
ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

ALAIN MIRANVILLE
Some models of Cahn-Hilliard equations in nonisotropic media
ESAIM: Modélisation mathématique et analyse numérique, tome 34, no 3 (2000),
p. 539-554
<http://www.numdam.org/item?id=M2AN_2000__34_3_539_0>

© SMAI, EDP Sciences, 2000, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_2000__34_3_539_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Mathematical Modelling and Numerical Analysis M2AN, Vol 34, N° 3, 2000, pp 539-554
Modélisation Mathématique et Analyse Numérique

SOME MODELS OF CAHN-HILLIARD EQUATIONS
IN NONISOTROPIC MEDIA

ALAIN MÏRANVILLE1

Abstract. We dérive m this article some models of Cahn-Hilhard équations m nonisotropic media
These models, based on constitutive équations mtroduced by Gurtm m [19], take the work of mternal
microforces and also the déformations of the material into account We then study the existence and
uniqueness of solutions and obtain the existence of finite dimensional attractors

R e s u m é . Nous obtenons dans cet article des modèles d'équations de Cahn-Hilhard basés sur des
équations constitutives introduites par Gui tin dans [19] Ces modèles prennent en compte le travail de
microforces internes ainsi que les déformations du matériau Nous obtenons alors l'existence et l'unicité
de solutions, puis l'existence d'attracteurs de dimension finie

Mathematics Subject Classification. 35A05, 35B40, 35B45.

Received June 14, 1999 Revised October lst, 1999

1. INTRODUCTION

The Cahn-Hilliard équation (see [5] and [6]) is very central to material sciences. This équation, which is a
conservation law, describes the transport of atoms between unit cells. It is based on a constitutive équation for
the mass conservation of the form

^ = ^AM, K > 0 , (1.1)

where p is the order parameter (which corresponds to a density of atoms here) and \x is the chemical potential,
and on a constitutive équation for the chemical potential of the form

ti = f(p)-aAp, a>0, (1.2)

where ƒ is a double-well potential whose wells define the phases of the material. The potential ƒ is usually
a polynomial of degree four (see [5,6] and [30]), m this article, we consider more generally a polynomial of
arbitrary even degree with stnctly positive leadmg coefficient. We refer the reader to [10-12,15,21] for other
types of potentials; however, we cannot extend our results to such potentials

Keywords and phrases Cahn-Hilhard équation, internai microforces, deformable continuüm, nonisotropic material, global at-
tractor, exponential attractor
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In [19], Gurtm derived more gênerai constitutive équations for the mass balance and the chemical potential
(we refei the mteiested leader to [19] foi a discussion on the objections that the author makes on the classical
Cahn-Hilhard theory and which leads to the introduction of more complete constitutive équations)

Now, we describe the models that we wish to study First, we consider a generahzation of (1 1) which leads
(see [19])

|£=div]3V/i + 0, (13)

where E i s a symmetrie positive definite tensor with constant coefficients (more generalij the tensor B may also
depend on p, Vp, | | , /x and V/i, m which case ît may also degenerate) and where g = g(x) is an external mass
supply Furtheimore, by taking the woik of internai microforces into account, Gurtm obtains a more gênerai
constitutive équation for the chemical potential of the form

11 - b Vfi = f(p) - aAp + 0^ - 7, 0 > 0, (1 4)

where b is a constant vector which vanishes for isotropic matenals (again, the vector b may also depend on p}

Vp, -g|, fi and V/i) and where 7 = 7(a?) corresponds to the action of external microforces We deduce ftom
(1 4) that

dwBVfj, - b VdivSV/i = divBVf(p) - adivBVp + 0—divBVp - divBW-y,
OIT

and we fmally obtain, thanks to (1 3), the followmg gêneralized Gahn Hilhard équation

-—- - —bS/p- 0—divBVp + adiv^VAp - divBVf(p) + div5V7 = g~bVg (15)
UL 0L 0Z

Now, the theory can be further generahzed by taking the déformations of the material into account These
déformations aie essentially due to the displacement of atoms m the sohd Thus, it is legitimate to assume
that the déformations are infinitésimal and that the displacement gradient is small, m which case we can use
the theory of hnear elasticity In that case, the constitutive équation for the chemical potential takes the more
gênerai form (see [19])

