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INTEGRAL EQUATIONS VIA SADDLE POINT PROBLEM FOR 2D
ELECTROMAGNETIC PROBLEMS

NATHALIE BARTOLI1*2 AND FRANCIS COLLINO1

Abstract. A new system of intégral équations for the exterior 2D time harmonie scattermg problem
is investigated This system was first proposed by B Després in [11] Two new dérivations of this
system are given one from elementary manipulations of classical équations, the other based on a
mmimization of a quadratic functional Numerical issues are addressed to mvestigate the potential of
the method

Resumé. Un nouveau système d'équations intégrales est proposé pour la résolution des problèmes
bidimensionnels de diffraction d'ondes harmoniques Ce système a été initialement présenté par
B Despres dans [11] Deux nouvelles dérivations de ce système sont données ici la première est
obtenue à partir de manipulations sur les opérateurs intégraux classiques, la deuxième repose sur la
minimisât ion d'une fonctionnelle quadratique Des résultats expérimentaux sont présentes et analysent
les potentialités de cette méthode
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1 INTRODUCTION

This paper deals with the scattermg of a 2D time-harmomc electromagnetic wave by obstacles More partic-
ularly, our interest is focused on the détermination of the far field pattern of the scattered wave (Radar Cross
Section) The problem is classically described through an intégral représentation of the electromagnetic flelds
This représentation uses currents flowing at the surface of the obstacles which can be determmed usmg some in-
tégral équations After discretization the associated matrix is, m the best cases, symmetrie but non-Hermitian
So, no guaiantee of convergence is available when itérative methods are used to solve the lmear system This is
why direct methods of Gauss type are usually proposed However, for high frequencies, the number of unknowns
mcreases rapidly due to the necessary refinement of the mesh For very large problems, direct methods are not
tractable and some itérative methods must be used In [11], B Després proposed a new system of intégral
équations with mee properties This system sterns fiom the mmimization of a functional under constraints and
gives a real symmetrie but non-coercive bihnear form It is the purpose of this paper to study this new system
In [11], the dérivation of the équations is rather mvolved We will show that they can be recovered very easily
from some manipulations of the usual potentïals Then, we will give another dérivation, more closely related to
the one proposed in [11] and constructed from the mmimization of a quadratic functional This second approach
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intends to simplify the arguments given in [11]. It allows us to justify the présence of our additional unknown
which could appear somewhat arbitrary in the first dérivation. Finally, we will present some numerical results.
The goal of these numerical experiments is more to validate the approach in various situations than to do an
exhaustive study.

The present paper is organized as follows. First, we dérive the new System for the model problem (absorbing-
like boundary condition) from manipulations of the intégral operators (Sect. 2). Secondly, the same System is
obtained from minimization of a quadratic functional (Sect. 3). This approach allows us to justify the présence
of the Lagrange multiplier among the unknowns. In Section 4 the System is modified with the introduction of
a penalization parameter /3. It is done to provide a tractable system after discretization. Then, the system
is extended to problems with gênerai impédance boundary condition (Sect. 5). Two itérative methods are
presented to solve the system: a relaxed Jacobi and a preconditioned GMRES (Sect. 6). Finally, some numerical
experiments are reported to investigate and validate the method.

2. A FIRST DERIVATION OF THE INTEGRAL EQUATION SYSTEM

We consider the scattering of a TE electromagnetic wave in the two-dimensional case. The domain D~,
bounded by a regular curve F, corresponds to the scatterer. The unit normal v is outwardly directed to the
exterior domain D+. The only non zero component of the magnetic field is denoted by v~*~. The out-going
scattered field is a solution of the Helmholtz Equation,

+ k2v+ = 0 in B+

0lim

In this section, we will assume an impédance condition at the boundary of the scatterer

duv^ + ikv^ = g. (2)

We will consider more gênerai boundary conditions in Section 5.

2.1. The dérivation of the Intégral Equation system

Using the classical theory of potentials, [4], any solution v+ of system (1) can be represented

where S and K are the single- and double-layer potential defined by

S<p(x) = f G ( x , y ) <p{y)ds(y), x ^ T

JT. ( 4 )
K<p(x) - / dVyG[xty) <p{y)ds(y), x<jÊT.

Jr

The kernel G is the out-going Green's function for the Helmholtz équation (HQ is the Hankel function of the
first kind and of order 0),
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This intégral représentation (3) is independent of the boundary condition (2) on F (this condition will be
considered subsequently). It introduces two currents, namely the trace of v+ and the trace of dvv

+ on F. The
two unknowns are noted by

u = vi,, du = djyvi*. (6)

With the help of the jump relations across the boundary F, [10], we obtain from (3) the following relations

km
— = -Sdu + Kku

(7)
dv
— = -K'du + Tku

where 5, K, K' and T are the potentials projected on T. They are defined by

Sip{x)=k f G(x,y)ip(y)ds{y), xeT
Jr

K<p(x) - f dHv)G(xty)tp(y)ds(y), x e T
Jr

(8)

K'<p(x)= f du{x)G(x, y)<p(y)da{y), xeT
Jr

Tip(x) = i dHx) J dHy)G(x,y) <p{y)ds(y), x € T.

Consequently, (7) is equivalent to the following system (ld is the identity operator)

where

[ ^ - ^ » H ] do)
Relation (9) has yielded profound insights into electromagnetic behavior. It says that every pair (fcu, du) of
functions on F does not necessarily correspond to the traces of some radiating electromagnetic field. To be such
a trace, (ku, du) must lie in the kernel of the intégral operator C.

