last term is évaluât ed thanks to the next inequality that holds for any constant ce

J dneu • [wh]dr = j(dneu~ce) • [wh] dr < \\dneu - cc||H_i(e)

So taking ce equal to the mean value of dUeu on e and going to a référence element as in the proof of Lemma 3.1
lead to, for any Wh in X&,

J2eeshL9neu • [wh]dr
<cti ti H-+i(fi)d. (6.13)

This concludes the proof.
We conclude by an error estimate for the velocity in L2(Q,)d which relies on rather standard arguments.

Proposition 6.5. If the assumptions of Theorem 6.4 hold, there exzst a parameter a} | < a < 1, only dependmg
on the geometry of Q,, and a constant c independent of h such that the following error eshmate holds between
the velocity u of problem (2.1) and the velocity Uh of problem (2.6):

(6-14)

If the domain Q, is convex, a is equal to 1.

Proof. We start from the formula

fo(w — Uh)(x) • q(x)dx

^ ù y ) y\ ) (615)

and with any g in L2(fl)d, we associate the solution (iü,r) of the Stokes problem

— Aw + grad r = g in O,

div w ~ 0 in 0,

w = 0 on dft.

We recall that there exists an a, \ < a < 1 (equal to 1 when £1 is convex) such that this solution belongs to
x Ha(iî) and satisfies

(6.16)
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Next, we obtain, for any Wh in Vh and r^ in M^,

(u - uh)(x) • g(x) dx = ah(u -uh,w - wh) + bh(u - uh, r - rh)

/ i d^u ' \wh\àr. (6.17)

Thanks to (6.16), estimating the first terms relies on the approximation properties of Vh, see Proposition 6.3,
and of Mhi while estimating the two last ones relies on the analogue of (6.13). Inserting this in (6.15) leads to
the desired estimate.

Remark. If the assumptions of Theorem 6.4 hold, the only estimate on the discrete pressure that can be
deduced trom the previous line writes

< ch' (jni^hK)-1 (||u||ff.+i(n)d + ||p||H.(n))- (6.18)

So, at least when Q is convex and the family of triangulations (Th)h is uniformly regular (in the sensé that the
ratio (mfKeTh hK)/h is larger than a constant independent of h), the norm ||p/l||L

2(fï) is bounded independently
of/i.

To overcome this lack of convergence of the discrete pressure, let us finally consider the "reduced" problem:
End (uhiPh) in X^ x M^° such that

= / ƒ (ce) • vh(x)dx,
Jn

Indeed, it follows from Proposition 4.5 that, if Hypothesis 4.1 holds, an optimal inf-sup condition holds between
Xh and M J O . This condition and the standard approximation properties of the spaces X^ (which contains
the "conforming" space of pieeewise affine continuous functions vanishing on dft) and M^1, combined with the
analogues of (6.5) and (6.6) (but with j3h replaced by PT), lead to the following resuit.

Proposition 6.6. If Hypothesis 4.1 holds, for any data ƒ in L2(Q)d, problem (6.19) has a unique solution
iuhiPh) va Xh x M^°. Moreover, thts solution satisftes

for a constant c independent of h. If moreover, the solution (u,p) of Problem (2.1) belongs to the space
Hs+1(Q,)d x Hs(Çl) for a real number s, 0 < s < 1, there exzsts a constant c independent of h such that
the following error estimate holds between this solution and the solution (uhjph) of Problem (6.19):

u\\Hs+i{Q)d + \\p\\Hs(n))> (6-21)

Let us finally consider Problem (6.19) with M/f° replaced by M^°. From Lemma 5.5, this problem has
a unique solution which still satisfies (6.20). However the approximation properties of the space M^° are
unsufficient for estimate (6.21) to be fully valid in this case, only the estimate concerning the velocity holds.

7. AN ALGORITHM FOR SOLVING THE DISCRETE PROBLEM

Problem (2.6) is equivalent to the square linear System
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where the vector U is made of the values of Uh at the midpoints of all edges or bary centers of all faces e that
are not contained in d£l and the vector P is made of the values of ph at all vertices and barycenters of the
éléments K of Th (the two further orthogonality conditions in M^ are usually enforced in a further step). Since
the matrix A is symmetrie and positive definite, System (7.1) is also symmetrie, however its size is very large,
equal to dim Xh + dim Mh.

