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FINITE VOLUME BOX SCHEMES AND MIXED METHODS

JEAN-PIERRE CROISILLE!

Abstract. We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin
finite volume schemes for equations in divergence form div ¢(u, Vu) = f. The first scheme, which
has been introduced in [22], is a generalization in two dimensions of Keller’s box-scheme. The second
scheme is the dual of the first one, and is a cell-centered scheme for v and the flux ¢. For the first
scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the
primal unknown u and the div-conforming space of Raviart-Thomas for the flux ¢. The two test spaces
are the functions constant per cell both for the conservative and for the flux equations. We prove an
optimal second order error estimate for the box scheme and we emphasize the link between this scheme
and the post-processing of Arnold and Brezzi of the classical mixed method.

Résumé. Nous effectuons ’analyse numérique pour le probléme de Poisson de deux schémas volumes
finis mixtes de type Petrov-Galerkin pour des équations sous forme divergence div p(u, Vu) = f. Le
premier schéma, qui a été introduit dans [22], est une généralisation & deux dimensions du schéma boite
de Keller. Le second schéma, dual du premier, est de type “cell-center” pour u et pour le flux . Dans
le premier schéma, les deux espaces d’approximation sont l'espace non conforme de Crouzeix-Raviart
pour ’inconnue primale u et 'espace de Raviart-Thomas pour le flux ¢. Les deux espaces test sont les
espaces des fonctions constantes par cellule, a la fois pour ’équation conservative et 1’équation du flux.
Nous prouvons une estimation d’erreur optimale en O(h?) pour le schéma boite et nous mettons en
évidence le lien entre ce schéma et le post-processing d’Arnold et Brezzi de la méthode mixte classique.
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1. INTRODUCTION

In this paper, we perform the numerical analysis of two finite volume schemes for conservative equations.
The first scheme is a “finite volume box scheme” introduced in [22]. This kind of scheme originates in the
pioneering paper by H.B. Keller [31], where the basic principles of box-schemes are introduced on the model
problem of the 1D heat equation. In the lowest order version, these principles are, for a problem in divergence
form like div p(u, Vu) = f, firstly to use degrees of freedom located on the faces of the mesh (the edges in two
dimensions) both for the unknown u and the flux ¢ , secondly to build the discrete equations by averaging the
continuous ones onto “boxes”. In this sense, they are finite-volume schemes, that is, schemes ensuring a local
conservation property at the level of the mesh.

Beside a direct use of Keller’s scheme for variants of 1D heat equations in some works, [27,34], two types of
“box-schemes” are known in the literature.

Keywords and phrases. Box method, box scheme, mixed finite element method, Petrov-Galerkin method, finite volume method.
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The first one has been introduced in computational fluid dynamics, especially the compressible Euler equa-
tions. The main idea is that locating the conservative unknowns (density, momentum, energy) at the center
of the faces of the mesh is very natural in order to build a scheme discretizing both the conservative and the
flux equations at the level of a single cell. We refer to [14-17,19-21,41,42] where numerical results on Euler or
Navier-Stokes equations are presented.

Another kind of box scheme is known under the name of “box method” or “finite volume element method”.
The design of this scheme is similar to the one of the so called “cell-vertex finite volume method”, (see e.g. [28]).
The unknown u belongs to a finite element space such that P! or Q*. The discrete equations are defined from
averaging the continuous ones onto a dual box surrounding each vertex. We refer to [4,13,30,32,37-39] and the
references therein.

The scheme introduced in [22] for the 2D Poisson problem on a triangular mesh is a Keller-like scheme.
Contrary to [15,16,19] where a finite differencing interpretation of the discrete unknowns is used, a finite
element interpretation of the degrees of freedom is introduced. On a regular FEM triangulation 7, by triangles
K, the mixed form of the Poisson problem

divp+ f=0 inQ
p—Vu=0 in © (1)
u =0 on I

is approximated by the finite volume scheme (called FVboz in the sequel): find (up, pn) € P,,}C:O x RT° such
that

<dinh+f,IlK) =0 VKeT,
<ph—vuh,]1}(>:0 VKeT, (2)
up =0 on 9.

In (2), P}, is the nonconforming space of Crouzeix-Raviart, [24], with homogencous boundary conditions, and
RTY is the div-conforming space of Raviart-Thomas of lowest order. Note that the coupling between these two
spaces is unusual in the classical variational mixed methods theory, [8,9,11,29], because this couple of spaces
does not satisfy the Babuska-Brezzi condition.

The aim of this paper is to prove that the numerical analysis of (2) can be simply performed by using the
classical theory of the mixed Petrov-Galerkin approximations, [6,7,35]. For simplicity of the notation, we restrict
ourselves here to the academic Poisson problem in two dimensions, but generalizations to the 3D case or to
more complex conservative problems are possible.

The outline of the paper is as follows. In Section 2 we introduce the mixed formulation of which the “FVbox”
scheme is an approximation. In fact, this formulation generates also a second scheme, (called “dual FVbox”),
which is a cell-centered finite volume scheme for the couple of unknowns (u, Vu), and which is also apparently
new. We verify that the theory of nonconforming mixed approximations applies to the two schemes. A second
order estimate is derived in Section 2.4 for the FVbox scheme, using an Aubin-Nitsche argument. Finally, we
prove in Section 3 that the FVbox scheme coincides in fact with one of the post-processings of Arnold and
Brezzi of the classical mixed method [2], or equivalently, with the a posterior: interpretation of Marini [33].