Once the first system written, we can dérive other relations by considering kernel's expression. The kernel
G(Xj y) can be split into real and imaginary parts

G(x,y) - -lYo(k\xy\) + Jo{k\xy\)

= -Gr(k\x-y\) +iGi(k\x-y\),

where Jo and YQ dénote the Bessel and the Neumann functions of order 0. Following this décomposition, the
potentials read

5 = -Sr + %SU K=~Kr + iKi, T=-Tr + ÏT». (12)
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At this stage, we introducé À and 9À, a new pair of unknowns defined on the boundary

A = tu, dX = idu. (13)

Substitut ing (12) and (13) int o (9), we obtain

K o - M «. = 0, (14)
[ du J [ dX J v ;

where

K = [ . J : j H "*£ *"]««* M . [ 4 -g ] . (15)
Since Sr and Tr are symmetrie, K is related to its adjoint K* through

Up to now, the boundary condition has not been used. As we said, we assume an impédance condition on F of
the following form

dvv+T + ikv+, = g. (17)

We multiply (17) by % and we obtain the two equivalent relations

ku — idu — — ig , „x
du + ihu — g

or, in terms of matrices

Using relation (16), we deduce

o -id i r feA i _ r -ig î _
id o I ÔA I - L I - 9 - ( i y )

Tf \ kX \ jr+ kX
du ' ~ K ' ^ I + K

Now, multiplying (14) by 2, we have

" kX
+ M

L UA J

Hence,

We will now proceed to the dérivation of the matrix M from the far field operator in order to deduce some of
its properties.
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Let C be the unit circle, and x a direction on the circle. We define the far field operator following Colton-
Kress's définition of the diffusion amplitude (up to a k factor, cf. [10] p. 66).

iku{y)x.u{y))àT{y). (23)

Its adjoint is given by

f 7(z)e*fe£ yx.u(y)dâ
cr

i / -y(x)elkî '•
L Je

ydx
L Je

We then have the following lemma.

Lemma 2.1. The matrix M as given m (15) is symmetrie positive definüe and can be split up

(24)

f. r ku i

JC
A°° [ du \

or equtvalently

dv

M =

du\[dv (25)

(26)

The proof is based on the Jacobi-Anger expansion and the addition theorem for Bessel functions. It is given in
Appendix A. Finally, the system reads

where the two unknowns are

x —
ku
du

Kx -

and y =

- 0,

kX linked by y = ix.

(27)

(28)

2.2. The saddle point problem

At this point, we notice that system (27) involves only real operators and is symmetrie. Purthermore, it is
just the optimality conditions of a saddle point problem. To make this point précise, let us regularize K, by
using some smooth approximation of the kernel GT (we perform this to overcome all the functional analysis
difficulties) and introducé an additional unknown 7

7 = - î

As a resuit, system (27) is rewritten as follows

7 + ' = 0
7 = 0.

(29)

(30)
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Let us define the Lagrangian

l o l o i o
/ Y r * sy* 7/*^ — — llr*ll -I II A r*ll -I 11̂ *11 -I- 7?p / fCr — 7 A * o/* 7#S — 73 pi a h r * \ (311

2 2 2

where

~2^ . (32)
^ J

We observe that (27) or (30) dérives directly from the optimality conditions of the associated saddle point
problem. The tripiet (x,7,t/) composed of primai variables (ar, 7) and Lagrange parameter y is the solution of:

(ar, 7,2/) =minmax£(a;*,7*,2/*). (33)

As far as saddle point problems are concerned, it is known that this problem is well posed if the inf-sup condition
of Brezzi is satisfied, [6]. We do not intend to give a detailed mathematical analysis of the well-posedness of our
system here (details can be found in [2], [9]) but only indicate the main results. A possible functional framework
is the following. Given X = L2{Y) x L2(T), let

3; = {y e X, K*y e X} and T = ^/KerK*, (34)

equipped with the norms

(35)
\\y\\r = inf \\y - yo\\y = ||K*y||* + inf \\y - yo\\x-

It can be shown that for some constant C

inf sup ( a ' „ K y ) * > i and | | A ^ y U ^ < C\\y\\T. (36)
er \\x\\x 2

These two properties ensure the well-posedness of system (27) in X x T. The key point of the vérification of
the inf-sup condition lies in the fact that UK is one of the Calderon's projector defined in [8], (in particular
(UK)2 — UK). The continuity of Aoo in T is a direct conséquence of the remarkable identity

Ker Aoo - Ker K*. (37)

Actually, each pair in both kernels can be identified to the traces of some solution of the Helmholtz équation
posed in the interior domain D~.

A conséquence of this brief analysis is that y the second argument of the solution of the saddle point problem
is not unique in X (we only have uniqueness for x): the Lagrange parameter y is only known up to an element
of Ker K*.

