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INTEGRAL EQUATIONS VIA SADDLE POINT PROBLEM FOR 2D
ELECTROMAGNETIC PROBLEMS

NATHALIE BARTOLIY 2 AND FRANCIS COLLINO!

Abstract. A new system of integral equations for the exterior 2D time harmonic scattering problem
18 mvestigated This system was first proposed by B Després mn [11] Two new derivations of this
system are given one from elementary manipulations of classical equations, the other based on a
minimization of a quadratic functional Numerical 1ssues are addressed to investigate the potential of
the method

Résumé. Un nouveau systéme d’équations intégrales est proposé pour la résolution des problémes
bidimensionnels de diffraction d’ondes harmomiques Ce systeme a été imitialement présenté par
B Despres dans [11] Deux nouvelles dérivations de ce systéme sont données 11 la premiére est
obtenue a partir de mampulations sur les opérateurs intégraux classiques, la deuxieme repose sur la
minimisation d’une fonctionnelle quadratique Des résultats expérimentaux sont présentes et analysent
les potentialités de cette méthode
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1 INTRODUCTION

Thas paper deals with the scattering of a 2D time-harmonic electromagnetic wave by obstacles More partic-
ularly, our interest 1s focused on the determiation of the far field pattern of the scattered wave (Radar Cross
Section) The problem 1s classically described through an integral representation of the electromagnetic fields
This representation uses currents flowing at the surface of the obstacles which can be determined using some n-
tegral equations After discretization the associated matrix 1s, in the best cases, symmetric but non-Hermitian
So, no guarantee of convergence 1s available when 1terative methods are used to solve the linear system This 18
why direct methods of Gauss type are usually proposed However, for high frequencies, the number of unknowns
mcreases rapidly due to the necessary refinement of the mesh For very large problems, direct methods are not
tractable and some 1iterative methods must be used In [11], B Després proposed a new system of integral
equations with nice properties This system stems fiom the mimimization of a functional under constraints and
gives a real symmetric but non-coercive bilinear form It 1s the purpose of this paper to study this new system
In [11], the derivation of the equations 1s rather mvolved We will show that they can be recovered very easily
from some manipulations of the usual potentials Then, we will give another derivation, more closely related to
the one proposed 1n [11] and constructed from the mimimization of a quadratic functional This second approach
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intends to simplify the arguments given in [11]. Tt allows us to justify the presence of our additional unknown
which could appear somewhat arbitrary in the first derivation. Finally, we will present some numerical results.
The goal of these numerical experiments is more to validate the approach in various situations than to do an
exhaustive study.

The present paper is organized as follows. First, we derive the new system for the model problem (absorbing-
like boundary condition) from manipulations of the integral operators (Sect. 2). Secondly, the same system is
obtained from minimization of a quadratic functional (Sect. 3). This approach allows us to justify the presence
of the Lagrange multiplier among the unknowns. In Section 4 the system is modified with the introduction of
a penalization parameter (. It is done to provide a tractable system after discretization. Then, the system
is extended to problems with general impedance boundary condition (Sect. 5). Two iterative methods are
presented to solve the system: a relaxed Jacobi and a preconditioned GMRES (Sect. 6). Finally, some numerical
experiments are reported to investigate and validate the method.

2. A FIRST DERIVATION OF THE INTEGRAL EQUATION SYSTEM

We consider the scattering of a TE electromagnetic wave in the two-dimensional case. The domain D,
bounded by a regular curve I', corresponds to the scatterer. The unit normal v is outwardly directed to the
exterior domain D*. The only non zero component of the magnetic field is denoted by v*. The out-going
scattered field is a solution of the Helmholtz Equation,

Avt + k20t =0 in Dt

1
~lim |£II|1/2(8|35|’UJr —ikvt) =0. L
|z|-—o00
In this section, we will assume an impedance condition at the boundary of the scatterer
3,,11[12 + ikvl’; =g. (2)
We will consider more general boundary conditions in Section 5.
2.1. The derivation of the Integral Equation system
Using the classical theory of potentials, [4], any solution vT of system (1) can be represented
v(z) = —5’(6,,1)}) (z) + K(vp) () z €D, (3)
where S and K are the single- and double-layer potential defined by
Se(@) = [ Gl ep)dsty), 2 ¢ T
R (4)

Ro(@) = [ 8,6(@) pl)dsty), v T-

The kernel G is the out-going Green’s function for the Helmholtz equation (H((Jl) is the Hankel function of the
first kind and of order 0),

Gla,y) = 7HS" (Klz — ). (5)
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This integral representation (3) is independent of the boundary condition (2) on I' (this condition will be
considered subsequently). It introduces two currents, namely the trace of v+ and the trace of 8,v+ on I". The
two unknowns are noted by

U= vf;, Ou = 6,,111“;. (6)

With the help of the jump relations across the boundary I", [10], we obtain from (3) the following relations

k
o~ _S9u+ Kku
2
9 (M
> = ~K'0u + Tku
where S, K, K’ and T are the potentials projected on I'. They are defined by
Se(z) =k /G(w,y) e(y)ds(y), z€T
r
Ko(@) = [ 0,0)C(e9) plu)ds(w), w €T
(8)
K'p(z) = ABV(Z)G(w,y) e(y)ds(y), z €T
1
To(@) = o) [ Doty Glans) w(0)ds(y), o € T.
Consequently, (7) is equivalent to the following system (Id is the identity operator)
ku 0
- C
o[ a]-1¢] g
where
T ~K'—1Id
— 2
C= [ ~K +1Id s } ' (10)

Relation (9) has yielded profound insights into electromagnetic behavior. It says that every pair (ku,Ou) of
functions on I" does not necessarily correspond to the traces of some radiating electromagnetic field. To be such
a trace, (ku,du) must lie in the kernel of the integral operator C.

