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ON A MODEL SYSTEM FOR THE OBLIQUE INTERACTION OF INTERNAL
GRAVITY WAVES*

JEAN-CLAUDE SAUT! AND NIKOLAY TZVETKOV!

Abstract. We give local and global well-posedness results for a system of two Kadomtsev-Petviashvili
(KP) equations derived by R. Grimshaw and Y. Zhu to model the oblique interaction of weakly non-
linear, two dimensional, long internal waves in shallow fluids. We also prove a smoothing effect for the
amplitudes of the interacting waves. We use the Fourier transform restriction norms introduced by
J. Bourgain and the Strichartz estimates for the linear KP group. Finally we extend the result of [3]
for lower order perturbation of the system in the absence of transverse effects.
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Received: October 14, 1999.

1. INTRODUCTION

This paper is directly motivated by the work of Grimshaw and Zhu [15], where a model is presented for the
oblique strong interaction of weakly, two dimensional, nonlinear, long internal gravity waves in both shallow
and deep fluids. The model consists of two coupled Kadomtsev-Petviashvili (KP) equations (shallow fluid) or of
two coupled “intermediate long wave” equations (ILW) (deep fluid). The interaction of internal gravity waves
propagating in one horizontal direction has been considered by Gear and Grimshaw [12]. Rigorous mathematical
results in this case have been obtained by Bona et al. [4], Ash, Cohen and Wang (3], Albert, Bona and Saut [1]
(¢f. also Appendix A of the present paper for a complement to the paper [3]).

More precisely we are interested here in the case which Grimshaw and Zhu refer as the “strong interaction
I” type, in the shallow water situation (cf. [15] Sect. 3.2). Thus we require that the 2 interacting modes n and
m have closed phase speeds, ¢, ~ ¢n,, and that the angle § between the waves (which propagate in the z — y
plane) is closed to zero. In this case, Grimshaw and Zhu using a multi-scale perturbation method, found that
the vertical displacement & of the fluid is given by

5 = {An(T’ 01,02, 0)¢n(z) + A’m(Ta 01,02, 0)¢m(2!)} + Ol2§1 + O(O[3). (1)

Here the small parameter o is a measure of the wave amplitude, 8 = X — ¢, T is the phase variable, 7 = oT,
oy = aX, o9 = a3 X are respectively the long time and space variables. They are related to the physical
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variables (z,y,t) by

X=¢cx, Y=ey, T=ec¢t,
where ¢ is a small parameter representing the dispersive effects, namely the ratio of vertical to horizontal scales.
A KdV balance is assumed between dispersion and nonlinearity, i.e. o = 2. Moreover c,, is close to c,, namely
cm = cn(1 + aV), where V is O(1) with respect to a. In (1) ¢;, 7 = m,n is the 5** mode of the vertical mode
function ¢ = ¢(z) with corresponding phase speed ¢; (they are eigenfunctions of some linear eigenvalue problem

which we will not specify here). Finally, the amplitudes A,, and A,, are shown in [15] to satisfy the system of
evolution equations

( Lf,0 (104n 0dn  \ OAn  \ 0hy  O°Ay
2 790\ c, OT 8o, ™ 993 96 do2
52 6} 0Anm, O*Am,
Inf,0 (10Am  0An  0An  \ PAn . 0An)  9*An
2 | 99\c, Ot a0 do1 ™ 993 KT 802
92 ) oA, *An,
nmm 359 nAm nnm on n " Aap n"aps D
k 34 892<A )+3u 89(.4 60)+)\m ey

where

O 9¢s Ok 04 0 3, (0 99
skl = /hpo g _8?3_21 zZ, A= [hpo¢k¢z, Iy = 5‘3% /~hl)0(—af)3dza

1 0 O B¢ 09
I A = — 2 2 I = 2/ _k———l .
£k 2Ck/hpo¢k, Ol = ¢y, _hpo 5% s dz

Here k,l,s € {m,n} and dx is the Kronecker symbol. First we observe as in [15] that by transforming to a

reference frame traveling with speed ¢, we may ignore the dependence on o7 in the system (2) up to higher
order terms.

