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FINITE VOLUME BOX SCHEMES AND MIXED METHODS

JEAN-PIERRE CROISILLE1

Abstract. We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin
finite volume schemes for équations in divergence form div c/?(ti, Vit) = ƒ. The first scheme, which
has been introduced in [22], is a generalization in two dimensions of Keller's box-scheme. The second
scheme is the dual of the first one, and is a cell-centered scheme for u and the flux <p. For the first
scheme} the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the
primai unknown u and the div-conforming space of Raviart-Thomas for the flux (p. The two test spaces
are the functions constant per cell bot h for the conservât ive and for the flux équations. We prove an
optimal second order error estimate for the box scheme and we emphasize the link between this scheme
and the post-processing of Arnold and Brezzi of the classical mixed method.

Resumé. Nous effectuons T'analyse numérique pour le problème de Poisson de deux schémas volumes
finis mixtes de type Petrov-Galerkin pour des équations sous forme divergence div <p(u. Vu) = ƒ. Le
premier schéma, qui a été introduit dans [22], est une généralisation à deux dimensions du schéma boîte
de Keiler. Le second schéma, dual du premier, est de type "cell-center" pour u et pour le flux <p. Dans
le premier schéma, les deux espaces d'approximation sont l'espace non conforme de Crouzeix-Raviart
pour l'inconnue primale u et l'espace de Raviart-Thomas pour le flux (p. Les deux espaces test sont les
espaces des fonctions constantes par cellule, à la fois pour l'équation conservative et l'équation du flux.
Nous prouvons une estimation d'erreur optimale en O (h2) pour le schéma boîte et nous mettons en
évidence le lien entre ce schéma et le post-processing d'Arnold et Brezzi de la méthode mixte classique.

Mathematics Subject Classification. 35J25, 65P05, 73V05, 65M15, 65N30.
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1. INTRODUCTION

In this paper, we perforai the numerical analysis of two finite volume schemes for conservative équations.
The first scheme is a "finite volume box scheme" introduced in [22]. This kind of scheme originates in the
pioneering paper by H.B. Keiler [31], where the basic principles of box-schemes are introduced on the model
problem of the 1D heat équation. In the lowest order version, these principles are, for a problem in divergence
form like diverti, Vit) = ƒ, fîrstly to use degrees of freedom located on the faces of the mesh (the edges in two
dimensions) both for the unknown u and the flux ip , secondly to build the discrete équations by averaging the
continuons ones ont o "boxes". In this sensé, they are finite-volume schemes, that is, schemes ensuring a local
conservation property at the le vel of the mesh.

Beside a direct use of Keller's scheme for variants of 1D heat équations in some works, [27,34], two types of
"box-schemes" are known in the literature.

Keywords and phrases. Box method, box scheme, mixed finite element method, Petrov-Galerkin method, finite volume method.
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The first one has been introduced in computational fluid dynamics, especially the compressible Euler équa-
tions. The main idea is that locating the conservative unknowns (density. moment urn, energy) at the center
of the faces of the mesh is very natural in order to build a scheme discretizing both the conservative and the
flux équations at the level of a single cell. We refer to [14-17,19-21,41,42] where numerical results on Euler or
Navier-Stokes équations are presented.

Another kind of box scheme is known under the name of "box method" or "finite volume element method".
The design of this scheme is similar to the one of the so called "cell-vertex finite volume method", (see e.g. [28]).
The unknown u belongs to a finite element space such that Pl or Q1. The discrete équations are defined from
averaging the continuous ones onto a dual box surrounding each vertex. We refer to [4,13,30,32,37-39] and the
références therein.

The scheme introduced in [22] for the 2D Poisson problem on a triangular mesh is a Keller-like scheme.
Contrary to [15, 16, 19] where a finite differencing interprétation of the discrete unknowns is used, a finite
element interprétation of the degrees of freedom is introduced. On a regular FEM triangulation T^ by triangles
K, the mixed for m of the Poisson problem

(i)

is approximated by the finite volume scheme (called FVbox in the sequel): find (UH , Ph) € PnC,o x &T° such
that

divp +
p — Vu
u = 0

ƒ
=

=
0

0 in
in
on

n
Q

+ /, aK) = o V K e%
{Ph - Vuh, tK) = O V K eTh (2)
u^ = O on <3ü.

In (2), P^C)0 is the nonconforming space of Crouzeix-Raviart, [24], with homogeneous boundary conditions, and
RT° is the div-conforming space of Raviart-Thomas of lowest order. Note that the coupling between these two
spaces is unusual in the classical variational mixed methods theory, [8,9,11,29], because this couple of spaces
does not satisfy the Babuska-Brezzi condition.

The aim of this paper is to prove that the numerical analysis of (2) can be simply performed by using the
classical theory of the mixed Petrov-Galerkin approximations, [6,7,35]. For simplicity of the notation, we restrict
ourselves here to the academie Poisson problem in two dimensions, but generalizations to the 3D case or to
more complex conservative problems are possible.

The outline of the paper is as follows. In Section 2 we introducé the mixed formulation of which the "FVbox"
scheme is an approximation. In fact, this formulation générâtes also a second scheme, (called "dual FVbox"),
which is a cell-centered finite volume scheme for the couple of unknowns (u^Vu)^ and which is also apparently
new. We verify that the theory of nonconforming mixed approximations applies to the two schemes. A second
order estimate is derived in Section 2.4 for the FVbox scheme, using an Aubin-Nitsche argument. Finally, we
prove in Section 3 that the FVbox scheme coincides in fact with one of the post-processings of Arnold and
Brezzi of the classical mixed method [2], or equivalently, with the a posteriori interprétation of Marini [33].

