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SOME MODELS OF CAHN-HILLIARD EQUATIONS
IN NONISOTROPIC MEDIA

ALAIN MIRANVILLE!

Abstract. We derive in this article some models of Cahn-Hilhard equations m nonisotropic media
These models, based on constitutive equations introduced by Gurtin in [19], take the work of internal
microforces and also the deformations of the material into account We then study the existence and
uniqueness of solutions and obtain the existence of finite dimensional attractors

Résumé. Nous obtenons dans cet article des modeles d’équations de Cahn-Hilhard basés sur des
équations constitutives introduites par Guitin dans [19] Ces modeéles prennent en compte le travail de
microforces internes amnsi que les déformations du matériau Nous obtenons alors ’existence et 'unicité
de solutions, puis 'existence d’attracteurs de dimension fime
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1. INTRODUCTION

The Cahn-Hilliard equation (see [5] and [6]) is very central to material sciences. This equation, which is a
conservation law, describes the transport of atoms between unit cells. It is based on a constitutive equation for
the mass conservation of the form

dp

— = rkApu, k>0, 1.1

Ey 7 (L.1)
where p is the order parameter (which corresponds to a density of atoms here) and u is the chemical potential,
and on a constitutive equation for the chemical potential of the form

H= f/(p) - aAp) a>0, (12)

where f 1s a double-well potential whose wells define the phases of the material. The potential f is usually
a polynomial of degree four (see [5,6] and [30]), m this article, we consider more generally a polynomial of
arbitrary even degree with strictly positive leading coefficient. We refer the reader to [10-12,15,21] for other
types of potentials; however, we cannot extend our results to such potentials
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tractor, exponential attractor
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In [19], Gurtin derived more general constitutive equations for the mass balance and the chemical potential
(we refer the interested 1eader to [19] for a discussion on the objections that the author makes on the classical
Cahn-Hilliard theory and which leads to the mtroduction of more complete constitutive equations)

Now, we describe the models that we wish to study First, we consider a generalization of (1 1) which 1eads
(see [19])

QB =divBVu +g, (13)
ot

where B 1s a symmetric positive definite tensor with constant coefficients (more generally, the tensor B may also
depend on p, Vp, %%, w and Vy, in which case 1t may also degenerate) and where g = g(z) 1s an external mass
supply Furtheimore, by taking the work of internal microforces into account, Gurtin obtains a more general
constitutive equation for the chemical potential of the form

, 15)
u=bVu=f(p)—abdp+B3E ~7, B>0, (14)

where b 1s a constant vector which vamshes for 1sotropic matenals (again, the vector b may also depend on p,

Vo, %%, w and Vu) and where v = «y(z) corresponds to the action of external microforces We deduce from
(1 4) that

divBVy — b VdivBVy = dwvBV f'(p) — adivBVp + ﬂ%dlvBVp — divBV7,

and we finally obtamn, thanks to (1 3), the following generahized Cahn Hilhard equation

% — %b Vp— ﬁ%dlvBVp + adivBVAp — divBV f'(p) + dvBVy =g —b Vg (15)

Now, the theory can be further generalized by taking the deformations of the matenal into account These

deformations are essentially due to the displacement of atoms in the sohid Thus, 1t 15 legitimate to assume

that the deformations are infinitesimal and that the displacement gradient 1s small, in which case we can use

the theory of linear elasticity In that case, the constitutive equation for the chemical potential takes the more
general form (see [19])

b=bVa=F(p) ~ abp+ B2 — C(B—F(o) F(p) 1, (16)

where C 1s the elasticity tensor, E = %(V'u,+tVu) 18 the linearized deformation tensor, u being the displacement,
and E(p) 1s the stress free strain at density p We assume 1n this article that C 1s a constant symmetric positive
definite linear transformation which maps symmetric tensors onto symmetric tensors Furthermore, as i [19],
we consider affine stress free strains of the form E(p) = e(p — po)I, e > 0, po constant, where I 1s the 1dentity
tensor Proceeding as above, we then obtain the following generahized Cahn-Hilhard equation

Op O g e
L _ ZpVp-—B=—divBVY v hd \v4 Vu -+ vy
5 th P ﬁatdlv o+ adivBVAp + 2d1vB Tr[C(Vu + "Vu)]

— *Tr(CI)dwBVp — divBV f'(p) + dvBVy =g —b Vg, (17)

where Tr denotes the trace operator, which we complete, at first approximation, with the stationary Navier
equation of linear elasticity

divC(Vu + *Vu) — 2ediv(pCI) =0 (18)
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We studied in [7,8,10,24-27,29] some models of generalized Cahn-Hilliard equations under various boundary
conditions. However, in all these references, we only considered isotropic materials (i.e. we took b = 0). Our
aim in this article is to study more particularly the effects of the term ;%b.Vp from the mathematical point of
view.

