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Abstract. We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider
a special case where the stress tensor is expressed in the form of potentials depending on e%% and (-Q^-)-

We prove the asymptotic stability of the rest state under the assumption of the regularity of the
potential forces.
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INTRODUCTION

There are many substances which are capable of flowing but which exhibit flow characteristics that cannot be
adéquately described by the classical linearly viscous fluid model. In order to describe some of the départures
from Newtonian behaviour (rheological properties, elastic features such as yield stress, stress relaxation and non-
zero normal stress différences) many idealized material models have been suggested. During the last decades,
mathematicians have also started to pay attention to these models and several results concerning the existence,
uniqueness and stability of solutions have appeared, see [1-3,5,8-19,22-24,26-28].

We will deal with compressible non-Newtonian fluids. The models which describe their rheological properties
were studied from the mathematical point of view by Matusû-Necasovâ , Lukâcovâ-Medvid'ovâ see [14,16]. They
proved the existence and uniqueness of a weak solution. All of these results were studied on bounded domains.
In the case of an isothermal process the stability of the rest state has been proved [16]. The global existence of
équations of non-Newtonian compressible fluids when the coefficients of viscosity depend on the invariants of
velocity field where the growth of these coefficients is not polynomial but exponential was proved in [12,13]. In
the case of viscoelastic compressible fluids the existence of a classical solution of steady motion in the bounded
domain was proved by Sy [27]. This result was extended to an exterior domain by Matusû-Necasovâ et al. [15].
Both results are valid for small data only. One of the very interest ing problem is the stability of the rest
state. The crucial point of every proof of stability is the uniqueness of the steady state solutions. Beirâo da
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Veiga [4] obtained a necessary and sufficient condition for the existence of a strictly positive solution of the
following problem

pd£%, i = l , . . . , d ( 1 . 1 )

p > 0, / p(x)dx = m
Jn

where p is the density, m > 0 the total mass conserved by the flow, p(p) is the pressure, £ is the potential
of external forces which is locally Lipschitz on O, Ü is the velocity. It is easy to show that such a solution is
necessarily unique. On the other hand, this restriction excludes a class of solutions with vacuüm state (p — 0).
The optimal condition for the solution of (1.1) to be unique is shown by Feireisl and Petzeltovâ [6,7].

Hère, our objective is to study the stability of the rest state of the barotropic motion. This model will
be mathematically formulated in Chapter 1. Chapter 2 is devoted to mathematical preliminaries and known
results. In Chapter 3 we will prove the asymptotic stability of the rest state.

1. FORMULATION OF THE PROBLEM

The barotropic motion of the bipolar non-Newtonial fluids is governed by the following system of the équa-
tions

(1-2)

d . d , v ^ v r \ ®P
dt dx3 dxj %3 dx%

where p dénotes the density, v = (v±,..., Vd) is the velocity vector, b= (b±}..., ba) dénotes the density of external
forces and p — p(p) is the pressure. We assume tha t p G C 2 ( 0 , + o o ) . The équations (1.2), (1.3) are solved in
the t ime-space cylinder Q T := / X £Ï, ƒ = (0, T ) , where ft C WLd is a bounded domain with a smooth infinitely
differentiable boundary dfl. Let us define

rP ~'~]-, p>0, (1.3')
o*

P(0) = hm P(p).

It may be verified (see [21]) that

pP'(p)-P(p)=p(p), p>0:

P(p) > -fci, P > 0.