Then the system (2) can be rewritten in the form

(Ut + 011Uzzz + G12Vzzz + b1 (UV)z + bouty + b3vg )z + Uyy =0
(ve + a21Uzze + Q22Vzza + TUz + ba(uv) g + bsutly + bevvz ) + Uyy = 0, 3)
U(O,.’L‘, y) = 'U.o(IL’, y)) U(O7zay) = vo(x,y),

where

t:’r, x:0, Yy = 09,

u(t, z,y) = An(7,0,(2/cr)¥02), v(t,2,y) = Am(T,8, (2/cm)2 02),

AnmC3 AmnC2. Cn
Q11 = AnCn, Q12 = 7;7; L oag = —%m—, @22 = AmCn,
n m
3IJ'nnm,c3 3Unmmc3
by = ——2, by=cpv by = —5—,
21, ne 2I,

3 c2 3 czec
by = MnmmCp,Cn by = HnnmCp,Cn be = Cnlim,

21, ’ 21, ’
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r=c,V = (cm — cn) /.
Assuming that ¢,, — ¢, is very small comparatively to « (cf. [4]) we will take » = 0 in (3) from now on.

We are interested in the local well-posedness of the Cauchy problem (3) in Sobolev type spaces based on L2.
In general local well-posedness in the classical Sobolev spaces H?® for s small enough may allow us to establish
global existence using the conservation laws of the system. It is easy to see that the L? norms of the solutions
of (2) are conserved. Another conservation law of (2) is due to the time translation invariance of the system,
1.e the energy. The quadratic part of the energy of (2) is not positive definite in the relevant values of the
parameters, and therefore the only reasonable conservation law which may allow to establish global existence
seems to be the conservation of the L? norm. In [6,7] Bourgain developed a new method for studying the local
well-posedness of some nonlinear evolution equations. One of the main points of the method is the introduction
of Fourier transform restriction norms. The method was also applied for KP-II equation (cf. [8,18,24,25]). In [§]
local well-posedness for KP-II in L? is shown. The proof uses a suitable dyadic decomposition associated to
the symbol of the linearized operator. The arguments are mainly performed for the case of periodic boundary
conditions. But the proof could be adapted for data in R?. In the present paper we are going to show that
(2) is globally well-posed for data in L2. In the nonlinear estimates, similarly to [25], we shall make use of
the dispersive properties of (2) (Strichartz type inequalities) and of some simple calculus inequalities similarly
to [20] for the KdV equation, [21] for the nonlinear Schrodinger equation or [18] for the KP-1I equation. As
in [18,25], the proof turns out to be simpler that the one of [8]. We also shall prove a smoothing effect in the z
variable for (2). Actually we shall show that the linear evolution of the system propagates the main singularity.
More precisely in the main direction of propagation the solution turns out to be a compact perturbation of the
linear evolution. The main goal of this paper is to prove the following Theorem.

Theorem 1. Suppose that ai1ass — aj2as1 > 0. Then for any
(uo,v0) € L*(R?) x L*(R?),

such that
€17 Fuo)(€,m) € S, €I Flwo)(€,m) €S

there exists a umque solution (u,v) of the Cauchy problem (3). In addition the solution satisfy
(u,v) € C(R; L?(R?)) x C(R; L%(R?)).
Moreover the follounng decomposition of (u,v) at any tyme t holds

(u(t),v(t)) = (u (&), 0" (1)) + (u® (), v*(¢))

where (u'(t),v!(t)) € L*(R?) x L*(R?) 1s the free evolution of the system and
(W*(t),v*(t) € H*°(R?) x H*°(R?) for s € [0, 21—9).

