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ADAPTIVE WAVELET METHODS FOR SADDLE POINT PROBLEMS *

STEPHAN DAHLKE1, REINHARD HOCHMUTH2 AND KARSTEN URBAN1

Abstract. Recently, adaptive wavelet stratégies for symmetrie, positive definite operators have been
introduced that were proven to converge. This paper is devoted to the generalization to saddle point
problems which are also symmetrie, but indefinite. Firstly, we investigate a posteriori error estimâtes
and generalize the known adaptive wavelet strategy to saddle point problems. The convergence of this
strategy for elliptic operators essentially relies on the positive definite character of the operator. As an
alternative, we introducé an adaptive variant of Uzawa's algorithm and prove its convergence. Secondly,
we dérive explicit criteria for adaptively refined wavelet spaces in order to fulfill the Ladyshenskaja-
Babuska-Brezzi (LBB) condition and to be fully equilibrated.
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1. INTRODUCTION

The variational formulation of many problems in mechanics, physics and technology leads to a saddle point
problem. For example, mixed methods are widely used in structural and fLuid mechanics, [5,7]. Although
significant progress has been made in the numerical treatment of such équations, they still for m a class of
challenging problems. The indefinite character of saddle point problems requires some care in the choice of the
discret iz at ion in order to obtain a stable numerical method. Moreover, the efHcient solvers that are available
for symmetrie positive definite operators, have to be appropriately modified.

In addition, many saddle point problems show a large scale behaviour in the sense that the solution has some
global (low frequency) part and well localized (high frequency) details which may come from singularities of the
problem data such as jumping coefficients, non=smooth domains and right-hand sides. These problems demand
the use of adaptive stratégies in order to résolve the local details of the solution up to a given accuracy while
preserving efficiency.

Keywords and phrases Adaptive schemes, a posteriori error estimâtes, multiscale methods, wavelets, saddle point problems,
Uzawa's algorithm.
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In this paper, we treat these problems by means of wavelet analysis. The first applications of wavelet methods
were in image and signal processing. During the last years, they have also been shown to offer some potential for
the numerical treatment of partial differential and intégral équations, see [8,14,15] and the références therein.
Among them, the maybe most important features for adaptive solution methods for saddle point problems are:

• Convergent and efficient adaptive wavelet methods for positive définit e problems.
• Construct ion of adapted wavelet bases.

Let us describe this in more detail. Recently, an adaptive wavelet strategy has been introduced for symmetrie
positive definite operators, [10]. It was proven there that this strategy gives rise to a convergent adaptive
algorithm. The original method in [10] was somewhat modified in [9] resulting in a strategy that in addition
was proven to be asymptotically optimal efficient.

The construction of (biorthogonal) wavelet bases leaves some freedom that can be exploited to fulfill additional
requirements that, e.g., are forced by the problem to solve. As an example, we mention the construction of
divergence- and curl-free wavelets [20,22,23] and of wavelet trial spaces for the Stokes problem that fulfill the
Ladyshenskaja-Babuska-Brezzi (LBB) condition, [16].

From what is said above it seems natural for us to consider the construction of adaptive wavelet stratégies
for saddle point problems. In this paper, we focus on two main questions:

• Is there an adaptive wavelet strategy for saddle point problems that can be proven to converge?
• Is it possible to dérive gênerai and explicit criteria for adaptive wavelet discret iz at ions of saddle point

problems in order to fulfill (LBB)? Moreover, is the same possible for the so called ruil equilibrium
property (FEP) (see Def, 2.3 below)?

We answer both questions positively in this paper. After collecting some preliminaries in Section 2, we introducé
an a posteriori error analysis in Section 3 which is in fact a generalization of the result in [10]. Also, the adaptive
refmement strategy in [10] can be generalized to saddle point problems. It is still an open problem to prove
the convergence of this particular strategy for saddle point problems. Alternatively, we propose an adaptive
variant of Uzawa's algorithm in Section 4 and we prove its convergence. Also this method may be viewed as a
generalization of the results in [10] since the adaptive Uzawa algorithm uses a convergent adaptive strategy for
the elliptic part as a main ingrédient.

In order to answer the second question from above, we prove gênerai and explicit criteria for (LBB) and
(FEP) in Section 5 in the context of adaptively chosen biorthogonal wavelet bases. These criteria have been
detailed for two concrete examples, namely:

• the Stokes problem, and
• second order elliptic boundary value problems where boundary conditions are appended by Lagrange

multipliers,

in the preprint version of this paper [11].

2. PRELIMINARIES

In this section, we collect all the auxiliary fact s on both, saddle point problems and wavelets, that will be
needed in the sequel.