This article is organized as follows. In Section 2, we obtain some existence and uniqueness results. Then,
in Section 3, we study the existence of finite dimensional attractors. First, we give, in Subsection 3.1, a
result for a general abstract equation and then apply this result to our models in Subsection 3.2. Finally,
we obtain, in Subsection 2.3, the existence of finite dimensional attractors for the complete system (order
parameter,displacement) when we take the deformations of the material into account. Part of the results
presented in this article is announced in [28].

Throughout this article, the same letter ¢ (and sometimes ¢/, ¢’ and ¢’’) shall denote constants which may
change from line to line.

2. EXISTENCE AND UNIQUENESS RESULTS

2.1. The main results

We assume from now on that the medium is represented by the domain @ = II™ ,(0,L,), L, > 0, ¢ =
1,..,m, n =2 or 3, and we assume that all the physical quantities are 2—periodic. Then, we consider the two
following problems:

0
8_§ - %b.v,o - B%divBVp + adivBVAp — divBV f'(p) + divBVy = g — b.Vg, (2.1)
p is £ — periodic ; (2.2)
and
8,0 1o} 0 .. . € .. t
T Eb.Vp - 555(1“’BVP + adivBVAp + idlvBVTr[C(Vu + *Vu)]

— e®Tr(CI)divBVp — divBV f'(p) + divBVy = g — b.Vg, (2.3)
divC(Vu + *Vu) — 2ediv(pCI) = 0, (2.4)

p and u are Q2 — periodic. (2.5)

We assume that «, 8 and e are strictly positive constants, that b is a constant vector, that B is a symmetric
positive definite tensor with constant coefficients and that C is a constant symmetric positive definite linear
transformation which maps symmetric tensors onto symmetric tensors. Furthermore, we assume that f is of
the form

2p+2
f(s) = Zazsz, agpy2 >0, p> L. (2.6)
2=0

Finally, we assume that m(g) = 0, where m(v) = #@favdx, for v € L} () or L}(Q)".
First, we note that if we (formally) integrate (2.1) or (2.3) over Q, we find

m(p) = m(p(0)), Vt > 0. (2.7)
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Furthermore, we note that if (p,u) is a solution of (2.3)—(2.5), then so is (p, u + ¢), for every constant vector c.
Thus, we complete (2.3)—-(2.5) with the condition

m(u) =0 ; (2.8)

we note that we could have taken the condition m(u) = ¢, for every constant vector c.

Remark 2.1. We only consider periodic boundary conditions in this article. Neumann boundary conditions are
also classical boundary conditions for the Cahn-Hilliard equation. However, for the models introduced above,
we would not have in general the conservation of m(p) in that case (see [28] for a discussion on the subject).

For the mathematical setting of the problem, we introduce the following spaces:

Vi = Hpo (),

Va = {v € Hpeo ()", m(v) = 0},
which we endow with their usual scalar products and norms; in particular, we denote by (., .) the usual Lz—sqalar
product and by |.| the associated norm. Furthermore, for a space W, we shall denote by W the space W =
{v e W, m(v) = 0}.

We associate with the above equations the following variational formulations:
Find p : [0,T] — Vi such that

d d d 1 1
3 (P D)+ 3 (p0.Ve) + B (BVp, V) + a(VB2Vp, VB2V) + (BVf'(p), Va) = (0,9), Vac V15 (29)
and find (p,u) : [0,7] — Vi x V4 such that

dd d d 1 1 )
PO+ g (P 0-Va) + B8 (BVp, Vq) +a(VB2Vp, VB2Vg) + e*Tr(CI)(BVp,Vq)

— S(BVTC(Vu + *Vu)}, Va) + (BV (), Va) = (¢,0), Vg € V3, (210)

(C(Vu +'Vu), Vi) = 2e(p(CI), Vi), Vi € Vo (2.11)

T > 0, where ¢ = g — b.Vg — divBV~y (we assume that ¢ belongs to L2(Q)).
We set, for p in V4 and for u and 4 in V5

a(u, @) = (C(Vu + *Vu), Vi), 1,(4) = 2e(p(CI), Vi) (2.12)

and we consider the following problem, for p € L?(2) given:
Find v € V, such that

a(u,u) = l,(a), Va € Va. (2.13)
Since C is symmetric and maps symmetric tensors onto symmetric tensors, we have
1 . -
a(u, ) = §(C(Vu + V), Vi + 'Va), VYu, i€ Vo,

and we then deduce that a is a bilinear seifadjoint coercive and continuous form on V,. Furthermore, I, is a
linear form on V5. Thus, we deduce, thanks to Lax-Milgram’s theorem, the existence and uniqueness of solutions
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for (2.13). Then, due to classical regularity results on second order elliptic problems, we see that u actually
belongs to chr(ﬂ)n; more generally, if p € H¥, (), then u ¢ H¥£1(Q)" and el sz @ym < eB)lplae )