Let us mention finally that several recent papers deal with the numerical analysis or the design of cell-
centered finite volume methods with the help of the mixed finite element theory. A first kind of works, [5,25,43]
is devoted to the a posteriori interprétation of the standard mixed solution Uh as a cell-centered finite volume
method. In [40], a new mixed finite volume method, different from the present one, is introduced and analyzed
by the mixed Petrov-Galerkin theory. Finally, for a numerical analysis of the cell-centered finite volume method
without référence to the FEM analogy, we refer to the exhaustive study [26]. See also [18].

This work was announced in [23].
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2. NUMERICAL ANALYSIS OF THE FVBOX SCHEME

2.1. Two mixed forms of the Poisson problem

We consider the bidimensional Poisson problem in mixed form in a bounded domain Q C M?

{ divp + f = 0 in fi
p - Vu = 0 in fi (3)

u = 0 onto 9fi.
Let us recall some standard notation. We dénote by L2 the Hubert space of square integrable functions
on Ct^ equipped with the norm |ifc|o,jî- Hl^H2 are the standard Sobolev spaces equipped with their norms
ĤHx = {\u\2

yQ + iVulg^)1/2 and \\u\\2 = (\\u\\2
hQ + \D2u\2

n)
1/2. H% is the Hubert space of functions u G H1

having a null trace onto <9fi. The semi-norm {U^Q = lViilo.fi is a norm on HQ equivalent to ||u||i. Finally
Hdiv is the Hubert space of bidimensional vector fields p G (L2)2 such that divp G L2, equipped with the norm
I|p|ldiv,n = (|p|§,n + Idivp|g>n)1/2.

If ƒ G L2 and fi is C2 or convex, this problem has a unique solution u G HQ n H2 which vérifies
Nl2ïn<C|/|0ln.
We do not address hère the well-known mixed formulations with unknowns {uyp) G HQ X (L2)2 or
(ti,p) G L2 x iïdivî which are the continuons framework respectively of the classical conforming (or nonconform-
ing) method and of the mixed method of Raviart and Thomas.

The two mixed formulations that are needed in the sequel are of Petrov-Galerkin type, that is, they use two
different Hubert spaces as primai and dual spaces. The first one is: find (u,p) G HQ x H^v such that

ƒ (divp + /, i ;)o In=0 MVGL2

Note that this formulation is also introduced in [40]. The second-one is the dual of (-Pi). It reads: find
(y,q) G L2 x (L2)2 such that

(P\ / ~(V w ' ^ )o în + (/îw)o,n = 0 VUEHQ1
 ( ,

{ 2) 1 (P, <?)o,n + (div p , T,)0,n = 0 Vp G Hdw. { j

These two formulations are connected with the bilinear continuous form B[(u,p): (v,q)] defined for
(u,p) G F i - HQ" X Hdivy (v,q) G H2 = L2 x (L2)2 by

B[(uy p) ; (u, q)} = a (p, q) + &i (g, u) + b2 (p, v) (6)

where a is the continuous bilinear form defîned on Hd-lv x (L2)2 by

a(p,<?) = (p,q)o,n (7)

and b\ , &2 are the two forms respectively defined for (u,q) G HQ x (L2)2 and (v,p) e L2 x H^w by

fei (g, u) = - (V it, g)o,n, &2(p, v) = (div p , v)0,n. (8)

We recall now briefly the following abstract resuit due to Babuska [3], Brezzi [10], Nicolaides [35], Bernardi
et al. [6,7], devoted to the abstract formulation of mixed problems. Suppose given four Hilbert spaces

(M!, (•, -)Ml), (M2 , (•, -)M2) (9)
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and
(a) a continuous bilinear form a (•, •) : X\ x X2 —» R;
(b) two continuous bilinear forms 61 (•, •): X2 x Mi —> R, 62 (•, •): ^ 1 x M2 -^ R. We call #1 , H2, the Hubert
spaces Hi = X\ x M i , H2 = X2 x M2 equipped with the norms

^ ^ ^ (10)

I I ( ^ ^ ) I I H 2 = (II^II2X2 + IIMII 2M 2 ) 1 / 2 -

The null spaces Vi C Xx , V2 C X 2 are defined by

(12)

F2 = { ^ G X 2 I 6!(v,A) = 0 VA E M J . (13)

For any l2 G Xf
2 , ?7z2 G M2 , we consider the abstract Problem (M): find (u, A) G Xi x Mi such that

(M) | a ( w ^ ) + 6 i ( ? ; ' A ) = <Z2, ̂ ) x ^ x 2 V ï ) € l 2

\b2(u,fx) = (m2, ^}M^M2 V/^G M2.

Theorem 2.1. T/ie Problem (M) has a unique solution (u, A), tüzi/i continuous dependence on the data
(Z2, rn2) G X2 x M2 ; z/ and onfa/ z/ i/ie /o^r followmg conditions hold:

(1) The bilinear form a is such that for any v G V2

sup a(u,v) > a||ï;||x2 (15)

where a > 0.