Let us mention finally that several recent papers deal with the numerical analysis or the design of cell-
centered finite volume methods with the help of the mixed finite element theory. A first kind of works, [5,25,43]
is devoted to the a posteriori interpretation of the standard mixed solution uy as a cell-centered finite volume
method. In [40], a new mixed finite volume method, different from the present one, is introduced and analyzed
by the mixed Petrov-Galerkin theory. Finally, for a numerical analysis of the cell-centered finite volume method
without reference to the FEM analogy, we refer to the exhaustive study [26]. See also [18].

This work was announced in [23].
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2. NUMERICAL ANALYSIS OF THE FVBOX SCHEME

2.1. Two mixed forms of the Poisson problem

We consider the bidimensional Poisson problem in mixed form in a bounded domain Q C R?

divp+ f=0 in Q
(M) p—Vu=0 in (3)
u=0 onto 912.

Let us recall some standard notation. We denote by L? the Hilbert space of square integrable functions
on , equipped with the norm |uloq. H L H? are the standard Sobolev spaces equipped with their norms
lull, = (Julg o + [Vuld o)*/? and |lul, = (lul? o + [D?ulf o)*/?. H} is the Hilbert space of functions u € H*
having a null trace onto dQ2. The semi-norm [u|, o = |Vulo,q is a norm on Hj equivalent to |lu[|;. Finally
Hyg;y is the Hilbert space of bidimensional vector fields p € (L2)? such that divp € L?, equipped with the norm
[Plaw = (23 + divpld o).

If f € L? and Q is C? or convex, this problem has a unique solution v € H} N H? which verifies
lull2,0 < Clflon-
We do not address here the well-known mixed formulations with unknowns (u,p) € H{ x (L?)? or
(u,p) € L? x Hg;y, which are the continuous framework respectively of the classical conforming (or nonconform-
ing) method and of the mixed method of Raviart and Thomas.

The two mixed formulations that are needed in the sequel are of Petrov-Galerkin type, that is, they use two
different Hilbert spaces as primal and dual spaces. The first one is: find (u,p) € H} x Hgiv such that

(div p+ f,v)0,0 =0 VovelL?
(F) { (p—Vu, Q)O?QQZO Vg € (L?)2. (4)

Note that this formulation is also introduced in [40]. The second-one is the dual of (P;). It reads: find
(v,q) € L? x (L?)? such that

(P ) _(vu: q)O,Q + (f) u)O,Q =0 Yu€ Hol (5)
: (p7 q)O,Q + (le D, 7))O,Q =0 Vp 1S Hdiv-

These two formulations are connected with the bilinear continuous form Bl(u,p); (v,q)] defined for
(u,p) € Hy = H} x Hayy, (v,q) € Hy = L? x (L*)? by

Bl(u,p); (v,0)] = a (p,q) + b1 (q,u) + b2 (p,v) (6)
where a is the continuous bilinear form defined on Hg;, x (L?)? by
a(p,q) = (p,q)o,0 (7)
and b , by are the two forms respectively defined for (u,q) € H} x (L?)? and (v,p) € L? x Haiy by
b1 (g,u) = —=(Vu, @oa, balp,v) = (divp, v)oa. (8)

We recall now briefly the following abstract result due to Babuska [3], Brezzi [10], Nicolaides [35], Bernardi
et al. [6,7], devoted to the abstract formulation of mixed problems. Suppose given four Hilbert spaces

(Xl 3 ( ')Xl): (X2 s ( ')Xz)v (A"?"Il H (': ')1\/[1) 3 (E\"{? ) ( b ')iuz) (9)



1090 J-P CROISILLE

and

(a) a continuous bilinear form a (-, -) : X7 x X3 — R;

(b) two continuous bilinear forms by (-,-): Xo x M7 — R, ba(,+): X1 X My — R. We call H;, Ha, the Hilbert
spaces Hy = X7 X My, Hy = X9 x M, equipped with the norms

I, Ml g, = (lull%, + IAl3,)*2 (10)
I, i)l g, = Uol%, + Nulla, )2 (11)

The null spaces V7 C X, Vo C X3 are defined by

%Z{UGX1|b2(u,ﬂ)=0 V,UIEMQ} (12)
‘/QZ{T)EXQ | b1 (1),/\):0 VAEMl} (13)

For any ls € X}, my € M}, we consider the abstract Problem (M): find (u,A) € X3 x M; such that

(M {a(u, ”U) + by (’U, )\) = (lg s U)Xé , X2 Vv e Xq (14)

be (u, p) = (ma, /L)Mg,M2 Yue M.

Theorem 2.1. The Problem (M) has a unique solution (u,\), with continuous dependence on the data
(l2,m2) € X4 x M, of and only of the four following conditions hold:

(x) The bilinear form a s such that for any v € V,

sup a(u,v) > avlx, (15)
u€V1,||u||x1 <1

where o > 0.
(v) For any u € V4

Vv eV, a(u,v)=0=>u=0 (16)
(w11 ) There exists B1 > 0 such that for any A € M,

sup b1 (v, A) 2 B [ Allany (17)

VE X2, |[vilx, <1

(v12) There exists B2 > 0 such that for any p € Mo

sup b (u, 1) > B2 ||l ae (18)

u€X1,|lullx, <1

In addition, the conditions (3), (1) are equivalent to the dual conditions (2’), ().

(+’) The bilinear form a is such that for any u € V3,

sup a(ua U) 2 alnunxl (19)
"-’EV2:”'U||X2S1

where o > 0.

