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ANALYSIS OF THE HYDROSTATIC APPROXIMATION IN OCEANOGRAPHY
WITH COMPRESSION TERM*

TOMAS CHACÓN REBOLLO1, ROGER LEWANDOWSKI2 AND ELISEO CHACÓN VERA 1

Abstract. The hydrostatic approximation of the incompressible 3D stationary Navier Stokes équa-
tions is widely used m oceanography and other apphed sciences It appears through a limit process
due to the anisotropy of the domam in use, an océan, and it is usually studied as such We consider
m this paper an equivalent formulation to this hydrostatic approximation that mcludes Coriohs force
and an additional pressure tetm that comes from takmg into account the pressure in the state équation
for the density It therefore models a shght dependence of the density upon compression terms We
study this model as an independent mathematical object and prove an existence theorem by means of
a mixed variational formulation The proof uses a family of finite element spaces to discretize the prob-
lem coupled with a limit piocess that yields the solution We finish this papei with an existence and
umqueness resuit foi the evolutionaiy lmeai pioblem associated to this model This pioblem mcludes
the same additional pressuie teim and Coriohs force
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1 INTRODUCTION

The amsotropic stationary Navier-Stokes équations are widely used m geophysical fluid dynamics as a math-
ematical model for water flow m lakes and océans, see for instance [10,11] These équations appear when the
domam m use has very different horizontal and vertical dimensions, the turbulent viscosity coefficients may not
be isotropic m this case When we consider a shallow domam, % e one m which the horizontal dimension is
very large compared with the vertical one, the hydrostatic approximation is the basic model This model is
obtamed through a limit process from the amsotropic stationary Navier-Stokes équations and it is studied as
such by Besson and Laydi m [2] and by Bresch and Simon m [3] Several codes have also been developed to
solve this problem [15]

In this papei we study the stationaiy nonlmeai hydiostatic approximation for the océan as an independent
mathematical object We generalize the lmear model that was first considered by Lewandowsky m [8,9] A
severe constramt on the Coriohs foi ce and other parameters was required m the study of this model We do
not need this constramt m om analysis
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Our main innovation from the physical point of view is to include in this model the pressure in the state
équation for the density, as introduced in Appendix A of [8]. From the mathematical point of view, this
modification yields an additional pressure term in the momentum équation which prevents the pressure from
taking its usual rôle as a Lagrange multiplier. A fixed point argument coupled wit h a standard discret ization
to this problem by appropriate finite element spaces gives a weak solution to our model. Such approximation
turns out to be a useful technical tool for two reasons: it provides an easy way to regularize the problem and a
convergent numerical approximation. Our existence theorem is at the same time a convergence resuit for this
approximation.

1.1. The model équations

We first introducé the necessary notation for what follows. Let fl C M3 be the domain defined by

Q = {(x} y, z)eR3; s.t. (x, y) G S, -D{x, y) < z < 0} (1.1)

where S C R2 is an open and bounded Lipschitz domain representing the surface of the océan and D : SUdS »—• R
is a bounded positive Lipschitz function that describes the bottom and sidewalls of the océan f2, denoted by F&
and Fj, z.e.

Ffc = {(x,y,z) e R3 s.t. (x,y) eS, z = ~D{x,y)}7 (1.2)

Tt = {{x,y,z) e R3 s.t. (z,y) G ÖS, -D{x,y) < z < 0}, (1.3)

and such that there exists a real number 6 with

min D(x1y)>5>0. (1.4)
(xty)eSUdS

As we will deal with an anisotropic problem we consider the operator V* = (dXidy)} while the notations V and
A will keep their standard 3D meaning. We use the operator A^ defined by A^ = vd^x + vdyy -f vzdgZ} where
V = (i/} v, vz) is a turbulent cinematic viscosity vector with v ^ vZy both positive numbers.