2.1. Setting

We consider the following saddle point problem: We are given two Hilbert spaces X and M, two continuous
bilinear forms

a: X xX -» R, b: X xM -*R
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and ƒ G X1 as well as g G M7. Hère, Yf dénotes the dual space of a Banach space Y. Moreover, we assume
X Ç Hx<> M Ç HM, where Hx, H M are Hubert spaces such that

X -> Ex -> X', M^HM^ Mf. (2.1)

Then, one has to détermine a pair [w,p] G I x M such that

a(u,v) + b(v,p) = (f,v)x<xx for ail?; 6 X, ^ ^
b(u,q) = (#,Ç)M'XM for all q G M,

where {•, -)Y'XY dénotes the dual pairing. In gênerai, we assume the bilinear form a(-, •) to be elliptic on the
subspace

V := {v e X : b(v,q) = 0 for ail q G M} C X,

ie., there exists a constant a > 0 such that

a(v,v) > a\\v\\2
x (2.3)

holds for ail v G V. For the analysis of our adaptive Uzawa algorithm ho wever, we will need ellipticity on ail
of X. Since we are ultimately interested in problems of the kind (2.2) that are uniquely solvable, we finally
assume that X and M fulfill the inf-sup condition:

inf sup „ b^V\q\ > p (2.4)
eM*x \\v\\x\\q\\M

for some constant (3 > 0.
The following equivalent formulation will be very useful for our analysis. Defining the operators

A : X —> X', (Au,v)x'xx '= a(u,v)} v G X,
# : X -» M', (Buyq)M>xM '•= b(u,q), q G M,
B ' : M-> J£', (Bfp,v)x>xx '= b(v,p), v G X,

the Problem (2.2) is equivalent to find [u,p] G X x M — : H such that

Au + S'p = ƒ in X',
Bu = g m M'.

If (2.2) is well-posed, the operator

' 9 ? ) <2-6)
is boundedly invertible with respect to the usual graph norm, ie., there exist constants ĉ v, CA such that

CA\\A([u,p})\\n' < \\{u,P}\\n < CA\\A([u,p})\\H,, (2.7)

where ||[w,p]||^ := \\u\\x + \\P\\M- We will often use the notation a < b to abbreviate a < cb with some constant
c > 0, and for a < b < a, we write a ~ 6. Hence, (2.7) may also be expressed by
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The Schur complement. In many cases of interest, the operator A is invertible and it makes sensé to consider
the operator 5 := BA~1B/, which is known as the Schur complement Then, we define the energy norm on
X x M for the operator A by

||[v,g]||3i := \\V\\2A + Iklll, [v,q] € X x M, (2.8)

where || - ||A, || • \\s dénote the energy norms corresponding to A and the Schur complement 5, respectively. We
include the proof of the following f act for complet eness and convenience.

Proposition 2.1. If A is elhptic on ail of X', A and Bf are bounded and the mf-sup condition (2.4) holds,
then

IklIsHMlM, qeM. (2.9)

Proof We first establish the upper estimate. Due to the boundedness of Bf and of A~l (which is a conséquence
of the boundedness and ellipticity of A), we have

\\q\\l = (Sq,q)M,xM = (A-1B'q,B'q)XxX,<\\A-1B'q\\x\\B'q\\x,

< \\B'q\\x/ < \\q\\2
M.

To show the lower estimate, we use the boundedness and the ellipticity of A as well as the inf-sup condition:

IMI! = (A^B'q,B'q)XxX,>\\B'q\\xl>\\qfM.

This complètes the proof. D

This resuit shows the équivalence of || • \\A to the graph norm || • | |w. Since we always assume that (2.2) is
well-posed, we also have that A is boundedly invertible with respect to || • \\A, fc.e.,

which is a conséquence of Proposition 2.1 and the well-posedness of (2.2).

An equivalent formulation. An equivalent formulation of (2.2) can be introduced by the bilinear form

£([u,p], [v, q\) := a{u, v) + b{vyp) + b{u, g), (2.10)

which is defined for [u,p], [v,q] E X x M. Now, (2.2) can be rewntten in terms of the bilinear form £ ( v ) :

Given ƒ € X, g G M', find a pair [u,p] G X x M such that

C([u,pi[v,q\) = (f,v)x>xX + (g>q)M>xMi [v,q] eXxM. (2.11)

A short reflection shows that (2.2) and (2.11) are indeed equivalent: The conclusion from (2.2) to (2.11) can be
made by adding up the two équations in (2.2). For the other direction, one can take test functions with q — 0
and v = 0, respectively, to obtain (2.2). The following lemma shows that C also fulfills an inf-sup condition.
We will use this fact later on.

Lemma 2.2. ([19]) There exists a constant J3 G M+ with

[u,p}eXxM[Vtg]€XxM (\\u\\x + \\P\\M)(\\V\\X + \\q\\M)
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2.2. Multiscale methods and wavelets

Let us now summarize the basic notation for multiscale methods that are needed in this paper. For a survey
of multiscale methods and wavelets, we refer to [8,14],

Given some Hilbert space H and a séquence A^ of (finite) sets of indices, we call a System of fonctions
>j := W3,k '• k E Aj}, j > jo, (primai) single scale system, if &3 is refinable, i.e. there exists a matrix

| A l | x ^ l suchthat

Q^M^J+L (2.13)

Here, jo £ N dénotes some coarse level. Equation (2.13) in particular implies that the induced spaces

are nested: S3 C Sj+i- We always assume that the union of all S3 is dense in H. Moreover, we assume the
existence of a dual single scale system $3 — {(phk\ k G A^}, such that

, ^ = ld, (2.14)

where ld dénotes the identity matrix of corresponding size.
Biorthogonal wavelet spaces W3, W3 are then denned by

W3 :=S3+1QSJ: W3 :=S3+1eS3, S3 ±W31 S3 ±W3, (2.15)

where the orthogonality is to be understood with respect to the if-inner product. Constructing biorthogonal
wavelets then amounts to finding bases