(w’) For any v € Va,

VueV, a(u,v)=0=v=0. (20)
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Another couple of equivalent conditions is (2)+(2’). Therefore, the Problem (M) is well posed if and only 1f, for
any (1, m1) € X x Mj, so 1s the dual problem (M’): find (v, p) € X3 x M2 such that

(M) {a(u,v) +bo (u,p) = (L, w)x1, x, Yu€ X1 (21)

bl(’l),>\)2<m1,>\>M{,M1 Ve M.

The well known particular case of Theorem 2.1 is when X; = Xo = X, My = My = M, by = by. In this case,
the two null spaces V;, V, are identical and coincide with the space

V={ueX/bu,A\)=0,Vie M}. (22)

Conditions (), (w), (wn 2) for well-posedness of problem (M) reduce to
(x) YueV, sup a(u,v) > a |ullx

veV,|lvllv<1
(v) foranyveV, a(u,v)=0 VueV=v=0

() VAeM, sup b(u,A) > B Mlar (LBB condition).
wEX, flul|x <1

If the bilinear form a is symmetric, the conditions (2)+(11) are clearly equivalent to the condition (3) alone.
Furthermore, a sufficient condition in order to have (1)+(12) is the coercivity of the form a restricted to the
space V x V, we.

(v) a(u,u) >alullyk YueV.

We apply Theorem 2.1 to the two Problems (P), (P2) with the bilinear forms a, b1, b2 defined by (7),(8). The
Hilbert spaces are

Xl = Hd]V) X2 = (L2)2= Ml = H&) M2 = L2 (23)

equipped with their natural norms.
Proposition 2.2. The bilinear forms a, by, by fulfill the conditions (v), (w), (vu ), (1) of Theorem 2.1.

Proof. The two properties (w1 ), (1) are precisely the (LBB) conditions for the couples of spaces
(X,M) = ((L?)?, H}) and (X, M) = (Hgaw, L*) which are true, [8]. Furthermore, the two null spaces Vi,
V2 defined by

Vi={p€ Hy/(divp,u)oa=0 VucL?} (24)

Va={pe(L®?/(p, Vu)oao=0 VYuc H}} (25)

are identical and reduce to the space V' of square integrable vector fields, with null divergence in the space of
distributions D’'(Q)%. For p € V, a(p,p) = |pl3 o = IIpl|3,y - Therefore, the restriction of the form a to V. x V'
is coercive, which gives the result. O

We deduce from Theorem 2.1 the following result.
Corollary 2.3. For any f € L2

(1) there exists a unaque solution (u,p) € H} x Haw of (P1) such that

lullne + [Pllaw.e < Criflog (26)
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(i1) there exists a unigue solution (v,q) € L? x (L?)? solution of (P) such that

[vlo,e + |glo,o < Calf

0,Q- (27)

In addition we verify immediately that since H; = H} x Haiy C L2 x (L?)? = H, with dense injection, and that
Bi#, xn, is symmetric, the solutions of the two problems (P,), (P;) are in fact in Hj X Hg;y and coincide with
the unique solution (u, Vu) € (Hg N H?) x (H')? of Problem (M).

2.2. The FVbox scheme of lowest order
In {22], we introduced the following finite-volume scheme for the Poisson problem, called here FVbox scheme

for simplicity: find (un, pr) € Pa, o % RT? such that

(divpr, + f,1g) =0 VKeT,
(pn — Vun,lg) =0 VKT, (28)
up, =0 on 02

where Péc,o is the nonconforming space of Crouzeix-Raviart with homogeneous boundary conditions, and RT°
the div-conforming space of Raviart-Thomas of lowest order defined respectively by

Pﬁc’o = {vn/V K €Th, vy € P'(K),vs is continuous at the middle of each edge,
v, = 0 at the middle of each edge on 9§} (29)
RT® = {ph € Ha /P € RT°(K) VK € 771} (30)

where RTY(K) is the 3-dimensional space
1
RTO(K) = (PP + P | 5 | (31)

This scheme is in fact a nonconforming Petrov-Galerkin approximation of the mixed formulation (P;). Consider
any regular finite element triangulation 75 (in the usual sense) of the domain  C R?. The primal Hilbert space
is Hy = X1 x My = Haiv x H}. It is approximated by the space K} = X1 5, x My with

X1h=RT®, Min=Ph,. (32)

Since M, j, = ch,o ¢ M, = H}, this is a nonconforming approximation. We check easily that Hy p, = Hy + K15
is a Hilbert space, equipped with the mesh-dependent norm ||(u, p)||1,» defined by

1w )l = (lullf + 1Pl 0)' 2 (33)

where the discrete energy norm on Hj + P2, is given by

1/2
ulln = ( > IVUI?),K> : (34)

KeTy
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Recall that this norm is equivalent to (|u[? ¢, + [u]|3)!/? on H§ + P, ,. The norm ||(u,p)|l1 » extends the one
of Hy to Hyp.