M - b VM = f'(p) - aAp + P%- C(E - Ë{p)) Ë'(p) - 7 , (1 6)

where C is the elasticity tensor, E = |(Vit+*Vu) is the hnearized déformation tensor, u being the displacement,
and E(p) is the stress free stram at density p We assume m this article that C is a constant symmetrie positive
definite lmear transformation which maps symmetrie tensors onto symmetrie tensors Furthermoie, as m [19],
we consider affine stress free strains of the form E(p) — e(p — Po)I-> e > 0, po constant, where / is the identity
tensor Proceedmg as above, we then obtam the followmg generahzed Cahn-Hilhard équation

^bVp 0^dwBVp -h adivBVAp + ^divJ5VTr[C(Vw + * Vu)]
ot ot ôt 2

g~bVg, (1 7)

where Tr dénotes the trace operator, which we complete, at first approximation, with the stationary Navier
équation of hnear elasticity

divC(Vw + * Vu) - 2ediv(pC/) = 0 (18)
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We studied in [7,8,10,24-27,29] some models of generalized Cahn-Milliard équations under varions boundary
conditions. However, in all these références, we only considered isotropic materials (i.e. we took 6 = 0). Our
aim in this article is to study more particularly the effects of the term j^b.S/p from the mathematical point of
view.

This article is organized as follows. In Section 2, we obtain some existence and uniqueness results. Then,
in Section 3, we study the existence of finite dimensional attractors. First, we give, in Subsection 3.1, a
resuit for a gênerai abstract équation and then apply this resuit to our models in Subsection 3.2. Finally,
we obtain, in Subsection 2.3, the existence of finite dimensional attractors for the complete System (order
parameter,displacement) when we take the déformations of the material into account. Part of the results
presented in this article is announced in [28].

Throughout this article, the same letter c (and sometimes c', c" and c"') shall dénote constants which may
change from line to line.

2. E X I S T E N C E AND U N I Q U E N E S S RESULTS

2.1. The main results

We assume from now on that the medium is represented by the domain Q = ü^=1(0,L ï) ï L% > 0, % =
1,..., n, n = 2 or 3, and we assume that all the physical quantities are O—periodic. Then, we consider the two
following problems:

-£ - TT̂ -Vp - P—divBVp + adWBVAp - divBVf'(p) + divEVj = g- b.Vg, (2.1)
at at at

p is Ü — periodic ; (2.2)

and

^ - ^b.Vp - p^-divBVp + adiv^VA^ + -divBVTr[C(Vu + * Vu)]
at at at 2

- e2Tr(C/)div£Vp - divBVf(p) + divBV<y = g- b.Vg, (2.3)

divC(Vu + * Vu) - 2ediv(pC7) = 0, (2.4)

p and u are Q. — periodic. (2*5)

We assume that a, P and e are strictly positive constants, that 6 is a constant vector, that B is a symmetrie
positive definite tensor with constant coefficients and that C is a constant symmetrie positive defmite linear
transformation which maps symmetrie tensors onto symmetrie tensors. Furthermore, we assume that ƒ is of
the form

ƒ (s) = ^ a , s \ a2p+2 > 0, p > 1. (2.6)

Finally, we assume that m(g) = 0, where m(v) = VOI(Q)JQV^X^ f°r v ^ ^1(^) or
First, we note that if we (formally) integrate (2.1) or (2.3) over £7, we find

m(p) = m ( p ( o ) ) , \/t > 0. (2.7)
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Furthermorej we note that if (p, u) is a solution of (2.3)-(2.5), then so is (p, u + c), for every constant vector c.
Thus, we complete (2.3)-(2.5) with the condition

m(u) = 0 ; (2.8)

we note that we could have taken the condition m(u) = c, for every constant vector c.

Remark 2.1. We only consider periodic boundary conditions in this article. Neumann boundary conditions are
also classical boundary conditions for the Cahn-Hilliard équation. However, for the models introduced above,
we would not have in gênerai the conservation of m(p) in that case (see [28] for a discussion on the subject).

For the mathematical setting of the problem, we introducé the following spaces:

V2 = {v e ^ e r ( O ) n , m(«)=0},

which we endow with their usual scalar products and norms; in particular, we dénote by (.,.) the usual L2—scalar
product and by |.| the associated norm. Furthermore, for a space W7 we shall dénote by W the space W =
{v e W, m(v) = 0}.