3. A SECOND DERIVATION OF THE INTEGRAL EQUATION SYSTEM

The purpose of this section is to show how system (27) dérives from the minimization of a quadratic functional.
Indeed, the approach presented in the first section may well have puzzled the reader: a saddle point problem
arises but we did not explain where it comes from. Here, we exhibit the saddle point problem associated to the
Lagrangian function which has been defined in (31). This different approach has been introduced by Després
in [11]. The présentation we give here is still different but the key point of the method is always the isometric
lemma.
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3.1. The minimization problem

Let W be the space defined by

W:=

w e Hloc(D
+); Aw + k2w = 0 in

w\T € L 2(r) ; dvw{r G L 2 ( r )

lim — /
l H-^+oo K J\

< +00
\X\<R

If w e W, it admit s the following expansion at infinity

(38)

lim w(x) = a(w\x)
ik\x

b(w;x)
e-ik\x\

Qw eik\x\ p-ik\x\

lim -XTT(X)
 = ika(w;x)—•== — ikb(w;x)

x\^ood\x\ -/\X\

(39)

where a(w;x) and b(w]x) are in Z/2(C), x = A . This resuit will be proved later with the expression of a and 6,
the convergence w(x)-^woo(x) holding in the sensé of Morrey-Campanato [15]

R R<\x\<2R
\w(x) - Woo(x)\2 dx = 0. (40)

Note that w appears as the sum of an out-going wave and of an incoming wave. Generally, we are only int ères ted
in out-going (radiating) solutions. Nevertheless, observing that the non-Hermitian property of the usual intégral
équations cornes from the Sommerfeld condition at infinity, we seek the solution of our Helmholtz problem in a
larger set (relaxation of the condition at infinity). Let g dénote some function in L2(F), we define the functional
I(w) for w G W by

= \ [ \dVyw{y) + ikw(y)\2àY{y) + \ ! \ - dVyw(y) + ikw(y)\2dT(y)
4
 JT

 4 Jr

+ fc2 f \b{wM2^^k2 [ \a{w;6)\2^~^e f' g{y) (ÔVy
Je Je Jr

. (41)

The relat ionship between this functional and the radiating solution of our Helmholtz problem is the following

Proposition 3.1. The minimum of the function I(w) over W is v+, i.e.

k2v+ = 0

<y+ — Arg min I(w) where < Jj/U\r ' ikvt, = g (42)

(note that b = 0 is equivalent to the Sommerfeld condition at infinity satisfied by v+). The proposition 3.1
means that it is possible to relax both the condition at infinity and the boundary condition, and to recover
them through the minimization process. The condition at infinity is treated exactly like the boundary condition
onT.
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Remark 3.2. It can be proved that changing —5Re Jr lj(y) {dVyw{y)Jrikw{y))dT{y) into —SRe Jr ~g(y) (d1/yw(y) —
ikw(y))dF(y) makes it possible to calculate the (incoming) solution of:

k2v+ = 0

djjV'rp — ikv'L = g

{ a(v+;6) = 0.

The proof of the Proposition 3.1 is based on the isometry lemma which is given next.

L e m m a 3 .3. (Isometry lemma) . Let w G W, we have

f \dVyw(y) + ikw(y)\2dr(y) + 4k2 f \b(w; 0)|2d0 = f \ - dVyw(y) + ikw(y)\2dT(y) + 4fc2 f \a(w; 0)|2d0. (43)
t/r <Jc -JT1 J C

Proof. The proof proceeds on the following steps. We dénote by Brj the bail of radius r, and Qr is defined by
the intersection between Br and the exterior domain D+. Let n be the outgoing normal on d£lr = dBr U F.

We start from the Helmholt z équation multiplied by the conjugate of w

0 = / Aww + k2ww dftr = / -\Vw\2 + k2\w\2 dftr + / dnww. (44)
JÇÏT Jnr Jdnr

Retaining the imaginary part of this expression we get

dnw w= | - dnw + ikw\2 - \dnw + ikw\2 = 0. (45)
Jdnr

As 9^ = — du on F and 5 n = dr on 3 5 r , it follows from (45) that

ƒ \dvw + ifctül2 + / | - drw -h i 2

r

/ | - d„
Jr

We then take the mean value of this equality for r in the interval [Ry 2R], and we let R go to rnfimty. By using
properties (39). we get

lim - / / \-drw + ikw\2 = - / / \2ikb(w\ 9)^-^\2rd9dr = 4k2 / \b(w; ö)|2d<9. (47)

In the same way,

lim 4 /" ƒ |örw + ifcH2 = 4/c2 [ \a{w;6)\2d6. (48)

As a resuit, (3.3) is deduced from (46), (47) and (48). D
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Once the isometry lemma has been obtained, the minimization of I(w) becomes straightforward. In W we
have the equivalent expression for the functional

I(w) = I [ \d„w + ikw\2 + 2k2 f \b(w;6)\2d6-$le f g{duw + ikw)
2
 JY Je JY

= \ f \dyw + ikw - g\2 + 2k2 [ |b(w; 9)\2d6 - \ f \g\\
1
 JY Je * JY

Now Proposition 3.1 is immediately deduced: the minimum of I(w) is — ̂ ||#||2 and is reached at w = v+.

3.2. Parametrization of space W

The main difficulty consists in finding a tractable parametrization of the éléments of W. Indeed belonging
to W requires a spécifie behavior at infinity and some regularity for the traces on I\ All the remaining work
will be to exhibit an appropriate parametrization of the problem relat ed to quant ities defined at the surface of
F. We start by extending w by zero into the interior domain D~. We consider the isomorphism X from W to
X(W) = W defined by

X{w) = w = | 0 ( ^ 0 " w i t h w e W *

It is straightforward to prove that w satisfies in the sensé of distributions of M2

Aw + k2w = Vw - vôr + div(wu5r). (50)

The gênerai solution w € W is made up of two terms, namely WH, the solution of the homogeneous équation
and wp, some particular solution of the complete équation. As the second term is a distribution with compact
support, a particular solution is

wp = —Green * (S/w • v &r + div(wuôr)) (51)

where Green is some convex combination of out-going and incoming Helmholtz Green functions (one vérifies
that wp satisfies the growth property at infinity required to be in W, see Sect. 3.3). As we do not dispose any
radiation condition (out-going or incoming), the uniqueness of the solution can not be demonstrated. For that
reason, we must consider the solution of the homogeneous System WH '• WH is a free wave which vérifies

k2wH = O

(52)
\^H{^)V dx < oo.

f\x\<R

1 f
lim — / \WH(X)\2 dx < oo.