Once the first system written, we can derive other relations by considering kernel’s expression. The kernel
G(z,y) can be split into real and imaginary parts

1 i
G(z,y) —7Yo(klz —y[) + 7 Jo(klz — yl)
4 4

(11)
= —Gr(klz —yl) +iGi(k|lz —yl),

where Jy and Y, denote the Bessel and the Neumann functions of order 0. Following this decomposition, the
potentials read

S=-85+1S, K=-K,+1iK;, T = —T, +1T1;. (12)
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At this stage, we introduce A and 9\, a new pair of unknowns defined on the boundary

A=, OX=10u. (13)

Substituting (12) and (13) into (9), we obtain

ku kA
K[au]_M[aA]ZO’ (14)
where
_ T, —K| +iI1d [ -K
K= [ ~K, - iId S, and M=\ p o' |- (15)

Since S, and T, are symmetric, K is related to its adjoint K* through

« w [0 —1d]_
K—K—[Id 0 ]_H. (16)

Up to now, the boundary condition has not been used. As we said, we assume an impedance condition on I' of
the following form

dyupp. + kv = g. (17)

We multiply (17) by 2 and we obtain the two equivalent relations

ku—10u = -—ig
{ Ou+1iku = g (18)
or, in terms of matrices
ku 0 —Id EX | | =g | _ .
L)L S [ ] =15 ®
Using relation (16), we deduce
ku kX « | kXN o
][R e [0 2
Now, multiplying (14) by 2, we have
kA ku
k[ B ][ 5] =0 o
Hence,
ku ku « | BA ] &
[8u]+M[au}+K [BA]_g' (22)

We will now proceed to the derivation of the matrix M from the far field operator in order to deduce some of
its properties.
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Let C be the unit circle, and & a direction on the circle. We define the far field operator following Colton-
Kress’s definition of the diffusion amplitude (up to a k factor, ¢f. [10] p. 66).

kul gt [ e B s
Am[au} N k\/;/r‘3 By, u(y) — u(y)dy, e VdT'(y)

= —ky/ L/ e~ Y (Qu(y) + tku(y)z.v(y))dl (y). (23)
8k T
Its adjoint is given by
| RO (
ALv(y) =k — A 24)
8k z/fy(:i:)e”” ¥ds
c
We then have the following lemma.
Lemma 2.1. The matriz M as gwen wn (15) s symmetric positwe definite and can be split up
ku kv | . ' ku kv
foro o e o= o[ B ][ 5 Jor =)
or equivalently
M=A A (26)

The proof is based on the Jacobi-Anger expansion and the addition theorem for Bessel functions. It is given in
Appendix A. Finally, the system reads

r+ AL A+ Ky=3

(27)
Kz — Al Ay =0,
where the two unknowns are
ku kA .
T = I: ou ] and y= [ 2SN ] linked by y = 1z. (28)

2.2. The saddle point problem

At this point, we notice that system (27) involves only real operators and is symmetric. Furthermore, it is
just the optimality conditions of a saddle point problem. To make this point precise, let us regularize K, by
using some smooth approximation of the kernel G, (we perform this to overcome all the functional analysis
difficulties) and introduce an additional unknown ~y

Y= —1Axy. (29)
As a result, system (27) is rewritten as follows
r+ AL A+ Ky =3

Y+ 1Ay =0 (30)
Kz —1A% v=0.
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Let us define the Lagrangian

* * * ]' * | 1 1 * | 1 * || 1 . * * *
Lz v, y*) = lla* 1 + Sl Asez™[I” + 51y 12 + Re(Kz — iA%,7*, y) — Re(g, bz*), (31)
where
ku | ) « _ | —ig
b[au}—(?u%—zku and bg—[ g ] (32)

We observe that (27) or (30) derives directly from the optimality conditions of the associated saddle point
problem. The triplet (z,7~,y) composed of primal variables (z,7) and Lagrange parameter y is the solution of:

(z,7,y) = min max L(z",7",y"). (33)
Jnin ma

As far as saddle point problems are concerned, it is known that this problem is well posed if the inf-sup condition
of Brezzi is satisfied, [6]. We do not intend to give a detailed mathematical analysis of the well-posedness of our
system here (details can be found in [2], [9]) but only indicate the main results. A possible functional framework
is the following. Given X = L2(I') x L2(T), let

Y={ye X, K*'ye X} and T = Y/KerK*, (34)
equipped with the norms

lylly = llyllx + 1K*yllx

: v (35)
iyl = 1 — = * 1 — .
lyllr yoe}?erK“y volly = [IK*yllx + yoe}?eerjly Yollx
It can be shown that for some constant C
. (z, K*y)x 1
inf sup ———>~= > - and A <C . 36
yETa;G/'I:\){ ||x”X =9 ” 00y||L2(C) ”yHT ( )

These two properties ensure the well-posedness of system (27) in X x 7. The key point of the verification of
the inf-sup condition lies in the fact that IIK is one of the Calderon’s projector defined in (8], (in particular
(IK)? = IIK). The continuity of A, in 7 is a direct consequence of the remarkable identity

Ker A, = Ker K*. (37)

Actually, each pair in both kernels can be identified to the traces of some solution of the Helmholtz equation
posed in the interior domain D~
A consequence of this brief analysis is that y the second argument of the solution of the saddle point problem

is not unique in X (we only have uniqueness for z): the Lagrange parameter y is only known up to an element
of Ker K*.