* , := {^,fc : k G V,}, f, := {^,fe : k € V,}, (V, := AJ+l \ A,) (2.16)

of W3, W3, respectively, such that

{%,*,)= ld, (2.17)

and the collections

* : = { * : A £ V } , * := {^ : A e V}, V := {A = (j,k) : j > j 0 ~ 1, k £ V,} (2.18)

(with ^j o- i := $JO, ^jo-i '•— $j0) forai Riesz bases for H, i.e., they form a basis for H and the following norm
équivalence holds

= E
Aev

We will frequently use the abbreviation

|A|:=jforA = 0,/c) (2.20)

to indicate the level of a wavelet function. Often, \&, ̂  will be termed biorthogonal wavelet system or simply
multiscale basis. In many cases, an équation similar to (2.19) also holds for a whole range of Sobolev or Besov
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spaces including H (see [13] and also (2.23), (2.24) below). In the sequel, we shall always assume that ail
functions ip\ are compactly supported and that

diam(DA) - 2"'A>, DA := supp^A- (2.21)

For any subset A C V, we define the corresponding set of wavelets by

*A := W A : A G A}, ^ A := {^A : A E A},

and the induced spaces by 5A := S(^A) and SA := ^

2.3. Multiscale discretization of saddle point problems

In order to discretize (2.2), we want to use trial and test spaces that are induced by multiscale bases. To be
more spécifie, we assume that there exist wavelet bases \& = {ip\ : À E V x } and 0 = {$M : fi E VM} that form
Riesz bases for Hx &nd HM> respectively, see (2.1). In the sequel, we shall restrict ourselves mainly to the case
that X and M are Hilbertian Sobolev spaces defined on suitable domains or manifolds 0>i C Mn, 0,2 C Mm, ie.,

X = iT*(fti), M = HS(Ü2), s,£GR. (2.22)

Then, we also assume that the Riesz bases give rise to the following norm équivalences (recall (2.20)):

re[-t,t], (2.23)

Çe[- S > S ] , (2.24)

where || • \\m,n dénotes the norm in the Sobolev space Hrn(ü), m E M. Since it should be clear from the context,
we will omit the dependencies of the norms on fix and £72, respectively, in the sequel. Now, the trial spaces
(XA, MA) C (X, M) are defined by a pair of index sets

A : = ( A X , A M ) C (V*,VM).

The LBB condition. It is well-known that trial spaces for the stable numerical solution of (2.2) need to fulfill
the Ladyshenskaja-Babuska-Brezzi (LBB) condition

inf s u p *(«*;«>) > 0 (2.25)
e M x \\v\\\x \\q\\\M

for some constant (3 > 0 independent of A.

Full equilibrium property. For the numerical treatment of saddle point problems as well as for the analysis
of discretizations, the following property is very useful.

Définition 2.3. A discretization (XA, MA) is said to have the full equilibrium property (FEP) if for UA E XA
the equality 6(WA,<?A) — 0 for ail #A G MA already implies that UA G V, z.e., b(uA^q) = 0 for all q E M. The
spaces are also called equilibrated.

Roughly speaking, this means that Ker£?A C KerjB, which is, of course, a very strong property. There are
many different names in the literature for this property. We choose (FEP), which is used in applications of
mixed methods in structural mechanics (see, e.g., [7]).
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3. A POSTERIORI ERROR ESTIMATES AND A REFINEMENT STRATEGY

As already mentioned, a convergent adaptive wavelet strategy for symmetrie, positive definite operators has
been introduced in [10]. However, a closer look at the proofs in [10] shows that the results concerning the
construction of an adaptive refinement strategy (without proof of convergence) can easily be generalized to a
more gênerai setting (including saddle point problems), see also [3]. In this section, we will therefore briefiy
review the relevant results but we omit the proofs since they can easily be deduced from [10]. Finally, we
describe the application of these results to saddle point problems.

3.1. The gênerai setting

Let us now describe the setting that we consider in this section. Let L : H —> Hf be a linear boundedly
invertible operator, z.e.,

CL\\LX\\H,<\\X\\H<CL\\LX\\H>, X&H, (3.1)

where 0 < ei < CL are absolute constants and H is some Hilbert space.
We consider the problem

Lx = z (3.2)

for a given z G Hf. Moreover, we assume the existence of biorthogonal wavelet bases \I> = {^A : A G V},
i|f = {ipx : A € V}, such that ^ characterizes H\ i.e.> there exist absolute constants 0 < c* < C^, such that

<\\V\\H<<C*( Yl\^(y^)\j > (3-3)
^A€V ^

for any y e H\ where 7A are suitable weight factors and (-, •) dénotes the dual pairing of H and Hf.
Now, we consider the Galerkin approximation of (3.2), z.e., we look for some XA G 5A := ^ ( ^ A ) such that

L&xA = ZA, (3-4)

where LA, Z A are the usual Galerkin projections ofL and z, i.e., LA = ((Lfipx',ipx))x,x/eA and ZA = ((-^
respectively. We will always assume that the Problem (3.4) is well-posed which, e.#., is fulfilled if

. (LvA,wA) . n
mf s u p -TT\I—H ÏT~ ^ 7 > 0>

e s s I I ^ I I B ' I I ^ A I I
see, e.p., [5]. Note that XA is indeed the Galerkin solution, i.e., we have the Galerkin orthogonahty

(L(x - xA),yA) - 0 for ail yA G 5A . (3.5)