Denoting by P° the space of the functions constant in each triangle K, the discrete test space is

Kop = Xon X Map, with X, = (P%)2, Msp = P°. We have K2, C Hs. By symmetry with Hyp, we
denote Hy p, = Hy + Ko p, = Hs, and for (v, q) € Ha p, we note

1o, @)ll2,n = ([vld @ + lal§ )"/ (35)
The FVbox scheme reads now: find (un, pn) € Pa. o x RT? such that for any (v, gn) € P° x (P?)?
(divph + f, 'Uh)()@ =0 Yoy, € PO

(Pl,h) Z(ph — Vuh,qh)o,K =0 th S (PO)Q. (36)
K

The bilinear forms an, bi,h, bz » are defined for up € P o, vn € P°, pn € RT®, g, € (P%)? by

an(pn, gn) = (Pr, @)oo > bun(gn, un) ==Y (Vun, gn)ok , bap(Pn, va) = (div pa, va)oe.  (37)
K

Defining the continuous linear form mg on L? by
<m2 > U) = _(fa U)O,Q (38)

Problem (P ) can be rewritten as: find (un, pn) € P, o x RT? such that

{a'h (on, qr) +b1p(gn, un) =0 Vg, € (P°)? (39)
ba.p (Pr, vn) = (M2, vp) Yy, € PP,
or equivalently
Br[(un,pn); (vn, qn)] = (L2; (Vh, qn)) (40)
where the bilinear form By, is
Br[(un, pr); (v, qn)] = an (Pr, gn) + b1,n (qn , ur) + bo,n (Ph 5 k) (41)
and the linear continuous form Ly on L? x (L?)? is
(L2; (v,9)) = —(f,v)o,0- (42)

Let us denote respectively by NE, NA, NAy, N A; the number of triangles, edges, boundary edges and internal
edges. Recall that

dim X, , = NA , dim X, , = 2NE (43)
dimﬂ/.fl,h = NA,; s dim f\{[g’h =NE

and that

BNE=NA+NA;, =2NA—- NA, (44)
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which is equivalent to say that
dim Xl,h + dim ‘(Mlgh = dim Xg)h + dim IWQ,}L. (45)

We apply now to this particular case the following general stability and error estimate result for a numerical
method having the form (Mp). Suppose we are given four finite-dimensional spaces X1 n, M1 n, Xon, Map
approximating the four Hilbert spaces X1, M1, X2, My with possibly X, ¢ X,, M, » £ M,. In addition, we
call H, = X, x M,, K, = X,n» X M, ,, and we suppose that the spaces H, = H, + K, » are Hilbert spaces
equipped with norms ||.||., extending to H,j the norms of H,. The approximation of problem (M) is: find
(un s An) € X1,n X My p such that for any vy, € Xon, un € Mz, we have

(My) an(un,vn) + bia(ve, An) = (zh,vn)x), x,, (46)
h b2 h (’u,h 5 [l,h) = (m2,h ) ,u’h>M; noMy

where la p,, man are approximations of Iy, ma, and an, b1 n, bap are approximations of the forms a, by, bo.

Symmetrically, we introduce problem (M,Il) which is the dual problem of (My): find (vh, pr) € Xop x Mo p
such that for any up € X1 p, An € My

, an (un, vn) + bon(un, un) = (i, uh)x; T
Lh(Vh, An) = (man, h)M; no My,

where 1y 4, m1, are approximations of I3, my. In [35], Nicolaides describes this kind of problems in the
conforming case, when in addition ap = a, b, , = b,. In [7], Bernardi et al. generalize the work of Nicolaides
to the conforming case but with possibly an # a, b, n, # b,. Here, the only difference is that we have to work
in the Hilbert spaces H1p = H1 + K15, Hop = Ha + K2 p, with a possible non-conformity as in [1]. Let us
introduce the discrete null spaces V15, Vo i,

Vi ={un € X1 n/ban (un, tn)=0 Vpup € Mayp} (48)

Vz,h = {Uh S Xg)h/bl,h (’Uh s /‘\h) =0 VA € Ml,h} . (49)
The discrete counterpart of Theorem 2.1 is

Theorem 2.4. Problem (My) has a unique solution (up, A\n), with continuous dependence (uniform wn h) on
the data (lg,n, m2,n) € X5, X My 4, of and only +f the four follourng conditions hold

(x)n  There exists @ > 0 wndependent of h such that for any vy, € Vo,

sup ah (u’h ) vh) 2 a“UhHXz,h (50)
uh€V1,nsllunllx, , <1

(20)n dim X, p + dim M, , = dim X, + dim M p,
(v )n  There exsts B, > 0 wndependent of h such that

sup bin (Uh s An) 2> By el 5 (51)

vh€Xz,hllvnllx, , <1
(wa)r,  There emists By > 0 wndependent of h such that

sup bak (un , k) > Ba || ihl Mo, - (52)

ur€X1,nsllunllx, , <1
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We skip the proof, since 1t follows the same lines as the ones in [35], [7]. We note also, as in Section 2.1, that

conditions (2)s + (21)5, on the form ap are equivalent to the dual conditions (z')p, + (22)n, where (/) is

()n sup an (un, vr) 2 @ ||unllx, (53)
vh€V2 nyllvnllx, , <1

with @ independent of h. Therefore, the set of conditions (2)n, (22)n , (2221)n , (2222) is equivalent to the set

of conditions (¢/), (12)n, (2121)n , (1222)r and each of these sets is equivalent to the well-posedness of Problem
(M4) or of Problem (M]) .