The model we present is the following one: Find a velocity field u— (£*, us) : Ü H-̂  R3, where u* = (uiJu2))

and a scalar function, called superficial pressure, IÏS '- S H-> M such that

(ü - V)u* — Açu* + a w*x H (1 — JZ)\7*TT$ = f in O, (1.5)
Po

V-u^O in fi, (1.6)

vzdzû* = gs on 5, (1.7)

u* = 0 on F ö ur ; , (1.8)

u3 n3 = 0 on dû. (1.9)

In these équations f is a source term and gs is the wind tension on the surface S. The Coriolis force is given
by the term a ü± —a (t^, — Ui), where a and V are positive fixed numbers and 7 is a positive number that
will be properly chosen later on. The outward normal vector to the domain Vt is given by n = (ni,712, n^) and
Po dénotes a référence value for the density.

Let us justify formally our model. The dimensionless anisotropic stationary Navier-Stokes équations for an
incompressible fluid with Coriolis forces in a domain fi seek a velocity u = (u^^u^) : fi H-> M3 and a pressure
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P : ft i—> M, that solve the équations

(ü- V)ü+- A ^ + a u , 1 + — V*P = f in ft, (1.10)
Po

€2{(£- V)u3 + AJ;U3} + €UI h+-dzP = - 1 in ft, (1.11)
P
V - t ? = 0 in ft (1.12)

vzdzu*=gs on 5 (1.13)

£:=0 on r 6 u r z (1.14)

u3 = 0 on 5 (1.15)

where e is the ratio depth of the ocean over the diameter of the surface, p is the density, po being a référence
density, the gravity constant is taken to be one and h is a regular and bounded function.

Equations (1.10-1.15) take into account the Boussinesq approximation, i.e. we assume a constant value for
the density in the horizontal momentum and continuity équations. In particular, this approximation implies the
incompressibility of the 3£> velocity field ü, Also, the boundary condition (1.13) and the fact that u3 = 0 on S
constitute what is known as Rigid Lid Hypothesis: We assume no vertical move ment of the ocean surface and
include in condition (1.13) the wind and turbulence effect on the surface and low atmosphère. This surface S is
an "averaged surface" (« 100 mètres thick) that models the turbulent mixed layer, air-ocean. The information
of this mixed layer is given by the boundary condition at S.

When we neglect first and second order terms in e we obtain the hydrostatic approximation:
Find u = ('S*, 113) : ft »—• 3R3 and a hydrostatic pressure P : ft »-» M, such that

( U - V ) 5 * - A A + Q S / H V*P = f in ft, (1-16)
Po

-dzP = - 1 in ft, (1.17)
P

V 'ü=Q in ft, (1-18)

vdzü* = gs on S, (1.19)

Ü=0 on TbUTi, (1-20)
u3n3 = 0 on aft. (1.21)

In [2] it is proved that, when p is constant, équations (1.16-1.21) are the limit équations of (1.10-1.15) in a
précise sensé.

A more realistic model allows a state équation for the density p of the form

p=p(S,T,P) (1.22)

where S is the salinity, T is température and P is pressure. The dependence of p on these variables is mainly
polynomial, as expérimental examples show in [7]. The functions S and T do not add any new mathematical
difficulty and, hence, are not considered in our model. But, when we consider p = p(P) we may argue as follows:

p{P) = p(7T$ + z dzP) = P(TTS) + z dzP(0) p\P) (1.23)

where ns = P(x,y,0) is the pressure at height z = 0, and § and P are intermediate values. The superficial
pressure TTS is not the hydrostatic pressure on 5. Its introduction is a conséquence of the Rigid Lid Hypothesis
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and allows to recover the hydrostatic pressure on Q. Equation (1.11) reads now

62p{(Ü- V)u3 + uAu3} + eu1h + dzP = -P(TTS) - z dzP0)pf{P). (1.24)

We now may assume a weak dependence of p with respect to the pressure F, and, therefore, suppose that zp'{P)
is small. This hypothesis agrées with the small physical variation of the density around its référence value po-
Then, a first approximation leads to the simplification of (1.24)

dzP = -p(irs), (1.25)

and, from here,

e (1.26)

Hence, a linear dependence of p from ir s gives a law of the form

= Po + 7 {KS - KS°) (1.27)

for some positive number 7 and a superficial pressure of référence 713°• Finally, we eliminate the hydrostatic
3D pressure P in the momentum équation for the horizontal velocity ü* — (ui, u2), using the relation

V*P = (l-7z)V,7Ts. (1.28)

Therefore, we obtain model (1.5-1.9) from the hydrostatic approximation (1.16-1.21) and we see that équa-
tions (1.5-1.9) intend to model a slight dependence of the density upon compression effects. We rcfer the reader
to [8] for a more detailed account on the physical interprétations of this problem.