(%%) For any u G V\

\fveV2 a{u,v) =0^u = 0 (16)

(%%%i) There exists /?i > 0 swc/i i/ioi for any X G Mi

sup b i ( v , A ) > / 3 i IIAH^ (17)
vex2,\\v\\x2<i

(in2) There exists /32 > 0 such that for any ji G M2

sup b2(u,ii) > 02 ||/X||M2 (18)

In addition, the conditions (z), (11) are equivalent to the dual conditions (z}), (11').

(1 ') The bilinear form a is such that for any u G V\,

sup a(u,v) > a'||u||xi (19)

where af > 0.

(n') For any v eV2i

VitGVi a(ifc,u) =0=> v = 0. (20)
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Another couple of equivalent conditions is (i)-h(i'). Therefore, the Problem (M) is well posed if and only if, for
any (h , mi) G I J x MJ, so is the dual problem (M'): find (v, fi) G X2 x M2 such that

{ } \b(v\) {m\)MliMl VA e M L l J

The well known particular case of Theorem 2.1 is when Xi = X2 — X, Mi = M2 = M , 61 = b2. I*
1 this case,

the two null spaces Vi, V2 are identical and coincide with the space

V = {ueX/b(u,X) = 0 , VAGM}. (22)

Conditions (%), fwj, (inii2) for well-posedness of problem (M) reduce to

(%) V U G V , sup a(uiv)>a \\u\\x
vev,\\v\\v<i

(11) for any v G F , a (U, u) = 0 V'u EV => v = 0

(V^ V A G M, sup 6 (u, A) > /3 ||A||M (LBB condition).
u£X,\\u\\x<l

If the bilinear form a is symmetrie, the conditions (%) + (%%) are clearly equivalent to the condition (%) alone.
Furthermore, a sufficient condition in order to have (i)-h(n) is the coercivity of the form a restricted to the
space V x V, i.e.

(1') a{u,u)>a\\u\\2
x V u G 7 .

We apply Theorem 2.1 to the two Problems (Pi), (P2) with the bilinear forms a, 61,62 deflned by (7),(8). The
Hilbert spaces are

X1=Hdw, X2 = {L2)\ Mi = Hl M2 = L2 (23)

equipped with their natural norms.

Proposition 2.2. The bihnear forms a, 61, 62 fulfill the conditions (1), (11), (ni\), (1112) of Theorem 2.1.

Proof The two properties (ni\)} (nn) are precisely the (LBB) conditions for the couples of spaces
(X, M) = ({L2)2 , #Q) and (X, M) = (#div, £2) which are true, [8]. Furthermore, the two null spaces Vi,
V2 defined by

Vi={p6Hdiv / (d ivp ,u)o ,n=O Vu G L2} (24)

V2 = { p e ( L 2 ) 2 / ( p , Vu)o,a = O Vu € i/o1} (25)

are identical and reduce to the space V of square integrable vector fields, with null divergence in the space of
distributions Vf(ü)2. For p e V, a(p,p) = |p|o,^ = Iblldiv n* Therefore, the restriction of the form a to V x V
is coercive, which gives the resuit. D

We deduce from Theorem 2.1 the following result.

Corollary 2.3. For any f e L2

(1) there exists a unique solution (u}p) G HQ X H^lv of (Pi) such that

Nli In + ||p||divIn<Ci|/|o,n (26)
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(ii) there exists a unique solution (v,q) EL 2 x (L2)2 solution of (P2) such that

Ho,n + |9|o,n<C2 |/|o,n. (27)

In addition we verify immediately that since H\ = HQ X H^W C L2 X (L2)2 = H2 with dense injection, and that
B\H1XH1 is symmetrie, the solutions of the two problems (Pi), (P2) are in fact in HQ X H^W and coincide with
the unique solution (u ,Vu)G (ÜQ1 n H2) x (iï1)2 of Problem (M).

2.2. The FVbox scheme of lowest order

In [22], we introduced the following finite-volume scheme for the Poisson problem, called here FVbox scheme
for simplicity: find (uh , Ph) £ Pnc,o x •̂ ^P° such that

0 V KeTh

(ph - Vu,, TLK) = 0 y KeTh (28)
na — 0 on <9f2

where P^c 0 is the nonconforming space of Crouzeix-Raviart with homogeneous boundary conditions, and RT°
the div-conforming space of Raviart-Thomas of lowest order defined respectively by

^nc,o = ivh / V X G Th, vh\K e P1(K)yVh is continuous at the middle of each edge,
Vh = 0 at the middle of each edge on dfl} (29)

RT° - [Ph e Hd[v/phlK e RT° (K) VKtTh} (30)

where RT°(K) is the 3-dimensional space

RT°(K) = {P°{K)f + P°(K) [*2 ] . (31)

This scheme is in fact a nonconforming Petrov-Galerkin approximation of the mixed formulation (Pi). Consider
any regular finite element triangulation 7^ (in the usual sense) of the domain ft C M2. The primai Hilbert space
is Hi = Xi x Mi = ü/div x HQ. It is approximated by the space K\ = Xi}h x M^h with

(32)

Since Mlyh = P^C)0 ^ M± = HQ1^ this is a nonconforming approximation. We check easily that H±th =
is a Hilbert space, equipped with the mesh-dependent norm ||(u,;p)||i,h defined by

, (33)

where the discrete energy norm on HQ + P^ c 0 is given by

\^<K) • (34)
KETh )
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Recall that this norm is equivalent to (|u|o,n + ll^lll)1^2 o n ^o + ̂ c,o- The norm ||(w,p)Hi,h extends the one
ofHitoHlih.