We associate with the above équations the following variât ional formulations:
Find p : [0, T] -» Vi such that

^t ^ pft(BVP: Vq) + a(V^VP ï VBiVq) + {BVf{p\ Vq) = (<p,q), \/qeVl] (2.9)

and find (p, u) : [0; T] -> Vx x V2 such that

o S ( P ' q) + ît(pï b'Vq) + PS (JBVP' VÇ) + a(VB* Vpï V5è V§) + e2Tr(C/)(SVpî Vç)

- |(BV&[C(Vu + *V«)], Vg) + (BV/'Cp), Vg) = (^g), Vg G T4, (2.10)

(C(Vu + *Vu), Vü) = 2e(p(C/), Vu), VtL E F2 (2.11)

T > 0, where (p = g — b.Vg — divBVj (we assume that (p belongs to L2(S7)).
We set, for p in Vi and for u and T2 in V2

a(u,ü) = (C(Vu + *Vu),Vü), Zp(ü) = 2e(p(C/),Vü) (2.12)

and we consider the following problem, for p € L2(r2) given:
Find u E V2 such that

a(u,u) = lp(Ü), Vü e V2. (2.13)

Since C is symmetrie and maps symmetrie tensors onto symmetrie tensors, we have

a(u,Ü) = - ( C ^ u + ^wJjVü + ^ i t ) , Vu, üe V2,
2

and we then deduce that a is a biiinear selfadjoint coercive and continuous form on V2- Furthermore, lp is a
linear form on V2- Thus, we deduce, thanks to Lax-Milgram's theorem, the existence and uniqueness of solutions
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for (2.13). Then, due to classical regularity results on second order elliptic problems, we see that u actually
belongs to H2

er(fL)n; more generally, if p G iJ*er(fi)} then u e iïp+^fi) and \\u\\Hk+i^n^ < c(k)\\p\\Hk ^ay
Now, thanks to (2.13), we can define a mapping

such that u = C(p) is the solution of (2.13) and C(p) G ̂ + 1 ( O ) r i if p G H^er(ft). We easily prove that C is
linear and Lipschitz. Let us dénote by C the restriction of C to L2(O). We can prove, proceeding as in [7,8],
that C is invertible and bi-Lipschitz when C / is positive definite (Cl is symmetrie since / is symmetrie); in
that case, V2 = £>{L2{&)) is closed in V2. Furthermore, if u — £(p), we have p = m(p) + C (u); and if (p, u) is
a solution of (2.10)-(2.11), we have (formally) u(t) - C(p(t)) and p(t) = m(p(0))+Z"1 (u(t)), for every t > 0.
Finally, we set

B{p) = - |Tr[C(V£(p) + *V£(p))]. (2.14)

The mapping B is linear and satisfies

^dïj.Vp e H£ei(ü). (2.15)

Thus, we note that (2.10)-(2.11) can be uncoupled in the sense that we first solve the variational problem.
Find p : [0, T] -> Vi such that

ft(p,q) + ̂ t(P,b.Vq) + /?^(SVP > Vq) + a(VB* Vp, VI^Vg) + e2Tr(CI)(BVp,

+ (BVB(p), Vg) + (BVf(p), Vg) = (v», g), Vg e ^ ; (2.16)

and we then set

u(t) = £(p(t)), te[0,T]. (2.17)

We have the following results:

Theorem 2.1. (i) We assume that po G H^eT(Q) f)L2p+2(Q). Then, (2.9) possesses at least one solution p with

%n%t%(ddatapQsattëtongp£C(%T^\ and ff G L2(0,T; L2(O)), VT > 0.
Furthermore, %f p = 1 or 2 when n = 3 (p 25 arbttrary when n ~ 2), then this solution is unique,
(ii) If furthermore p0 e H2

eT(Ü) and p = 1 or 2 ^/ieri n = 3 ; iften p G C([0,T]; Jïper(^)) and | f G

Theorem 2.2. (%) We assume that pQ G ̂ e r(f i )nL2 p + 2(Q). r/ien; (2.16)-(2.17) possesses at least one solution
(p, u) lyitft ïmha^ data /or the order parameter p0 satisfymg p G C([0, T]; ̂ e r (Q)nL 2 P + 2 (a) )nL 2 (0 , T; H2

er(Q)) ;

| f G L2(0,T;L2(^)) and u G C([0,T]; H2
er(ft)

n) n L2(0,T; i7|er(Q)n) ; VT > 0. Furthermore, if p = 1 or 2
w/ien n = 3, tóen £fe solution is unique.
(ii) If furthermore po G H2

er(Q) andp=l or 2 wften n = 3, tóen p G C([0,T]; i /2

n

2.2. Proof of T h e o r e m s 2.1 and 2.2

First, we have the following lemma :

Lemma 2.1. The map p H=> \VBÏ Vp| + |p| defines a norm on Vi that is equivalent to the usual H2 — norm.
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Proof. First, we note that thanks to classical regularity results on second order elliptic problems (see [1] and [4]),
|div£?2 V.| + |.| is a norm on V\ that is equivalent to the usual iï2—norm. Then, we have, for p G V\