‘We need now the standard error estimate (called second Strang’s Lemma), whose proof is similar to the one
when only two nonconforming Hilbert spaces Xn, M}y, occur, [8] We denote

By [(un , A); (vn s k)] = an(un, vn) + b1, (vh, An) + ban(un, un) (54)

and

(Lis (Wns pn)) = (l2ns vn)x:  x, .+ (Mans Br)ag o,

(55)

we have the following

Theorem 2.5. There exists a constant C > 0 independent of h such that

(w, A) = (urs A)li,n < C { dnf o [1(w, A) = @k, M)l ]
(@n,An)EK1L 1
+  sup | Br [(u, A); (5hlﬂh2] — (Ln; (On, fin))| .
(Bn,fin)EK2 n |(@n, n)ll2,n

Applying Theorem 2 4 and Theorem 2.5 to discrete problem (P 1), we obtain the following proposition, which
summarizes in a concize way the result of [22]

Proposition 2.6. (a) Problem (Py,) has a unique solution (un , pr) € Pl o X RT® such that
lur l|n + Ipa llaw.o < C|floo (56)
(b) For f € HY(Q), the solution (un,pr) verifies the error estumate
llw —unlln + llp — Prllaw,e < CR||fllie (57)

where C stands for a constant independent of h.

Proof The spaces Xj », M j, are specified in (32). Moreover, X = (P°)2?, M5, = P°. The bilinear forms ap,
bi,h, ba,n, By are given in (37), (40) The forms la 5, Mo, are given by (lan, gn) =0, (m2n, va) = —(f, vr)o,0-
This gives ilmz,hll < !le,Q.

(a) According to Theorem 2.4, we check now the conditions (2)4, (22), (2221)n, (2122)n for the forms ap , bin, bop .
e (1)p: The spaces Vi i, Vo5, are

Vin={p € RT°/(div p,v)o,a =0 Vwe P (58)

Von={a€ P2/ Y (q, VuJox =0 Vue PLo). (59)
K
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The dimensions of these spaces are

dim Vl,h = dim Xl,h — dim M‘Z,h =NA-NFE (60)
dim Va , = dim X5 , — dim M; , = 2NE — NA,. (61)

Therefore, due to (44), dim Vi, = dim V2 ;, . We prove now that in fact, V5, = V3 ,,. Suppose given p € V.
Then, div pjx = 0 for any K € 7}, therefore p € (P°)?. Moreover, for any u € P, ,

Z(p,Vu)o,K:—Z(div p,u)o,K—l—Z/ (p-v)udo (62)
K K K JOK
:Z/ (p-l/)udoz—Z/(p~Va)[u]d0. (63)
K 8K QGA a
where [u] stands for the jump of u in the direction of v,. (On 99, we put [u] = —Uinside). Since p € X1 C Hay,

(p - vq) is constant along each edge a. Moreover, since u is continuous at the middle of each edge, the average
of [u] along a is zero. Therefore (63) = 0, which gives that p € V5 ;,. This proves that Vi 5 C Va5 . By equality
of the dimensions, we obtain

Viph=Vop =V (64)

Consequently, || {|laiv,o coincides on Vj, with | |9 . Therefore the condition (i3) holds because we have for any
g€V

sup (P, 9)o,0 = |¢lo,- (65)
PEVR, [|Pllawv, o<1

e (i7)p: Condition (i7); is just (45).
e (iii1)p: We have to prove that for any u € M p

sup bin (g,u) = By [lulls. (66)
q€(P%)2,|qlo,0<1

Taking p= l—m ZV'LHK ]]-K(x)a we get
K

sup bl,h (Qa u) > bl,h (p> u) = ||'U,“h (67)
q€(P%)?,1ql0,2<1

which proves the result.

e (iii2)p: This is the well-known inf-sup condition of the standard mixed method of Raviart-Thomas for the
couple of spaces (v,p) € P° x RT?, i.e.

sup ba,n (p,v) > B2 |v]o,0- (68)
pERTO,|Ipllaiv,0<1

We refer to [36] for the proof.
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(b) We prove now the error estimate (57). We deduce from Theorem 2.5 (see (41), (42) for the notation), that:

u—uplln+ilp— v <C inf u—Un|lp + IIp — Prllaw
l wlln +1lp = prllaiv.e {(ﬂh,ﬁh)EPéc'oxRTO[” wlln + 12 — Brllaw,a]

|Br [(u,0); (¥n, dn)} = (L2; (On s Gr))
T onimypax(poy 1@n s @) lla.n } . (69)

Since p = Vu and divp + f = 0, we have for any (on,dn) € P° x (P°)2,

B [(w,p); (O, Gn)] — (L2 (Un, Gn)) = Z (p=Vu, dnox + (div p, tn)o,o + (f; r)o,0 =0.
K

Thus, the error method vanishes. Finally, the standard estimate of the interpolation error, [8,36]

inf — 1 inf — Brllaiv.a < Ch 70
B M= anla i o= pallaa < ChIflo (70)
yields the result. O

2.3. The dual FVbox scheme

We consider now discrete problem (P, ), dual of (P ), connected with the mixed formulation (P;): find
(vn, gn) € P% x (P9)? such that (see (47)) for any (pn, un) € X1,n X M1

~> (Vun, awox = ~(f,un)oo Vun € Pley
(Pp)) K (71)

(Prs an)o,n + (divpr,vh)on =0  Vpn € RTC.