R^OO K J\X\<R

By using Theorem 3.22 of [10], we know that WH is an Herglotz wave, Le. there exists some 7 € L2(C) such
that

/ ^ Ç / ^dÖ} (53)

the kernel 7 is called the Herglotz kernel of WH and the factor J g ^ is just hère for convenience. Finally, w

(~WP-\-WH) is the gênerai solution of Helmholtz équation (50) in R2 with the required behavior at infinity.
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In our space of solution, we have considered both incoming and out-going solutions; for this reason, we choose
the following Green's function

Green(x,y) = GYo(x,y) = \{\H^\k\x - y\) - l-H^(k\x

For x ^ F, the gênerai solution reduces to

w(x) = wp{kw\Y,duw\r) -f WH(J)

where WH is given by équation (53) and

wp(kv,dv) = -J^GYo(x.y)dv(y)dT(y) + -j- J dVyGYo{x,y)kv(y)<ïr(y).

( 5 4 )

(55)

(56)

So, w(x) can be described by three variables: kw\r, dvw\r and j(0). Before using this parametrization, we
must study w(x) in D~.

Let (kv,dv,j) in L2(Y)2 x L2(C) and the function w, such that

w — w(kv,dv,j) — wp(kv,dv) + WH(J).

It is easy to check that ^1^+ = w € W. However, to identify the traces ofw, we must impose w vanishes in the
interior domain, %.e. w is in VV (in other words, we need a parametrization of VV). To obtain that, it is enough
to impose both conditions

lim \/W(X).ÏS(X) = 0 and

lim kw(x) — 0 where XQ £ T
(57)

Indeed, since Au; + k2w = 0 in D~, boundary conditions (57) imply the solution vanishes m D~. Using the
jump relations for the potential layers, we can rewrite (57) as

0 =

0 =

r

| i f d

kdi/(x) Jr
 v%

-k[GYo{:
Jr

Jr

V ÖTT/C JC

- ~kv(xo),

d0

or in an equivalent way, multiplying the first équation by — 1 and using both matrices defined in (15), (24) and
Gy0 = —Gr

(59)

In conclusion, the triplets (kv,dvy^f) in L2(F)2 x L2(C) which satisfy the constraint (59) are a parametrization
of W. Every such tripiet is associated through (55) to a solution of the Helmholtz équation whose exterior
traces on F coincide with (kv,dv).
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3.3. The asymptotic analysis

Now, our attention is focused on the asymptotic behavior of functions of VV, i.e. the achievement of the
existence of some a(w) and b(w) such that

lim w(x) = ao
e~ik\x\

(60)

We start with the classical potentials. Using the asymptotics of Hankel functions for large argument, cf. page
65 in [10], we get

f
/ Gyo(z,y)d

(61)

where (62)

and

dvGYo{x,y)v{y)àr(y) = I aP(x)ï-== + b2
P(x)'~=r 1 ( 1 + O(±

\ VFI v\x\ J

where 32nk
f e-lk£yx.ukv(y)dr(y)

Jv

(63)

(64)

For a Herglotz wave with a regular 7, the asymptotic behavior can be obtained by means of the stationary
phase theorem

7(0;) elkx i~f(—x) e
~W7Âxï + ^k

-ikx

, \x\ -> 00. (65)

For 7 G C 1 ^) , the convergence is pointwise

(66)

In Appendix B, this resuit is extended to a more gênerai Herglotz kernel 7 in L2: as a resuit, with only the
regularity L2, convergence is found to hold only in the weak sensé (40). Note that this convergence is sufficient
to dérive the isometry Lemma 3.3.

Finally, we sum all these asymptotic contributions to identify the expressions of aoo(w;x) and boo(w;x).

aoo(w;£) = r r

" 2ïlA~

kv
dv

kv
dv

(x) + -y{x) (67)

(68)
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kv
(x)

(69)

; x) - iboo(w] -x) = T 7 ( * ) -

3.4. The saddle point formulation

At this point in the présentation, we have managed to express aOD(w\x) and bO0(w]x) as fonctions of the
three parameters (kv,dv,j), Now, the expression of the functional will be readily derived.

On one hand, from (69) we have

k2 f \a(w;x)\2dx + k2 f \b(w-x)\2dx^l- f |7(£)|2dx + \ f \Aoo{kv,dv\x)\2àx, (70)
Je Je £ Je ^ Je

and on the other hand

^ I - duMv) +ikw(y)\2dF(y) + 1 ƒ \dUyw{y) + ikw{y)\2dT{y) = \ f |^w;(y)|2 + \kw(y)\2dr(y)

= \JT \dv{y)? + \kv(y)\2dT(y). (71)

We finally obtain

= I(kv,dv,-y) = \J \dv(y)\2 + \kv(y)\2dT(y)

-Me f g(dv(y) + ikv(y))dT{y).
Jr

This expression allows us to rewrite Proposition 3.1 as follows:

Proposition 3.4. Let

fi = (kv, dv, 7) G L2(Y) x L2(T) x L2(C)
M =

the solution Ji of

is given by

so that K

fx = (kv, dv, 7) = Arg min

= 0,

(72)

(73)

(74)

kv = kvi* dv = djyV'L 7 =J\r |r (75)
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where v~*~ is the solution of

= 0

7 = 9 * » ( ? 6 )

Ixl -> oo.