Denoting by P° the space of the functions constant in each triangle K, the discrete test space is
K2th = ^2,h x M2)h, with X2,h = OP0)2, M2,h = P°. We have K2jh C ff2. By symmetry with Hlfhi we
dénote H2}h = H2 + î 2,k = #2, and for (u, g) e i?2,/i, we note

< 1 (35)

The FVbox scheme reads now: find (uft , ph) e P^C)0 x iïT0 such that for any (vh , gft) e P ° x (P0)2

\fvh€P°
Vg^e(P0)2 . (36)

The bilinear forms ah: bXih7 b2yh are defmed for uh e P^C)0) vh e P° , ph e RT°, qh e (P0)2 by

a>k(Ph , 9/i) = (PA » ^)o,n , 6i)ft (qh ,uh) = -^2(Vuh, qh)o,K , &2,ft (Ph , ̂ ) = (div p/>, ̂ )o,n- (37)

Defining the continuous linear form m2 on L2 by

(m2, v) = -(/,u)o,n (38)

Problem (Pi,h) can be rewritten as: find (ti^ , p^) E P^c 0 x RT° such that

(ah (ph, qh) + &lih (çfc , O - 0 V ^

\&2,/i (Pft , ̂ /i) = {^2 , Ufc) V^e P°,

or equivalently

Bh[(uh,ph);(vh,qh)} = (L2;(vh,qh)) (40)

where the bilinear form Bh is

Bh[(uhiPh)] (vh,qh)] = ah (P/i, Çh) + bith (qh , Uh) + 52,h (Ph , ̂ ) (41)

and the linear continuous form L2 on L2 x (L2)2 is

(L2ï(v,(/)) = -(/,v)o In. (42)

Let us dénote respectively by iVS, NA, AT̂ 4è, Â Â  the number of triangles, edges, boundary edges and internai
edges. Recall that

ƒ dim Xlth =
\ dimMi,h -\ i,h ATA» , dimM2)h - NE

and that

3NE = NA + iVÂ  = 2iVA - ATA6 (44)
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which is equivalent to say that

dim Xith + dim Mlih = dim X2>h + dim M2)h- (45)

We apply now to this particular case the following gênerai stability and error estimate result for a numerical
method having the form (Mh)- Suppose we are given four fmite-dimensional spaces X i ^ j M i ^ , ^ ! ^ ^
approximating the four Hubert spaces X1,M1,X2,M2 with possibly X ^ ^ XZï M^h gL M%. In addition, we
call Hz = Xz x M l } üTi,/! = -Xi,k x M ^ , and we suppose that the spaces Hlyh = Hz + K%^ are Hubert spaces
equipped with norms \\.\\tih extending to HX}1 the norms of H%. The approximation of problem (M) is: find
(uh , Afc) e X i ^ x M i ^ such that for any vh e X2>h, tth £ M2ih we have

where l2yh , ^^2,h are approximations of Z2 , m2, and a^ , 61^ , 62,ft, a r e approximations of the forms a,b\,b2.
Symmetrically, we introducé problem {M'h) which is the dual problem of (Mh)' find (vh, Mh) ^ ^2,h x M2)^
such that for any Uh £ ^i,ft, A^ G Mi ;^

1 h) \ h,h(vh,\h) = (mhh,\h)M[htMih

where Zi^ , m i ^ are approximations of Zi, mi . In [35], Nicolaides describes this kind of problems in the
conforming case, when in addition ah = CL , b%}h = b%. In [7], Bernardi et al. generalize the work of Nicolaides
to the conforming case but with possibly au 7̂  a, ^,h 7̂  b%. Here, the only différence is that we have to work
in the Hubert spaces Hi^ = H\ + K\th ? H2^h = ?̂2 + ^2 , /D with a possible non-conformity as in [1]. Let us
introducé the discrete null spaces Vi^ , V2^h

M2)h} (48)

M 1 | h } . (49)

The discrete counterpart of Theorem 2.1 is

Theorem 2.4. Problem (Mh) has a unique solution (wft,,A^), with continuons dependence (uniform m h) on
the data (I2,h->im>2,h) £ X*2 h

 x Mf
2 h, if and only if the four following conditions hold

(%)h There exists a > 0 independent of h such that for any Vh £ VI,K

sup ah (uh, Vh) >â\\vh\\x2.h (50)

(il)h dim Xi7h + d i m M i ^ = dim X2>h

(nii)h There exists j3x > 0 independent of h such that

sup bi)h(vh,\h)>~^i\\Xh\\Mlh (51)

(nia)h There exists (52 > 0 independent of h such that

sup 62,h (uh, Mft) > ^2 llMft||M2ï^ (52)
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We skip the proof, since it follows the same lines as the ones m [35], [7]. We note also, as in Section 2.1, that
conditions (i)h -h {n)h on the form ah are equivalent to the dual conditions (if)h + (w)/i, where {i')h is

sup ah (uh, vh) > af \\uh\\Xl>h (53)

with af independent of h. Therefore, the set of conditions (%)h , {i>i)h , ^ i ) / i , (^2)k is equivalent to the set
of conditions (if)h , (n)^ , (itii)h , (w^h and each of these sets is equivalent to the well-posedness of Problem
(Mh) or of Problem (M'h) .