3. A SECOND DERIVATION OF THE INTEGRAL EQUATION SYSTEM

The purpose of this section is to show how system (27) derives from the minimization of a quadratic functional.
Indeed, the approach presented in the first section may well have puzzled the reader: a saddle point problem
arises but we did not explain where it comes from. Here, we exhibit the saddle point problem associated to the
Lagrangian function which has been defined in (31). This different approach has been introduced by Després

in [11]. The presentation we give here is still different but the key point of the method is always the isometric
lemma.
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3.1. The minimization problem

Let W be the space defined by
w € HL (DT); Aw+ k*w =0in D

wr € L*(D); Gy € L*(I)

W (38)
RETOO% ei<n lw(z)|? dz < 400
If w € W, it admits the following expansion at infinity
lim_w(z) = a(uw; 8) s + b{uw; 3) e
im w(z) = a(w;2)—— w; ) ——
el Vel ikl Ve o—iklzl (39)

(z) = ika(w; ) — — ikb(w; ) e

Val Vil

where a(w; &) and b(w; £) are in L2(C), £ = je7- This result will be proved later with the expression of a and b,
the convergence w(z) — wWoo () holding in the sense of Morrey-Campanato [15]

lim v
i Bl

1
lim — w(z) — Weo (z)|? dz = 0. 40
5 (@) = 0@ (40)

Note that w appears as the sum of an out-going wave and of an incoming wave. Generally, we are only interested
in out-going (radiating) solutions. Nevertheless, observing that the non-Hermitian property of the usual integral
equations comes from the Sommerfeld condition at infinity, we seek the solution of our Helmholtz problem in a
larger set (relaxation of the condition at infinity). Let g denote some function in L?(I"), we define the functional
I(w) for w € W by

1) = 7 [ 10,006) + ()P + 5 [ |- 2,0 + ikw@)Pdre)

+ k2 /c |b(w; 8)|2d0 + k2 /c la(w; 8)|?d8 — S‘Ee/rg(y) (Ov,w(y) + ikw(y))dl(y). (41)

The relationship between this functional and the radiating solution of our Helmholtz problem is the following

Proposition 3.1. The minimum of the function I(w) over W is vT, i.e.
Avt + k2ot =0
vt = Arg 5,%% I(w) where { 3,,?)} +ikun =g (42)
b(vt;0) = 0.

(note that b = 0 is equivalent to the Sommerfeld condition at infinity satisfied by v*). The proposition 3.1
means that it is possible to relax both the condition at infinity and the boundary condition, and to recover
them through the minimization process. The condition at infinity is treated exactly like the boundary condition
on .



1030 N. BARTOLI AND F. COLLINO

Remark 3.2. It can be proved that changing —Re [, g(y) (9., w(y) +ikw(y))dl'(y) into —Re [ G(y) (8., w(y) —
tkw(y))dI'(y) makes it possible to calculate the (incoming) solution of:

Avt + k%0t =0
8,,11} — zk:f)l} =g
a(vt;0) =0.
The proof of the Proposition 3.1 is based on the isometry lemma which is given next.

Lemma 3.3. (Isometry lemma). Let w € W, we have

/ 180, w(y) + ikw(y) AT (y) + 4k / Ib(w; 0)[2d6 = / | — 8., w(y) + ikw(y)2dT(y) + 4k / la(w; 0)[2d6. (43)
N C r C

Proof. The proof proceeds on the following steps. We denote by B,, the ball of radius r, and 2, is defined by
the intersection between B, and the exterior domain D*. Let n be the outgoing normal on 89, = 8B, UT.
We start from the Helmholtz equation multiplied by the conjugate of w

0= / Aww + k*wd dSY, = / —|Vw|? + k}w|? dQ, +/ Onw . (44)
Q. Q- PoLpI
Retaining the imaginary part of this expression we get
Sm 4kO,ww = / | — Opw + ikw|? — |8w + ikw|* = 0. (45)
o9, 89,

As 8, = -8, on I and 9,, = 9, on 9B,, it follows from (45) that

/ |0, w + ikw|? +/ | — Opw + ikw|? =
r OB, (46)

/ | — dyw + ikw|* + / |Orw + ikw|?.
r 9B,

We then take the mean value of this equality for r in the interval [R,2R], and we let R go to infinity. By using
properties (39), we get

R—o0

1 2R ) 1 2R 27 eozkr 9 5 9
lim —/ / — Orw + thkw|* = —/ / 2ikb(w; 0 rdfdr = 4k / b(w; 8)|*dé. 47)
g L Peg ) [ e [ owso) (

In the same way,

2R
lim © / / Ovw + kw2 = 4k / la(w; 0)|246. (48)
R Jr Japg c

R—o00

As a result, (3.3) is deduced from (46), (47) and (48). O
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Once the isometry lemma has been obtained, the minimization of I(w) becomes straightforward. In W we
have the equivalent expression for the functional

I(w)

1
3 / |0, w + ikw|? + 2k? / |b(w; 0)|2d8 — §Re/ 7 (Bbw + tkw)
r c r

1 1
_ —/ 1Byw + ikw — g + 2k2/ |b(ww; 6)[2d6 — —/ o2
2 Jr c 2 Jr
Now Proposition 3.1 is immediately deduced: the minimum of I(w) is —3||g||? and is reached at w = v™.

3.2. Parametrization of space W

The main difficulty consists in finding a tractable parametrization of the elements of W. Indeed belonging
to W requires a specific behavior at infinity and some regularity for the traces on I'. All the remaining work
will be to exhibit an appropriate parametrization of the problem related to quantities defined at the surface of
I'. We start by extending w by zero into the interior domain D~. We consider the isomorphism Z from W to
Z(W) = W defined by

IT(w) =w

+
{ w on D with w € W. (49)

0on D™
It is straightforward to prove that @ satisfies in the sense of distributions of R?
A + k*@ = Vw - v 6p + div(wvér). (50)
The general solution w € W is made up of two terms, namely Wy, the solution of the homogeneous equation
and Wp, some particular solution of the complete equation. As the second term is a distribution with compact
support, a particular solution is
wp = —Green * (Vw - v ér + div(wvér)) (51)
where Green is some convex combination of out-going and incoming Helmholtz Green functions (one verifies
that wp satisfies the growth property at infinity required to be in W, see Sect. 3.3). As we do not dispose any
radiation condition (out-going or incoming), the uniqueness of the solution can not be demonstrated. For that

reason, we must consider the solution of the homogeneous system wg: Wy is a free wave which verifies

Ay + k*wg =0
(52)

By using Theorem 3.22 of [10], we know that Wy is an Herglotz wave, i.e. there exists some v € L?(C) such

that
~ R ik
o (152) = 1 g /c +(0)e=0dg, (53)

the kernel v is called the Herglotz kernel of Wy and the factor \/ﬁ is just here for convenience. Finally, W
(=Wp+iy) is the general solution of Helmholtz equation (50) in R? with the required behavior at infinity.