The main resuit presented in this paper states that for 7 small enough there exists a weak solution (u, ns)
to model (1.5—1.9), see Theorem 2, Section 1.3, for a detailed statement.

Remark 1. As we mentioned before, the most gênerai model also includes équations for température and
salinity coupled with the momentum équation. From the mathematical point of view, these two functions do
not add any new dimculty. The essential difficulties of this problem are the lack of regularity of the vertical
velocity u3 in the non-linear convection term and the additional compression term.

1.2. Basic functional spaces and re la ted resul ts

On the domain Q introduced in the previous section we consider the following linear space of smooth functions

Cft = {* e C°°(ft) s.t. ^ | r 6 u r i =0} , (1.29)

and, based on this, the Hubert space

^ ( « l ^ ' ^ H " ^ 1 ^ ) s.t. «|r5nri=0} (1.30)

endowed with the standard HQ (Ù) norm. In gênerai, for any integer k > 1 and real p > 1 we may consider the
spaces

™ s.t. ^ 6 n r i = o } (1.31)
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endowed with the Wk P(Q) norm We wül work with product spaces and use the notation H^ j(n) = H^ t(Q) x

üf^(fi) and w £ f (Cl) = W^{ÇÏ) x w£t
p{CL) Trace spaces will also be needed, we introducé

H1/2(dü) = {vG L2(dQ) s t v = v]dn foi some u € H1^)}, (1 32)

and the amsotropic spaces

2 st azveL2(n)}, (i33)

\ (134)

endowed with the norm |M|tf(a2n) = |M|L 2 (O) + ||<9z^||i,2(fi) As usual, we dénote by U* the dual space of
a Banach space U and, m paiticular, we considei the dual spaces H l/2(dQ) = (H1^2(dCl)y, H " 1 / 2 =
(H-1/2^))2 and H " / = (H^(ft))* The normal trace v ns of fonctions m H(dz,Q) belongs to H'1/2^)
and Ho(dZiCt) is described as

HQ(dZjn) = {v€ H{dZ} fi) s t v n3ldn - 0 } , (1 35)

where n = (711,712,̂ 13) dénotes the outward normal to ft (see [12] foi all these results) We also introducé, for
any r > 1, the Banach space Ur given by

Ur = {v€ H^iü) s t dzve Lr(Ü)} (1 36)

endowed with the norm \\v\\u = \v\i o + ||9z^||i^(n) and the product space U r — Ur x Ur Fmally, we consider

S^R s t | |7r | |§5= f | 7 r | 2 d 5 < + o of |7r|2d5<+oo, f 7rd5f = oj (137)

normed by || ||o 5 as usual

1 3 Réduction of the model équations and variational formulation

In this section we first introducé the variational formulation of model (1 5-1 9) Then we present a refor-
mulation of (1 5 1 9) m which the vertical velocity 143 disappears as an unknown We finally show that both
formulations have the same weak solutions

The lack of smoothness in the vertical component of the velocity field U3 only gives a convection term
uzdzu± e (L1(Q))2 The followmg resuit gives a variational sense to this term

Lemma 1. If ü* = (1*1,1*2) € H ^ ( î î ) and u3 e Ho(dz,Ct) are such that V {ü*,u3) = 0, then, for any r > 3 ,
u%dzü* belongs to U r * and

f f
{u3dzÜ*,v*)uï ur = — u3dzv^ u* dü - / dzu%v± ü* aü (1 38)