Now, thanks to (2.13), we can define a mapping
L : L3Q) — Vo = LLA(Q)) C Vs,

such that u = L(p) is the solution of (2.13) and L(p) € H}’)‘;l(ﬂ)n if p € HE, (). We easily prove that L is
linear and Lipschitz. Let us denote by £ the restriction of £ to L2(2). We can prove, proceeding as in [7, 8],
that £ is invertible and bi-Lipschitz when CI is positive definite (CI is symmetric since I is symmetric); in
that case, V3 = L(L?(2)) is closed in V. Furthermore, if u = £(p), we have p = m(p) +Z_1(u); and if (p,u) is
a solution of (2.10)—(2.11), we have (formally) u(t) = L(p(t)) and p(t) = m(p(0)) + Z*l(u(t)), for every t > 0.
Finally, we set

e
B(p) = —5Tr[C(VL(p) +VL(p))]- (2.14)
The mapping B is linear and satisfies
1B 525, e < ()Pl 2y Vo € HEr(). (2.15)

Thus, we note that (2.10)—(2.11) can be uncoupled in the sense that we first solve the variational problem.
Find p : [0,T] — Vi such that

%(p, 0+ %(p, b.Vq) + ,3%(va, Va) + o(VBVp, VBIVg) + 2 Tx(CI)(BVp, Vq)
+ (BVB(p),Vq) + (BVf'(p),Va) = (¢,q), Vg€ Vi ; (2.16)
and we then set
u(t) = L(p(®)), t € [0,7]. (2.17)

We have the following results:

Theorem 2.1. (1) We assume that po € H}. (Q)NL?***2(Q). Then, (2.9) possesses at least one solution p with
wmatral data po satisfying p € C([0,TT; HL (Q)NL2P+2(Q))NL2(0, T; H2,.(Q)) and & € L2(0,T; L2(Q)), VT > 0.
Furthermore, 1if p=1 or 2 whenn =3 (p 1s arbitrary when n = 2), then this solution 1s unique.

() If furthermore po € HZ2,() and p = 1 or 2 when n = 3, then p € C([0,T); HZ,(Q)) and £ €
L2(0,T; H:,.(2)).

per

Theorem 2.2. (1) We assume that po € H},.(QNL*+2(Q). Then, (2.16)-(2.17) possesses at least one solution
(p,w) with watral data for the order parameter po satisfying p € C([0, T]; Hpo (Q)NL2*PH2(Q))NL2(0,T; HZ,.(2)),

per
% ¢ L*0,7;L2(Q)) and u € C([0,T]; H2,()"™) N L*(0, T; H3..(Q)"™), YT > 0. Furthermore, +f p = 1 or 2
when n = 3, then this solution s unique.

(w) If furthermore po € H2,.(Q) andp =1 or 2 when n = 3, then p € C([0, T); H2,(Q)), L& € L2(0,T; HL..())

P
and u € C([0, T]; H3..(2)™).
2.2. Proof of Theorems 2.1 and 2.2

First, we have the following lemma :

Lemma 2.1. The map p ~» |VB2Vp| + |p| defines a norm on Vy that is equwalent to the usual H2—norm.
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Proof. First, we note that thanks to classical regularity results on second order elliptic problems (see [1] and [4]),
|divB2 V.| + |.| is a norm on V; that is equivalent to the usual H2—norm. Then, we have, for p ¢ V;

VBV = Z|— BV 2 312 BVl (218)
: - Oz, v

2,7=1 2=1

where u, denotes the 1-th component of the vector u. Thus, if € > 0 is small enough, we find

2 2
|[VB:Vp| > e|divB3Vp|, (2.19)

hence the result.

Now, we turn to the proof of Theorems 2.1 and 2.2.

We note that it is sufficient here to study the variational formulation (2.16). Indeed, (2.9) is a particular case
of (2.16) corresponding to e = 0. All the estimates that we shall derive below will be valid for both problems.