Remark 1. Coming back to the notations of (2), the condition a;1ags —a12a21 > 0 is equivalent to c2c2, A2 = <
41 L An -

The paper is organized as follows. In Section 2, we first diagonalize the linear part of (2). Then using the
parabolic regularisation method similarly to [17] we prove the local well-posedness of (2) in anisotropic Sobolev
spaces H1*2(R2) with regularity s; > 3/2, s > 1/2. This is an improvement of the result of [17] which states
local well-posedness for KP equations in the classical Sobolev spaces H*(R?), s > 2. We must set the restriction
on the pair (s1, s2) in order to control the L°-norm of the z derivative of the solution. On the other hand, the
result does not depend on the nature (KP-I or KP-II) of the system. Sections 3 and 4 are devoted to the case
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when the system (2) consists of two coupled KP-II equations. In Section 3.1 we first define the functional spaces
where the solutions are expected to belong. Then we state the linear and nonlinear estimates. Section 3.2 is
devoted to the proof of the nonlinear estimate. First we state the Strichartz inequalities injected into the frame-
work of Bourgain’s spaces and some simple calculus inequalities needed for the proof. The rest of the Section
contains the proof of the integral representation of the nonlinear estimate. In Section 3.3 we apply a fixed point
argument to prove Theorem 3.1. Section 3.4 is devoted to the proof of the smoothing effect. In Section 4 we
extend the global well-posedness to spaces of higher smoothness. In Appendix A we consider the system of
Gear-Grimshaw (cf. [12]), i.e. two coupled KdV equations. We treat the case when the difference of the speeds
of the two interacting modes is not necessary small comparatively to a measure of the wave amplitude. Finally in
Appendix B we prove the estimate needed for the local well-posedness in anisotropic Sobolev spaces of Section 2.

We shall use the following notations. By ~or F we denote the Fourier transform, while by F~! the inverse
transform. ||.||L» denotes the norm in the Lebesgue space LP, while H*!:*2(R?) denotes the anisotropic Sobolev
space equipped with the norm

lullresen = 1€ (=€ Mz,

where (.) = (1 + |.|2)2. With H* we denote the classical Sobolev spaces. The notation a + 0 means a + ¢ for
arbitrary small € > 0. The operators D, and D, are defined respectively by D, = 18,, D, = 18,. Constants
are denoted by ¢ and may change from line to line.

We thank R. Grimshaw for helpful explanations on the system (2) and I. Gallagher for useful discussions on
the anisotropic Littlewood-Paley decompositions.
2. A LOCAL EXISTENCE THEOREM

Set
g:(uu)t A:(all al?)

o1 4922
- I

Flu,v) = (by(uv)z + boutiy + b3vvg, ba(uv), + bsuu, + bgvu,)L.
Therefore the system (3) can be written as

(0:0x + 93)g + A3g + 8z f (u,v) = 0. (4)
Note that
gnncs’ncfv, 0
a12021 = —m > U.

There exists 7' € GL(2) such that T~*AT = diag(y",v~), where y* are the eigenvalues of A

1
7= 2 (@11 + a2 £ /(a11 — a22)? + darza2 ).

We have that v+ > 0 and the sign of v~ is that of aj1a22 — ajz2a2:. Now setting g = Th, where h = (w*,w™)
we arrive at the system

(0:0 + 8§)h +diag(y*, ¥y )02k + 8. F(wt,w™) =0, (5)
where
Fwt,w?) = (Ftwh,w),F (whw))

= (i(wtw ) +bawTw + baw wy , ba(wTw™ )y + bswtwl + bsw™w; ),
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with some constants by, ...,bs. Note that (5) has a structure of 2 coupled KP-II equations (y~ > 0) or of a
KP-II equation coupled with a KP-I equation (y~ < 0).