We need now the standard error estimate (called second Strang's Lemma), whose proof is similar to the one
when only two nonconforming Hilbert spaces X^ Mh occur, [8] We dénote

and

Bh [{uh ,

(Lh ;

, fJ>h)} =

- (I2,h ;

we have the following

Theorem 2.5. There exists a constant C > 0 independent of h such that

,M2

(54)

<C

~r Sup

Applying Theorem 2 4 and Theorem 2.5 to discrete problem (Pi,h), we obtain the following proposition, which
summarizes in a concize way the result of [22]

Proposition 2.6. (a) Problem (Pi}h) has a unique solution (uh , Ph) € PnC,o x ^ ^ ° s u c ^ ^ a *

+ ||Ph||div)n<C7|/|o,n (56)

For ƒ G ff1 (fi), i/ie solution (un,Ph) vérifies the error estimate

\\ f \\^n (57)

where C stands for a constant independent of h.

Proof The spaces X\^ M±yh are specified in (32). Moreover, X2,h = (P°)2y M2)h = P°- The bilinear forms a^
hth, b2ih, Bh are given in (37), (40) The forms Z2,/i, rn2th are given by {12IH , 9ft) = 0, (m2yh , vfc) = -(ƒ, Vfc)o,n.
This gives \\m2th\\ < 1/|o,n.

(a) According to Theorem 2.4, we check now the conditions (i)hi {w)hi (ÏMI)/I, (̂ ^̂ 2)̂  for the forms ah , bi,/i, b2ih •
• (i)h: The spaces V\^ , V̂ .h are

Vlth = {Pe RT° I (div p, v)Oln = 0 V . e P 0 } (58)

(P 0 ) 2 / (59)
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The dimensions of these spaces are

dim Vlth = dimXi^ - dimM2,h = NA-NE (60)

dim V2jh = dimX2,h ~ dimMhh - 2NE - NA%. (61)

Therefore, due to (44), dim Vith = dim V ^ . We prove now that in fact, V\^ = V2ih • Suppose given p G V\th-
Then, div p\x = 0 for any K G 7^, therefore p G (P0)2 . Moreover, for any u G i^Cj0)

(p, V u)o K — — y] (div p, U)Q K + /_] / (p • ̂ ) ti da (62)
K ' K JdK

(p • v) u da = — \ J / (p • i/a) [u] da. (63)
„ c: A J a

where [u] stands for the jump of u in the direction of i/a. (On dü, we put [u] — —Uinside)- Since p e X±th C i^div,
(p • i/a) is constant along each edge a. Moreover, since u is continuous at the middle of each edge, the average
of [u] along a is zero. Therefore (63) = 0, which gives that p G V2}H- This proves that Viyh C V2jh • By equality
of the dimensions, we obtain

Vhh = V2,k - Vh. (64)

Consequently, || ||div,n coïncides on Vh with | |o,n- Therefore the condition (ih) holds because we have for any
q e vh

sup (p,q)o,n = klo,n- (65)

• (ii)h'- Condition (ii)h is just (45).

• (Hii)h- We have to prove that for any u G

sup &i,/i(<?,w) > j31 \\u\\h- (66)

Taking p = ——: y ] VÎX|X I K W , we get

sup 6i)h (ç, u) > 6life (p, u) = ||u||h (67)
ge(P°)2,k'

which proves the resuit.

t: This is the well-known inf-sup condition of the standard mixed method of Raviart-Thomas for the
couple of spaces (v,p) G P° x RT°, Le.

sup 62,^ (p, v) > (32 b|o,a- (68)
peRT°,\\p\\d

We refer to [36] for the proof.
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(b) We prove now the error estimate (57). We deduce from Theorem 2.5 (see (41), (42) for the notation), that:

\\u-uh\\h + |b-Pfclldiv.fi <C { inf [ \ \ u - u h \ \ h + I b ]
[ (ü)eP^RTQL

P) ; (vh, g/i)] - (^2 ; ( ^ , qh))\

Since p = Vu and divp + ƒ = 0, we have for any {vhAh) £ P° x (P0)2,

qh)o,K + (div p , ^)o,n 4- ( ƒ ; Vh)o,n = 0.

Thus, the error method vanishes. Finally, the standard estimate of the interpolation error, [8,36]

inf \\u - üh\\h + inf \\p - ph\\div,n < Ch \\ ƒ ||1>n (70)
üePi PGHTO

yields the resuit. D

2.3. The dual FVbox scheme

We consider now discrete problem (P2,&)> dual of (Pi,h)) connected with the mixed formulation (P2): find
(vfc, gh) e P° x (P0)2 such that (see (47)) for any (ph , uh) € Xljh x M i ) h

{ Y ] ( uh , ^)0)i<: = - ( ƒ , uh)o& Vuh e P^C)0

^ (71)

+ °
(P2 h) can be rewritten, with the help of the form Bh', find (VH , Qh) € P° x (P 0 ) 2 such that for any
G P^C 0 x °