We shall only derive formal a prior: estimates here. These estimates, and thus the existence results, can be
justified by making Galerkin approximations. Furthermore, the passage to the limit in the nonlinear term will
be based on classical Aubin-Lions compactness results (see [20]); indeed, we note that we shall easily derive the

proper a prior: estimates on %%

We take ¢ = N~ in (2.16), where 5 = p—m(p), and obtain, integrating by parts and setting ||.||_, = [N~3 .|

3 IPI%: + 5 10 + alVeP + STHCDIA + (7/(0),6) = (4, N D)

+ (f'(p);m(po)) — ( 2 bYNTIZ) — (B(p), 7). (220)
We have, using (2.15) with £ =0
|(B(p)-)| < c(0)lpllp| < clo” (221)

and we obtain, noting that (f'(p), p) > (p + 1)agp+2 [,0°?72dz — ¢, ¢ > 0, an mequality of the form

d : , 0
3121+ Blel”) + @l Vol + eTe(CD[p* + 2(p + Dazps / p7da < clpl* —26.Vp, NI D) + ¢ (2:22)
Q

Then, we take ¢ = N‘l%tf in (2.16) and find

ad o2, d 1.2 ~13_p
241907+ & [ onn temen S 120 +a %) < 1)
dp —10p . —1@
~(LhINTE) (BN (223)

Since b.V and N commute, we deduce that .V and N~! commute. Therefore, ».VN~! is antisymmetric on
L?(9) and we have

op —10p
<6t b.VN 8t> =0, (2.24)

in (2.23). Then, we obtain, thanks to (2.23) and (2.24) (and also (2.15))

d 2 a 2
@Vl + ETCnp 2 £ +B122) <o+ (2.25)
dt Q t —1 6t
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We write, in (2.22)

2 2
120.90, N 201 = 1200, b YN L) < N P+ clol <A 2] + (o4 Dazpaa /Q P72z 4, (2.26)

choosing ¢ > 0 properly, and we find, summing (2.25) and €(2.22), where € > 0 is small enough, an inequality
of the form

S EIPIR, +eBlof® + IVl + Te(CDIof +2 | F(p)d) + e(a]VpP + *TH(CDBP)
+ 01%12 + c'/§2p2p+2dx <"pl>+c". (2.27)
We set
E() = el + 1ol + alVpl* + TH(CDof +2 [ f(p)d (2.28)

Since

L2p+2 / P2z — o < / f(p)dz, (2.29)
2 Q Q

where ¢p > 0, we deduce from (2.27) an inequality of the form

dFE
Pt ;_1 <E+d. (2.30)

Indeed, we write, considering the right-hand-side of (2.27):
o> < " (ellpl% 4 + eBlpl* + | Vpl* + 2 Tx(CI)|p|* + a2p+2/ pPH2dz) < "E(t) + 2c0".
Q
Now, we take ¢ = p in (2.16) and have

12

lof* + 5 7 (BVp, Vi) +a|VB3Vp| + e2Tx(CI)(BVp, Vp) + (BV ' (p), Vp)

ol =
&la
Mib:
Q‘IQ‘

= (0.0) — (2,69p) ~ (BVB(p). Vp) - (231)

We deduce from (2.15) (with k = 1), (2.31) and the inequality
(BVf'(p), Vo) = (f"(p)BVp,Vp) > ?2 / p*?|Vp|*dz — c(BVp, Vp), ¢ >0,
Q

that

d Y 2 . 1 a ' n
a(|p|2 + B(BVp,Vp)) + a|VBVp| + *Tr(CI)(BVp, Vp) + ¢ /Q PPIVp*dz < ol () + L L
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Finally, we take ¢ = 32 in (2.16) and obtain
4 1vBEp + IO S (BV, Vo) + |22 | + BBV )+(BVf() v
2 dt Py at Ve 8t
_ 3»0 90 Op

We assume that p = 1 or 2 when n = 3. When n = 2, we write

, 3] , 2]

(BYS (), V) < ¢ / 17 (@) 9plIV 2L da

< C[V l“f“(P)l LA(S) Vol LA(Q)" (2.34)

< CIV I(llthle_,(Q) + 1)|i9|lyger(g)-

When n = 3, we consider the term fQI ol* |Vp|]V 2|dz, the other terms being easier to treat. We have, using
Agmon’s inequality ||pll ) < C”Pllm (Q)Hp| H2,.(Q) Vp € H2, () (see for instance [31])

. dp -
/IPI Vp!| V dl < ip“LOC(Q)‘p‘ LG(Q)HVpllLG(Q‘"Ivat] < clipllin (Q)|iplﬁzge,(n)|v§[- (2:35)

per
In both cases, we have an inequality of the form

Op

, S dp . . }
(BVF (p), V)| < C(BV S, Vo) + ol oy + 1) (ol 37,0 + Dol 0 (2:36)

for every ¢ > 0, where r is a nonnegative integer. Then, we deduce from (2.33), using (2.15) and noting that
b.V is antisymmetric on H} ()

d 1 2 2 8,0 2 8,0 8p 2
H(alVBIVp + TH(CI)(BYp, Vp)) + 50| + BBV 50, VSE) < clollly
T, . 2 ,
+¢( IP“H;M(Q) +1) (“p“ngr(Q) + 1)“PI|§fgcr(Q) +c’ (2.37)
The existence results in Theorems 2.1 and 2.2 are then based on (2.30, 2.32, 2.37) and Lemma 2.1.
Now, we consider two solutions p; and pz of (2.16) with the same initial data. Setting p = p1 — p2, we find,
proceeding as above

dE 2 7 ’ /! ! 111
+C| | +(f(p1) — f(p2), p) + " (f'(p1) = f'(p2), (%) < "|pf?, (2.38)

c. c, ¢’ >0, where
E(t) = ellpll® , + Blol> + | Vpl? + Tr(CI)|pf?, (2.39)
with € as above. We have