(2 18)

where u% dénotes the z-th component of the vector u. Thus, if e > 0 is small enough, we find

|VB^Vp|2 > e|div^^Vp|2, (2.19)

hence the result.
Now, we turn to the proof of Theorems 2.1 and 2.2.
We note that it is sufficient here to study the variational formulation (2.16). Indeed, (2.9) is a particular case

of (2.16) corresponding to e — 0. All the estimâtes that we shall dérive below will be valid for both problems.
We shall only dérive formai a priori estimâtes here. These estimâtes, and thus the existence results, can be

justified by making Galerkin approximations. Furthermore, the passage to the limit in the nonlinear term will
be based on classical Aubin-Lions compactness results (see [20]); indeed, we note that we shall easily dérive the
proper a priori estimâtes on -^.

We take q = N~1-p in (2.16), where p = p — m(p), and obtain, integrating by parts and setting \\^\\_1 = |AT~è.

~\\nil + ~t\p\2 + ̂ \Vp\2 + e2Tr(CI)\p\2 + (f'(p),p) = ^,N^p)

+ (f(p),m(p0)) - ( ^ . V i V - 1 ^ ) - (B(p),p). (2.20)

We have, using (2.15) with k = 0

\(B(p).p)\<c(0)\p\\p\<c\p\2, (2.21)

and we obtain, noting that (/'(p),p) > (p + I)a2p+2§çip2p+2àx — c, c > 0, an mequality of the form

^(WPW-I + P\P\2) + <*|Vp|2 + e2TY(C/)|p|2 + 2(p + l)a2 p + 2 ƒ p^2àx < c\p\2 - 2(6.Vp, N'1^) + c'. (2.22)

Then, we take q = N'1^ in (2.16) and find

f é'v"2 + zlfo* + ̂ < c ' > > 2 + «I'L,
§ ) . (,23)

Since 6.V and N commute, we deduce that 6.V and N-1 commute. Therefore, 6.VA^ l is antisymmetric on
L2(Ü) and we have

in (2.23). Then, we obtain, thanks to (2.23) and (2.24) (and also (2.15))

^ 2 + e2Tr(C/)|p|2 + 2jT/(p)dx) + | | ^ | | ^ + P\^ < c\p\2 + c'. (2.25)
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We write, in (2.22)

l)a2p+2 ƒ ƒ *+*dx + c', (2.26)

choosing Ç > 0 properly, and we find, summing (2.25) and e(2.22), where e > 0 is small enough, an inequality
of the form

e2Tr(CI)\p\2 + 2 f f(p)dx) + e(a\Vp\2 + e2Tr(C/)|p|2)
Jn

^ | + c' p2p+2dx<c"\p\2 + c'". (2.27)
ut Jn

We set

E(t) = e||p||* x + e(3\p\2 + a| Vp|2 + e2Tr(C/)|p|2 + 2 ƒ ƒ (p)dz. (2.28)

Since

f p2p+2dx -CQ< [ f (p)dx, (2.29)
Jn Jn2

where CQ > O, we deduce from (2.27) an inequality of the form

\-c\ — \ <cfE + cff. (2.30)

Indeed, we write, considering the right-hand-side of (2.27):

c"|p|2 < cf"(e\\-p\\2 +€/3|p|2-hO!|Vp|2-he2Tr(C/)|p|2-ha2P+2 f p2p+2dx) < c"fE(t) + 2coc
///.

Jn

Now, we take q — p in (2.16) and have

--HH + -T-(^Vp, Vp) + a\VBz Vp| + e2Tr(C/)(5Vp, Vp) + (BVf(p), Vp)

= [}P->p) — ( —, 6.Vp) — (£?VJB(P), Vp) • (2.31)

We deduce from (2.15) (with & = 1), (2.31) and the inequality

(SV/'(p), Vp) = (/"(p)5Vp, Vp) > —-— / p2p|Vp| dx — c(BV'p^Vp), c > 0,

that

, Vp)) + a|VSi Vp|2 + e2Tr(C7)(5Vp.Vp) + cJP
2*>\Vp\2dx < c'\ c".

dt
(2.32)
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Finally, we take q = | | in (2.16) and obtain

S& A (BV( , , V.) + | | , | | |
-(..|)-(^^).V|)-(^|,|). (2.33)

We assume that p = 1 or 2 when n — 3. When n = 2, we write

(2-34)