We suppose that the body forces are given and satisfy

beL°°(QT). (1.4)
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Now, we can specify the assumptions on the stress tensor r^. Namely:

d fdWjDe)-

Also, we consider the third stress tensor r^k, which has the following form

v dW{De)

Moreover, we will assume that the potentials V, W satisfy the following conditions:

d(l + \De\y-W < - W y M * ^ (1.8)
k )°\ dxkl )

C3(l + |Iïe|)«-2|^|2 < ^ ^ c „ f l l t x (1.9)

where C\, C2,C3,C4 are positive constants, q > d, and | • | is the usual Euclidean norm of a vector. Let

W(0) = 0, V(0) = 0, (1.10)

BW BV
_ ^ _ ( 0 ) = 0, ^ï-(O) = 0. (1.11)

The system (1.2), (1.3) is completed by the initial conditions

v(0) = uo, /d(0) = po, Po > 0 in fi; (1.12)

and the boundary conditions

^okVjVk = 0 on (0,T) x ôfi (1.13)

(ẑ  is an outer normal to dSX) ,

v = 0 on (0,T) x du. (1.14)
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2. MATHEMATICAL PRELIMINARIES

By LP(Q) and Wl>p(Q), 0 < p, l < oo, we dénote the Lebesgue and Sobolev spaces, respectively, equipped
wit h the standard norm.

First, we give the well-known resuit s on the equilibrium solution, where we do not consider the cavitation
of density. In the work of Beirâo da Veiga [4] the necessary and sufficient conditions for the existence of the
equilibrium solutions for an arbitrary b G L°°(Q) was proved. Let pbea continuously differentiable real function
defined on R+ = {s G R : 5 > 0}, such that p'(s) > 0, Vs G M+. Let

0 < ess inf p(x), ess supp(x) < -foo (2-1)

and

~ [ p(x)dx = m (2.2)
l"l Jn

for a fixed m > 0, we define

7r(5) = / "~r~d^' ^ e I ^ + - (2-3)
Jo l

We dénote (a, ƒ) the range of TT, (a, ƒ) = ?r(M+).
Let us define </> = TT"1. Clearly, </>((a, ƒ)) = M+. Put 0(a) = 0 , < (̂/) = +oo.

Définition 2.1. Let b G L°°(Q). A function p is called an equilibrium solution of (1.1) if p G L°°(Çl) and if

ir(p(x)) = £(x) + c a.e. in O

and (2.1), (2.2) hold.

We set no = ess inf b in fi, JVQ = ess sup b in fi.

Theorem 2.1. Let b G L°°(fi) be given. There exists an equilibrium solution p{x) if and only if there exists a
constant

(2.4)

such that

4 r [ <f>(c + Ç(x))dx = m. (2.5)

/ƒ 5^c/i a constant exists then the (unique) equilibrium solution is given by

n. (2.6)

Proof. see [4].

Theorem 2.2. Under the assumptions of Theorem 2.1 there exists an equilibrium solution p(x) if and only if

a - n o < f-No, (2.7)
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and

p ƒ <P(a - n0 + &x))dx <m< ^(f - NQ + £(x))dz. (2.8)

In this case the equüibrium solution p(x) is given by (2.6), where c is the (unique) solution of (2.4)-(2.5).

Proof. see [4].
We mention a weak formulation of the problem (1.2), (1.3), (1.12)^(1.14).

Définition 2.2. A pair (p,v) is said to be a weak solution of the problem (1.2), (1.3), (1.12)-(1.14), if the
following conditions are satisfied

(i) peL^(I;^

(ii) §ee£°°(

(iii) v e L°°(I; W2'"{ü) n

(iv) f 6 L2(QT),

(v) the continuity équation (1.2) is satisfied in the sense of distributions on

(vi)
f d r ^ f d<Pi f / \d<Pi f dV f m , ^ ( ^. dW(De(v)) de%3 , . f ,

Jtt ot 7Q axj 7^ öxi Ja den d(^t) ÓXk -*&

holds for a.e. t G I and for every y = (tpu ..., y?d) E W2 'g(^) H Wolï2(fi),

(vii) the initial conditions (1.12) with p0 G C 1 ^ ) and v0 e W2^(£7) O W0
lï2(^) are fulfilled.

In [14] authors proved the existence and uniqueness of weak solution of the similar problem except the nonlinear
potential F, which dépends on the whole tensor e = (eij)fj=1 instead of Tre = (eu)f=l as in (1.5). Nevertheless
the existence and uniqueness can be proved in the same way. In what follows we only point out the parts which
differ from results stated in [14].