(Ps,) can be rewritten, with the help of the form By: find (vp, gn) € P° x (P%)? such that for any (up , pr)
€ PL, o x RT®

By [(un, pr); (n, gn)] = (L1i,n, (Un, DR)) (72)

where the linear form L, € Hj ;, is defined for (un,pn) € H1p by

(Ll,h; (uh s ph)) = <m1,h7 uh>M{’h M, + <l1,h;ph>xi,h i Xy . (73)

with <m1’h’uh>M{th1,h = —(fiun)o,o and (ln,ln)y: x, = 0. Recall that (v,q) € L? x (L*)? is the

solution of the dual Problem (P2). We have (v,q) = (u, D) where (u,p) is the solution of the primal Problem
(P1). Symmetrically to Proposition 2.6, we have the following result

Proposition 2.7. (a) Problem (P2 }) has a unigue solution (vh, qn) € P° x (P%)? such that

[vnlo,0 + larlo,e < Clfloa- (74)

with C independent of h.
(b) This solution satisfies the error estimate

[v —vrlo,e + 19 — qrloo < Ch|floa- (75)

with C independent of h.
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Proof. (a) By Theorem 2.4, a set of necessary and sufficient conditions in order for Problem (P 3) to be
well posed are conditions (¢')n, (i%)n, (4441)n , (4452)n- It results from the remark following Theorem 2.4, that
conditions ('), (i) are equivalent to (4i%)n , (iv)n, which are true by Proposition 2.6. We conclude by verifying
that [[my,n| < C|flo,e-

(b) From Theorem 2.5 applied to (47), we have the error estimate

[lv = Trlo,e + |7 — Gnlo,]

|Br [(@n, Pr); (v, @] = (L1,n; (Gn,Pr))]
" (ﬁh,ﬁh)esg,}{)c,oxRTo | (@n 5 Br)ll1,n } '

v—v +lg — < C inf
| Hlogtla~auloa < {(m,qh)emx(w)?

(76)

Estimating the consistency error, we have for any (@, pr) € Pi.o x RT?,

By [(iin, )5 (v,@)) = (Lan, (@i, Bn)) = (Bn, Qoo + (div Fn, Voo — D (Vin, Qox + (frin)oa. (77)
K

Because X, ;, C Hgiv, we have, in view of (5)2,
(Br, @)o,0 + (div Pr, v)o,o =0 VP, € RTC. (78)

Therefore, since q is in fact in Hg;y,

=3 (Viin, Qox + (f, in)oa = Z(Uh,dIVQ)0K+(f Uh)oo—Z/ Up (q-v)do
K

—Z Z /uh(q v)do + (Tn, div ¢ + foo (79)

K ecdK

The second term in (79) is zero in view of (P2);. The first term in (79) is rewritten as (A; is the set of the
internal edges, and A, the set of the boundary edges)

a; / [@n] (g Va da—agb/uh q-Va) (80)

By the continuity of 4y, at the middle of each edge, and since p, (z4) = 0 for z, the middle of an edge a on 01,
we have (recall that iy, is affine)

/A[ﬁh]dazO ; /A iy do = 0. (81)
aCA, a€Ap

Therefore, denoting by @, ¢ = 1,2, the traces of 4, on each side of the edge a, and by II, % the common
mean value of i1, %y 2 along the edge a, we obtain that (80) can be rewritten as

Z [/ (th,2 — o Un) (g - va) do — /(; (U1 — aGn)(q - va) do]

a€A;

> / (@ny — o @n) (q-va) do.  (82)

aeAb

Thus, by Lemma, 3 of [24], we get for each internal edge a € A;

|/ [@n] (q - va) do|< Ch [ lal1k, lTnl1,x, + la)1,k Gkl ko] (83)
a€A;
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and for each boundary edge a € A,

| / in (¢ va) do|< Chlgly s linl. k. (84)
a€Ay

where a is oriented from K; towards K, and C is a constant independent of h. We deduce finally from (83),
(84) by the Cauchy-Schwarz inequality the estimate

|Br [(@n , Bn); (v,@)] — (Liks (@n, Br))|< 3CR Il l|@alls-

which gives the following estimate of the consistency error in (76)

wp B0, (0,0) — (L (n, 50))

—— < 3 Chlglr,0.
(@in,Pn)EPL, o X RTO ||uh,ph)||1,h

For the interpolation error, we have the two standard estimates

inf lv—7 <Ch ;  inf — g <Ch .
onf v —drloe < Chlvle; Lo lg — drloe < Chlglie

Since [v1,0 < [lvlle <|flog , lale < |floa we get the result. O

2.4. Second order error estimate

In this section, we derive an O (h?) error estimate in the L? norm for |u —uplo q. Such an estimate makes use
in the standard conforming finite element method of the Aubin-Nitsche argument. Recall that this argument
leads to an estimate like

[u—unlo.o < Cllu —unllra lv—valle (85)

where v, v;, are the continuous solution and discrete approximation of an adjoint problem. Therefore a first
order error estimate in the H' norm for u and v yields the second order convergence of |u — up|o.q. Here, we
follow the same principle.

Theorem 2.8. The solution up, € Pﬁc’o of the FVbox scheme (Py 1) satisfies the second order error estimate
lu —unlo,o < Ch? [|fll1a- (86)

where C is independent of h.

Proof. We follow the same principle as in the proof of the second order error estimate for the standard noncon-
forming FEM method in P}, [8].
We start from

(u — up, 9)0,9

|u —unloe = sup (87)
9EL?,g7#0 l9lo,2
To each g € L%(Q), corresponds the solution (v9, ¢9) € L? x (L?)? of Problem (P%),
Bn[(u,p); (v9, ¢%)] = —(9,u)o.0 Y (u,p) € Hy X Haiv (88)

which is also the unique solution in H(} x Hgiv of

By, [(vg,qg); (U ) Q)] = 7(970)0,9 V(UaQ) € L?x (LZ)Z. (89)
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We denote by (v§, qf) € P° x (P°)? the discrete solution of Problem (P, )y
Bh, i(ﬁ'-ﬁ) 5 (’l);’; s QZ)] = “(g>ﬁ)0,ﬂ V(ﬂ':ﬁ) € P‘ic,o X RTO (90)