3.2. A posteriori error estimâtes

NoWj using (3.1), (3.3) and the Galerkin orthogonahty already gives rise to an a posteriori error estimate:

Proposition 3.1. Under the above assumptions, one has for

öx:=\ix(L(x-xA),il>x)\, A e V , (3.6)

the estimate

1 / 2 / \ 1 / 2

J J2 )



1010 S DAHLKE ET AL

Equation (3.7) stat es that we already have an efficient and reliable error estimator. However, this is numerically
useless, since V \ A is a set of infinité cardinality so that the estimator is not accessible. Hence, the idea is to
reduce the infinité sums in (3.7) to finite ones allowing some additional error that is under control. In order to
do so, we have to pose one more assumption on L and \&. To be précise, we call L quasi spar se w.r.t. \£, if

7^7. (3-8)

where the constants t7 ç and r depend on L and ^ (see [10], Sect. 4.3, for details). Let us remark that (3.8)
is in fact valid for a wide class of differential and intégral operators. One key ingrédient for the validation of
(3.8) is the locality of the wavelets, see (2.21). Then, one can show ([10], Lem. 4.2 and Rem. 4.2) that for each
À G V and a given tolérance e > 0 there exists a finite influence set J\^e c V such that the quantities

A', X\> := (XA,tpy), (3.9)

satisfy

E l7AeA|2) <Cje\\xA\\H (3.10)

for some constant Cj > 0.
Now, we may define the finite index set, which will reduce the infinité sum in (3.7). To be spécifie, let

7^0}- (3-11)

Thus, setting

1/2

(3.12)

one can prove (see [10], Th. 4.1, and also [3]):

Proposition 3.2. Definmg

the followvng estimâtes holà:

AeV\A, (3.13)

\\x-xA\\H<CLcJ( Y] gx(Ke)2) +ZA + eCj\\xA\\H\ (3.14)

and

f — N 1 / 2 1
(3.15)

Now, (3.14) and (3.15) state that the sum over gx(A,e) is an eflicient and reliable error estimator up to a fixed
tolérance. On the other hand, in contrary to (3.7), it is now reduced to a finite sum over NAy£7 so that it is in
fact numerically accessible.
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3.3. An adaptive refinement strategy

Now, we may use the latter proposition to formulate a refinement strategy (see [10], Th. 4.2).

Proposition 3.3. Under the above assumpUons, we have: Let eps > 0 be a given tolérance and fix any $* G
(0,1). Then, definmg Ce :~ -^—^ + 2CLCV an<^ c^oosin9 M* > 0 suc^ ^at /i*Ce < 2(2-V*fcLC^' we se^

e := 2Cj\\uA\\H

Suppose that A c V %s chosen s o that

ZA < i/j*eps. (3.17)

Then whenever A c V, A C A %s chosen so that

1/2 , x 1/2

(3-18)
v — /

there exists a constant K G (0,1) such that either

11 M s . M II /n -i ri\
h^A À -W —- "^A | /a 1 üiii? I

or

1/2 / X l /2

< eps. (3,20)

In [10], the distance property (3.19) is used to prove the convergence of the above strategy for symmetrie positive
definite operators (see also Sect. 4 below). In our gênerai setting, a convergence resuit can not be expected.

3.4. Saddle point problems

Now, we apply the above results to the saddle point operator A in (2.6). Obviously, assumption (3.1) is
fulfilled by (2.7). As a wavelet basis on H = H, we choose * x 9 and then (2.23) and (2.24) imply (3.3) for the
weight factors

and y = [v, q] G X x M — H. In fact, for [vf,q'] e Xf x M', we have

\\[v\q']\\2H' = Ik'llx' + \W\\M'
|2

'XM
AGV

E
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Now, we define the residual

D ( rA \ A ( UA — U \ ( AttA "h -B'pA — ƒ \ /o ni \

^A := := A\ = D , (3.21)
V PA y \PA-P ) \ BuK-g y K J

and the quantities

PA := \(rA,il>\)x<xxl A G V X , CM := |(PA,#M>M'XM|, M e VM . (3.22)

Theorem 3.4. For t/ie above dzscrehzatwn (XA,MA) ? i/ie following error estimate is valid:

1/2 / _ _ x 1/2
(3.23)

As a conséquence, we get the following resuit:

Corollary 3.5. For eqmhbrated discretizations, the following équivalence holds for g ~ 0:

1/2

(3.24)

Remark 3.6. In view of Proposition 2.1, the estimâtes (3.23), (3.24) also hold if we replace \\u ~~u\\\x + \\p~
PA||M by the energy norm \\[u — UA^P — PA]\\A

 a n d 11̂  ~~ WA||X by ||u ~ WAIÎ A, respectively, provided that the
assumptions of Proposition 2.1 are fulfilled.

Finally, we apply the results concerning the adaptive strategy to saddle point probiems. Firstly, we have to
assume that both A and B are quasi sparse in the sensé of (3.8), where for B we have to replace t in (3.8) by 5.
Then, for u\* := {u^x^x'xx, A' € V x , and pM> := (p, ̂ ^ M ' X M J M' ^ VM

} the quantity in (3.9) becomes

where J^ £ C S/x and J ^ C V M are suitable finite influence sets. Next, setting f\ := (f,ip\)x/xx, A €
and #M := ( 5 , ^ ) M ' X M , M ^ VM , équation (3.12) reads

1/2

Finally, the error quantities <7[A)At](A,e) defined in (3.13) take the form

With these définitions, Proposition 3.3 easily applies.
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4. CONVERGENCE OF ADAPTIVE SCHEMES

So far, we have set up an a posteriori error analysis for adaptively refined wavelet spaces. However, it remains
to study the convergence of such an adaptive algorithm. In [10], the above described adaptive wavelet strategy
for positive definite operators was proven to converge. Now, one might think that the generalization to saddle
point problems is an easy task.