Theorem 2.3. (Existence of a weak solution).
Let po e Cl(Tl),po > 0 inTÏ, and vQ € W2>q(tï) H WQ'2(Q). Let the assumptions (1.8)-(1.11) hold. Then there
is at least ont weak solution (p>v) to the problem (1*2), (1.3), (1.12)—(1.14) such that

^ e L°°(/; L«(n)), (2.9)

v e L°°(J; W2'"(Q) n W0
1'2(fï))) ^ e L2(QT).

Proof. First step is based on the modified Galerkin method and the method of characteristics, which give us
the following identities see [141:

f f
/ p m d z = /

Jnt Jn

/ / = m0,
nt J

\S | ( p m K f ) + / §:(P(Pm))+ j ^(Tre(v™))eii(v
m) + 7^rr^l(vm)= f p^v?, (2.11)

f V(Tre(vm(O))) + W(De(vm(O)))+ f Pmh^f- • (2.12)
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In the second step the limiting process is performed. We mention only the convergence in the nonlinear term
which is different now and also was not clearly explained in [14]. It reads

Let us define

and

We set

Xsm= ['{G1(v
m)-G1{<p),e{vm)-e(,<p))dt + ['(G2(v

m) - G2(<fi), De(vm) - De(<p))dt +\\Pmvm{s)\2.
Jo JO

 l

Choosing a subsequence vnk which we dénote as vn and using monotonicity of X^ we obtain

Thus, it follows from (2.11) that

Xsm= l\pmb,vm)àt + \\PomvZ\2- [S(G2(v
m),De(v))dt- [* (G2(<p), De(vm - <p))àt

Jo z ^o Jo

(G^UWdt- f (GiM,e(</"-¥>))dt
Jo

pb,v) +hpovo\2- f\ti,De(<p))- f\Gz(<p),De(v-<p))- f {&,
^ Jo Jo Jo

- l\Gl{y),e{v-ip))>\\pv{s)\2-
Jo L

Finally, we get

/ Ki ~ G2(cp),De(v) - De&)) + (6 - G^ety - ^)) > 0
JO

which implies that

This concludes the proof. D

Theorem 2.4. (Uniqueness of the weak solution).
Let the assumptions of Theorem 2.3 be fulfiîled. Then the weak solution obtained in Theorem 2.3 is unique.

Proof. Is analogous to the proof of uniqueness in [14].
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3. UNCONDITIONAL ASYMPTOTIC STABILITY OF THE REST STATE

The goal of this section is to prove the stability of the rest state (p, 0), characterized by (1.1). Let b = ~^- with
£ € W2>°°(tt), g > 0 and let (pOj^o) satisfy conditions pö e C 1 ^ , p0 > 0 in fi, v0 e W^'^î î) n W0

lï2(^)-We
specify the class of perturbated flows where the rest state will be stable:

~^- e L°°(/,L9(ft)), - ^ e L2(QT),for any T, and there exist

6i,ö2 such that , O < Si < p < <52 uniformly in (0, oo) x Ù,

(p,v) is a weak solution of (1.2), (1.3)}.

Muitiplying (1.3) by v we obtain

l d f 2

i_l ll^llw2-?^)) ' ^ r O m (̂ *̂ ) W e n a V e t n a t

lim cr(t) = 0. (3.2)
t—»oo

Moreover, we would like to prove that

v(t) —»• 0 strongly in L2(^) as t —» oo.