To solve this constrained minimization problem (73)-(74), it is classical to introducé the Lagrangian fonction,

r f r * n/* 7/*̂ ! — - H T * I 2 4- - I I A T * H 2 - l - - I IVMI 2 (77^
^\x » / >Z/ y — 2 II I ^ o °° " 9

-^e (^ , bx*) -h 7ee{Kx* - z A ^ * , y*>.

It is well known that if the Lagrangian admit s a saddle point, then it is the minimum argument of

The optimality conditions are deduced from

C/JC CZ^ C/Z-/

dx dy d'y

Finally, we obtain

( T _i_ A * A r 4- TC*7/ — Ö

(79)

The élimination of 7 in (79) reduces the System to (27).

Conclusion. The System (27) may be perfectly studied thanks to the introduced functional spaces. Yet, it is
useful to consider the second dérivation to get a better understanding of the underlying minimization problem.
It is therefore not surprising that System (79) is similar to the initial System of Després in [11].

4. A MODIFICATION: THE /3-SYSTEM

A difnculty arises with the use of (#,T) spaces when discretization is considered. Indeed, space T possesses
a complicate structure and it is difficult to find a suitable discretization to satisfy the discrete uniform inf-sup
condition. To avoid that, Després suggests us (in a personal communication) to modify the System, using the
f act that y = ix. The new System does not correspond any more to a saddle point problem but has nice coercive
properties.

Let (3 be some positive parameter (for instance (5 — 1). Since y — ix, we add to System (27)

f3x = —ifiy in the nrst équation and , .
Py = i/3x in the second one. ^ ^

The new System is

(Id + P)x + A ^ AooX + K*y y g
(81)

= 0,
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or, in an equivalent for m

r " n = [ o ] • (82)
A simple calculation shows that the coercivity is ensured:

Sï? ( KA ( X \ f X I I II I I 2 R\\ ' I I 2 I A I I 2 II A I I 2 * > ' (^ ^~\(\\ I I 2 _ L II I I 2 "i

\ \ y / \ y j / x x. ?c

5. THE SYSTEM FOR A GÉNÉRAL IMPÉDANCE CONDITION

The Després's System (27) has been written for the impédance condition (17). To extend it to more gênerai
boundary conditions we consider the problem

Av+ + k2v+ = 0 in D+

lim \x\l/2{drv
+ - ikv+) = 0 (83)

\x\—*oo ^ '

duv
+ + ikZv+ = F on T,

where Z can be a pure constant, or more generally some operators (differential, pseudo-differential, . . . [3-5])
acting on a fonction defined on the boundary, To have a well posed problem, we assume the impédance operator
Z has a positive real part. Associated to Z is the reflection operator 71 defined by

n=Sri ' (84)

The assumption on Z implies ||72.|| < 1. The well-known boundary conditions follow directly from particular
values of Z:

• if Z = 0 (R=l), we get the Neumann boundary condition

duv
+ = F on F

• if Z —* oo (R=-l), the Dirichlet boundary condition is deduced

v+ = 0 on F.

We have already treated the problem with the condition given by

dvv
+ + ikv+ = g.

The right hand side g can be expressed in ternis of 1Z through

g = n(-dvv + ikv) + (1 + n)F. (85)

Combining the définition of g given by (19) and the new expression for g, we deduce

x + A ^ AQOX + K*y = N-JIX + ƒ
(86)

Kx — A^AOQÎ/ = 0,
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where

and

ku

We modify the System by adding terms in (3 as previously, and we obtain

{Id + (3)x + A^AooX + K*y - iYTCx + f - i0y
(89)

K z — (f3 + A ^ Aoo)y — — i/3x.

Schematically, this system reads

with

and

-0
0 J • (92)

6. SOME ITERATIVE ALGORITHMS

To cope with System (89), several itérative methods can be imagined. The simplest is a relaxed Jacobi
method based on the splitting {Cp^TZ^p). Let r be the relaxation parameter. The itérative algorithm is

• computation of ƒ via (87);
• initialization: x° = 0 and y0 = 0;
• iterate over p, the itération index:

— solve

[ ? ] [ £ ] [o] <93)

— relax

XP = (1 - r)xp~l + rxv, yp = (1 - r ) ^ " 1 + rip. (94)

When 1Z is a scalar number, the convergence of this algorithm is proved provided that

< 1 and 0 < r < L (95)

If \\TZ\\ zfz 1, this convergence is strong (||xp — x\x —>• 0 where (#, y) is the sought solution), otherwise it is weak
(xp —>- x weakly in X). In ail cases the far fields K^y9 — y) and Aoo(^p — x) tend strongly to zero in L2(C).
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The proof is quite similar to the case of MaxwelFs problem developed in [9] and will not be reproduced here.
For a more gênerai framework where 1Z is an operator, the reader is referred to [2].

A more sophisticated approach is to apply a GMRES algorithm to the system

M ; ]+[ o ])-»•])-
The theory of GMRES is described in [16] and one of its implementations in [12]. We do not have any theoretical
result about the convergence of this method when the rest art parameter is lower than the size of the problem.
However, we will see its efficiency dur ing the numerical expérimenta.