Unfortunately, we did not succeed in adapting the arguments used in [10] to saddle point problems. Let us
briefly point out the main différences when going from a positive definite to an indefinite problem. We consider
the Problem Au — ƒ. where A : HQ(Ü) —> i/~*(îî) is some positive definite, boundedly invertible operator and
ƒ G H~t(ü) are the given data, while the fonction u € HQ(CL) has to be seeked. Taking as above a wavelet basis
* = {^A '• A € V} C Ho(fi), w e dénote by uA the Galerkin solution w.r.t. a (finite) set A C V.

In the previous section, we have described a strategy how to enlarge A to some A D A such that the distance
property holds, ie., there exists some 0 < K < 1 such that

see Proposition 3.3, (3.19). Note that here the energy norm ]| • \\A is used, which already assumes that A is
positive definite. Now, one proceeds using Galerkin orthogonality

a(uA -UKJU- UA) = 0 (4.1)

to conclude

\\u - uK\\\ = ||u - uA\\\ - IK - UA\\A < (1 - ^2)il^ - uA\\%

which proves the saturation property\ ie., a strict error réduction since 0 < 1 — K2 < 1.
Unfortunatelvj (4.1) is no longer true when A is replaced by the operator A in (2.6) which represents a saddle

point operator. Now, one could try to use that A is positive definite on V = Ker(B). This approach in fact
gives rise to a convergent adaptive algorithm (which can be numerically performed) for Computing u provided
that a basis for V is explicitly available, [12]. This of course contradicts the philosophy of the saddle point
approach and is not what we aim at.

As a second approach, one could consider the reduced problem for p, ie.,

Sp = BA'1 f - g,

involving the Schur complement 5. But also this approach seems to have some ultimate obstacles. Firstly,
due to the présence of A""1, the entries of the corresponding stiffness matrix ( % , ^ ) M ' X M can not be easily
computed (and the same is true for the right-hand side). Now, one could approximate A^1 by some A^1. But
then one ends up with the problem that the discretization of 5 is not the same as discretizing the three factors
separately, ie.,

BAAA
lBf

A ï 5A. (4.2)

This means that the computed solution does not correspond to the Galerkin solution w.r.t. A. This, however,
is essential for (4.1). Note that the non-equality in (4.2) still holds if one could replace BAi BA by B and Bf,
respectively. In Section 5 below we will describe situations where this is in fact possible.

Next, one could try to study the error between the real Galerkin solution pA w.r.t. 5A and the perturbed one
p^ w.r.t. BAAA

lBA (which is available for example by the Uzawa algorithm). We have not been able to give
meaningful quantitative criteria for the index set A such that this error is below some given tolérance.

Hence, we have been looking for a new approach that circumvents all the above listed problems and drawbacks.
In this section, we introducé an alternative, namely an adaptive version of Uzawa's algorithm. The analysis of
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this method leads us to the desired resuit, namely a convergent adaptive refinement strategy for saddle point
problems.

4.1. An adaptive Uzawa algorithm

The Uzawa algorithm is a well-known itérative solver for saddle point problems, [2]. We aim at using this
algorithm as an outer itération for an adaptive method. To this end, we consider the Uzawa algorithm for
(infinité dimensional) Hubert spaces. In a second step, we formulate our adaptive version of Uzawa's algorithm.
This adaptive version créâtes some additional errors that need to be controlled over the itération.

4.1.1. Uzawa algorithm m Hilbert spaces

Originally, the Uzawa algorithm was formulated for saddle point problems involving matrices of finite dimen-
sion, [2]. Hère, we consider its formulation in infinité dimensional Hilbert spaces X and M. Given any bounded
linear operator R : M' —• M (whose rôle will be discussed later) and a € M, we consider the following variant
of the Uzawa algorithm:

Algorithm 4.1. Given any p^ G M, we compute u^ and p^ for % = 1, 2 , . . . , by

(4.3)

(4.4)

The convergence of this algorithm is well-known if R is the Riesz operator (see [7] and the références therein).
However, since for the subséquent error analysis it will be important to keep track of the influence of the data
to the error, we need an explicit error estimât e here. Hence, we state the following result and include also the
proof for completeness and convenience.

Theorem 4.2. Let A be elhptic on all of X and suppose that RS is self adjoint and positive definite and
0 < a < 2||iïS'||^-| (S again being the Schur complement). Then the Algorithm 4.1 converges. To be précise,
for p(°) := 0 and setting q := \\Id~ cvRS\\[M], we obtam q<\ and the following error estimate

l | p -p ( t ) l |M< | |A-Vl lx | | a i îB | | [ ; c i M ] î ^- (4 5)

Proof. By induction, it is easy to show that

pW = (ld - aRSypW + f Y;(Id ~ aRSïk )aRBA-lf. (4.6)

Now, let H be a Hilbert space. Then, for any linear bounded and selfadjoint operator T : H —> üf, the following
équation is well-known [1]

sup{|A|: \e<r(T)} = \\T\\[H], (4.7)

where the norm is the operator norm induced by the norm in H and o~(T) dénotes the spectrum of T. Now, we
use the fact that RS is selfadjoint and hence

sup{|A| : A G a(aRS)} = \\aRS\\[M] = a\\RS\\m < 2. (4.8)

The assumptions on a and on RS imply that a (ld — aRS) C (—1,1), since

sup{A : A € a(Id - aRS)} = l - a inf{A : A G a(RS)} < 1
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and

inf{A : A e a(Id - aRS)} = 1 - a sup{|A| : A 6 a(RS)}

Consequently, we obtain

q = \\Id - aRS\\[M] = sup{|A| : A e a(Id - aRS)} < 1.