JÇÏ Ja
for all v* G U r As a conséquence, ((^,1x3) V)u* belongs to U r * and

<((u*,u3) V)u*,u*)c/* ur = ~ / (u* V*)^* ïï* dn - / uzdzv* ü* dfi (1 39)
Jn Jn

for all v* G U r

Proof The proof of (1 38) is a conséquence of a density argument for approximatmg u3dzu*, coupled with an
intégration by parts, while (1 39) uses intégration by parts and (1 38) •
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As the cinematic viscosity vector V = (2/, z/, i/z) does not add any mathematical difficulty to the formulation,
we will simplify the model and suppose vz ~ v > 0. The variational formulation of problem (1.5-1.9) is the
following:
Given f E H~/ and g s e H"1 /2 , obtain (ü,ns) e H^tt) x iî^(fî) x H0(dz\n) x L%(S), ü = (u*,w3), such
that

((ü- ^ü^vju^u* H-^Vö*, W*)n +a(u*J"ïu*)n (TT5) (1 - 72:)V* • j7*)n = Z(v*), (1.40)
Po

(g,V.iZ)n=0, (1-41)

for all (C*,g) G U4 x L§(fi). Here Z G H^1 is the linear form l : H^(fi) H^ M defined by

Z(i?*) = (f,i;*)n + <g5,i7*|s>5, (1-42)

where (',*)a and (*,*}s stand for the duality in iï"1(Q) and Hl^2(S) respectively, and (*,-)n stand for the L2

scalar, or tensor, product in fï. Any solution of (1.40-1.41) is a weak solution of problem (1.5-1.9) in the
following sensé: équation (1.5) is verified in U4*, équation (1.6) in L2{ü), (1.7) in H"1/2, (1.8) in
and (1.9) inH

Remark 2. The choice of test functions in U4 is due to the lack of regularity in the vertical velocity u$ and
it just makes computations easier. The simplest choice, U3) yields some technical trouble in the compactness
argument used later on. JVloreover, it essentially gives the same information on the solution.

Let us now consider the following reduced pr
pressure TTS : S H-> R such that

n:

1

Po

Find a velocity field ü*

vdzü* = is
ü* = 0

: fi »—• K-

in f2,

on 5,

on S,

on Ffc L

J and a superficial

(1.43)

(1.44)

(1.45)

Mi, (1.46)

f°
/ V*-iï*(x7y1Ç)dÇ = u3(xiy,z)m Ü. (1.47)

Jz
Here, for any function ^ : î] H M we will dénote by (-) its vertical mean, i.e.

{<P)(x,y)= / 4>{x,y,z)dz, Vfay) e S. (1.48)

In order to obtain a variational formulation of (1.43-1.46) we consider the functional B : (Hj j(fï) x LQ(S)) X

(U4 x Lg(S)) ^ M given by

£((#*,7rs);(tf*,g)) = <(ö- V)^,^)t/*;c/4 +^(Vrt*, Vv*)n -a(^ J - ,u^)n - — (7r5)V* • (ö*))s
Po

+ — (TTS, (7^V* • ̂ ) ) 5 - ((?, V, • <iZ*»5, (1.49)
Po

where (•, -)s stand for the L2 scalar product in S and U3 is given by (1.47).
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We pose the following variational problem:
Given f G H^ 1 , gs G H"1 /2 and positive constants 7, v and a, find (u^,ns) G H^(Q) x LQ(S) such that

T5); (£*, <?)) = Z(v*), V(v*, g) € U4 x Lg(S). (1.50)

The variational formulations (1.50) and (1-40, 1.41) are equivalent due to the following result:

Lemma 2. Let u* G H^(fî) and define u3 by

u3(x,y,z)= / V*-ïï*(a;,2/, e fi.