Since the symbol of the linearized operator has a singularity near the origin we introduce an anisotropic
Sobolev space Hsus2 (R?) spaces similarly to [22], equipped with the norm

[l = [0 IV (2 6, ) Pl

Note that (formally) any u € H52(R?) has zero « mean value. Now we write (5) in the form
(he + diag(y", Y )hasz + A(R)hg)z + hyy = 0, (6)

where the matrix A is defined by
ai = (B0 BT Bt
“\ bswt +baw™  bawt +bgw™ /)

Note that in (6), A(0) is the zero matrix and that A(h) is smooth. These are the conditions which allow us to
apply the parabolic regularization method to the system (6), which is a vectorial variant of the equation studied
in [17]. Consider a regularized version of (6)

(he — eAh + diag(y", v Yhzaz + A(R)hz)z + hyy =0, (7

where A is the Laplace operator on R? and ¢ is a small positive parameter. Due to the parabolic character
of (7) and using Proposition 2.1 below, for any s; > 3/2 and s; > 1/2 we have a unique solution h* €
C([0, T); H*+°2(R?)) of (7) with initial data h® = h(0). Here T' depends on € and ||h°]| 7.,.5,. We have to show
that T can be chosen independent of €. Multiplying (7) by & and integration over (z,y) we obtain

d £ =3 £
a“h (t)“%{sl-w = —2¢||Vh “%131,52 +2(hE’A(he)hm)sl,S2’

where (.,.)s, s, stays for the H®"*2 scalar product. Now we state a Proposition which will be proved in
Appendix B.

Proposition 2.1. Let s; > 1/2 and sz > 1/2. Then the space H*»*2(R?) is an algebra.
Using Proposition 2.1 we obtain for s; > 3/2 and s > 1/2

d £ €
1P Ollzzrsa < cllh @)1 zros.ea

Similarly we obtain

d - € - €
1192 R Ol Freren < O A @)1 vo-

Hence

t
IR @100 < NAEON1 %y .ep + € /0 A (1 ey AT
Furthermore

cllh®ll gos o2

HAS ()l groroon < — -
Hee c— t”hollﬁsl:sz

(8)
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Once we obtain (8) it remains to use standard arguments (c¢f. [17]) to derive local well-posedness of (6) in

Hs+52 51 > 3/2,83 > 1/2. To the solutions of (6) will correspond solutions of the original system (2). Hence
we can obtain the next Theorem.

Theorem 2.1. Let s1 > 8/2, s2 > 1/2 and
((0),v(0)) € H*»*2(R?) x H**>(R?).
Then there exwst T > 0 and a unique solution (u,v) of the Cauchy problem (3). In addition
(u,v) € C([0,T]; H***(R?)) x C([0,T}); H*"**(R?)).

Remark 2. Obviously the same result holds for any scalar KP-I or KP-II equation with “general” nonlinearity
f(u)uz, where f is a smooth function. Note that H*:52(R?), s, > 3/2, sy > 1/2 defines a larger class of
possible initial data than the one considered in [17], where the data is supposed to be in a classical Sobolev
space H°(R?), s > 2. The anisotropic Sobolev spaces seem to be a natural set for the initial data of KP type
equations, since the scale invariance of these equations could be stated in terms of some anisotropic Sobolev
spaces. The result of Theorem 2.1 does not depend on the sign of ajja22 — aj2a21 (2.e. does not distinguish the
“KP-I” and “KP-II” case). In the next section, we will improve it a lot, in the “KP-II” case.

3. GLOBAL WELL POSEDNESS IN L? (4% > 0)

3.1. Preliminaries

We first perform a scale change. Set

wl(t’xa y) = ’LU+ (t’(—x_ —y__> ) 'lUQ(t,.'E, y) =w (ta ad 3 .4 ) .

yH)s ()

Let W = (w1, w2)?. Then W satisfies
(Wi + Waze + B(W)Wy)g + Wy, =0, 9)
with

B(W) = Cow1 + ciwe  C1W + C3w?
cswi + cqws  cqawy +cgwe )

Write (9) in the form
W = p(D)YW —1B(W)W,, (10)
where D = (D1, D3), D1 = —10,, D2 = —10, and the operator p(D) is defined through the Fourier transform
Fp(D)w)(<) = p(O)F (w)(C)-

Here ¢ = (£,n) stays for the Fourier variables corresponding to (z,y) and

2
PO =€+

Let U(t) = exp(—1tp(D)) be the unitary group which generate the free evolution. We shall solve the integral
equation corresponding to (9)

W(t) = U(t)W(0) — /0 U(t —t')B(W ()W (t'))dt'. 11)
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Let 9 be a cut-off function such that
P € C(R), supp ¢ C [—2,2],% = 1 over the interval [—1,1].