This finally implies, using q < 1 and p^ = 0

<

k=Q
oo

'aRB
[X,M]

< \\A-lf\\x\\aRB\\[XM]~^-
i — i

which proves (4.5). •

Let us add some comments on the role of the operator R in (4.4). One natural choice is the Riesz operator.
However, we do not want to restrict Algorithm 4.1 to this case only.

4.1.2. Adapüve version

Now, in gênerai, we cannot compute u^ and pM in each step exactly but only with some approximations.
Note that u^ and p^ are éléments of infinité dimensional spaces. We in fact compute approximations u^ , p^
with respect to finite dimensional subsets Al = (A^, Af4") C V x x V M . The aim of this subsection is to study
the overall error in the Uzawa itération introduced by this approximation, where Ax will be chosen adaptively.

To be précise, we define ü^ as the solution of

Aü^ = f - B'p{r1] (4.9)

(which is not computable) and we assume that we approximate &W by the Galerkin solution u^ of (4.9) with
respect to an adaptively created index set A^ C V x up to a certain error, z.e.,

Il4 t )-ü ( t ) l |x<g^, (4-10)

where we may choose e%. Now, we can formulate our adaptive Uzawa itération:

Algorithm 4.3. Let A^ = 0 and p(^ = p(0) = 0. Then, for % = 1,2,..., and gtven A*ilf proceed as follows:

1. Use a convergent adaptive algorithm to solve (4.9), z.e., détermine a set of indices A^ and the correspond-

mg Galerkin solution u^ such that (4.10) holds.
2. Détermine an index set Af̂  such that RB(XA%) Ç MA,.

3. Setp^ ^p^+aRBu^.

In Section 5 below, we will investigate the meaning of the condition RB(X\Ï) Q MA% in more detail. Let us
now study the convergence of Algorithm 4.3.
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Theorem 4.4. Let A be elliptic on ail of X and assume that e := {ei}°l0 G ̂ i(M0). Then, we have

l|p(i)
 -PFWM < \\e\\eim\\aRB\\[XM] q\ (4.11)

where p(°^ = J?A0
 and P^ i$ defined by (4.6).

Proof As above, it is readily seen that

By itération and assuming that p^ = pA\ we obtain

2 - 1

Inserting our assumption (4.10), we conclude that

i - l

k=Q

which proves the result. •

Finally, we obtain our desired result:

Theorem 4.5. Under the above assumptions, we obtain the following error estimâtes for the adaptive Uzawa
Algorithm 4.3;

(a) The Algorithm 4.3 converges, i.e.} we have

(b) The solution of the saddle point problem can be approximated with any desired accuracy:

Proof. Using the triangle inequality and the Theorems 4.2 and 4.4 gives

< WA^fWxWaRB^x^^+CWaRBW^u^

= ql\\aRB\\[XM]

which proves part (a) of the claim. For proving (b), we use standard arguments to obtain

ll« - «(i+1)IU < WB'pf - B'p\\x, < q\

where we have used (a) in the last step. Finally, using triangle inequality and (4.10) yields

II" - 4 m ) l l * < ll« -
which proves the desired resuit. D
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Remark 4.6. It is remarkable that the above convergence analysis does not require the validity of the LBB
condition. The spaces XAi and MAi are only linked through the (weak) condition RB(XAi) Ç MA, which will
be investigated in more detail in the subséquent section.

One may interpret the f act that no LBB condition is required in the following way. In the classical sense,
(LBB) is a condition for a linear approximation process when the dimension of the trial spaces grows. Hère,
the nonlinear approximation process formed by the adaptive method automatically picks the appropriât e basis
functions.

4.2. Approximate application of B and Bf

The presented algorithm in the latter section relies on the fact that the application of the operators B and
B' can be performed exactly on the fînite-dimensional trial spaces. In the next section, we will give explicit
criteria that show under which circumstances this framework is in fact feasible. However, sometimes one may
be interested in a somewhat more gênerai situation where only approximations are available. In this section,
we will describe and analyze a corr esp onding variant of our algorithm.

To be précise, we will pose the following assumptions on the approximations:

Assumption 4.7.

1. Let a finite set Ax C Vx and uA £ XAx are given. Then, for any r > 0 there exists an index set
ÂM(r) C V M and a computable approximation (RB)TUA €

\\i(RB)T-RB}uA\\M<T.

2. Let a finite set AM C V M and pA G MAM are given. Then, for any ö > 0 there exists an index set
ÂX(S) C V x and a computable approximation Bl

5pA G XAX(8\ such that

\\{B'5-B')PA\\x'<5.