(f'(p1) — f'(p2),p) = —clp*, ¢ >0,



SOME MODELS OF CAHN-HILLIARD EQUATIONS IN NONISOTROPIC MEDIA 547

and (f'(p1) — f'(p2), %%) = fﬂh(pl,pz)p%fdm, where h is of degree 2p with respect to p; and ps. Then, we
write, for n = 2

I(f/(pl) - f/(pQ)a %)l < C(”pl”%’;p(g) + ”,02“%35;,(9) + 1)HPI’L5(Q)|%|

9p (2.40)
< C(”Pl”iﬁer(n) + ”P2“§§;e,(n) + 1)HPHH;H(Q)|E|~
When n = 3, we use Agmon’s inequality as in (2.35) and find, recalling that p = 1 or 2
’ ! 8/7 < 3 3 1
[(f'(p1) = F'(p2), 5201 < clllpllen @t o277 @t D(llp1ll 2 @ T |21l 572 @ T )
8t per per per per (2 41)
< ol (0| 22| |
Pllay, @5 1
Finally, we obtain, in both cases, an inequality of the form
B c(llo 7 + o2l +1) (loall? + o2 +1)E (2.42)
d¢ = “MALIEL (@) T NP2l (@) a2, (2) HZ . () ’ :

r € N*, hence the uniqueness using Gronwall’s Lemma.

3. EXISTENCE OF FINITE DIMENSIONAL ATTRACTORS

3.1. An abstract result

We consider the following equation in a Hilbert space H endowed with the scalar product (.,.) and associated
norm |.|:

dL
d—t“ + Au+ R(u) =0, (3.1)

u(0) = ug. (3.2)

We assume that A is a linear selfadjoint strictly positive operator with compact inverse and that
L = Ly + Ly, where L; is a linear selfadjoint strictly positive operator with compact inverse and where Lo is a
linear antisymmetric operator. Furthermore, we assume that there exists r € (0, ) such that D(L,) = D(A?").
We endow the space D(A®) with the norm [A%.| and we assume that the norms ]Lf% .| and |A®.| are equivalent
on D(A®), Vs € R.

We assume that (3.1)—(3.2) is well posed and that we can define the continuous semigroup

St) : KCc DA - K

ug — u(t),

t > 0, where K is a closed subset of D(A") and u is the solution of (3.1)—(3.2). Then, we assume that
R : KND(A%) — H, d > r, and that S(t)(K N D(A%)) ¢ K N D(A%), Vt > 0. Finally, we assume that the
semigroup S(t) possesses the global attractor Ax on K.

We consider here situations in which K is not necessarily a vector nor an affine space so that the usual
method, based on the Lyapunov exponents, which gives the finite dimensionality of the global attractor for
a semigroup (see for instance [31]) cannot be applied. We shall instead prove the existence of exponential
attractors (which, by definition, contain the global attractor and have finite fractal dimension, see [13]). To
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do so, we need to prove the so-called squeezing property (see [13]). A first method, which gives the squeezing
property, is described in [13]. This method is based on an inequality satisfied by a quotient of norms. Because of
the operator Lo, this method cannot be used here (when Ly # 0). We shall instead use an idea of [2] based on a
decomposition of the difference of two trajectories. This second method, although it gives less sharp estimates
on the fractal dimension of the exponential attractors that we obtain (but this is not an important issue in
this article), is actually more general than that of [13]. Indeed, it can generally be applied in the situations in
which the method of [13] can be used, but it has also been applied with success in many situations in which the
method of [13] could not be used (see [2,14,17,18,24-27]).

We have the following result (see [24]):

Proposition 3.1. Let E and V be two Hilbert spaces such that the wnclusion V C E 1s compact and let S(t)
be a semagroup acting on K, where K 1s a closed subset of E. Furthermore, let us assume that there exist
orthogonal projectors P, : E — E unth finite rank n such that |Qny|p < c(n)|yly, Yy € V, where Qn =1 — P,
and ¢(n) — 0 as n — +oo. Let X be a closed positwely mvariant subset of K. If S(t)p — S(t) = o (t) + ©2(t),
ot (t) g < d@)le — ¥l g, [92(E)]y < h(t)|le — Y|, Yo, ¥ € X, where d(t) 15 continuous and satisfies d(t) — 0
as t — +oo and h(t) s continuous, then S(t) enjoys the squeezing property on X.