Bh [(uh , Ph) ; (vh , gft)] = (^i,/i, («h , P/t)) (72)

where the linear form L^h £ H{ h is defined for (uh,Ph) £ #i,/i by

»W/I)M' ;M, h +<^ 'Pfc>X' ;X 1 . (73)
1re ' l n l n ' l /i

with {mlyh,uh)M' M = -(/,Wh)o,n and {h^lh)x' >x = °- Recall that (v,g) G L2 x (L2)2 is the
1,h. ' l ,h, 1,H ' 1 ,/i

solution of the dual Problem (P2). We have (v,<?) = (u,p) where (u,p) is the solution of the primai Problem
(Pi). Symmetrically to Proposition 2.6, we have the following result
Proposition 2.7. (a) Problem {P2,h) has a unique solution (VH , Çh) € P° x (P0)2 such that

\vh\o,n + \qh\o,n<C\f\o,a. (74)

with C independent of h.
(b) This solution satisfies the error estimate

\v - vh\o,n + |g - Qhlo.Q < Ch | ƒ |o,n. (75)

ïift C independent of h.
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Proof. (a) By Theorem 2.4, a set of necessary and sufficient conditions in order for Problem (P2,h) to be
well posed are conditions (if)h •> (ii)h > ( ^ i ) h j (2^2) h • It results from the remark following Theorem 2.4, that
conditions (if)h , (ii)h are equivalent to (m)/i , (iv)h, which are true by Proposition 2.6. We conclude by verifying
that | |mi ï h | | <C\f\Oin.
(b) From Theorem 2.5 applied to (47), we have the error estimate

\v - Vh\oyn + \q- Qh\o,n < C j ^

SUP I " » K » » . W ; » . « I ^ . ^ W / l l ( 7 6 )I
Estimât ing the consistency error, we have for any (üh , Ph) £ -PnC)o

 x

Because X i ^ c iïdiv» we have, in view of (6)2,

(Ph > s)o,n + (div p h , v)OiQ = 0 V ^ G RT°. (78)

Therefore, since q is in fact in Hdlv,

. Î q)o,K + ( ƒ > ü^)o,n — 2^f ^h > ^ v ^ K ^ + ( ƒ ' üh)o,fi — 2^- / üh(q- v) da
K K K

= -Y Y f üh(q-u)da + (üh, divq + f)o,a- (79)
J e

The second term in (79) is zero in view of (^2)1- The first term in (79) is rewritten as (Ai is the set of the
internai edges, and Ab the set of the boundary edges)

f [üh] (q • va) da - ^2 / üh (q • va) da. (80)

By the continuity of üh at the middle of each edge, and since üh (xa) = 0 for xa the middle of an edge a on <3Q,
we have (recall that üh\a is affine)

ƒ [üh]da = 0 ; ƒ ühda^0. (81)

Therefore, denoting by ü^u i = 1,2, the traces of üh on each side of the edge a, and by n a ü ^ the common
mean value of ü ^ i , üh,2 along the edge o, we obtain that (80) can be rewritten as

^h,2 — ITa üh) (q ' va) der — / (uhti — Haüh)(q • va) da — VJ / (ü/^i — Ua üh) (q • i/a) da. (82)
Ja J aeAb^

a

Thus, by Lemma 3 of [24], we get for each internai edge a e Ai

J [üh] (q • va) da\ < Ch [ \q\ltKl \üh\liKl + \q\lfK2 \üh\ltK2] (83)
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and for each boundary edge a e At

| ƒ üh {q • Va)àa\< Ch\q\ltKl l ^ l i^ i (84)

where a is oriented from K\ towards K2, and C is a constant independent of h. We deduce flnally from (83),
(84) by the Cauchy-Schwarz inequality the estimate

\Bh[(ühiph)\ (v,q)] -(Lith; (üh , ph)}\< 3Ch \q\i,a\\üh\\h.

which gives the following estimate of the consistency error in (76)

\Bh[(üh,ph) ; {v,q)] ~ {Liyh ; (üh>Ph))\ / o / , , | «
7-——y < 3 Ch\q\ltçi.

For the interpolation error, we have the two standard estimâtes

inf \v-vh\oyn<Ch\v\i}Q] inf \q-qh\o,n < Ch\q\ltQ.
vheP° qe(P°)2

Since \v\itn < \\v\\i,n < | ƒ |o,n , \q\i,n < \f\o,n we get t he result . •

2.4. Second order error estimate

In this section, we dérive an O (h2) error estimate in the L2 norm for \u — Uh\o,n- Such an estimate makes use
in the standard conforming finite element method of the Aubin-Nitsche argument. Recall that this argument
leads to an estimate like

\u - uh\o,n < C\\u - UhWifr \\v - Vh\\i& (85)

where v, Vh are the continuous solution and discrete approximation of an adjoint problem. Therefore a first
order error estimate in the Hl norm for u and v yields the second order convergence of \u — Uh\o,n- Here, we
follow the same principle.

Theorem 2.8. The solution Uh E i^c,o of the FVbox scheme (Piyh) satisfies the second order error estimate

\u-uh\o,n<Ch2 \\f\\ltn. (86)

where C is independent of h.

Proof We follow the same principle as in the pro of of the second order error estimate for the standard noncon-
forming FEM method in P^cQ, [8].