In addition, recall that (u,p) € H} X Haiy and (up,pr) € P’r%c:,O x RT© are solutions of the continuous and FVbox
problems (4), (36).
For any g € L?, we have

—(u—un,9)oe = Bunl(w,p); (v, ¢%)] = Br[(un,pr); (Vi , a3)]
= Bpn[(u,p) = (un,pr); (v9, ¢°) — (v, ¢f)] (1)
+Br [(un,pr); 09, ¢°) — (vi, qp)]  (IT)
+Bp [(u,p) — (un,pn); (vi, @)l (ZI1)

Since (v], qf) € P% x (P%)? C L? x (L?)2, we have (III) = 0, by subtracting (36) from (4). Moreover, we
deduce from the two standard error estimates (57), (75) that

(D] < Cli(u,p) = (un, pr)llkll(¥7,¢%) — (v, g7)ll2n (91)
< CR*gloall fllva: (92)

A

Finally, we have for (I1),

~(II) = Bul(u,p) = (un,pn), (v9, ¢%)] + (g5 — un)
= D (p—pn—V@—un),¢%o,x + (div(p — pr), v )00 + (9,4 — ur)oq.
K

Since E(p —pn, ¢%)o,x = (p — pn, Vv9)o,0 = —(div(p — pr) , v¥)o,n, We obtain
K

-(1)= - Z(V(u —un), ¢%)o,x + (9, ¥ —ur)oo (93)
K

and by the Green formula on each triangle K
—(II)=- Z/ (u—wun)(gv) do = Z [u — ur)(¢?.vs) do. (94)
K oK acA’

Calling II, the averaging operator on the edge a, we have [u—up] = [u —un] — IIo([u — up)), since [u] = 0 and
1, [up] = 0. Therefore

D] < > [ Hiu—unl = Na(lu — un))}(¢* -va) ldo

acAY G

< 3Ch Y |u—unlikle®lx < 3Ch|u— unllalg®l e
K
< ORIz < C'R?| fllelgloa.
Finally, we get the estimate
[(w—un, 9ol < ()| +[T)]+ [(LIT)] (95)

< CR?||fll1.0lgloe- (96)

Dividing (95) by |g|o,n and taking the suppremum on g # 0, we get the desired result. O
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3. FURTHER REMARKS
3.1. Comparison with the nonconforming method

The standard nonconforming method for (3) is: find @x € P, ( such that

Z(Vﬂh, Vun)o,x = (f,vn)o,0 Vun € Pocyo. (97)
K

For (97), the two following error estimates hold, [8]
lu—anlln < Chifloe  |u—@nloo < Ch?|floa- (98)

Denoting by II the orthogonal projector form L? onto P°, we have that up, in (Py ) is the following modification
of (97).
Proposition 3.1. The function up wm (Py) s the solution of the scheme: find uy, € Py, o such that

Z(Vuh, V’Uh)o’}( = (Hf, ’Uh)(),g Yup, € Péc,O' (99)
K

Proof. Taking gr, = Vup, in (Py3) in (36), and taking in account that div py |k is constant, we obtain

Z(Vuh,Vvh)O,K = - Z(divph,vh)(),}( - Z/(ph.u)[vh] dO’ = — Z(divph,n 'Uh.)O,K (100)
K K a VO K

(f, T vp)o,0 = (IL f,vn)o,0- (101)

d

Note that we can deduce from Proposition 3.1 that |[u — un|n < Ch|f|o,q, which is better than (57). (The
bound || f|l1,s is due in (57) to the interpolation error for pj.) However, the second order error estimate deduced
from (99) is identical to the one in Theorem 2.8.

3.2. Comparison with the mixed method

The question arises naturally about the link between the FVbox solution (up , pr) of (P1 ) and the solution
(@n , D) of the standard mixed method of Raviart-Thomas. Recall that both py, , D, belong to the same space,
namely the space RT°. In addition, calling IIv, the orthogonal projection onto the space P° of a function
vp, € P;c,(]’ it is interesting to compare Uy, and IIup. We have

Proposition 3.2. (1) pr, = p,,. In other words, py, coincides with the approzvmate gradient of u provided by the
muzed method.

(1) We have
1
U =Tup + 2 §K (Of)kpi (102)

where px 15 the gyration radwus of K defined by |K| p% = |gk 3'%,1{ and gk 15 the barycentre of K.
Proof. (1) The mixed scheme is: find (@x , §,) € P° x RTY such that:

- N ~ 0
{(dlv D+ f,v)o,g =0 VoeP (103)

(P, @)oo + (@n, div §loo =0 V§e RT?
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whereas the FVbox scheme is: find (un , pn) € Ph. o X RT? such that:

(div pp + f, D)o =0 Vo e PO
(104)
(Prs @)oo — ok (Vun, Qlox =0 Vqe (P22
Defining p € RT? by p = pp, — Dy, we get by subtracting (103);, from (104),
(divp, ?)oo=0 Ve P° (105)

therefore p € V},, the common null space of the bilinear forms by 1, bap, (see (64)). Recall that this space is

Vi = {pn€ RT°/(div pr, vn)oa =0, Yo, € P%}
= {ame (P?/ Z (gn, Vun)oxk =0, Vup€ Pl o}
K

= RT°n(P%2
Therefore, subtracting (103)s from (104)s, we get for any g € V3:
®, Qo0 =Y (Vun, @o,x + (U, divg)o,a =0. (106)
K
Taking g = p, we obtain p = 0, that is py, =7, .