It holds

Ö17 / PM2 + IMIw2.*(n) + l|V-ï;||L«(n) - / p(p)V • v = /
2 dt JQ Jfi Ja

By integrating the above relation with respect to t from s t o t , 0 < s < £ < o o and with respect to s from t — l
to t we obtain

/

t pt pt pt

/ IMIi^(n) + / /
-1 Js Jt-lJs

ö / llvPW^WIIia/n) + / / / |pbv + p(p)V • v|da:drds. (3.3)
^ Jt-i Jt-i Js Jn

Further,

j ƒ ( n ) ) ( ) j ̂

// / / P(p)V • v < c sup p(r)a(t).
t/t—1 Js JQ d>i<r<52

Then

From (3.2), using the fact that p > 0, we get that

v(t) —• 0 strongly in L2({7) as t —> oo.
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Now, we define a function w(t) in Qx as the solution of the following problem

Aw = V • (pb) in Q T ï (3.4)

—— = pb • n on ffi x [0, oo),
on

[ w dx = 0.

The goal is to prove that

p(t) —> p in L2(Q) as t ^ oo (3.5)

where

Wp(p) = p6 in n, (3.6)

/ pdx = /
JQ JQ,

Firstly, we shall prove that

\J\p(p{t))-w{t)}(h-Mh)àx

with a constant c independent of w. We set

M/i-l^l"1 /
Jn

For this purpose we shall firstly estimate the intégral

<ca(t)\\h\\LHa), heL\Q), (3.7)

I(t)= [ tp(s-t) /b( /5(s))-^)]Mxd5 î ^€C0°°(~1,0), (3.8)

where y? is a fixed function such that J_x (p(r)dr = 1.
Let ^ b e a solution to the following problem for arbitrary h E L2(Q)

= h - Mh in fi

= 0 on dn (3.9)
an

= 0./
Jn

Applying the classical results on boundary-value problems for elliptic équations it yields

Q) < c\\h - Mh\\L2{n), (3.10)

\\h-Mh\\L2(iî)<\\h\\L,{n), (3.11)
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with a constant c > 0 independent of h. Substituting (3.9) into (3.8) we find

931

I(t) = - ƒ (p(s-t) [w(s) - p(p(s))]Aipdxds
Jt~i Jn

= f ip(s-t) f [p(s)b - Vp(p(s))]Vijdxds
Jt-i Jn

p= / tp(s — t) \p + p(s)v(s)Vv(s) — divrtj
Jt-i Jn l vs J

= f tp{s -t) f ^ W> + / <p(s-t) [ V • (p(s)v(s)v(s))Vi!>
Jt-i Jn a s Jt-i Jn

+ f <p(s-t) / r v VV^
Jt-i Jn

= - ƒ (p'(s-t) / p{s)v(s)Vil; - /

- i

aV(Tre)
ôe..

< sup
t€(0,T)

sup
te(o,T)

W
||v(s)

t \ 2/g

ll"(*)llw=».«(n)

-i
0

t-i

l/S'

However, cp is an arbitrary fixed function, which implies that

I(t) < ca(t)\\h\\L2m, t>0.

Now, we go back and prove (3.7).

f \p{p{t)) ~ w{t)\{h - Mh)àx = / ip(s - t) f (Vp(p(t)) - p(t)b)Vipdxd,
Jn Jt-i Ja.

<|/(t)|+ / ¥>(«-*) /b(pW)-p(^(s))][/i-M/i]da;ds

f ^(s - t) f \p{t) - p
t-i Jn

We have

~p(t) - ~p(s) - ƒ l ^ d r = " ƒ * V • (p(r)u(r))dr.

(3.12)

(3.13)

(3.14)
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/ <p(s ~~ t) [ [p(t) - p{s)}b . W = I ƒ [ <p(*-t) [ p{r)u{r)V{b • Vtyàxdrds
Jt-i Jn \Jt-i Js Jn

(3.15)

t - i

The second term of the RHS of (3.13) can be rewriten in the following form

f <p(s -t) f \p(p(t)) - p(p(s))](h - Mh)dxds = f ip(s-t) f f dTp(p(r))(h - Mh)drdsdx. (3.16)
Jt-i Jn Jt-i Jn Js