When n = 3, we consider the term /n |p |4 |Vp| |V| | |dx, the other terms being easier to treat. We have, using

Agmon's inequality ||/o||Loo(n) < cWpWm^WpW^^ny Vp G H%eT(Cl) (see for instance [31])

( r g ^ e r ( ) ^ e r ( ) ^ (2.35)

In both cases, we have an inequality of the form

f f^ 2 r 2 ^ (2-36)

for every C > 0, where r is a nonnegative integer. Then, we deduce from (2.33), using (2.15) and noting that
6.V is antisymmetric on H^er(fl)

The existence results in Theorems 2.1 and 2.2 are then based on (2.30, 2.32, 2.37) and Lemma 2.1.
Now; we consider two solutions p\ and P2 of (2.16) with the same initial data. Setting p = p\ — P2, we find,

proceeding as above

^ + c | ^ | 2 + c'(/'(Pl) - f(p2), p) + c"(/'(pi) - f(P2), ft) < c"'\p\\ (2.38)

c, c', cff > 0, where

£ W = ellpll2.! + e/?|p|2 + a\ Vp|2 + e^CCJ) |p|2, (2.39)

with e as above. We have

' f ) > - c \ p f , C > 0 ,
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and (f (pi) - f'{p2), ff) = Jn^(piïP2)p|fdx, where h is of degree 2p with respect to px and p2. Then, we
write, for n = 2

\(f'(Pl) - f'(p2), %)\ < & ( n ) ^ ( O ) L ( n ) ^

When n = 3, we use Agmon's inequality as in (2.35) and find, recalling that p = 1 or 2

K/'to) - f'ito), ^ ) | < c( | |p i | |^ ( n ) + l|P2|&iw(n)
dn

x IMlHMn)l^l-

Finally, we obtain, in bot h cases, an inequality of the for m

^ < c(||pi||2^er(n) + I M l H M n ) + l)r(l|pi||2H2er(n) + IIP2||2^er(n) + 1)Ë, (2.42)

r € iV"*, hence the uniqueness using GronwalPs Lemma.

3. EXISTENCE OF FINITE DIMENSIONAL ATTRACTORS

3.1. An abstract result

We consider the following équation in a Hilbert space H endowed with the scalar product (.,.) and associated
norm |.|:

^ + A u + n(u)=Q, (3.1)

u(0)=uQ. (3.2)

We assume that A is a linear selfadjoint strictly positive operator with compact inverse and that
L = Li -f £2, where Li is a linear selfadjoint strictly positive operator with compact inverse and where L2 is a
linear antisymmetric operator. Furthermore, we assume that there exists r € (O, \) such that D{L{) — D(A2r).

We endow the space D(AS) with the norm \AS.\ and we assume that the norms \Lfr ,| and \AS.\ are equivalent
on D(AS), Vs e R.

We assume that (3.1)-(3.2) is well posed and that we can define the continuo us semigroup

S(t) : K C D(Ar) -> K

t > O, where K is a closed subset of D(Ar) and u is the solution of (3.1)-(3.2). Then, we assume that
Tl : K n D(Ad) -* H,d>r, and that S(t)(K n D(Ad)) G Kf) D(Ad), Vt > 0. Finally, we assume that the
semigroup S(t) possesses the global attractor AR on K.

We consider hère situations in which K is not necessarily a vector nor an affine space so that the usual
method, based on the Lyapunov exponents, which gives the finite dimensionality of the global attractor for
a semigroup (see for instance [31]) cannot be applied. We shall instead prove the existence of exponential
attractors (which, by définition, contain the global attractor and have finite fractal dimension, see [13]). To
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do so, we need to prove the so-called squeezing property (see [13]). A flrst method, which gives the squeezing
property, is described in [13]. This method is based on an inequality satisfied by a quotient of norms. Because of
the operator L2) this method cannot be used hère (when L2 ^ 0). We shall instead use an idea of [2] based on a
décomposition of the différence of two trajectories. This second method, although it gives less sharp estimâtes
on the fractal dimension of the exponential attractors that we obtain (but this is not an important issue in
this article), is actually more gênerai than that of [13]. Indeed, it can generally be applied in the situations in
which the method of [13] can be used, but it has also been applied with success in many situations in which the
method of [13] could not be used (see [2,14,17,18,24-27]).