T/ien, i/ie following are sahsfied:

1. P^e have u3 G H{dz\ ft) and dzu3 = —V* • u*.
2. T/ie <?D velocity vector (u*,U3) 5̂ incompressible, z.e., V • (u*,W3) = 0 ̂ r̂
3. <w*)(x,2/) = X°D(xy)^(^,t/^)dz H
4. w3n3idQ G i f " 1 / 2 ^ ) and

u3 n3ldQ = 0 n̂ H~1/2(dn) ^^ V* • (u*) - 0 zn 5,

tu/iere n = (ni,n2 ,n3) is the ZD outward normal vector to d£l. As a conséquence of (1-44), we obtam

Proof The first two properties are straightforward while the third one is obtained by a density argument. We
prove the fourth one: As ü±\r u r = 0 and D is bounded and Lipschitz, we have D € WliO°(S) and then

V*-(ü*) = <V*-rZ*> (1.51)

for all Ü* G Hj j(fi). Now, assume that u3 n3^dn = 0 in H~l^2(dft), then any <p e CQ°(S) may be considered as
a z—independent function in £7, and we have

/ V* • (ü*)(p dS = / V* • u* (p dCl = - / dzu3 <p dft
Js Jn Jn

= / u3 dz(f dü - \ (us ris) <p ddü
Jn Jen

= 0 .

Thus, V* * <u*) = 0 in S.
Now we suppose that V* • {ü*) = 0, then take a séquence <t>n G C^ x C^ convergent to ü* in (H1^))2 and

consider $ n = ƒ_, V* • 4>nd(;. As $ n converges to u3 in H(dz]Ct)i $ n n3 converges to u3 n3 in H~1^2(dQ). We
see next that, indeed, <frn n3 converges to 0 in H~l/2(dïï). As we have $(x, y,0) = 0 and n3 = 0 on 5 U Fj,
then, for any v G Hl/2(dn)

$nn3^dö^| = | /
n Jv

is

§n n3v
vb

y, -^ (x , y)) V l +
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where C(D,S) is a constant that dépends only on ft. We conclude now thanks to the f act that $n(a;, y, — D(x}y))
converges to zero in L2(S) because V* • (<f)n) converges to V* • (u*) = 0 in L2(S). •

Therefore, we get the following équivalence resuit:

Theorem 1. Given positive numbers V,OL and j , (W,TTS) E H^^ft) x H^^Ü) x Ho(dz;fl) x LQ(S), with ü =
(û*,U3), is a solution of (I.4O-I.4I) tf and only if (u*,7Ts) E Hj t(ft) x LQ(S) solves (1.50), with u% — fz V* •

Remark 3. Observe that with the choice of test functions made all the terxns in the two variational formulations
introduced are well defined.

The existence resuit of weak solution to problem (1.5-1.9) that we present in this paper is the following.

Theorem 2. Let f e H^1 , gs G H"1 /2 and positive numbers ï/,a and 7. Suppose that D E Wl>ÖO(S) is such
that (1-4) %s satisfied. Then, there exists a positive constant C dependmg only on the data such that, if 7 < C
there exists a pair (ü*yirs) E Hj^fi) x LQ(S) that sahsfies the variational problem (1.50).

Remark 4. Hypothesis (1.4) is needed for technical reasons, as it will be mentioned later on.

Remark 5. It is possible to work with a more gênerai function 7 = 7(2) G L°°(ft) such that 7(2) ^ 7 z. Then
we just require H7H00 to be small enough.

Remark 6. The uniqueness of the solution for problem (1.50) is still an open question due to the lack of
regularity in the third component of the velocity field, which leads to the non-Hilbertian weak formulation
presented in this paper.

2. P R O O F O F T H E O R E M 2

2.1. Sketch of the proof and préliminaires

We outline the proof of Theorem 2:
1. We consider a family of finite dimensional spaces X^ x MH dense in both Hj^(fi) x LQ(S) and U4 x LQ(S),

depending upon the norm used and then we pose the variational problem (1.50) in (X&, x M^) x (X ,̂ x Mh).
Observe that the convection term is regularized with this discretization of the problem.