We consider a cut-off version of (11)

W(t) = $(O)UEW(0) - (1) / Ut — ) BOW (#) W (¢')d. (12)

We shall solve globally in time (12) requiring smallness of the initial data. To the solutions of (12) will correspond
local solutions of (11) in the time interval [—1, 1]. Then removing the smallness condition on the data we obtain
solution of (11) in a small interval due to the scale invariance of the system. Now we construct the functional
space where the solutions are expected to belong. Let X be the space equipped with the Fourier transform
restriction norm

1 7+ p(¢ 3 ~
Julx, = |7 + ()3 (1 ' ML) (€3l ¢)
<§> 4 L2 ¢
The factor (1 + T+(’; (fl))ﬁ) is not needed in the KdV case (cf. [7,20]) but it will be used here to deal with

the low frequency cases in the bilinear estimate. It is clear that X, C C(R; L?(R?)). Now we introduce the
auxiliary spaces Y, equipped with the norm

(T +p() %
(€

lully, =

| (r+p()~%t (1 +

) (©°u(r, )

2
L

For simplicity we set X = Xp and Y = Y. Now we can formulate the estimates for the two terms in the
right-hand side of (12).

Proposition 3.1. (linear estimates, cf. [6,7,13]). Let w1,2(0) € L2. Then the follousng estymates hold

[T ()w1,2(0)]|x < cllwy,2(0)]| 2, (13)

lll/)(if)/0 Ut —t)BW @)Wz (t')dt'|| x, < c{l|B(ws, wa)lly, + |B(wy, wi)lly, + || B(wz, w2)lly. }, (14)

where B(u,v) = 8;(uv).

We shall solve (12) in X. Due to Proposition 3.1, in order to apply a fixed point argument, it is sufficient to
estimate the Y norm of the bilinear form B(u,v) in terms of the X norms of u and v. We have the following
Proposition which will be proved in the next section.

Proposition 3.2. Let s € [0, 55). Then the following estimate holds

I1B(u, v)lly, < ellullx|lv]x- (15)

Using Propositions 3.1 and 3.2 we shall prove the following Theorem.

Theorem 3.1. For any w; 2(0) € L*(R?) there emsts T > 0 depending only on |w1,2(0)|z2 and a unigue
solution W = (wy,w2)" of (11) wn the time wnterval [-T,T) satisfyrng

w2 € C(-T,T); L(R*)) n X.



508 J.-C. SAUT AND N. TZVETKOV

Let wq,2 be a solution of the integral equation (11). Then w2 is a solution of (10) only if an additional
restriction on the initial data is imposed. This is because of the singularity of p(¢) at £ = 0. The operator
U(t) is defined for any ¢ € L%(R?) but U(t)¢ has a time derivative which is a tempered distribution only if we
suppose that formally ¢ has a “zero x mean value”. Actually U(¢)¢ has a well-defined time derivative provided

|€]16(£,n) € S'(R?). This condition means that formally [ ¢(z,y)dz = 0. Furthermore due to the conservation
of the L? the solutions can be extended globally in time. We are going to prove the following Theorem.

Theorem 3.2. Let
w1 ,2(0) € L*(R?), with [€]7F(w1,2(0))(&,7) € S'(R?).
Then there exists a unique global solution W = (w1, we)* of (10) satisfying

wy 2 € C(R; L2(R?)) N X.
Moreover the following decomposition of W for any t > 0 holds

W(t) = U(@)W(0) + R(t),
where R(t) € H*°(R?) x H*%(R?), for s € [0, 35).