We have the following resuit (see [24]):

Proposition 3.1. Let E and V be two Hubert spaces such that the inclusion V C E is compact and let S(t)
be a semigroup actmg on K', where K is a closed subset of E. Furthermore, let us assume that there exist
orthogonal projectors Pn : E —» E with finite rank n such that \Qny\g < c(n)\y\v^ ^V e V> where Qn = I' — Pn

and c(n) —» 0 as n —> +oo. Let X be a closed positwely invariant subset of K. If S(t)tp — S(t)ip = (p1 (t)-\-(p2 (t),
l^1 Wl# < d(t)\(p — Vis» i^2Wlv — (̂*)!<£ ~ V'is' ̂ ' ^ ^ X, where d(t) is conhnuous and satisfies d(t) —» 0
as t —» +oo and h{t) is contznuous, then S(t) enjoys the squeezing property on X.

i

In order to apply this resuit to the semigroup S(t) associated with (3.1)-(3 2), we set E = D(Ll ), V =
and Pn the orthogonal projector on the n first eigenvalues of L\. Then, we assume that there exists a closed
set X C K that is positively invariant by S(t).

Let UQ and t?o belong to X, We consider the following décomposition:

S(t)u0 - S(t)v0 = w1 + w2, (3.3)

where w1 and w2 are the solutions of

^ 1 + A^=O, (3.4)

w1(0) = wo; (3.5)

and

^ ? ^ 0 , (3.6)n v ) + ̂ 0 ,
dt

w2(0) = 0 ; (3.7)

respectively.
We assume that Vti0, v0 € X, then w1^) E D(A?)> w2{t) G D(A?) and ^-{t) E D(L\) (at least a.e. t) and

that

\ll(u) - lZ(v)\2 < knityAÏw2]2 + k2{t)\L\w1\ + /c3|,4V|2, (3.8)

or

\{Tl{u) - U(v), ^ ) | < k^lAÏw2]2 + k2{t)\L\w
l\ + fc3|A V f + \\LÏ^-\ , (3.9)

where k± and /C2 are continuous and fc3 is a constant (and fci, fc2 and h$ only depend on X).
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Now, we are going to dérive formai a priori estimâtes. Again, these estimâtes can be justified by making
proper Galerkin approximations (see [24] for more details).

We take the scalar product in H of (3.4) with wl and obtain

|

which yields

and thus

Furthermore, we deduce from (3.10) that

<e-ct\Lfw0\, c>0.

< \2

Now, we take the scalar product in H of (3.6) with ^ - and have

d , o i Ao.ë 2 / A«,2 ^ „ , , 2 \ / An,,2

We deduce from (3.4) that ^ ^ = — Lx
 1Aw1^ which yields

dL2w
l _ ,

dt

Therefore

Assuming that

and that

we deduce that

\L2u\ <C\L\U\,

(3.10)

(3.11)

(3.12)

(3.13)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Thus, we deduce from (3.13), using (3.8) (or (3.9)), that

2 dt
(3.20)
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where k'3 — &s+Constant. Then, we deduce from (3.19), using Gronwall's Lemma, (3.11) and (3 12), that

\A^w2\2 <h(t)\Llwo\\

where h(t) = 2[f*e-csk2(s)e2fsk^drds + A£e2/.tfel<T>dr], which yields

\Lpw2\ < cy/h(fj\Liwol (3.21)

Thus, we deduce that S(t) enjoys the squeezing property on X for the topology of D(L{). Now, if S(t) is
Lipschitz on X and if X can be covered by a finite nutnber of balls of radius one if it is not compact, see [2],
then S(t) possesses an exponential attractor À4K ° n X. We deduce that AR (which is also the global at tractor
for S(t) on X in gênerai) has finite fractal dimension.

Remark 3.1. (i) We can easily adapt the proofs presented above to the nonautonomous (quasiperiodic) case
(t.e. when 1Z dépends explicitly and quasi periodically on the time). We refer the interested reader to [9,16,18,
23,26] for more details.
(ii) We also have a similar result when L2 ~ 0. In that case however, we derived in [24] and [26] similar estimâtes
by taking the scalar product in H of (3.6) with Lw2. This estimate allows us to use the regularizing efïects of
the operator L and, in some situations, it nécessitâtes less regularity (typically when r G (0, ̂ ); this will not be
the case for the équations that we study in this article, for which we shall have r = | ) . When L2 ̂  0, we can
also use this estimate, but we would need to have L positive and to have the norms |Li.| and \L.\ equivalent on
D(Li), The problem, for the models considered in this article, is that this would require to have b small, which
is too restrictive.