7. NUMERÏCAL EXPERIMENTS

7.1. Discretization of boundary intégral équations

First and foremost, the intégral system is rewritten through a variational formulation in order to involve
only weakly singular intégrais, cf. [5] for more details. For instance, derivative of the double layer potential is
removed and the new formulation is given by

= -~ f Sr(d^)(x(s)) detfWs)) dT(s) + ƒ Sr(«H(*(*)) • (<^)(x(s)) dT(s).

A Galerkin method is used: the boundary is split into segments and all functions (both unknowns and test
functions) are approximated by C° finite éléments (only differential operators of order at most 1 occur). For
distant pairs of segments, the double intégrais are approximated by means of a two point Gauss-Legendre
quadrature formula, whereas the nearest éléments receive special attention. The numerical intégration is done
via extract ion and exact intégration of singular ities like log \x — y\, d„x log \x — y\. Concerning the operator M,
the associated matrix is calculated from (26) and the following Fourier series expansion suitably truncated (this
series also called the Jacobi-Anger expansion is introduced in Appendix A, p. 26)

e-ikx.y= J2 (-i¥Ji(k\y\)eaVy-0*K (97)

The number of modes is fixed by

\£\ <N£j Ne = max (kD + 6log(kD + TT), 10)

where D is the half of the scatterer diameter.

7.2. Solution of system (93)

When system (93) is solved by the Jacobi algorithm with relaxation process, at each Jacobi itérative step,
the couple (xp

} y
v) has to be determined via some second itérative procedure. Due to the symmetrie na-

ture of operator C/?, different algorithms are available, for instance SymmLQ [14], Double Conjugate Gradient
(DbleCG) [13] or OrthoCG [7]. These three methods will be compared. Let us recall that DbleCG consists in
solving the matricial system

*i K* i r x 1 _ r / i
K -Ma y I " \g\ (98)
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or equivalently

ƒ ( K M ^ K * + M2) y = KM^f1 ƒ — g ,QQ^

\M1x = f- K*y ( " J

by using Conjugate Gradient (CG) methods: a first CG is used to solve the system in y and, at each itération,
a second CG is used to invert Mi.

7.3. Circular geometry

In our first example, the method is validated on a circular geometry. Indeed, in this particular case, computed
currents and the Radar Cross Section (RCS) can be compared with exact values from Fourier series.

The parameter /?, which has been introduced in (80) is crucial for the convergence of the itérative algorithm.
If /? = 0, the itérative system converges to a solution polluted by éléments in the kernel of K*. Unlike the
continuous model, the matrix associated with the discrete system is ill-conditioned and the inf-sup condition
is not satisfied any more. Conversely, if /? = 1, the exact and computed currents fit. Below the relative RCS
error (expressed as a percentage) are reported for either the Neumann problem (1Z = 1) or a model problem
(71 = 0). The unit circle is discretized with 50 or 100 points and k is picked equal to 2. The tolérance criterium
for Jacobi equals 10~5.

Unit circle, k = 2

Jacobi itérations
RCS relative error

with 50
Neumann pb

68
1.18%

points
model pb

34
0.92%

with
Neumann

70
0.30%

100
pb

points
model pb

35
0.23%

Some numerical tests have been performed for studying the influence of the frequency and of the preconditioner.
Several conclusions are reported here. Concerning the solution of system (93), SymmLQ appears to be the best,
in term of CPU time and number of itérations, among the other itérative methods. For instance, if a tolérance
criterium is set to 10^4, we present some results for Jacobi itérations as a function of SymmLQ, DbleCG or
OrthoCG.

frequency
k = 8

/e = 12

k = 20

Regular meshing with 20

Jacobi itérations
CPU time

Jacobi itérations
CPU time

Jacobi itérations
CPU time

SymmLQ
74

36 s 5
82

2 min s
93

8 min 20 s

points/ À
DbleCG

74
1 min 20 s

82
3 min 46 s

94
16 min 39 s

OrthoCG
74

41 s 68
82

2 min 24 s
93

10 min 40 s

The CPU time is relative to a Power Challenge. It is important to notice the corrélation between the frequency
value and the Jacobi convergence: if the frequency is increased so is the number of required Jacobi itérations
but the dependence is far less than linear.

Concerning irregular meshings, we have concluded that the inverse of the mass matrix is a good, easy to
compute and reliable preconditioner for the SymmLQ algorithm. It reduces the number of SymmLQ itérations
to the one in the regular case.

fc = 10

SymmLQ itérations
Jacobi itérations

Irregular
No precond.

30
78

meshing
Mass inverse

19
78

Regular meshing
No precond.

19
78
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7.4. Elliptic geometry

In the present section, we focus on elliptic geometry to observe curvature effects. We consider an ellipse
char act erized by semi-axis a = 1 and b — 0.5. The Helmholt z problem is solved successively with k = 5, k = 10,
k = 20 and k = 40 and two kind of impédance boundary conditions are set on the boundary: either 1Z = 1
the Neumann problem or the model problem with 1Z = 0. In each case, the RCS, computed using the
classical method of Intégral Equations (IE) with LU inverse, is compared with the RCS obtained with our
algorithms. We also report the number of itérations required by SymniLQ and by Jacobi. This emphasizes
the influence of the frequency. These numerical experiments show that Jacobi convergence is better when the
reflection coefficient 1Z is close to 0, the model problem converges more quickly than the Neumann problem (the
tolérance criterium for Jacobi residual is equal to 10=4).

First k = 5 and the discretization is done with a regular meshing. Because we solve several itérative Systems,
the number of itérations refers to a mean value, for that reason a range may sometimes be given in the following
tables.