2. We then remove the nonlinearity in the convection term and in the pressure term by means of a known
data (a, t) G X^ x Mh-

3. We show existence of solution (ü*77is) G X ,̂ x Mh for this linear problem.
4. We estimate this solution in terms of the data (a, t).
5. We show existence of solution, by a fixed point argument, for the non-linear and with additional pressure

term problem in the finite-dimensional space X^ x Mh-
6. Via a compactness argument, we obtain the solution (u*,7rs) E H^(fi) x LQ(S) to (1.50) by passing to

the limit in the équation.
We perform an approximation of the domain ft through polygonal subdomains flh CI ft^ for h > 0, as follows:
Take the the surface of fth to be a polygonal domain S h and consider a triangularization of Sh> Take a Lipschitz
function Dh : 5^ —•> R that gives the depth of the domain fth, as in the continuous case, such that the extension
of Dh by zero to converges to D in Wli(X)(S) and

min Dh(x7 y) > ö > 0, (2.52)
(x,y)eSh

p/ l | | i ,oo<C||I>| |i ,oo , (2.53)

for C and ö independent of h. We recall that 5 is the one in (1.4). Then we form fth by vertical prisms spanned
from the triangularization of S h down to the bottom and such that the depth is given by Dh- Then, when h
tends to 0, flh fiUs up ft.
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We follow [5] and consider Y^ and Mh finite element subspaces of (Wg1'00(Sh))2 and L^(Sh) respectively,
such that the discrete "inf-sup" condition by Ladyzhenskya-Brezzi-Babuska, the LBB condition, is satisfied, i.e.
there exists a constant c > 0, independent of ft, with

\\q\\L2{Sh)<c sup
Y\

(2.54)

We approximate H^(Q) by a family of finite element subspaces Y h on fi^, such that Yh C (W^\°°(Clh))2

form a "stable extension" of the spaces Y h in the sense that the following conditions are satisfied. Consider the
nonzero function

We then require:
• (Hl) for all y e Yh

P(z)y(xiy)GYh. (2.56)

• (H2) The union of spaces \Jh>QXh and \Jh>0Mh are dense in U4 and LQ(S) respectively, where X^ and
Mh are the extension by zero of fonctions in Y h and Mh.

As Qh has been constructed, these properties are simply obtained via the standard Lagrange finite éléments,
see for instance [6] (page 89). In particular (1.4) plays a key role in (Hl). Prom now on we will work with the
spaces Xfc and Mh>

We now pose the finite dimensional version of the non-linear variational problem (1.50) and solve it in the
next section:
Find (ü+y7rs) € X^ x Mh such that

Bhdû^vsyAv^q)) = lh(v+), V(t7*,ç) E Xh x Mh (2.57)

where Bh and l^ dénote the restriction of B to X^ x Mh and of l to X^ respectively.

2.2. Existence of solution for the finite dimensional linear problem

We first make problem (2.57) into a linear problem that yields a square linear system of dimension dim(X^) +
dim(Mh). Consider a known velocity field a G X^, and consider b(x, y, z) = f® V* -a(x, y, ^) dÇ, for (x, y, z) £ Qh
and t G Mh, then we pose the following finite dimensional linear problem:
Find (Ü+ITÏS) € X^ x M h such that

Bh^((U^irs)](v^q)) = lhit(v*)> V(^,g)

where Bh g : (X^ x Mh) x (X^ x M h) >-> ]R is the linear form given by

x Mh (2.58)

and the linear form l^t : is defined by

(2.59)

(2-60)

We have the following resuit:
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Lemma 3. Given f £ Hj^1, gs G H"1 /2 and D € W1'OO(S) saüsfymg (1-4), there extsts a unique solution
(U+^TTS) € X/i x Mh to the hnear fimte dtmensional problem (2.58) such that the following bounds hold

< v + a)|Ö*ko + H-i + k i + 711*110,5},

(2-61)

(2-62)

where C %s a constant that dépends only on the domain Q} not on h} and 6 is given m (1-4)-

Remark 7. Observe that this L2 estimate for the pressure blows up when S goes to zero.