To the solutions of (10) correspond solutions of (3), provided v* > 0. This last condition allows to perform
the scale change reducing the diagonal matrix diag(y*,~v) to the unit matrix. To the global solutions of (3)
correspond global solutions of the original system (2). Note that v > 0 is equivalent to c2c2 A2, . < 41, L, A,
and therefore Theorem 1 is a direct consequence of Theorem 3.2.

3.2. Proof of Proposition 3.2
Set

2
og=0(1,{)=7-6+ %, o1:=0(n,¢), o2:=0(r—71,(—-C).

Now we state an inequality which is actually the Strichartz estimate for KP injected into Bourgain’s framework.
Proposition 3.3. Let 2 < g < 4. Then for any u € L?(R?) the following inequality holds
17~ (o) ~*1alr, ODlice < cljullre, (16)

where b = 2(1 — 2)(3+).

Proof. For any ¢ € L?(R?) the classical version of the Strichartz inequality for the KP equation (cf. [22],
Prop. 2.3) yields

NU@®)¢lzs < clidllza- (17)
Once we have (17), Lemma 3.3 of [13] gives for any u € X
IF ()2 A, O)Dlles < ellul|ze- (18)

Interpolating between (18) and Plancherel identity completes the proof of Proposition 3.3. Now we state a
Corollary of Proposition 3.3 which will be intensively used hereafter.
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Proposition 3.4. Let oy, az,a3 € [0,1 + €] and G, U, @ be positive. Then

/ﬁ(Tl,Cl)ﬁ(T —71,¢ — C)w(T, §)

{o1)%1(g2)2 (o)

drd{dmd(; < cllul| 2 ljv]| L2 llwll L2, (19)

provided o1 + ag + az > 1+ 2¢.

Proof. We denote by I the left-hand side of (19). Clearly we can assume that a; + a2 + ag = 1 + 2¢ Then
Holder inequality, Plancherel identity and Proposition 3.3 yield

I < |IF (o)™ @)L |F 7 (02) 7*20) | o2 | F 1 ((0) ~*D)| o

< dlfullzelivlzallwllzz,

provided o, = 2(1 — %)(% +¢€), 7 =1,2,3 and ;117 + q% + ;13- = 1. But the last equality is equivalent to
a1 + as + a3 = 1 4+ 2¢ which completes the proof of Proposition 3.4.

We shall also make use of the following calculus inequalities.

Proposition 3.5. For any a € R the following inequalities hold

*° dt c
[ o= <= 20)

o dt c
/. O —a = @t @)

Set

0= 8(r0) = e 01 =0(n,G), 62 =0(r — 7, C— )

A duality argument shows that (15) is equivalent to

{ / / K (7,7, G, Q)BT — 71, ¢ — G)@(r, O)dryd¢drdc| < cllullallol ze w2, (22)

where

€1(€)*(6)

K Gm ) = e () (o) 6a)

Without loss of generality we can assume that @ > 0, ¥ > 0 and @ > 0. By symmetry we can assume that
lo1] > |o2|. To gain the loss of a derivative in the nonlinear term we shall use the relation (cf. [8])

(€1n — 5771)2

a1 +02—0=3§1€(§—§1)+m

(23)
and hence

max{|o|, |01, [o2]} > [£2€(€ — &1)I- (24)
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Let J we be the left-hand side of (22). We consider several regions for (7,{, 71, (1).

Case 1. |€ < ¢o, where co is a sufficiently large constant. We denote by J; the restriction of J on this
region. Using that (8) < ¢(o)2~ we obtain

K 36 Tl S —'I—C_l‘
(7:.6:m.6) (o) E (og) 3T

It suffices to use Proposition 3.4 to get a bound for J;.

Case 2. |o| > |o1], |£] = co- We denote by J; the restriction of J on this region. Using Cauchy-Schwarz
inequality and (20) we obtain

W=

J2 S/I(T,C) / G(m1, )o(r — 71,¢ = ¢)Pdndé ¢ @(r, ¢)drd(,
lo|>]o]

where via (20)

_ ) drdé; F @ a6
I(1,¢) = () </|c|2|ml (01>1+<Uz>1+(91)2<92)2> < ()5 (/ <01+02>1+)

We perform a change of variables similar to [18]

[N

a=o01+02, [B=3L(E—&).