We start from

\u-uh\OtQ= sup ^ n
 J~^— (87)

2 ^ 0 \9\0tSl

To each g G L2(Çl), corresponds the solution (v* , qS) e L2 x (L2)2 of Problem (P2)9

Bh [(u,p) ; (v* , q3)] = -(ff,u)o,n V(u,p) € H£ X tfdiv (88)

which is also the unique solution in H$ x H^w of

BhW,q<>);(v,q)] = -(g,v)o,a V ( M ) e i 2 x(L 2 f . (89)
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We dénote by (v9
h , q

9
h) e P ° x (P 0 ) 2 the discrete solution of Problem (P2jh)9

Bh [(u,p) ; K , €)\ = -(0,ü)o,n V(ü,p) e P ^ o x «T°. (90)

In addition, recall that (u,p) e H$ x iJdiv and (uu^Ph) e P^C)0
 x ^tT° are solutions of the continuons and FVbox

problems (4), (36).
For any g € L2 , we have

- ( « - uhyg)Otn = Bh [(u,p) ; (v9 , ç5)] - B^ [(uh,ph) ; K . <fh)\

Since ( ^ , q9
h) G P° x (P 0 ) 2 C L2 x (L2)2 , we have (III) = 0, by subtracting (36) from (4). Moreover, we

deduce from the two standard error estimâtes (57), (75) that

h (91)

< Ch2\g\Otn\\fh,n- (92)

Finally, we have for ( / / ) ,

Since ^ ^ ( p ~~ I>h ' Q9)O>K
 = (P ~ Ph> V?;9)o,ri = — (div(p — p^) , ^5)o,Q, we obtain

K

-(II) = - ^ ( V ( u - u h ) , gp)0)/c + (g, w - wfc)o,n (93)

and by the Green formula on each triangle K

— (II) ~ — y j / (u — Uh)(qg.v) da = ^ J [u — Uh](q9'-va) da. (94)

Calling n a the averaging operator on the edge a, we have [u — Uh] = [u — Uh] —Ïia([u — Uh])y since [u] — 0 and
na[u f t] = 0 . Therefore

K

Finally, we get the estimât e

(95)

(96)

Dividing (95) by |g|o,n and taking the suppremum on g / 0, we get the desired resuit. D
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3. FURTHER REMARKS

3.1. Comparison with the nonconforming method

The standard nonconforming method for (3) is: find üh € P^c o such that

^(Vüfc, Vvh)0,K = (ƒ, vh)Otn Vvh G Pn
x

C)0. (97)
K

For (97), the two following error estimâtes hold, [8]

||« - üh\\h < Ch\ƒ|o,n \u - üh\QyQ < Ch2\f\0)n. (98)

Denoting by II the orthogonal projector form L2 onto P°, we have that Uh in (Pi,h) is the following modification
of (97).

Proposition 3.1. The function UH in (Pi,h) w the solution of the scheme: find Uh G PnC,o suc^ that

^ ( V w h , Vvh)otK = (n / , vh)o,n Vufc G P^Cj0. (99)

Proof. Taking q^ = Vvh in {Pith) in (36), and taking in account that divp^j^ is constant, we obtain

h)0)K ~^2 (Ph-v)[vh\ d c r = - ^ ( d i v p h , n vh)0,K (100)
a ^a KK

= (J,nüh)oift = ( n / , 4 > n . (101)

D

Note that we can deduce from Proposition 3.1 that \\u — Uh\\h < Ch\f \o,n} which is better than (57). (The
bound || ƒ ||i,si is due in (57) to the interpolation error for p^.) However, the second order error estimate deduced
from (99) is identical to the one in Theorem 2.8.

3.2. Comparison with the mixed method

The question arises naturally about the link between the FVbox solution (uh > Ph) of (Pi,h) a n d the solution
(üh iPh) °f ^ n e standard mixed method of Raviart-Thomas. Recall that bot h ph , p^ belong to the same space,
namely the space RT°. In addition, calling II ̂ ^ the orthogonal projection onto the space P° of a function
vh ^ PnC)0' ^ ^s interesting to compare üh and Tluh- We have

Proposition 3.2. (%) p^ —ph^ In other words, ph coïncides with the approximate gradient of u provided by the
mixed method.
(%%) We have

uh = n uh + - £ ( n ƒ )KP
2

KIK (102)
K

where px ts the gyraüon radius of K defined by \K\p\ — \gK~£\ojK
 an^ 9K ts *^e barycentre of K.

Proof. (i) The mixed scheme is: find (üh , Ph) G P° x RT° such that:

f (div ph + f, ö)Oln = 0 V v € P°

\(Ph,q)o,ci + (üh,dwq)o,a = 0 V? € RT°
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whereas the FVbox scheme is: find (uh , Ph) G P^c 0 x RT° such that:

' (div ph + ƒ , v)0,n = 0 \fveP°
(104)

h , q)o,n - T.K ( V ^ , q)o,K = 0 Vç G (P0)2.

Defining p G /t!T0 by p = ph — Phi w e Se^ by subtracting (103)i, from (104)i,

(div p, v)0,n = 0 Vv£P° (105)

therefore p e l 4 , the common null space of the bilinear forms bith , >̂2,̂ , (see (64)). Recall that this space is

Vh = {Ph e RT°/ (div ph ,vh)o,n = 0, Vt/ f ceP°}

= RT°n(P0)2.