1032 N BARTOLI AND F COLLINO

In our space of solution, we have considered both incoming and out-going solutions; for this reason, we choose
the following Green’s function

Yo(klz —yl) .

Green(z,4) = Gyo(,0) = 5 (3 HSO(Hla — yl) — T HED (bl - yl)) = — 2252 (54)
For z ¢ T, the general solution reduces to
QI)(ZB) = ’lf)p(k:w|r, 6,,11)“7) + W (y) (55)
where wy is given by equation (53) and
1
wp(kv, Ov) = —/FGYD(:D. y)ou(y)dT(y) + E/Bnyyo(m,y)kv(y)dF(y). (56)
r

So, w(z) can be described by three variables: kw|r, d,w|r and v(8). Before using this parametrization, we
must study w(z) in D~.
Let (kv,dv,7) in L3(I')? x L?(C) and the function @, such that

W = w(kv, Ov,v) = Wp(kv, Ov) + Ou(y).

It is easy to check that W), =w € W. However, to identify the traces of w, we must impose w vanishes in the

interior domain, 2.e. @ is in W (in other words, we need a parametrization of W) To obtain that, it is enough
to impose both conditions

lim Va(z).v(x) =0 and

T—Ty

lim kw(z) =0 where zo € I’

T—Ty

(57)

Indeed, since A®w + k% = 0 in D~, boundary conditions (57) imply the solution vanishes in D~. Using the
jump relations for the potential layers, we can rewrite (57) as

0 = /8,,1Gy0(ac y)0vu(y)dI'(y \/ zk/’y(ﬁ Ve 00 v (2)do

+WA6VyGYO($,y)kU(y)dF(y) _ 581’(%0)

0 - —k / Gro (2, 1)O0(y)AT () + b/ == / ~(6)e*=0dg
T 87(’]{5 c

+ [ 00, o, ko)A () — o(ao)

(58)

or in an equivalent way, multiplying the first equation by —1 and using both matrices defined in (15), (24) and
GYO - _GT

K [ gz ] — 1A%y =0. (59)
In conclusion, the triplets (kv, dv,~) in L?(I")2 x L(C) which satisfy the constraint (59) are a parametrization

of W. Every such triplet is associated through (55) to a solution of the Helmholtz equation whose exterior
traces on I' coincide with (kv, 0v).
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3.3. The asymptotic analysis

Now, our attention is focused on the asymptotic behavior of functions of W, t.e. the achievement of the
existence of some a{w) and b(w) such that

ezk|z|
lim W(2) = aco(w; &) ——= + boo(w; &) ——- (60)

|z|—oc VA Vard

We start with the classical potentials. Using the asymptotics of Hankel functions for large argument, cf. page
65 in [10], we get

ezk|:cl

emzkla:l
AGYO($=y)3uv(y)dF(y) = (aﬁ(f)ﬁ + b},(ﬁ)ﬁ) <1 + O(I?ll ) ; (61)

where ap(#) = V 32 / e O (y)Ar () (62)

bp(2) = —tahb(—2)

and

iklz e—klz]
[ 26x (e 0@are) = (ap<x> W_; ) )( +0(r |’> (63)

where ap(@) = V 327r / e B k(AT () (64)

b%(2) = —iabh(—2).

For a Herglotz wave with a regular «, the asymptotic behavior can be obtained by means of the stationary
phase theorem

5 1kx ’ B —1kx
wy(z) — wh(z) = (&) e +7/y(—:v)e , lz| — oc. 65
For v € C*(C), the convergence is pointwise
- asy lvllc
wr(7;z) = wy ' (v;2) ( 1+ O+ 2] ))- (66)

In Appendix B, this result is extended to a more general Herglotz kernel v in L?: as a result, with only the
regularity L2, convergence is found to hold only in the weak sense (40). Note that this convergence is sufficient
to derive the isometry Lemma 3.3.

Finally, we sum all these asymptotic contributions to identify the expressions of ac(w;2) and beo (w; £).

dlwit) = gz (A | bv | @+@) (o)

bowid) = g (A | b |00 =(-2)), (69)
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and

» . v l kv 2
Qoo (W; ) + thoo (w; —&) kAOO[ } (2) (69)

oo (W3 &) — ibos (w5 —2) = %y(ﬁ).

3.4. The saddle point formulation

At this point in the presentation, we have managed to express aoo(w; %) and boo(w; ) as functions of the
three parameters (kv, dv,vy). Now, the expression of the functional will be readily derived.
On one hand, from (69) we have

kZ/C;a(w;:ﬁ)|2dﬁ+k2/6‘b(w;ge)ﬁdﬁ;: %/C |~/(5c)|2dgz+%/C|Aw(kv,av;§;)|2di, (70)

and on the other hand

3 1= 00 + ikw@)Pare) + ¢ [ 10,06) + #u)PAe) = 3 [ 10,00 + ko))

%/1 10v(y)|? + |kv(y)|2dT(y).  (71)

We finally obtain

Iw) = 1(ko,00,7) = 5 [ 100w) + (@) PAr )

1 1
$ +-/ |fy(:%)|2d§c+—/|Aoo(kv,6v;:i;)|2d§: (72)
2 C 2 C

e /P 9 (0v() T ikv(y)) dT(y).