Proof. As we have a finit e dimensional problem that yields a square linear System of équations, we will obtain
existence and uniqueness of solution if we prove that the homogeneous problem just have the trivial solution.
Therefore, bounds of the possible solution in terms of the right hand side lh,t would be enough for existence
and uniqueness. Let us prove (2.61, 2.62):
Let (U*,7TS) G X^ x Mh be a solution of (2.58), then using as a test fonction the pair (u*, — TÏS) and the fact
that V - (a, b) = 0 we obtain

C (2-63)

and (2.61) follows.
In order to obtain (2.62), we will make use of the LBB condition (2.54) that the pair of spaces (Yh7Mh)

satisfies. Given v* € Y ,̂ we let w G X^ be given by

w(a;, y, z) = 0(z) v*(x, y)} V(a:, y. z) e Ühj

and extended by zero outside fî^, where the function j3 is given in (Hl). We easily obtain

<w)(x,y) = - ^ ( x , y ) V(ar)2/)e5,

(2.64)

(2.65)

(2.66)

for C independent of h. Now we use as a test function the pair (w, 0) and obtain

, V* • vjs = ((a* V*)£*,w) *, Vw) + a ( ^ x , w )

Therefore,

, V, • ^ a)|tZ* i l 0 l-i

(2.67)

and, finally, the LBB condition (2.54) yields (2.62). D
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2.3. Existence of solution for the finite dimensional non-linear problem

Now we use the result in Lemma 3 combinée! with a fixed point argument to obtain the solution of the
non-linear problem (2.57).

Consider the mapping T : X^ x M h i-> X^ x Mh defined by T((a,t)) = (îî*,7rs), where the pair (t?*,7rs) is
the unique solution of the linear problem in X^ x M& obtained with data (a, t). We have:

Lemma 4. The following are satisfied:
1. The operator T is continuous and bounded.
2. If 7 < C for some positive real number C that dépends only on the domain Q and all the known data,

then T has a fixed point (tZ*,7rs) £ X^ x Mh that solves the non-linear vanational problem in X^ x Mh-

Proof. Continuity of T is an easy conséquence of the facts that we work in finite dimension and of the uniqueness
of solution in problem (2.58), while boundeness of T is given by Lemma 3. We check now the fixed point
condition for T. Suppose that we have two positive constants Au and Ap such that

1511,0 < Au, (2.68)
\\t\\Ll{s) < Ap. (2.69)

We will show that T maps the product of dises D(0, Au) x D(0,Ap) of X^ x Mh into itself. For this purpose
we just have to consider the bounds given by Lemma 3,

|tZ*|i,o < £{||F||-i + ||gs||-i/2 + 7ll*llo,s},
C ->

lks||o,s ^ j77ï{(lSli.o + v + a)|«*|i,o + ||fH-i + llfoll-i/a + 7ll*Ho,s},

and find two positive constants Au, Av such that

£{||?||-i + ||gs||-i/2 + lAp} = Au (2.70)

^ u + is + a)Au + ||f ||_! + | |g s | |_1 /2 + jAp} = Ap. (2.71)

For this purpose, we substitute (2.70) into (2.71) to obtain a second order polynomial équation in Ap that must
have a positive root:

M 2 + &IJ4P + 6 2 = 0 . (2.72)

Hère, the coefficients read as follows:

bo = ̂ 7 2 (2-73)

{°32 + C2(C + < + )h ! (2-74)§774^2

^ 2 + v{u + a)} (2.75)

where r = ||f ||-i + ||gs||-i/2 and C only dépends on Q. We just need to find Ap > 0 such that (2.72) is satisfied.
A simple algebra yields a condition of the form

/ (2.76)
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foi some positive function <3> bounded in v and decreasmg m r and a Therefore, for 7 small enough, T has a
fixed point (u*,7rs) G D(O,AU) x D(O,AP) such that

Bh((ü+,Ks),{v*7q)) = lh(v*), V(tT*,<z) G X ^ x M , (2 77)

D

2 4 Convergence analysis

We now peifoim the convergence analysis that leads to a weak solution of (1 50) by a standard compactness
argument