(#i) For any § € RT°, we estimate now (ITus , div ). We have

(Mun , div Qo0 = (un, div §o,o = —(Vur, @oa — Y [ [ual(@- va) (107)
acA, v

The second term in the right hand side of (107) vanishes (G - v, is constant on a). Now, denoting gx the
barycentre of the triangle K, we have the two following identities

~ .1 T
g=IIg+ 5 ; (div )k gr 2 1k (108)

1 .
Vun =pr = 3 > (divpr)k gx 3 1k (109)
K
We deduce from (108), (109) that the first term in the right hand side of (107) is
~ ~ 1 : - 9
~(Vun, Qoo = —(on, Do + 7 D ([divpn)x [divdx  |FE 2 k- (110)
K

Defining the gyration radius pg of the triangle K by |K| p% = |gx Z[3 x, (cf. [5]), we deduce from (107), (110)
and from (divpy)x = (ILf)x that

1 o N N
<Huh + > (Hf)xpillx,dlvq> + (Pr, @)oo =0 Vi€ RT". (111)
K 0,02
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It results from (103) that

1
Ty = Mup, + — Z(Hf)KpKIIK (112)
K
We deduce easily from (112) the estimate |TLuy, — Unlo.o < Ch2|flo - O

3.3. Comparison with the Lagrange multipliers method

In [2], Arnold and Brezzi describe an interpretation of the mixed method of Raviart and Thomas based on
the relaxation of the divergence conformity of the RT? (K) element by means of a Lagrange multiplier on each
edge. See also [12]. Let us describe briefly the method. We need only the lowest order version in the sequel.
We call R 7 the finite element space constructed as

RTo = {pn(z Z Prk () 1k (z) / prix € RT° (K)} (113)

We have dim(R 7o) = 3NE, and RT® = R 75 N Hg;y. The space of Lagrange multipliers is the set of functions
defined only on the edges A. The lowest order version is simply the functions constant on each edge a € A

S§={M@) =X,z€a,ac A} (114)

The scheme is: find (U, , Py, , An) € P x RTp x 8 such that for any (7,4, 1) € P x RTo x S§

Z(di" Pp+f, 0ok =0

K

@y, » ~OO-FZ[Eh,div(j)o,K_/8K
Z/ i (@, -v) =0.

System (115) has a unique solution (U, Py, M) € P x RTg x 8. Moreover (us, B) € P° x RT® is the
standard mixed solution of (103). We may now lift the function (@, Ax) in an approximation 4 lying in a
space of higher precision than P°. Two choices are presented in [2]. The first one is simply to take @, € PL,
such that

(@ v) da] =0 (115)

odn=Mna Vac A (116)
The second one is to take @, € N = P}, + B® where B? is the “bubble” space
B? = {un [ unx € Vect (A1 (z) A2 (z) A3 (7)), = € K} (117)
The lifting % is uniquely defined by
Uk dp = ap 5 g dp = Anja- (118)

11, and Il are the orthogonal projections onto the constants in L#(K) and L*(a). In fact, it can be proved,
that the lowest order version of the FVbox scheme coincides with the lifting (116).

Proposition 3.3. The solution (up, pr) of the FVbox scheme (P1 ) coincides with the (@n , Dy) solution of
scheme (115), where @y, is the P}, interpolation (116).
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Proof. Recall that p, = P, where p, € RT? is the solution of the mixed method. For any § € R7g, G- v is
constant along each edge e € 0K . Therefore it is sufficient to prove that (up, pp) verifies, for any § € R 7

(Phy Qo0 + ; [(ilh , div §)o,x — /BK up (G- V) da}z 0. (119)

Since ¢(z)x = (I1§)k + 2 (div @)k gi 2, we have

. - 1 -
(Pr > Qoo (Pr, 1q)o0 + 3 (ph, }7; (div@)k g2 HK)O’Q
N 1 .
= > (Vun, 0ok + 3 (ph;Z(dIVQ)K Jr 2 HK)OIQ
K K
Replacing py x by its value ppx = (pr)x — 5 (If)kx gr & we find

@ @o = Y (Vun, ok — % > IK[(Tf)k (div @)k pk
K

K
> [ div @oxe = | un@-v) do] -3 > K1) (@i D

=3[ div e = [ w30 ao] - 3 1K @) O e

K

Using (102) we obtain finally

(o Do = =3 (@, div Do — [

- up (¢ -v) da] (120)
K

which is the desired result. O

3.4. Final remark

In this paper, we have emphasized the mixed Petrov-Galerkin structure of the scheme introduced in [22].
This structure allows to deduce the numerical analysis of this scheme from the standard theory. This approach
may also be applied to schemes of the same kind with different choices of the four spaces X1 p, Xo n, M1 n, M2 p.
Another possibility is to eliminate pp locally in each cell, and to obtain the error estimates for uj from the
scheme (99). The error estimate for pj, is deduced afterwards, as in [22], from the local representation formula

P,k = Vupx — |K| (IIf)k Pk(z) (121)

where Pk (z) = #Kng—x’

Let us mention finally that the method given by Marini, [33], for computing the mixed solution (@, D) of
Raviart-Thomas (103), amounts precisely to compute the solution up, in (99) and to express afterwards p;, by
(121). The key point of the present paper is that this a posterior:i interpretation is nothing but the FVbox
scheme (36). This scheme has the advantage to give a direct access to an approximation (u, pr), affine per cell,
without any reference to the mixed method.
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