\
This expression allows us to rewrite Proposition 3.1 as follows:

Proposition 3.4. Let

p = (kv, dv, v) € L3(') x L*(T) x L*(C)
M= s0 that K [ kv ] A%~y =0, ) (73)
Oov
the solution [i of
i = (kv, Ov, 7) = Arglfglj{}t I(p), (74)

is given by

kv = kvﬁl v = Byvl“; ¥ = kac(v*; Z), (75)
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where vt is the solution of
Avt + k2t =0
Byvr} + ikvrli =g

(76)

e'i,k]:t[

T

To solve this constrained minimization problem (73)-(74), it is classical to introduce the Lagrangian function,

v (2) ~ oo (v 1)

|| — oo.

. % 1, ., 1 1 .
LG99 = 3121 + 5 [ Awa? 2+ 5l (77)
—Relg,bz*) + Re(Kz* — 1ALy, y").
It is well known that if the Lagrangian admits a saddle point, then it is the minimum argument of

L(z,7,y) = min I(w"). (78)

The optimality conditions are deduced from

oc_oc _oc
or Oy Oy

Finally, we obtain

r+ AL Az + Ky =g
v+ itAoy =0 (79)
Kz - 1AL v=0.

The elimination of y in (79) reduces the system to (27).

Conclusion. The system (27) may be perfectly studied thanks to the introduced functional spaces. Yet, it is
useful to consider the second derivation to get a better understanding of the underlying minimization problem.
It is therefore not surprising that system (79) is similar to the initial system of Després in [11].

4. A MODIFICATION: THE [-SYSTEM

A difficulty arises with the use of (X, 7T) spaces when discretization is considered. Indeed, space 7 possesses
a complicate structure and it is difficult to find a suitable discretization to satisfy the discrete uniform inf-sup
condition. To avoid that, Després suggests us (in a personal communication) to modify the system, using the
fact that y = ¢z. The new system does not correspond any more to a saddle point problem but has nice coercive
properties.

Let B be some positive parameter (for instance § = 1). Since y = iz, we add to system (27)

Bx = —iBy in the first equation and

By = ifzx in the second one. (80)

The new system is
(Id+B)z+ AL Az + Ky +ify=3

(81)
Kz + (8 + AL ALy —ifx =0,
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or, in an equivalent form

Ts1 [3
Mﬂ[y}_[o]. (82)
A simple calculation shows that the coercivity is ensured:

. . 1
e (M" ( y ) ’ ( v )) = |lz|% + Bllz + iyl|% + [|Acozl|® + [ Acoyl|® > mm(g, zl% + 1%
Yy Y ) ) esxx 2’ 3

5. THE SYSTEM FOR A GENERAL IMPEDANCE CONDITION

The Després’s system (27) has been written for the impedance condition (17). To extend it to more general
boundary conditions we consider the problem

Avt + k?vt =0in DT
lim |z['/?(8, v —ikvt) =0 (83)

|z|—o00

O,vT +ikZvt = FonT,

where Z can be a pure constant, or more generally some operators (differential, pseudo-differential, ... [3-5])
acting on a function defined on the boundary. To have a well posed problem, we assume the impedance operator
Z has a positive real part. Associated to Z is the reflection operator R defined by

Id-Z

R“1d+z'

(84)

The assumption on Z implies |R|| < 1. The well-known boundary conditions follow directly from particular
values of Z:

e if Z =0 (R=1), we get the Neumann boundary condition
v =FonTl
e if Z — 0o (R=-1), the Dirichlet boundary condition is deduced
vF=0onT.
We have already treated the problem with the condition given by
OvT +ikvt =g.
The right hand side g can be expressed in terms of R through
g=R(-0,v +ikv) + (1 + R)F. (85)
Combining the definition of § given by (19) and the new expression for g, we deduce
2+ AL A+ Ky = Nrx+ f

Kz — A% Aoy =0,
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where
| (A +R)F
f”[ 1+R)F ]’ (87)
and
ku —iR(—0u + iku)
e 7 =
Nre = Nr [ ou ] { R(~0u + iku) ] (88)
We modify the system by adding terms in 3 as previously, and we obtain
(Id+pB)r + AfAz + K*y = Nrx + f —iBy
(89)
Kz — (8+ALAL)Yy = —ifz.
Schematically, this system reads
x x f
C =R + 90
5{9} R"’[y] {0] 40)
with
A+ )Id+ AL AL K*
= K ~(B+ A% Ac) 1)
and
| Ng =i
Rrp = [ —iB 0 ] . (92)

6. SOME ITERATIVE ALGORITHMS

To cope with system (89), several iterative methods can be imagined. The simplest is a relaxed Jacobi
method based on the splitting (Cg, Rr,5). Let r be the relaxation parameter. The iterative algorithm is

e computation of f via (87);

e initialization: z° = 0 and y° = 0;

e iterate over p, the iteration index:

— solve
7D p—1
Cﬁ{;p}:Rn,g[zpﬁl:l—f—{g] (93)

— relax
2P = (1 —r)zP L +riP, P = (1 —r)yP~! +rgP. (94)
When R is a scalar number, the convergence of this algorithm is proved provided that
IRl <1 and O0<r<1. (95)

If ||R|| # 1, this convergence is strong (||z? — z||x — 0 where (z,y) is the sought solution), otherwise it is weak
(zP — x weakly in X). In all cases the far fields A (y? — v) and A (2P — x) tend strongly to zero in L%(C).
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The proof is quite similar to the case of Maxwell’s problem developed in [9] and will not be reproduced here.
For a more general framework where R is an operator, the reader is referred to [2].
A more sophisticated approach is to apply a GMRES algorithm to the system

e (mes| 5 |+ [7]) =0 (96)

The theory of GMRES is described in [16] and one of its implementations in [12]. We do not have any theoretical
result about the convergence of this method when the restart parameter is lower than the size of the problem.
However, we will see its efficiency during the numerical experiments.