In order to apply this result to the semigroup S(t) associated with (3.1)-(3 2), weset E = D(Ll% ), V= D(Lf%)
and £, the orthogonal projector on the n first eigenvalues of L. Then, we assume that there exists a closed
set X C K that is positively invariant by S(¢).

Let up and vp belong to X. We consider the following decomposition:

S(t)ug — S(t)vo = w* + w?, (3.3)
where w! and w? are the solutions of
dLlwl 1
G At =0, (3.4)
wl(O) = wp ; (3.5)
and
dLw? dLow?!
Aw? - — = .
5 HAv +R(u) — R(v) + ” 0, (3.6)
w?(0) =0 ; (3.7)
respectively.

We assume that Yug, vg € X, then w!(t) € D(A?), w?(t) € D(A?) and ddif(t) € D(LI%) (at least a.e. t) and
that

IR(u) — R(v)|* < kl(t)|A%w2|2 + kz(mL%wlf + k3|A%w1|2, (3.8)
or

dw? 1 .2 12 L2 1 1dw??
(R(w) ~ R(v), )] < ks ()] 432" + ka0t + kalabot® + LEE ) (39)

where k), and k; are continuous and k3 is a constant (and k1, k2 and k3 only depend on X).
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Now, we are going to derive formal a prior estimates. Again, these estimates can be justified by making

proper Galerkin approximations (see [24] for more details).
We take the scalar product in H of (3.4) with w! and obtain

d, 1 ,2 2
3L + AR =0

N |

which yields

d
dtwawl +cLiw 1{ <0,
and thus

L3 w'| < e Liwol, ¢> 0.

Furthermore, we deduce from (3.10) that
b 2 1 1 2
/0 |Abw![ dr < 5|L§w0| .

Now, we take the scalar product in H of (3.6) with 4 > and have

dt

1d 1 dw dw? dw? dw? dLyw' dw?
Az w? _— — =0.
5di f?l 1] dt|+< dt’dt)+(R(u) R(), dt>+( dt ’dt) 0

We deduce from (3.4) that ddltl = —L; ' Aw!, which yields

dngl

— -1 1
o = —LoLy " Aw'.

Therefore

szwl dw2 1 1 dw 1 dw2
(%5 G) = (rartawt dt) (paut 12 ).

Assuming that
|LTYAu| < c|A%u|, Yu € D(A%),
and that

|Lou| < ¢|L?ul, Yu € D(L}),

dLyw' dw? 1 dw
dt ' dt -

we deduce that

1 1
<2| 12 | +c|A2w|

Thus, we deduce from (3.13), using (3.8) (or (3.9)), that

2 2
2 A < @A + k@)L + kAT,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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where k4 — k3+Constant. Then, we deduce from (3.19), using Gronwall’s Lemma, (3.11) and (3 12), that
1 2 i 2
|A2w?|" < h(t)| L wol
where h(t) = 2[[Teky(s)e2/s (D75 4 k42 k1(1)d7] which yields

\LF w?| < c/R{E)|L2 wol. (3.21)

Thus, we deduce that S(t) enjoys the squeezing property on X for the topology of D(Llé). Now, if S(t) is
Lipschitz on X and if X can be covered by a finite number of balls of radius one if it is not compact, see [2],
then S(t) possesses an exponential attractor Mg on X. We deduce that Ax (which is also the global attractor
for S(t) on X in general) has finite fractal dimension.

Remark 3.1. (i) We can easily adapt the proofs presented above to the nonautonomous (quasiperiodic) case
(2.e. when R depends explicitly and quasi periodically on the time). We refer the interested reader to [9,16,18,
23,26] for more details.

(ii) We also have a similar result when Lo = 0. In that case however, we derived in [24] and [26] similar estimates
by taking the scalar product in H of (3.6) with Lw?. This estimate allows us to use the regularizing effects of
the operator L and, in some situations, it necessitates less regularity (typically when r € (0, %); this will not be
the case for the equations that we study in this article, for which we shall have r = %) When Ly # 0, we can
also use this estimate, but we would need to have L positive and to have the norms |[L;.| and |L.| equivalent on
D(L;). The problem, for the models considered in this article, is that this would require to have b small, which
is too restrictive.

3.2. Application to the generalized Cahn-Hilliard equations

Thanks to the results obtained in Section 2, we can define, for p = 1 or 2 when n = 3, the continuous
semigroup

S(t) © Hpe () — Hper(9)

per

Po — p(t),

t > 0, where p is the solution of (2.16) with initial data po.
First, we note that since the average of p is conserved, we shall not be able to find compact attractors on

the whole space HJ,(€2). We shall instead consider the restriction of S(t) to closed subspaces of H},, (2) of the
form

K5 ={p € Hy..(), Im(p)| < 6},

¢ > 0, which are conserved by S(¢).