From the continuity équation it follows that

dp(p) , „ „ , „

dt

Thus, we can estimât e (3.16) from above

ƒ <p(s-t) f f drp{p{r)){h - Mh)dxdrds < f ip(s - i) f f v(r)pf{p(r))Vp(r)(h-Mh)dxdrds
\Jt-\ Js Jn Jt-i Js Jn

-f / ip(s-t) / p(r)pf(p)V-v(h-Mh)dxdrds
Jt-i Js Jn

Uoo(o,T) sup pf{r)o{t){ \\Vp(T)\\lH
51<r<Ô2 \Jt-l K

SUP

which together with (3.12), (3.13) and (3.15) leads to (3.7). But it follows from (3.7) that

p(p(t)) - w(t) ~ Mp(p(t)) -> 0 inL2(H) t^oo.

\\h\\L2{n)

<ccr{t)\\h\\L2(Q),

(3.17)

(3.18)

In fact, there exists a subsequence tn —> co such that p(tn) —*• P weakly in L2, where w(t) is a solution of
(3.4) for any t. The séquence w(tn) is compact in L2(Q). Choosing a subsequence converging to WOQ G L2(Q)
we find that Woo = A(pb), where A stands for the solution operator of (3.4). Thus, p(p(tn)) — Mp(p(tn)) —>
Woo in L2(Q) and a.e. in ft. Since p belongs to J, we get that Mp(p(tn)) —> Poo- This yields

Hence p —

which yields

+Poo) a.e. in Q and in L2(

or p(p) = A(pb) +Poo- This is equivalent to

[Vp(p)-pb}V9dx = 0 V ^C 0 °° ( î î )

= (Id-R)(pb),

strongly. (3.19)

(3.20)

(3.21)
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where R is the projection of L2(Q) onto the closure in L2{Çl) of the space of divergence free vector functions.
Now, we want to prove that R(pb) = 0. To this purpose let us take an arbitrary 6 E Co°(Q),^ = R0. Then we
have

R(p(s)b)0= f \p(s)^+fts)v(s)Vv(s)-divT%3\r)dx. (3.22)
Jn Jn L ös \

In the same way as before we can prove

\ <p{s-t) R{p{s)b)6dxds
\Jt-i Jn

which implies that

R(p(t)b)0dx
JQ

Since ||?7||̂ /x,2^\ < ||ö||^i32^\} we will obtain that

0.

R(p(t)b) -> 0 in W-lt2(Q) strongly. (3.23)

Then R{p{tn)b) -^ 0 in W-^2(Ü) and R(p(tn)b) -> #(p6) in L2(Q). Thus, B(pb) = 0 and

S7p(p) = pb in fi. (3.24)

Now, if 7T is such a function that 7r'(r) = r~1p/(r) then, V?r(p) = V^. Hence, we have ir(p) = g + h with some
constant h ox p ~ ir~l(g -\-h). It holds that

/ p(x,tn)dx= / podx, (3.25)

f ~ f
/ p(x)dx = / po(^)dx.

in in
Since the function a(/i) = JQ^^1(g + /i)dx is increasing, the function p is uniquely determined by a unique
constant h* satisfying fn n~1(g + /i*)dx = Jn podx. This implies

p ^ p i n L 2 ( ^ ) . (3.26)

We have proved the following result.

Theorem 3.1. Let bz = J|-, Ç e W2'°°(n); Ç small enough, & > 0 and ̂  &e tfte se^ of all solutions (p,u) of

the problem (1.2)-(1.13) with the initial conditions v0 G W2^q{ü) H WQ'2(Ü), p0 € Cl(Ü). Then the rest state
(p, v) characterized by équations (IA) is uncondttionally asymptotically stable in the class J in the sense that
there exists a subsequence {tn},tn —> -hoo such that

p{tn) ~* P inl2(ü),

v(tn) ->0 mL2(fi),

and
Vp(p) — pb in ft.

Remark 3.1. The behaviour of incompressible Newtonian fluids under assumptions of sufficient regularity and
p > 0 was studied by Salvi and Straskraba [25]. Semigroup approach we can find in the work of Neustupa [21].
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