7. NUMERICAL EXPERIMENTS

7.1. Discretization of boundary integral equations

First and foremost, the integral system is rewritten through a variational formulation in order to involve
only weakly singular integrals, cf. [5] for more details. For instance, derivative of the double layer potential is
removed and the new formulation is given by

[ 0. 7:0)(0(6)) 8 @(s)AL(s) = = 75 [ S1(0.8)(a(5) 0.6 @) dL(s) + [ S1(éw)(a(s)) - (¢0)(a(s)) AT ).
T r T

A Galerkin method is used: the boundary is split into segments and all functions (both unknowns and test
functions) are approximated by C° finite elements (only differential operators of order at most 1 occur). For
distant pairs of segments, the double integrals are approximated by means of a two point Gauss-Legendre
quadrature formula, whereas the nearest elements receive special attention. The numerical integration is done
via extraction and exact integration of singularities like log |z — y|, 9,_ log |z — y|. Concerning the operator M,
the associated matrix is calculated from (26) and the following Fourier series expansion suitably truncated (this
series also called the Jacobi-Anger expansion is introduced in Appendix A, p. 26)

+co
eTREY = N " (i) Jy(Klyl)e o). (97)
b=—oc

The number of modes is fixed by
[4] < Ny, N¢ = max (kD + 6log(kD + ), 10)
where D is the half of the scatterer diameter.

7.2. Solution of system (93)

When system (93) is solved by the Jacobi algorithm with relaxation process, at each Jacobi iterative step,
the couple (ZP, §?) has to be determined via some second iterative procedure. Due to the symmetric na-
ture of operator Cg, different algorithms are available, for instance SymmLQ [14], Double Conjugate Gradient
(DbleCG) [13] or OrthoCG [7]. These three methods will be compared. Let us recall that DbleCG consists in

solving the matricial system
M; K* z f
FENIHEH )
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or equivalently

1 x _ —1lp
Mz = f - K*y

by using Conjugate Gradient (CG) methods: a first CG is used to solve the system in y and, at each iteration,
a second CG is used to invert M;.

7.3. Circular geometry

In our first example, the method is validated on a circular geometry. Indeed, in this particular case, computed
currents and the Radar Cross Section (RCS) can be compared with exact values from Fourier series.

The parameter 3, which has been introduced in (80) is crucial for the convergence of the iterative algorithm.
If B = 0, the iterative system converges to a solution polluted by elements in the kernel of K*. Unlike the
continuous model, the matrix associated with the discrete system is ill-conditioned and the inf-sup condition
is not satisfied any more. Conversely, if 8 = 1, the exact and computed currents fit. Below the relative RCS
error (expressed as a percentage) are reported for either the Neumann problem (R = 1) or a model problem
(R =0). The unit circle is discretized with 50 or 100 points and k is picked equal to 2. The tolerance criterium
for Jacobi equals 1075.

Unit circle, k = 2 with 50 points with 100 points
Neumann pb model pb Neumann pb model pb

Jacobi iterations 68 34 70 35

RCS relative error 1.18% 0.92% 0.30% 0.23%

Some numerical tests have been performed for studying the influence of the frequency and of the preconditioner.
Several conclusions are reported here. Concerning the solution of system (93), SymmLQ appears to be the best,
in term of CPU time and number of iterations, among the other iterative methods. For instance, if a tolerance

criterium is set to 107, we present some results for Jacobi iterations as a function of SymmLQ, DbleCG or
OrthoCG.

Regular meshing with 20 points/A

frequency SymmLQ DbleCG OrthoCG
k=28 Jacobi iterations 74 74 74
CPU time 36s5 1 min 20 s 41 s 68
k=12 Jacobi iterations 82 82 82
CPU time 2 min s 3 min 46 s 2 min 24 s
k=20 Jacobi iterations 93 94 93
CPU time 8 min 20 s 16 min 39 s 10 min 40 s

The CPU time is relative to a Power Challenge. It is important to notice the correlation between the frequency
value and the Jacobi convergence: if the frequency is increased so is the number of required Jacobi iterations
but the dependence is far less than linear.

Concerning irregular meshings, we have concluded that the inverse of the mass matrix is a good, easy to
compute and reliable preconditioner for the SymmLQ algorithm. It reduces the number of SymmIL{Q) iterations
to the one in the regular case.

k=10 Irregular meshing Regular meshing
No precond. Mass inverse No precond.
SymmLQ iterations 30 19 19

Jacobi iterations 78 78 78
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7.4. Elliptic geometry

In the present section, we focus on elliptic geometry to observe curvature effects. We consider an ellipse
characterized by semi-axis @ = 1 and b = 0.5. The Helmholtz problem is solved successively with k£ = 5, k = 10,
k = 20 and k = 40 and two kind of impedance boundary conditions are set on the boundary: either R = 1
the Neumann problem or the model problem with R = 0. In each case, the RCS, computed using the
classical method of Integral Equations (IE) with LU inverse, is compared with the RCS obtained with our
algorithms. We also report the number of iterations required by SymmIQ and by Jacobi. This emphasizes
the influence of the frequency. These numerical experiments show that Jacobi convergence is better when the
reflection coefficient R is close to 0, the model problem converges more quickly than the Neumann problem (the
tolerance criterium for Jacobi residual is equal to 107%).

First k£ = 5 and the discretization is done with a regular meshing. Because we solve several iterative systems,
the number of iterations refers to a mean value, for that reason a range may sometimes be given in the following
tables.

Regular meshing of ellipse (200 points and 18 modes)
frequency R=1 R=0
k=5 SymmLQ iterations 36 — 37 35— 36
Jacobi iterations 64 27

B T

<.