So the key idea for solving system (7.1) consists in separating the unknowns U and P. For instance, the
well-known Uzawa's algorithm [1] consists in eliminating the quantity U from the first line in (7.1), leading to
the system of two uncoupled équations

BTA-xBP = BTA-lF, AU^F-BP. (7.2)

The matrices in the right-hand member of these two équations are still symmetrie, so that they can be solved
by the conjugate gradient algorithm. However the first équation requires to invert the large matrix A Moreover
this algorithm is more efficient when the discrete space of pressures has a small size, which is not the case for
the element considered in this paper.

Another idea, developed by Hecht [12] for the Crouzeix-Raviart element, relies on the reduced discrete
problem (2.11). Indeed, for the space Vh defined in (2.10), we introducé a fixed space Wh such that

Xh = Vh®Wh. (7.3)

Note that, since M® contains no spurious modes,

Kh = dim Vh = dim Xh - dim MJJ, Lh = dim Wh = dim M£. (7.4)

Next, we assume that a basis {v±,... ,VKh} of Vh and a basis {wi,... ,WLH} of Wh are known and we dénote
by Ui the vector of the coefficients of Uh in {v\,... , i ^ } . Using Problem (2.11), we observe that (7.1) is
equivalent to the system of two uncoupled équations

AlUl=-F1, B2P = F2-A2U1. (7.5)

The matrix A\ is still symmetrie and positive definite, made of the a>h{vi,Vj)i 1 <i,j < Kh- The matrix B2 is
made of the bhiwjiP), 1 < j < Lh) where p runs through a basis of Mh, and becomes square when adding the
two lines corresponding to the further orthogonality conditions in the définition of M°.

So it remains to construct a basis of Vh and Wh- Note moreover that the matrix A2 and B2 are sparse if those
bases are made of fonctions with a local support. From now on and for simplicity, we assume that the domain
Q is two-dimensional and simply-connected. We refer to [12] for the extension to the case of multiply-connected
domains where a finite number (independent of h) of further basis functions appear in Vh.

In a first step, we construct a basis of V£ = Vh Pi X%. With each edge e in £h, we associate the Lagrange
function /ie, already introduced in the proof of Lemma 4.2, which belongs to V\{K) for all K in Th and vanishes
in all the midpoints of the edges of éléments K in Th but in me where it is equal to 1. When the edge e is not
contained in <9Q, the support of fie is made of two éléments K of Th- Thus, since \ie is nonnegative on these
éléments, we introducé the function jle equal to a constant times fie, such that

/ fledx = meas(e). (7.6)
Ja

Moreover, with any vert ex a of a triangle in 7^, we associate the standard Lagrange function (pa in M/f, equal
to 1 in a and to 0 in all other vertices.

Finally, we dénote by 7̂ ° the set of triangles K in- Th which have no edges contained in dVt and by vPhK the
number of such triangles.
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Lemma 7.1. In the case of dimension d = 2; ifft is simply-connected and if Hypothesis 4.1 holds, the dimension
of the space V^ is equal to n° K ; and it is spanned by the functions

eCdK

where the TKe are ^ e unit vectors orthogonal to ne turning counterclockwise around K.

Proof. Let UhKt nhe and n^a dénote the number of triangles in 7^, the number of edges of these triangles and
the number of their vertices, respectively. Similarly, let nb

he be the number of these edges which are contained
in d£l. It is readily checked that

dimXl = nhe - nb
he, dim M J O -nha.-l.

Moreover, since Ü is simply-connected, Euler-Poincaré's formula reads

nhK - nhe + nha = 1, (7.8)

and it follows from the inf-sup condition (4.1) that

dim V£ = dim X% - dimM^0 = nhe - nb
he - nha + 1 = nhK - nb

he.

Of course, this is equal to n°K , which proves the first part of the lemma. Next, we observe that the number of
functions WK, K G 7^, is n^K and that they are linearly independent, so it suffices to check that they belong
to V?.

We fix a K in 7̂ ° and we observe that the support Q,K of WK is made of four triangles. The support of at
most six ipa intersect the interior of ÇIK, and two situations occur:
1) If a is not a vertex of K, there exists a triangle Kf which has a common edge e wit h K and contains a.
Then, it is readily checked that grad(/?a is orthogonal to Tj^e, so that b(wfc, <pa) is zero.
2) If a is a vertex of K, it is the intersection of two edges e and e', and, if e!/ dénotes the third edge of K,
grad (fa is orthogonal to T^e" • So, we have to compute

/
Jn

Note that TKe • grad(/?a is constant on each triangle and continuons through e. The same property also holds
for e'. If Qe and Oe/ stand for the support of \ie and jle> respectively, this yields

bh{wK>Va) = {TKe ' grad</?a)|Qe / jledx + (TKe' • grad(pa)|ne/ ƒ jij dx.
Jn Ja

Using (7.6), we obtain

bh(u>K,<Pa) = (TKe • grad<pa)|ne meas (e) + {TKe> • gradipa)^, meas(e/)

= (rKe * grady?a) dr + / (TKV • grad ipa) dr.
Je Je'

This last quantity is equal to the intégral on dK of the tangential derivative of y?a, hence to zero. So, we obtain

bh(u>K,<pa) = 0,

which ends the proof.
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Identifying the remaining part of Vh is more complicated and requires a preliminary lemma. We now define,
for all e in SH the function fie by

(7-9)
meas (e)

We dénote by V° the set of vertices of triangles K in Th which do not belong to dft and by n°hcL the number of
such vertices.