Now, our aim is to derive time uniform estimates.

First, we consider inequality (2.27). We note that the constant ¢ in (2.27) depends on the constant ¢(0) in
(2.15) and tends to 0 as ¢(0) tends to 0. Furthermore, we note that since |p|” < ¢1 f,,p?*2dz+c2, c1 > 0, c2 > 0,

: 1[0 2p+2 1
we have for instance 3 [,p??2dz > o

| p]2 — 32, and we deduce from (2.27) an inequality of the form
d, _ )
DI+ Bl + al ol + e THCDIpP +2 [ F(p)d) + el TP +cloP

a 2
+ c’/ PP 2dr + c”|a—':| <"l + . (3.22)
Q
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We note that we have not used the term e?Tr(CI )|ﬁ|2 to derive (3.21). The reason is that we also wish to
treat the case e = 0. Furthermore, the constant ¢’’’ in (3.21) tends to 0 as ¢(0) tends to 0 and the constant c*®
depends on m(pp) and is bounded independently of m(pg) if we restrict ourselves to K.

Then, we assume that ¢c—¢”” > 0, where ¢ and ¢’ are the constants in (3.21). This assumption is reasonable.
Indeed, it can be achieved by choosing C and e properly and, in particular, by taking e small enough. Thus,

we deduce from (3.21) an inequality of the form

SR, + eBlol? + alVpl? + TH(CD) o +2 / F(p)dz) + c(ellpllZ + eBlo|” + | Vpl?
Q

. 0
+ e2Tr(CI)|p|* + c’/p2p+2dx) + | p| <c”
)

5| <<, (3:23)

where ¢’ (and consequently ¢) will be fixed below. Now, we write that there exist ¢z and ¢4 such that [, f(p)dz <
cs [op?P2dx + ca, c3 > 0. Taking the constant c¢ in (3.22) such that we can take ¢’ = 2c3, we infer from (3.22)
an inequality of the form

dE ?
i cE + c'l%;Z <d, ¢ >0, (3.24)

where F = E(t) is defined in (2.28).
We deduce from (3.23) the existence of a bounded absorbing set for S(t) on Ks.
Now, we deduce from (3.31), proceeding as in (2.32), an inequality of the form

d p 1 2 3;)2 .
3l + BBV, V) +c|VBEVpl < 5| +¢lpliy o+ (3.25)

V¢ > 0. Summing (3.23) and (3.24), we find, if ¢ is small enough

d . 1 2
(B -+ 1o + B(BV, Vp)) + VBVl < ol oy + " (3.26)

and we deduce that there exists £y such that ¢ > ¢y implies

"t+r
| ol opds < clta,m) (3.27)
t

Finally, we deduce from (2.37, 3.26) and the uniform Gronwall’s Lemma (see [31]) the existence of a bounded
absorbing set for S(t) on Ks N HZ,.().
Thus, we have the

Theorem 3.1. We assume that e s small enough and that p =1 or 2 when n = 3. Then, the semagroup S(t)
associated with (2.16) possesses the global attractor As on Kg.

Now, our aim is to prove that As has finite dimension. Here, we cannot use the usual method based on the
Lyapunov exponents (even when b = 0; indeed, for technical reasons, we would anyway be obliged to work on
spaces of the form

K& = {,0 € H;er(ﬂ)a m(p) = 6}7

§ € R (see [31]), which is not satisfactory). We shall instead use the results of Subsection 3.1.
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We set
Lip = p— BdwvBVp, (3 28)
Lap = —bVp, (3 29)
(87
Ap = ELl(p — Ap), (3 30)
R(p) = —€2Tr(CI)dwvBVp — divBYB(p) — dwwBY f(p) + %Ap - %Llp —p (3 31)

We easily prove that the assumptions made on A, Ly and Ly in Subsection 3 1 are satisfied (for r = i)
Then, we set

Xs = Ut>t, S(t)Bo, (3 32)

whete By 1s a bounded absorbing set for S(¢) on K5 N H2..(Q) and t; 1s such that ¢ > t; mphes S(¢)By C B

Thus, we deduce that X5 1s compact and positively mvariant by S(¢) Finally, we prove, proceeding as n [24],
that

R(p) — R®)| < ellp— Bl 11z (333)

vp) pE Xs
In order to justify the formal estimates derived in Subsection 3 1, we note that simnce X 1s bounded n Hf,er(ﬂ)
and 1s positively nvaiiant, 1t then follows from (2 37) that p(t) € H2,(R), Vt > 0, and that 22(t) € H1..(Q),ae

per

t Furthermore, we have, if we take the scalar product of (3 4) with Lyw!, w'(t) € H3,.(2), ae t Therefore,

dw’ (¢) = — L7 Aw'(t) belongs to HL..(9), ae t, which yields, if 22 now corresponds to the difference of two

trajectories that dd—“f(t) belongs to H}.(2), ae t, and thus to D(Ly)
Thus, all the assumptions of Subsection 3 1 are satisfied Furthermore, we easily prove that S(t) 1s Lipschitz
on X5 This yields the