RCS in aB
Q@

RCS In B
]

05 i

L " s
15 2 15 2
angle In radians angle in radians

(@ R=1 (b) R=0

FIGURE 1. Comparison of the bistatic RCS of the elliptic obstacle for ¥ = 5. The solid
line corresponds to classical Integral Equations (IE) and the dashed line to Després Integral
Equations (IED).

We perform the same tests but with an irregular mesh on the elliptic boundary.

Irregular meshing of ellipse (200 points and 18 modes)
frequency R=1 R=0
SymmlLQ iterations 54 — 56 53 — 56

Jacobi iterations 64 27

k=5

In this elliptic case, preconditioning by the inverse of the mass matrix does not allow us to recover the number
of SymmlLQ iterations relative to regular meshing. However, the number of SymmLQ iterations decreases from
85-91 to 54-56 with the use of inverse of the mass matrix. So, this preconditioner saves more than 30 iterations.
Table 1 sums up the convergence of SymmLQ and of Jacobi algorithm when frequency increases. For the
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particular case k = 40, Figure 2 plots the RCS of both Neumann and model problems, and Figure 3 illustrates
that the Neumann problem requires more iterations to reach tolerance criterium 10~

TABLE 1. Number of SymmIL(Q and Jacobi iterations as a function of frequency if tolerance
criterium is equal to 1074,

Regular meshing of ellipse: 400 points and 25 modes

frequency R=1 R=0
k=10 SymmLQ iterations 35— 37 32— 35
Jacobi iterations 76 28
500 points and 39 modes
frequency R=1 R =
k — 20 SymmLQ iterations 24 — 25 25 — 26
Jacobi iterations 92 30
1000 points and 63 modes
frequency R=1 R=0
k = 40 SymmLQ iterations 26 26
Jacobi iterations 111 30

20— . . 20 ' ; . .
| ﬂ ] /
15 10 i1

=
A —
I~
=

RUS IndB

- s S S

] 05

15 3 25 3 (] 05 j 15 5
angle in radians angle in radians

(@) R=1 (b)R=0

FIGURE 2. Bistatic RCS of elliptic obstacle for k = 40.

On elliptic geometry, curvature does not slow down Jacobi convergence.

7.5. Square geometry

If the scatterer is taken to be a square, the conclusions are the same as in the previous section. The
algorithms of Jacobi and SymmLQ are not affected by corner effects. Moreover, the number of iterations for
SymmLQ depends very weakly on the frequency whereas Jacobi iterations number increases more significantly
with frequency, see Table 2.

7.6. Obstacle coated by a dielectric layer

The problem of scattering of a wave by a perfectly conducting obstacle coated by a thin dielectric layer is of
interest. It is usually solved by using an impedance boundary condition to approximate the effects of the thin
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residual

!
(7Y
T

4

5

10 20 30 40 80 66 70 8 80 100
Jacobi tterations

FiGURE 3. Jacobi convergence of both the model problem and the Neumann problem for k = 40.

RUS InaB
RCS IndB

of

05

1% 2 25 i 75 3 25
Angle of observation in radians Angle of observation in radians

(a) k=2 (b) k=8
FIGURE 4. Bistatic RCS for the square geometry

TABLE 2. Number of Jacobi iterations as a function of frequency with tolerance criterium
equals to 1074,

Square
frequency SymmLQ
k=1 Jacobi iterations 57
CPU time (PC) 0O mm 0s 48
k=5 Jacobi iterations 57
CPU time (PC) O mm 1222
k=10 Jacobi iterations 78

CPU time (PC) 18 5 20
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shell. For instance, these effects can be incorporated through some effective boundary condition in the form
Ou+ikZu=0

v 100

AT P (100)

where s is the curvilinear coordinate, cf. [4] and [3]. Coefficients o and  depend on various parameters (wave
number, curvature of the scatterer, thickness and permittivity of the thin layer).

Dealing with this kind of conditions is far from being an easy task. Here, we use the Jacobi algorithm given
in Section 6 to solve (90). It mainly amounts to solve system (93) at each iteration p. As Cg does not depend on
the boundary condition, the system to be inverted remains unchanged. The only thing to do is to compute the
second term Ry g [2P71, y”‘l}l in (93). A look at definitions (92) and (88) shows that it consists in computing
g = RfP7L, fP~! known and R given by (84). Finally, we have to solve g + Zg = fP~! — ZfP~1, Without
going into further detail, it is important to point out that the computation of R requires careful attention if R
defined in (84) is expressed as a ratio of differential operator

P(9s)

—Q0s)

The product matrix-vector RX is most easily found by splitting up the calculus into two steps
RX = P(0;)Y where Q(0;)Y =X.

Indeed, after discretization these two linear systems are sparse and can be solved very easily using a QMR
method [16]. Figure 5 illustrates the scattering effects of a circular dielectric layer characterized by h = 0.05,
e =2 and k = 5. The solution is compared to the one obtained by the method presented in [3]. Results are in
a good agreement.

RCS In dB

-28

05 i i5 5 25 3
angle in radians
FIGURE 5. Bistatic RCS for the circular obstacle coated by a dielectric layer. The exact solution

is compared with two approximated results (second order boundary condition as defined in (100)
solved by Integral Method : IE or IED).
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éJ\\//\‘\/‘\x/

Incident wave

AB = AC = 0.95)
DE = DH = 0.64)
BG = 0.31A

EF = FG = 0.15\

FIGURE 6. Non-convex geometry with an incidence of 45 degrees and A = 2.

&/

52 100 180 200 250

FIGURE 7. Amplitude of the electromagnetic field scattered by a perfectly conducting resonator
(k=1).

7.7. A non-convex geometry

Now a more complex situation is investigated. It consists in tackling a quasi-cavity problem as illustrated in
Figure 6. The wavenumber £ is 1 and the Neumann condition is retained. The near field is visualized in Figure 7.