Note that
B € [-3|o|, min{3/4¢%,3|o|}], when¢&>0
and
B € [max{3/4¢3,—3|0|},3|o|}], when £ <O0.
We assume that £ > 0. If £ < 0 then the arguments are similar. We have that

a6 = c|8|2dodg _
€12 (3¢8 - B)Elo + B — o
Therefore we obtain using (21)
ERN min{3/4¢3,3]0|} oo 1 3
1(r.¢) < M{ |B3dads }
m0 < S L ey e T

L @it { / meeneAT___1pds }
o L TP Ge-pilo+pE |

Consider two cases for (7, ().
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o 3|¢]® < 4|o|. We have that

I Y R
1tho < ST {/—3|a| +f }

e L ;

< L (0 +eima+ o)
c(€)5+(6) 4 4O
RIS

Let |03 < |¢['/4. Then we have
I(r,¢{) < & %1_5_ < const.

Let |o|3z > [£]/4. It follows
I(T, C) < @%1_—8_- S const.

o 4lo| < 3|¢)3. In this case we have

c(g)i-{-s(g) {/3lol dg . }%
I(r,{) < ———-

(@3 a0 (3 - 020 +8)2

< < { /3“" dg }

T (@) @) |J-sjel (0 + )2

_ )

DGR
Let [o]3 < [¢|3. Then we have

I(r,{) < (5)50‘3 < const.
Let |o|32 > |¢|3. Then we have
I(r,¢) < o)z’ c const.

3 —_— 3 S
©F = O

Hence I(7,¢) is bounded and the use of Cauchy-Schwarz inequality yields

J2 < cllull 2 ][]l 2 [|wll L2-
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Case 3. |o1| > |o|, €] = co, [&1] < 1. We denote by J3 the restriction of J on this region. We shall
estimate J3 by a localization with respect to &; and (o1). Set

JEM =/ ent K(7,¢, 11, C1)u(m, G )v(r — 11, ¢ — §1)@(r, {)dr d¢idrdd,

where

ARM = {(11,¢1) : Jea] ~ M, (o1) ~ K}

B S I
K,M

where the sum is taken over K = 2F, k= 0,1,2,... and M = 2™, m = 0,—1,—2,... Note that in this case (24)
implies

We have

€l < cKPM~3
Now we shall estimate J& in two ways. First by a direct estimate for K we bound J&™. Then we estimate

JEM by the aid of Proposition 3.4. A suitable interpolation provides the needed inequality. Cauchy-Schwarz
inequality yields

JEM < /11@3 IEM (1 ¢) {/AKM |a(r1, $1)o(r — 11,¢ — (1)|2d71d(1} w(r, )drd(,

where

Ky oy = KE00) dnde
I*%(7,¢) ()5~ (/AKM (01)1+(02)1+<91>2<92>2> .

We change the variables
a =01+ 03, B =386 (€ — &)
As in Case 2 we suppose that £ > 0. We have
181 < BIE|(1€] + 1)2M < cl¢|*M

Hence using that () < ¢(o)z~ we obtain

eMlel’ €12 +22|6| 2 dmrdads
KM
s {/ ./ /cM|§|2 (o1)1H (a0 — 01) 1+ (363 — B)3 |0 + B — o] (61)2

Since || < c|o1| we obtain

1
2

18]
(61)?

s eMlel* dadp :
IKM :4-+SK3—2
Q) = el {/ /ch£|2 P (3 - ﬂ)%lo+ﬂ—a|%}

L . cMgl? dg 2
itsgas .
& {/—cM!sP (363~ B)3lo + 02 }

Hence

=

-

IA
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Since [£] > co, for sufficiently large co we have [3¢3 — 8| > 3¢3 and therefore

1
cK 32

‘/cMI)El2 ds 2
€137 | J—emiez o + I3

"*M(r,¢)