Regular
frequency

fc = 5

meshing of ellipse (200

SymmLQ itérations
Jacobi itérations

points and 18
n = i
36-37

64

modes)
1Z

35
, =

27

0
36

1 5
angle in radians

(a) U = 1 (b) n = o

FIGURE 1. Comparison of the bistatic RCS of the elliptic obstacle for k — 5. The solid
line corresponds to classical Intégral Equations (IE) and the dashed line to Després Intégral
Equations (IED).

We perform the same tests but with an irregular mesh on the elliptic boundary.

Irregular
frequency

fc = 5

meshing of ellipse (200

SymmLQ itérations
Jacobi itérations

points and 18
1Z--= 1
54-56

64

modes)
1Z =
5 3 -

27

0
56

In this elliptic case, preconditioning by the inverse of the mass matrix does not allow us to recover the number
of SymmLQ itérations relative to regular meshing. However, the number of SymmLQ itérations decreases from
85-91 to 54-56 with the use of inverse of the mass matrix. So, this preconditioner saves more than 30 itérations.
Table 1 sums up the convergence of SymmLQ and of Jacobi algorithm when frequency increases. For the
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particular case k = 40, Figure 2 plots the RCS of both Neumann and model problems, and Figure 3 illustrâtes
that the Neumann problem requires more itérations to reach tolérance criterium 10~4.

TABLE 1. Number of SymmLQ and Jacobi itérations as a function of frequency if tolérance
criterium is equal to 10~4.

Regular
frequency

k = 10

frequency

frequency

fc = 40

meshing of ellipse: 400

SymmLQ itérations
Jacobi itérations

500 points and 39

SymmLQ itérations
Jacobi itérations

1000 points and 6̂

SymmLQ itérations
Jacobi itérations

points and 25

3 5 - 3 7
76

modes

2 4 - 2 5
92

Î modes
11=1

26
111

modes

3 2 - 3 5
28

2 5 - 2 6
30

26
30

8 05

(a) n = i (b) n = o

FIGURE 2. Bistatic RCS of elliptic obstacle for k = 40.

On elliptic geometry, curvature does not slow down Jacobi convergence.

7.5. Square geometry

If the scatterer is taken to be a square, the conclusions are the same as in the previous section. The
algorithms of Jacobi and SymmLQ are not affect ed by corner effect s. Moreover, the number of itérations for
SymmLQ dépends very weakly on the frequency whereas Jacobi itérations number increases more significantly
with frequency, see Table 2.

7.6. Obstacle coated by a dielectric Iayer

The problem of scattering of a wave by a perfectly conducting obstacle coated by a thin dielectric Iayer is of
interest. It is usually solved by using an impédance boundary condition to approximate the effect s of the thin
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10 20 30 40 50 60 70 80 90 100

FIGURE 3. Jacobi convergence of both the model problem and the Neumann problem for k = 40.

05 1
Angle of observation tn radians

Î ï~5 2 25
Angle of observation in radians

(a) k = 2 (b) k = 8

FIGURE 4. Bistatic RCS for the square geometry

TABLE 2. Number of Jacobi itérations as a function of frequency with tolérance criterium
equals to 10~4.

Square
frequency SymmLQ

k = 1 Jacobi itérations 57
CPU time (PC) 0 mm 0 s 48

k = 5 Jacobi itérations 57
CPU time (PC) 0 mm 12 s 22

k = 10 Jacobi itérations 78
CPU time (PC) 18 s 20
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shelL For instance, these effects can be incorporated through some effective boundary condition in the form

duu + ikZu = 0
Zip = dsa(x(s))dscp + (3(x(s))(p, (100)

where s is the curvilinear coordinate, cf. [4] and [3]. Coefficients a and (3 depend on various parameters (wave
number, curvature of the scatterer, thickness and permittivity of the thin layer).

Dealing with this kind of conditions is far from being an easy task. Hère, we use the Jacobi algorithm given
in Section 6 to solve (90). It mainiy amounts to solve System (93) at each itération p. As Cp does not depend on
the boundary condition, the System to be inverted remains unchanged. The only thing to do is to compute the
second term 1Zn,/3 [xp~1^yp~1] in (93). A look at définitions (92) and (88) shows that it consists in Computing
g = Hfv~l, fv~l known and H given by (84). Finally, we have to solve g + Zg — fp~l - Zfp~l, Without
going into further detail, it is important to point out that the computation of TZ requires careful attention if 1Z
defined in (84) is expressed as a ratio of differential operator

n =
P(ds)
Q(ds)'

The product matrix-vector 1ZX is most easily found by splitting up the calculus into two steps

UX = P(ds)Y where Q(ds)Y = X.

Indeed, after discret izat ion these two linear Systems are sparse and can be solved very easily using a QMR
method [16]. Figure 5 illustrâtes the scattering effects of a circular dielectric layer characterized by h = 0.05,
e = 2 and k = 5. The solution is compared to the one obtained by the method presented in [3]. Results are in
a good agreement.

1.5 2
angle in radians

FIGURE 5. Bistatic RCS for the circular obstacle coated by a dielectric layer. The exact solution
is compared with two approximated results (second order boundary condition as defined in (100)
solved by Intégral Method : IE or IED).
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Incident wave

AB = AC = 0.95A
DE = DH^ 0.64A
BG = 0.31A
EF =

FïGURE 6. Non-convex geometry with an incidence of 45 degrees and A = 2n.

FIGURE 7. Amplitude of the electromagnetic field scattered by a perfectly conducting resonator

7.7. A non-convex geometry

Now a more complex situation is investigated. It consists in tackling a quasi-cavity problem as illustrated in
Figure 6. The wavenumber fc is 1 and the Neumann condition is retained. The near field is visualized in Figure 7.