3.2. Application to the generalized Cahn-Hilliard équations

Thanks to the results obtained in Section 2, we can define, for p = 1 or 2 when n = 3, the continuons
semigroup

S(t) : H^ei(n) ^ Hl
peT(ü)

PO H-> p(t),

t > 0, where p is the solution of (2.16) with initial data p0.
First, we note that since the average of p is conserved, we shall not be able to find compact attractor s on

the whole space H^er(rt). We shall instead consider the restriction of S(t) to closed subspaces of H^er(n) of the
form

S > 0, which are conserved by S(i).
Now, our aim is to dérive time uniform estimâtes.
First, we consider inequality (2.27). We note that the constant c" in (2.27) dépends on the constant c(0) in

(2.15) and tends to 0 as c(0) tends to 0. Furthermore, we note that since \p\2 < ei Jnp
2p+2dx4-C2, c\ > 0, C2 > 0,

we have for instance | fQp2p+2dx > ^-\p\2 — jjr, and we deduce from (2.27) an inequality of the form

f f(p)dx)e2lï(CI)|p|2 + 2 f f(p)dx) + ea\Vp\2 + c\p\
J

c"\%\ < c'"\p\2 + c"\ (3.22)
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We note that we have not used the term e2Tr(CI)|p|2 to dérive (3.21). The reason is that we also wish to
treat the case e = 0. Furthermore, the constant c"' in (3.21) tends to 0 as c(0) tends to 0 and the constant czv

dépends on m(po) and is bounded independently of m(po) if we restrict ourselves to K$.
Then, we assume that c — ën > 0, where c and c"' are the constants in (3.21). This assumption is reasonable.

Indeed, it can be achieved by choosing C and e properly and, in particular, by taking e small enough. Thus,
we deduce from (3.21) an inequality of the for m

e2Tr(CI)\p\2 + 2 f f{p)dx)
Jn

Jn

where c' (and consequently c) will be fixed below. Now, we write that there exist c3 and C4 such that JQf(p)dx <
c3fQp2p+2dx + c4, c3 > 0. Taking the constant c in (3.22) such that we can take c' = 2cs, we infer from (3.22)
an inequality of the form

— +cE-\-cf\-^-\ < c", c, c' > 0, (3.24)

where E = £(£) is defined in (2.28).
We deduce from (3.23) the existence of a bounded absorbing set for S(t) on K5.
Now, we deduce from (3.31), proceeding as in (2.32), an inequality of the form

^ C I ^ T I + C IIPII^I m) + c , (3.25)

> 0. Summing (3.23) and (3.24), we find, if Ç, is small enough

2 + /3(BVp Vp)) + c\VBÏVp\2 < c'||p||^ + c"±(E + \p\2 + /3(BVp, Vp)) + c\VBÏVp\2 < c'||p||^er(n) + c", (3.26)

and we deduce that there exists t0 such that t > t0 implies

ƒ (3.27)

Finally, we deduce from (2.37, 3.26) and the uniform Gronwall's Lemma (see [31]) the existence of a bounded
absorbing set for S(t) on Ks H H2

ei(ft).
Thus, we have the

T h e o r e m 3 . 1 . We assume that e ts small enough and that p=l or 2 when n — 3 . Then, the semigroup S(t)
associated wtth (2.16) possesses the global attractor As on Ks.

j our aim is to prove that A$ has finite dimension. Here, we cannot use the usual method based on the
Lyapunov exponent s (even when b = 0; indeed, for technical reasons, we would anyway be obliged to work on
spaces of the form

rn(p) = 6},

ô G R (see [31]), which is not satisfactory). We shall instead use the results of Subsection 3.1.
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We set

Lip = p - (3dwBVp, (3 28)

L2p - -b Vp, (3 29)

Ap=^Lx(p-Ap)y (3 30)

n{p) = -e2Tr(CI)divBVp - divBVi3(p) - divBVf(p) + | Ap - ^Lip - (p (3 31)

We easily piove that the assumptions made on A7 L\ and L2 m Subsection 3 1 are satisfied (for r = \)
Then, we set

(3 32)

wheie B2 is a bounded absorbing set for S(t) on K$ n H^er(ü) and t\ is such that t>t\ implies S(t)B2 C B2

Thus, we deduce that X$ is compact and positively invariant by S(i) Finally, we prove, proceedmg as m [24],
that

Vp, p € X6

In order to justify the foi mal estimâtes derived m Subsection 3 1, we note that smce X§ is bounded m H^eT(ft)

and is positively mvanant, it then follows from (2 37) that p(t) E H^eT(Çl): \/t > 0, and that ^(t) € H^eT(Q)} a e

t Fuithermore, we have, if we take the scalar product of (3 4) with Liw1, w1^) G üfper(n), a e t Therefore,