Lemma 7.2. In the case of dimension d — 2,ifVtis simply-connectée, the dimension of the space of functwns
in X^ which satisfy

h) = 0, (7.10)

is equal to vi°a, and ü is spanned by the functwns

> e n a e , aeV k
0 , (7.11)

where the nae are the unit vectors parallel to ne turning counterclockwise around a.

Proof. Wit h the same notation as in the previous proof, it is readily checked that

% = nhe - nL, dim M?° = nhK - 1.

Thanks to Euler-Poincaré's formula (7.8) and the inf-sup condition (5 6), the dimension of the space of functions
in Xfr satisfying (7.10) is equal to riha — n^e, hence, since there are as many vertices contained in 9Q as edges,
to n° a . Since the n° a functions za in (7.11) are linearly independent, it remains to check that they satisfy
(7.10) or equivalently that

Note that the support of za is the union ^ a of all triangles K contaming a. So, let K be a triangle contained
in Çla- Thanks to (3.10), we obtain by intégration by parts

a)\K / tpK dx = - — / divzadx = -—- V
JK 60 JK 60 e^KJe

where for a while ne is assumed to be exterior to K. If e and e1 dénotes the two edges of K which contain a,
this gives

1
riae • n e d r + / (le'riae' ' ne. dr .

Je> )
From the choice (7.9) of /2e, it is readily checked that Je p,e dr = Je, jj,e* dr = 1, while one of the nae • ne and
n a e ' • ne> is equal to 1 and the other to —1. So, bh(za,ipK) vanishes, which concludes the proof.

We are now in a position to prove the main resuit of this section.

Theorem 7.3. In the case of dimension d = 2, if Q is simply-connected and if Hypothesis 4.1 holds, the
dimension of the space Vh is equal to n^K + ^ ° a ; and it is spanned by the functions WK, K G T^, defined
m (7.7), and by the functwns

Wa - Za + Ylbh(Za><Pae) freTae, a € V£, (7.12)

where the za are defined zn (7.11), the ae dénote the opposite endpomts to a on e and the r a e are the unit
vectors orthogonal to ne pomting towards a.
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Proof. Since the dimension of Xh is equal to dim X^ -f dim X^1 and the dimension of M° is equal to dim.
dimM^0 and since M® does not contain any spurious mode, evaluating the dimension of Vu is clearly a
conséquence of Lemmas 7.1 and 7.2. Moreover the functions WK belong to 14 and, since the functions za

satisfy (7.10), the idea is to find functions ta in X% such that the functions wa ~ za +ta satisfy

VgTi G Mh , bh(wa, Qh) = 0- (^-13)

Indeed, the functions WK, K G T®, and wa, a G V®} form a linearly independent System. So, for a flxed a,
since the support of za is f̂ a, we look for a function ta of the form

a€e

Next, for ail edges ef containing a, it is readily checked that

bh(ta^aef) — Ĉ e' (ErSi(^iPae, ' Tae')\ef / Me' d.X.

Using (7.6) and the fact that (gradc^ae/ • r a e /) | e / is equal to —meas (e')""1, we obtain

So the choice (7.12) implies that ail the bh(wai¥>ae,) are equal to zéro, and finally, since grad(/?a is equal to
— 5Zo€egrady>Oc on r^o, that bh(waiipa) also vanishes. This concludes the proof.

Note that both functions VÛK and wa hâve local supports. More precisely,

• the support of each WK is made of four triangles,
• the support of each wa is made of a finite number of triangles, and the maximal number only dépends on

the regularity parameter a.

In both cases, the diameter of this support is bounded by a constant times the diameter of any triangle K
contained in it. Moreover a basis of W^, made of functions with local supports is easy to construct from the
définition of WK and wa.

The arguments for extending the characterization of Vh to the case of dimension d = 3 can be found
in [12, Chap. 5]. However they lead to very technical proofs for the présent élément, so that we hâve rather
skip the three-dimensional results.
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