In [9], an adaptive approximate application of elliptic operators in terms of wavelet bases has been introduced.
This can also be gêneralized to our framework. Hence, the above assumptions are in fact reasonable. Under
this assumption, we formulate the following:

Algorithm 4.8. Let A^ = 0 and pA^ = p^ = 0. Then, for i = 1, 2 , . . . } and given Af£x fix parameters öi, n
and proceed as follows:

1. Use a convergent adaptive algorithm in order to solve

AüU = ƒ - B's/t^, (4-14)

i.e., détermine an index set Ax C Jx and the corresponding Galerkin solution uA of (4.14) such that

M])-1- (4-15)

2. Set A? := Afix UÂM(n) and pf := p ^ + a{RB)Tiu
{£>.

The convergence of Algorithm 4.8 is given by the following resuit:

Theorem 4.9. Under the above assumption we have
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where p^ = pA and the parameters are set accordmg to

Proof. We need to consider the auxilliary quantity vS%S) which is defined as the solution of

Then, by similar techniques as in the proofs of the above theorems, we obtain

) k- PW = E a{Id - aRS)k
 (RB{U^ - utk)) + [RB - (RB)Tt_k]u

fc=0

Using the estimate

< ^

and the définition of the parameters gives the desired resuit. D

Corollary 4.10. Under the above assumptions, ihe followmg estimate holds

Now, se ver al remarks on the above results are in order:
• As can be seen, a convergent adaptive strategy for the positive definite operator A builds the basic kernel

of our method. By assuming that this algorithm reduces the error to qlel, we implicitly assumed the
convergence of the inner itération, z.e., we assume that there exists a strategy to build À^ which allows
this error réduction. As already pointed out, the algorithm in [10] meets this requirement.
Also the question arises how large the set A^ is, i.e., how many degrees of freedom are necessary to reach
the desired accuracy. This is a property of the adaptive strategy used for step 1 in Algorithm 4.3 and
the possible fill-ins due to the second step of our Uzawa algorithm. For example, the method introduced
in [9] for positive definite operators was proven to have asymptotically optimal complexity. However, we
will not study the complexity of our adaptive Uzawa algorithm hère.

• Clearly, the essential quantity q = \\Id — otRS\\[x,M] < 1 determining the speed of convergence will often
not be available exactly. One could however estimate q in order to obtain a priori a maximum number
of (outer) Uzawa itérations to reach the desired accuracy. Of course, an estimate for q dépends on the
various data for a particular saddle point problem.

• At a first look one might get the impression that the performance of Algorithm 4.3 dépends only on p
whereas the choice of the adaptive index sets Az dépends only on u. However, the situation is somewhat
more involved. Since the behaviour of the right-hand side influences the choice of A ,̂ it can be seen that
p in fact effects the adaptive refinement. On the other hand, u influences also the Uzawa algorithm since
uW enters the définition of pW.

• Finally, we comment on the relationship of the above algorithm to the inexact Uzawa algorithm. The
latter one has recently been studied e.g. in [6,17], where an error analysis is given if the elliptic sub-
problem corresponding to (4.3) is only solved up to some tolérance (in this sensé inexact). Moreover,
the preconditioning of this method is considered there. One might think that our algorithm is simply a
variant of such an inexact Uzawa itération. However, again, we point out that our method works in infinité
dimensional Hubert spaces and the error analysis considers the inexact solution of the continuous elliptic
problem in (4.3). To our knowledge, inexact Uzawa itérations are based on fmite dimensional spaces.
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5 MULTISCALE BASES, THE L B B AND F E P CONDITION

Even though (LBB) and (FEP) are not directly needed for proving the convergence o£ the Algorithm 4 3
and 4 8 above, these properties play a key rôle for the analysis of discretizations of saddle pomt problems
Moreover, it will turn out that these properties are closely hnked to situations where an exact évaluation of the
operators B and Bf on the trial spaces is possible Hence, this section is devoted to conditions on the particular
choice of multiscale trial spaces in order to fulfill (LBB) and (FEP) It will turn out that biorthogonality is the
mam techmcal tooi to dérive exphcit criteria

5 1 The LBB condition

The LBB condition has already been studied m the wavelet context m [4,16,21] All papers are however
restricted to the Stokes problem While [16] does not consider adaptively refined spaces, m [4] this problem is
treated using ideas from [16] But the conditions derived m [4] are still somewhat ïmphcit since certain intégrais
have to be checked Here, we will deal with arbitrary saddle pomt problems and we dérive exphcit criteria
for the adaptively reflned spaces m order to fulfill (LBB) By "exphcit", we mean that given one of the two
discretization spaces, the missing one can directly be constructed by only lookmg at the wavelet indices without
further checks The basic idea, namely to use biorthogonality and the followmg well-known resuit by M Fort m
can already be found m [16]

Proposition 5.1. ([18]) The LBB condition holds if and only if there exists an operator Q\ G £(X,XA)
saus f y ing

b(v — QAVIQA) = 0 for all v € X, ÇA € A^A, and (5 1)

WQAWC(XX) < 1, (5 2)

independent of A

For the spaces X& defined above, we consider the operatoi QA given by

Due to the norm équivalences (2 23), condition (5 2) is always fumlled

AGV

For any subset Ï C I w e will use the notations

X±b ={qeM b(v, q)=0 for all v G X}, (5 4)

and similar for M Ç M

Mu ={veX b(v, q)=0 for all q e M} (5 5)

Moreover, we use the standard définition of the polar space for any subset Î Ç I

X°={x/eX/ (x'}v)x<xX=0 for all v G X}, (5 6)

and similarly for subsets m M By définition, we have

X£"=B{XA)° and M^=Bf(MA)° (5 7)
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Now, we obtain the desired resuit.