^jp(t) = — L^1 Aw1 (t) belongs to i/per(n), a e ty which yields, if ̂  now corresponds to the différence of two

tiajectones that ^ - ( i ) belongs to iJper(fi), a e t, and thus to D(L2)
Thus, all the assumptions of Subsection 3 1 aie satisfied Furthermoie, we easily prove that S(t) is Lrpscmtz

on X§ This yields the

Theorem 3.2. The global attractor As obtazned in Theorem 3 1 has fimte fractal dimension

Remark 3.2. Smce the estimâtes denved above are also valid when e = 0, we obtain the same results as m
Theorems 3 1 and 3 2 for the semigroup associated with (2 9)

Remark 3.3. As a corollary, we obtam the existence of exponential attractors Now, the problem of the
existence of exponential attractors is an mterestmg problem on lts own Indeed, the global attractor has two
major defaults foi practical purposes Indeed, it is very sensitive to peiturbations and the iate of atti action
of the trajectories can be arbitranly small An exponential attractor however, smce it attracts exponentially
the trajectories, will be more stable under perturbations We refer the reader to [13] for a discussion on this
subject

Remark 3.4. When g = 0, we can write (2 1) m the form

£) = 0, (3 34)

wheie

F(P' §r) = /'(P) + $i£ ~ aAP + N~lb v ï - T (3 3 5 )
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Takmg the scalar product in L2(£l) of (3 33) with F(p, -^), we obtam (we assume that we have enough regulanty)

p(p) + flgl' + (BVF{P, g ) , VFC, %)) = 0, (3 36)

where

J(P)= //(p)dx + f |Vp|2- fjpdx (337)

We deduce that J(p) is a Lyapunov function We obtam a simüar result when divBS/j = g — b Vg with
J(p) = JQf(p)dx + f |Vp| The existence of a Lyapunov function, apart from lts interest from the physical
point of view, allows us to have more information on the structure of the global attractor, see [3] and [31] for
more details We note that we are not able to find a Lyapunov function when we take the déformations of the
material mto account (i e for (2 16) when B ^ 0)

4 ATTRACTORS FOR THE COMPLETE SYSTEM
We consider m this subsection équations (2 16) and (2 17) Our arm is to study the existence of fimte

dimensional attractors for the complete System (order parameter,displacement) To do so, we introducé the
followmg family of operators

t > 0, where p(t) = S(t)po is the solution of (2 16) with initial data p0 We said m [7] that we have a weakly
coupled System m the sensé that the initial conditions for the two components are not independent, indeed, we
have u(0) — £(po) We also note that the family of operators !F{t) does not form a semigroup, therefore, we
are not m the gênerai (usual) framework for the study of attractors

Let As be, as above, the global attractor for S(i) on Ks We set As = £(As) Smce C is contmuous, As
is compact Now, let BQ be a bounded subset of Ks Then, hm dist(S(t)Boy As) — 0 (hère, dist dénotes the

t—»+oo

Hausdorff semi distance), which yields, smce C is Lipschitz, that

hm dist(£ o S(t)B0,£(As)) = 0

Thus, we deduce that

hm distiTi^Bo, As x As) = 0

We shall say that As x As is an attractor for ^(t) on Ks Purthermore, smce As has fimte fractal dimension
and smce £ is Lipschitz, we have dixnpAs < dixap As and duxiF(As x As) < 2dim.pAs

Now, we consider the restriction of S(t) to Ks, where Ks = ö + Ko is defined m Section 2 2 Then, we have
(see Sect 1) £(p) = ~£(p - S) and F(t)p = (5,0) H- {S(t)p - S,Z[S(i)p - ô}), Vp G Kô Smce m(p) is conserved
by S(£), we can, without loss of generality, take ö = 0 and we consider the family of operators

Ko —> Ko x £(KQ)

t > 0 Then, let AQ be the uniform attractor for S(t) on Ko (Ao is obtamed exactly as m Section 3 2 and
has fimte fractal dimension) We can prove as above that Ao x AQ IS an attractor for T(t) on KQ and that
dimJp(^40 x Ao) < 2dimJp.Ao, where Ao = £(AQ) NOW, let us assume that C / is positive defimte, m which case
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w

C is bi-Lipschitz. We can prove (see [7]) that AQ is the global attractor for the semigroup S(t) = C o
on jC(/£n) and that V4Q X 4̂Q is the global attractor for the semigroup T(t) = (S(t),S(t)) on KQ x
Furthermore, we hâve, in that case, dimp (AQ x AQ) =
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