Therefore, subtracting (103)2 from (104)2, we get for any q G V :̂

{p, g)o,n = J ^ (V w^ , g)OjJftr + (ïïh , div q)0,n = 0. (106)
K

Taking q = p, we obtain p = 0, that is Ph=Ph-

(ii) For any £ G iïT0 , we estimate now (II it^ , div g). We have

(Iluh , div g)o,n = (uh , div g)0)n = -(Vti^, g)Oln - ^ ƒ [u/̂ Kg • z/a) (107)
ae A J a

The second term in the right hand side of (107) vanishes (q * va is constant on CL). NOW, denoting gK the
barycentre of the triangle K, we have the two following identities

J2 (div *)^ ̂  ^̂  (108)

= ph - - ^2 (divph)^9K% ^K (109)

We deduce from (108), (109) that the first term in the right hand side of (107) is

( V ) ( £ ) ^2 (di
2 K (divq)K \gïrà\oiK' (no)

K

Defining the gyration radius pK of the triangle K by \K\ p2
K = \gW^\l^K, [cf. [5]), we deduce from (107), (110)

and from (divp^)j^ = (J^Î)K that

Uuh + 7 ^ ( n / ) ^ p | c l K , divg ) + (ph, g)0,n = 0 Vg G iîT°. (111)
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It results from (103) that

üh = Huh + - Y^(Uf)KP2
KtK (112)

K

We deduce easily from (112) the estimate \Tluh — üh\o,n < C7I 2 | / | 0 ,Q . D

3.3. Comparison with the Lagrange multipliers method
In [2], Arnold and Brezzi describe an interprétation of the mixed method of Raviart and Thomas based on

the relaxation of the divergence conformity of the RT° (K) element by means of a Lagrange multiplier on each
edge. See also [12]. Let us describe briefly the method. We need only the lowest order version in the sequel.
We call TZTQ the finite element space constructed as

n% = {Ph(x) = J2 PK\K(X) ^K (X) IVK\K e RT° (K)} (113)
K

We have dim(7ZT0) = 3NE, and RT° = 71% n #div The space of Lagrange multipliers is the set of functions
defined only on the edges A. The lowest order version is simply the functions constant on each edge a G A

So ={Xh{x) = Xa}x^a,ae At} (114)

The scheme is: find (üh , Vh > ~^h) e P° x TZT0 x S^ such that for any (5, q, jl) G P° x TZTQ X <S§

Ph + f> v)oiK = 0
K

(f h ; Q)o,n + ̂ 2 l&h , div q)OtK - Jh (q • v) da] = 0
K

K Jd

K

A {Ph • v) = 0-

System (115) has a unique solution (uh, ph , Xh) € P° x 7Z% x SQ. Moreover (uh , Ph) € P° x RT° is the
standard mixed solution of (103). We may now lift the function (üh , À )̂ in an approximation ûh lying in a
space of higher précision than P°. Two choices are presented in [2]. The first one is simply to take üh € P^c
such that

Kaûh = \Ka Va e Ai. (116)

The second one is to take üh £ N ~ P^c + B^ where B3 is the "bubble" space

B3 = {uh f uh{K G Vect (Ai (x) A2 (x) A3 (x)) , ^ 4 (117)

The lifting üh is uniquely defined by

UK uh=üh] IIa uh = Aft,a. (118)

IIa and UK are the orthogonal projections onto the constants in L2(K) and L2(a). In fact, it can be proved,
that the lowest order version of the FVbox scheme coincides with the lifting (116).

Proposition 3.3. The solution (uh, Ph) of the FVbox scheme (P\,h) coincides with the (üh , Ph) solution of
scheme (115), where üh is the P^c interpolation (116).
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Proof. Recall that ph — Phi where ph 6 RT° is the solution of the mixed method. For any q (E 7Z1Q: q • v is
constant along each edge e € dK. Therefore it is sufficient to prove that (uh , Ph) vérifies, for any q G

(Ph , q)o& + Yl I (^h ' d i v Q)O,K ~ uh{q-v) dal = 0. (119)

Since q{x)x = (n£)/c + | (div^^É/S7^, we have

XV

K l V K

Replacing p^|^ by its value ph\K = ( n ^ ) K - | ( n / ) K ^ ^ we find

[

K

Using (102) we obtain finally

' d i v
 Q)°*K ~ [ uh(v-v) dcr l - i Y, \K\(Uf)K{dwq)Kp2

K

K,àivq)OtK- f

(Ph , g)o,Q = - y ^ \(üh , div g)0,K - / uh(q-v) der | (120)
^ L ^ôic J

which is the desired resuit. D

3.4. Final r e m a r k

In this paper, we have emphasized the mixed Petrov-Galerkin structure of the scheme introduced in [22].
This structure allows to deduce the numerical analysis of this scheme from the standard theory. This approach
may also be applied to schemes of the same kind with different choices of the four spaces X L ^ , X2ih, Mi^, M2ih-
Another possibility is to eliminate ph locally in each cell, and to obtain the error estimâtes for Uh from the
scheme (99). The error estimate for ph is deduced afterwards, as in [22], from the local représentation formula

VKK = VuhiK - \K\ (Uf)K PK(x) (121)

where PK(x) = 2[k\9K~%'
Let us mention finally that the method given by Marini, [33], for Computing the mixed solution (üh,ph) of

Raviart-Thomas (103), amounts precisely to compute the solution uu in (99) and to express afterwards pn by
(121). The key point of the present paper is that this a posteriori interprétation is nothing but the FVbox
scheme (36). This scheme has the advantage to give a direct access to an approximation (uh,Ph), affine per cell,
without any référence to the mixed method.
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