Theorem 5.2. The multiscale spaces XA} MA defined above fulfill the LBB condition (2.25) provided that one
of the following equivalent conditions holds:

(a) MAÇ(l6lAh
(b) B'(MA) Ç XA>

(c) B(XQXA) ÇMfQMA.

Proof. Due to the Riesz basis property, we have for v €E X and qA € MA

b(v-QAv,qA) = Y^ (v^\)xxX>b{'ilj\,qA) = 0 (5.8)
AGV\A

if and only if

&(vM, qA) = 0 for ail v^ e X G XA, QA e MAî

which is equivalent to (a). It remains to verify the équivalence of (a)-(c). In fact, using Mjj = M' 0 MA and
X^ ~ X G XAi the assertion is an immédiate conséquence of the well-known équivalences

Y Ç B(L)° <=^ B\Y) ÇL° ^ B{L) Ç y0 (5.9)

for any subset Y Ç M and L Ç X, D

It is easy to see that condition (b) implies that the operator Bf can be applied exactly on MA w.r.t. XA. In
fact, in view of (b), we have

for all pA e MA and ail A G Vx \ Ax and thus

where QA : X —> XA dénotes the biorthogonal projector onto XA.

5.2. Full equilibrium

It is obvious that equilibrated discretizations allow the use of more powerful analytical tools for studying the
approximation of saddle point problems. For instance, one may obtain error estimâtes only for the variable u
without using the graph norm, see e.g. [5] and (3.24) above. However, it is in gênerai a non trivial task to realize
equilibrated discretizations. Hence, we invest in the development of sufncient criteria when using multiscale
bases. Again, it turns out that biorthogonality is a useful tool.

Theorem 5.3. If a multiscale discretizatwn, gwen by the set of indices A = (A^,AM) fulfills one of the
following equivalent conditions

B(XA) C MA, (5.10)

B'(MQMA)çX'eXAi (5.11)

then the discretizatwn is equilibrated.

Proof. Indeed, if (5.10) holds, this means that (BvA,q)MfxM — 0 for ail q € M Q MA for any t>A G XA. This
shows that {BvA,qA)M'xM = 0 for ail qA G MA already implies BvA = 0. The stated équivalence of (5.10)
and (5.11) follows by (5.9). D
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In turns (5.10) ensures that B can be applied exactly on XA since

for all uA G XA and all \x G V M \ AM. We may combine Theorem 5.2 and 5.3, so that we easily obtain the
following result.

Corollary 5.4. If the spaces XA and MA fulfill 5 ' ( M A ) = XA, or equivalently, B(XA) = MA, both (LBB) and
(FEP) are valid and the operators B and Bf can be applied exactly w.r.t. XA &nd MA-

Let us finally add a comment concerning the relationship of the condition

RB{XAJ ç MAï (5.12)

in Algorithm 4.3 and (5.10). ïf R is the Riesz operator, (5.12) is equivalent to

) Ç R(MAt) = MAl>

which is exactly condition (5.10). This means that if we use our criteria to enforce (FEP), we automatically
fulfill (5.12) and vice versa,

One example. Let us illustrate the above conditions by one simple example. Let us assume that we have two
basis functions ^Ai, ip\2 € X, such that BipXl = BI/JX2 = C^M ^or s o r n e dual basis function ë^ G Mf and some
c ^ 0. Let us now assume that

K ^ X A , TPXZ^XA- (5.13)

Using condition (c) in Theorem 5.2 applied to V>A2, it follows that d^ £ MA for ensuring the LBB condition. On
the other hand, using (5.10) applied to i)\x for checking (FEP), one would obtain $M G MA which contradicts the
condition (c) in Theorem 5.2. This shows that (5.13) is not possible for a stable and equilibrated discretization.
The "inverse" images with respect to B of a certain basis function $M either all have to belong to XA or none
of them.

Remark 5.5. One could try to make use of (FEP) which is a very strong property in order to dérive a convergent
strategy at least for u. Indeed, exploiting (LBB), we obtain for the operator QA G C(X,XA) in Proposition 5.1

b{QAu-uA,qA) = b(QAu,qA) - {g,qA)M'xM = b(u>qA) - (# ,3A)M'XM = 0 (5-14)

for ail ÇA G MA, where u, UA are the solutions of the continuous and discrete Problem (2.5), respectively. Hence,
(FEP) implies

b(QAu - tiAî q)=0 for all q G M. (5.15)

Since QAu - UA G XA, we obtain a(QAU — UA> U — uA) = 0, which, in turn, implies

||QAW - u\\2
A = HQAU - UAIIA + \\u ~

This latter équation immediately implies

and since QA was nothing but the biorthogonal projector on XA, the Riesz basis property ensures that uA

converges to u. However, this is also not what we really want to achieve due to two reasons. Firstly, the
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right-hand side of (5.17) contains quantities depending on the unknown solution u. This means, the choice of
the index sets A dépend directly on u} which is not available in numerical calculations. Secondly, (5.17) gives
no quantitative estimate which allows to predict the number of itérations an adaptive algorithm has to perform
at most to reach a prescribed error tolérance.
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