By the finite dimensional analysis performed m the pievious section, there exists a family of solutions
(iï*h TTSh) € X^ x Alh of problern (2 77) As these functions are defined m îî^ and S^, we considei their exten-
sion by zero and work on the fixed domains £1 and 5 Then, these solutions are bounded m H ;̂ L(ÇÏ) x LQ(S)
Theiefoie, theie exists a subsequence of solutions, denoted m the same way, which is weakly convergent to a
pan (U*,TTS) G H£ j(fï) x LQ(S) as h decreases to 0 We show next that this pair is a solution of (1 50) Due

to (H2), for each pair (#*,<?) G U4 x LQ(S), we can find a séquence ($hiQh) £ X^ x Mh stiongly conveigent
to (v* q) m U4 x LQ(S) We, then, wnte (1 50) for (u*hinsh) a n d {4>hiÇh) *n X^ x M& and take limits when
h decieases to 0 m each term The only term that gives some difnculty is the one coming from the convection
term and which involves the vertical component of the velocity, 1x3

(u§djh,ih
hh (2 78)

The leason is that uz only belongs to Ho(dz,Ct) But the weak convergence of u% to U3 m L2(£7), the strong
convergence of dz<ph to dzv* in L4(fl) and the stiong convergence of ü*h to Ü* m L4(Q), obtained by the compact
injection of iyx(O) into L4(Q)^ msme the existence of the limit The pioof of Theoiem 2 is completed D

Remark 8. Hypothesis (1 4) seems to be essential to obtain uniform, % e , independent of /i, bounds for discrète
velocity and pressure m the norm H1(fl) x L2(S) This fact allows the limit process m this problem with
additional pi essuie teim

Remark 9. With the technique presented m this paper we may obtam, for a nght hand side in i ï " 1 and
without the additional piessure term, a velocity m H1^) and a pressuie m L3y/2(Q), as m [2] In this case
condition (1 4) ib not needed

3 THE LINEAR ÉVOLUTION CASE

In this final section we continue the study of the hydrostatic approximation and go a step further to the
lmear évolution problem The model is the followmg Find a velocity field u* H X ( 0 , T ) H M 2 and a scalar
function ir s S X ( 0 , T ) H M such that

^ T5 = f in fi, (3 79)

V, <Ö*)=0 m S, (3 80)

vdzu* = gs in S, (3 81)

^ | r 6 u r , = 0 , (3 82)

is satisfied in some sense Here 7, v and a are positive constants and f, gs play the same role as before
We will keep the hypothesis (1 4) on the function D which describes the bottom of the domam Q, It implies

D £ W1 °°(5) and D" 1 G L°°(S) Beside the already mtroduced functional spaces, we consider the followmg
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nonzero linear space of smooth functions

^ = { £ É C £ X C £ s.t. • V*-<$(z,y)=0 V(z,y)eS}, (3.83)

and the following Hilbert space, see [8]:

V = T{{Hlm2) = {veUll(Q) s.t. V*-<?7)=0 in 5 } , (3.84)

with the standard (HQ(Q))2 norm. We will also use H = T endowed with the L2 norm and the dual
space of V, denoted by V*.

We state the following existence and uniqueness resuit for (3.79, 3.82):

Theorem 3. Let f G L2(0,T;H), g 5 E I/2(0,T; H"1/2) tmtfi ^ g 5 G X2(0,T; H"1 /2) , suppose £/ia£ u*o € V
and let a, v be positive constants. Then, there exists a positive number C > 0, depending on the domain
Q and the known data, such that when 7 < C there exists a unique function u* G L2(0,T; V) with ^u* E
L2(0,T;V) nL2(0,T;H) and a superficial pressure TTS € £2(0,T; Lg(S)) suc/i ifta* (3.79-3.82) is satisfied in

1

The proof of this resuit is based on three points; the standard Galerkin techniques used for the linear évolution
Stokes problem, see mainly [13,14], a modification of De Rham's Lemma, see [12] for instance, obtained in [8]
(page 43), and a fixed point argument as in the previous Sections. The additional smoothness required on gs
is needed to estimate the time derivative of û*.

As for the hydrostatic approximation to the nonstationary Navier-Stokes équations, see [1,4] for the model
without compression term, we could not apply this fixed point technique for the compression term due to the
lack of regularity in the time variable for the superrlcial pressure. It, therefore, remains as an open problem.
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