For this particular geometry, some difficulties appear with the Jacobi algorithm for some angles of incidence,
for instance when 8 = 45°. A very slow convergence has been observed, see Jacobi’s residual in Figure 8-a. The
reason for the stagnation of the Jacobi residual is probably linked to the fact that the currents interior to the
non-convex geometry do not radiate at infinity (as a matter of fact, stopping the Jacobi iteration at p = 100
provides an accurate RCS and the associated residual is 0.026). The idea is to replace Jacobi by a GMRES
algorithm. In Figures 9-a and 9-b, we compare Re(ku) of IE to the current obtained by the Jacobi method after
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FIGURE 8. Residual for two different algorithms.
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FIGURE 9. Real part of the current on the boundary of the resonator.

100 iterations and the GMRES method. The computation is performed with 20 points per wavelengths. Only
the GMRES algorithm rapidly provides the right solution with 64 iterations if the tolerance criterium is set to
10~% and the restart parameter fixed at 10, see Figure 8-b.

8. CONCLUSION

Després equations have been obtained using two different techniques. The method has been implemented and
validated on several geometries. Numerical experiments have been performed with different iterative algorithms
like the Jacobi or GMRES algorithms. At each iterative step, a system with a symmetric but not positive
matrix must be solved and the method of SymmLQ is particularly appropriate. This iterative solver with
two iteration loops proved to be effective for convex geometry. In this case, good behaviour is observed when
frequency increases or when the mesh is irregular. For dielectric-covered obstacle, computation and convergence
are very efficient. As regards a non-convex geometry, the determination of currents proves to be difficult and the
preconditioned GMRES algorithm is suitable to cope with this particular geometry. At the end of this analysis,
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it is, however, necessary to point out that the number of unknowns is four-fold with regards to classical integral
equations. This is the main drawback of the method. On the other hand, the efficiency of this method for
implementating impedance boundary conditions is clear. The second fundamental application, which has not
been developed here, concerns a domain decomposition method [11] which benefits from the good properties of

Després system.
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APPENDIX A. THE FAR FIELD OPERATOR

We intend to prove the following equality

foae [ e B Joo= [ 52 ][22 o

We start with the Jacobi-Anger relation for plane waves

+oo
e Y = % 7 (i) Je(kly|)e 0.

f=—00

The relation (23) can be expanded in Fourier series

k % =X . 2 —1l0z
A“[aﬁﬁ] = e _Z (i) Z=(=Ab(kw) + A5(0w) &7
= +0°
_ / E(AY (ku) — AS0u)e s

where the coefficients A4 and A% are defined by

Ao = I [ e o) arw)
At = I [ L) + b0, o) o) ar

_ f 5 | 50Tkl o) ar ).

Using Parseval’s equality, we obtain

/ A [’“‘] [gg ]daz=e=f<AfD<ku>—Aé(au»(%(kv)—Af;(av».

l=—o00

(101)

(102)

(103)

(104)

(105)
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At this point in the proof, we have to recognize

ool ) [E Jorwne- [ 5, 5]

The calculation has to be done for each block of the matrix. For instance, to identify S, from >, A% 1—4—5.,
relations (5), (8) and (12) are used, S, is given by

0@t ar@) = § [ [ (ke - yhe@)p(e) dr. (106)
The series development of the Bessel function Jp is given by Graf’s addition theorem, [1] page 363.
=+
Jo(klz —yl) = > Je(klz|)Je(kly|)e == (107)
{=—c0o

It then requires only some substitutions to obtain the identification

ZA (8u) AL (Av) = Z / Jo(k|z|)e*?= fu dT / Jo(klyl)e % du dT’

k

== / > Jo(kl|z]) Je(klyl)er®= =) dudv dT' = / S,0udv dr.
4 I'xI’ ¢ r

Similar calculations provide the identification for the three other blocks.

APPENDIX B. THE ASYMPTOTIC BEHAVIOR OF HERGLOTZ WAVE FUNCTIONS

Let «y is in L?(C) we define

{ a) ,tkx § a
H(v;z) =y s _/CV(S)C ke 3dc(s) (108)
where § = e%s € C.

If v is more regular than L?, say C', we can apply the stationary phase theorem to get

Hiya) = Hya)™ (1+0(z0)
eklz] o—tklz] (109)
H(y;z)**¥ = ~(3)

iy (—8)———.
2k+/ || ( )Qk\/|a:|
The problem we address here is to get some convergence result of H(v;z) to H(y; )% for a large  when + is

less regular, in particular only in L2.
For such a 7, we have a Fourier expansion

NOED I (110)
£
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with
5o = o= [ 4()e*dc(s)
27T c )

By Parseval’s equality, the coefficients satisfy

171122 =27 ) 4nl® < +oo.
From the Jacobi-Anger expansion

—+co
ezkz:.s — Z (i)éJe(klmDeze(ez—%)

{=—o00

we obtain easily

H(v2) = \/ o 57 (6) Tu(klal)e ™ 4.
Y; T \/;¥ y4 Ye

Now we have the expansion

\/’z £ ™ ™ :
H(v;x)%% = )4, cos(k|z| — = — =)etf=.
(75 ) - IwI%:()W (klz| =5 = )
Then we form, if R is a large number,
1 2R 2
IB) = 5[ [ |HEm) - B0 Plaldods
RJr Jo
o +o00
= 5 > Al Au(R)
=—o0

with

2
T . cos(klx| — 45 — Z
\/2'15(]“]3’3”— (klz] = 4)

| 2R
A(R) = = /H N

Using both asymptotic behavior

Jo(klz|) = %Iﬂ <cos(k]:c| — ég - %) + o(L)>

and the uniform bound (via a similar theorem to the 3D theorem of [10], p. 61)
1 [2R
sup —/ kla| | Je(k|z))2dz < Mo
¢ RJRr

My being independent of R, we can easily conclude that

Jim Ae(R) = 0.

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

Hence, the convergence of H(y;z) to H(vy;z)*¥ is deduced by use of the theorem of dominated convergence.
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