Theorem 3.2. The global attractor As obtained wn Theorem 3 1 has finste fractal dimension

Remark 3.2. Since the estimates derived above are also valid when e = 0, we obtain the same results as m
Theorems 3 1 and 3 2 for the semigroup associated with (2 9)

Remark 3.3. As a corollary, we obtain the existence of exponential attractors Now, the problem of the
existence of exponential attractors 1s an interesting problem on 1ts own Indeed, the global attractor has two
major defaults for practical purposes Indeed, 1t 1s very sensitive to perturbations and the rate of attraction
of the trajectories can be arbitrarily small An exponential attractor however, since 1t attracts exponentially
the trajectories, will be more stable under perturbations We refer the reader to [13] for a discussion on this
subject

Remark 3.4. When g = 0, we can write (2 1) n the form

dp op,
where
af) Y a_e _ -1 ap
F(py5;) = F(p) + B85, —alp+ N0 Voo —y (3 35)
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Taking the scalar product m L2(Q) of (3 33) with F(p, %%), we obtain (we assume that we have enough regularity)

d ap? dp
&J(p)ﬂLﬂ;E f(BVF(p ) VE(p, at)) 0, (3 36)
where
J(p) = /Q Flo)dz + 219f* - /Q ypiz (337)

We deduce that J(p) 1s a Lyapunov function We obtan a similar result when divBVy = g — b Vg with

fQ Ydz + £ |Vp| The existence of a Lyapunov function, apart from 1ts interest from the physical
pomt of view, allows us to have more mformation on the structure of the global attractor, see {3] and [31] for
more detaills We note that we are not able to find a Lyapunov function when we take the deformations of the
material mnto account (2 e for (2 16) when B # 0)

4 ATTRACTORS FOR THE COMPLETE SYSTEM

We consider 1n this subsection equations (2 16) and (217) Our aim 1s to study the existence of finite
dimensional attractors for the complete system (order parameter,displacement) To do so, we mntroduce the
following family of operators

F(t)po = (p(t), u(t)) = (p(8), L(p(t))),

t > 0, where p(t) = S(t)po 1s the solution of (2 16) with mmtial data pg We said in [7] that we have a weakly
coupled system 1n the sense that the imtial conditions for the two components are not independent, indeed, we
have u(0) = L(pg) We also note that the family of operators F(t) does not form a semigroup, therefore, we
are not 1n the general (usual) framework for the study of attractors

Let As be, as above, the global attractor for S(t) on K5 We set A; = L(A;) Since £ 1s continuous, Ajs
1s compact Now, let By be a bounded subset of K5 Then, t_lgrnoo dist(S(t) By, As) = 0 (here, dist denotes the

Hausdorff serm distance), which yields, since £ 1s Lipschitz, that
lm dist(L£ o S(t)Bo, L(As)) =
t—+o00
Thus, we deduce that

i dist(F(t)Bo, As x As) =

We shall say that As x Ajs 1s an attractor for F(t) on K5 Furthermore, since As has finite fractal dimension
and smce £ 18 Lipschitz, we have dimpAs < dlmpA5 and dlmF(.A5 x As) < 2dimp A

Now, we consider the restriction of S(¢) to K5, where K5 = § + K 15 defined 1n Section 2 2 Then, we have
(see Sect 1) L(p) = L(p — ) and F(t)p = (6,0) + (S(t)p — 6, L[S(t)p — 8]), Vp € K5 Since m(p) 1s conserved
by S(t), we can, without loss of generality, take 6 = 0 and we consider the famly of operators

F(t) f{o — f{o X Z(Ko)
po = (S(t)po, L o S(t)po),
t > 0 Then, let Ay be the umform attractor for S(t) on Ko (Ap 1s obtaned exactly as i Section 3 2 and

has fimite fractal dimension) We can prove as above that Ag x Ap 1s an attractor for F(t) on Ko and that
dimp(Ap x Ag) < 2dimp.Ag, where Ag = L(Ag) Now, let us assume that CI 1s positive definite, in which case
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L is bi- -Lipschitz. We can prove (see [7]) that Ay is the global attractor for the semigr oup. S(t)=LoS(t)oL o

on L(Kyp) and that Ag x Ay is the global attractor for the semigroup F(t) = (S(t),S(t)) on Ko x L(Kp).
Furthermore, we have, in that case, dimp(Ag x Ag) = 2dimp.Ag.
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