For this particular geometry, some difficulties appear with the Jacobi algorithm for some angles of incidence,
for instance when 6 = 45°. A very slow convergence has been observed, see Jacobi's residual in Figure 8-a. The
reason for the stagnation of the Jacobi residual is probably linked to the fact that the currents interior to the
non-convex geometry do not radiât e at innnity (as a matter of fact, stopping the Jacobi itération at p = 100
provides an accurate RCS and the associated residual is 0.026). The idea is to replace Jacobi by a GMRES
algorithm. In Figures 9-a and 9-b, we compare $ie(ku) of IE to the current obtained by the Jacobi method after
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(a) Jacobi's residual (b) GMRES's residual

FIGURE 8. Residual for two different algorithms.

V ^20 4 Ö ~ 60 80 ÏOCT 12Ö
curvtlinear absctssa

~~2Ô 40 60 ~ 80 100 120 T4(
curvilinear abscissa

(a) IE and Jacobi (b) IE and GMRES

FIGURE 9. Real part of the current on the boundary of the resonator.

100 itérations and the GMRES method. The computation is performed with 20 points per wavelengths. Only
the GMRES algorithm rapidly provides the right solution with 64 itérations if the tolérance criterium is set to
10"4 and the restart parameter fixed at 10, see Figure 8-b.

8. CONCLUSION

Després équations have been obtained using two different techniques. The method has been implemented and
validated on several geometries. Numerical experiments have been performed with different itérative algorithms
like the Jacobi or GMRES algorithms. At each itérative step, a System with a symmetrie but not positive
matrix must be solved and the method of SymmLQ is particularly appropriate. This itérative solver with
two itération loops proved to be effective for convex geometry. In this case, good behaviour is observed when
frequency increases or when the mesh is irregular. For dielectric-covered obstacle, computation and convergence
are very efficient. As regards a non-convex geometry, the détermination of currents proves to be difficult and the
preconditioned GMRES algorithm is suitable to cope with this particular geometry. At the end of this analysis,
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it is, however, necessary to point out that the number of unknowns is four-fold with regards to classical intégral
équations. This is the main drawback of the method. On the other hand, the efficiency of this method for
implementating impédance boundary conditions is clear. The second fundamental application, which has not
been developed here, concerns a domain décomposition method [11] which benefits from the good properties of
Després system.
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APPENDIX A. THE FAR FIELD OPERATOR

We intend to prove the following equality

We start with the Jacobi-Anger relation for plane waves

+00

6 = = / y % J tJ g yr£\/y\j& . ^lU^J

£--OO

The relation (23) can be expanded in Fourier series

ku
du

i=-a

= J^ J2 (-iY(A£
D{ku) - A£

sdu)e'a^ (103)

where the coefficients A^s and A^D are defined by

= ^ [ Mk\y\)emy<p(y)dr(y) (104)

•\fk f y • i£

(105)

Using Parseval's equality, we obtain

j c
 A ° ° I Ön I A o ° I dv I d £ = ^ (AD(ku) - A%{du)){Ai

D{kv)
£=-00
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At this point in the proof, we have to recognize

IA « o dr with M = o

du \\ dv \ -K% S%

The calculation has to be done for each block of the matrix. For instance, to identify S% from ]T^ A£
s A^s,

relations (5), (8) and (12) are used, St is given by

J(Sx<p){x)<p{x) dT(x) = ï JJjoWx - y\Mx)<p(x) àT. (106)

The series development of the Bessel function JQ is given by Graf's addition theorem, [1] page 363.

ydi dF

^ dr.

J0(k\x-y\)= J2 Ji(k\x\)Je(k\y\)e^^-eyl (107)
£=-oo

It then requires only some substitutions to obtain the identification

J" A£
s{du)Â^{dv) = ̂ y [ Jt(k\x\)eM*dudr [ Je(k\y\)

= " / y Jz{k\x\)Je{k\y\)e%^e--ey)du~di àT = f 5,

Similar calculations provide the identification for the three other blocks.

APPENDIX B. THE ASYMPTOTIC BEHAVIOR OF HERGLOTZ WAVE FUNCTIONS

Let 7 is in L2(C) we defme

#(7; x) = y Ç ^ jT !{s)e^ êdC(s) (108)

where s = e%6ê G C.
If 7 is more regular than L2, say C1, we can apply the stationary phase theorem to get

(109)

The problem we address here is to get some convergence resuit of H(7; x) to H(j] x)asy for a large x when 7 is
less regular, in particular only in L2.

For such a 7, we have a Fourier expansion

e^* (HO)
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with

By Parseval's equality, the coefficients satisfy

From the Jacobi-Anger expansion

N. BARTOLI AND F. COLLINO

+ 0 0

€=-00

we obtain easily

H(r,x) = y |J
Now we have the expansion

H(r,x)asy =

Then we form, if R is a large number,

ft JR JQ

2TT

~k

with

= — V I
£—00

2R cos(/u|x

fk\x\

Using both asymptotic behavior

and the uniform bound (via a similar theorem to the 3D theorem of [10], p. 61)

1 f2R

sup— / fe|x| |J^(/c|x|)|2dx < Mo
£ & JR

Mo being independent of R, we can easily conclude that

(m)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

lim Ae(R) = 0.
R—>oo

Hence, the convergence of .ff (7; x) to H{^\ x)asy is deduced by use of the theorem of dominated convergence.
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