IN

IA
2]
x
8=
+
e
%»—-
|
Nt

Cauchy-Schwarz inequality yields
JEM < K IFEMETE |l 2 o] 2w 2.
Now we shall estimate J&™ (7, () by the aid of Proposition 3.4. We have

|€11+=¢6)

(@)1 (@) B (2 bt

K(T5C9Tlagl) S

Let |03 < |€]3. We denote by JEM the restriction of JKM on this region. We have

Using Proposition 3.4 we obtain

C
1+ 1
METKs 35—

It < l[ullz2llvll L2 llwl 22

Let [o]52 > |£]3. We denote by JEM the restriction of JKM on this region. We have

M~ K-stit

)S 9 7 i
(o) (01)3 T (o2)2F

K(Ta CaTla Cl

Using Proposition 3.4 we obtain

C
JEM < M%__HUHL2”U”L2HMHL2-

Further we have
JEM < JEM 4 JBM < M3 8 KT | o o] o w]] 2.

Interpolation between (25) and (26) with weights £ + 28+ and 3— 25— respectively yields

kv o M
I3 < ooy iz livll callwll 2

For

513
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ap= (242 V(L sy (L 2 \(L1_s \_1-2%
27 \37 3 32 2 33 8 2 ) 48 '

Hence since s > 1/29 we obtain that a3 and ay are positive. Summing over K and M yields

and

Js < cllull g2||vl| L2 |wl| 2

Case 4. |o1| = |o|, €] = co, [€| < 2|&1|. We denote by Js the restriction of J on this region. In this
case we have
4 1
9 < cléil?.

(61)

Hence
clé1] fts

K(T’ CaTl, Cl) < <0_>%_<0_1>%+(02)%+

Using Cauchy-Schwarz inequality we obtain

W=

J4S/11(7'1,C1){/| - lI{U\(T,Oﬁ(T—7'1,(—(1)[2(17'(1(} u(m, ¢1)dmdd,

where

hey - Gl _ﬂ_\'%

, NE J N4/ - A1+
(01)2F \Jlow|zlo| (o) {02}

CIﬁll%“( d¢ )
(on)E- /(o—aw ’

where we used that |o;| dominates in this case. We perform a change of variables

a=0—09, B =3¢61(& —&).

We can assume that &5 > 0. If £ < 0 then the arguments are similar. Further we have

dc = clBl3dads .
[€1/2(3€8 = B) %01 + B — o
Therefore we obtain using (21)
1
1+s min{3/4¢3,3|01|} 14 2
Ii(m,G) < __C|§1|2'l_ / 35 I'Bli p - .
(01)2 —3ja1| (56 —B)2(o1 +B)2

Now we consider two cases for (11, ¢1)-
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o 3|&]3 < 4|o1]. We have

1, 3¢ :
L, clé|>t R &
1(m, Q) < (o) - /_310” +/0
I+s N 3 3
< S {nt+ehmo s o)

———— < const.
(ST ke

e 4|oq| < 2|&]3. In this case we have

% 5 3]0’1| dﬁ
I R < ——-clé-ll 1+ { b 1 }
1(m,G) - < (o1)i~ /_3|m| (36 - B)2(or+8)2

. {/3|a1| dg }%
(005~ [&1]375 | J=sjen| (o1 + B)2

o)+
|€1]5

1
2

< const.

Hence I; is bounded. Therefore we obtain by Cauchy-Schwarz inequality
Ja < cllull2]lvll L2 ||wl| L2

Case 5. |o1| > o], &l =co, [&]=2|€], |&1| = 1. We denote by Js5 the restriction of J on this region.
In this case we have that |¢| < 2|€ — &].

Let |o|3 < |£|i. We denote by Js; the restriction of Js on this region. We have

cléllé] 2 < c

KT, ;7T1,61) = 1 23 . 1 = 1 3
6 8) < o B o B = (o) (o) B (o)

" .

i

Proposition 3.4 yields
Js1 < cllull 2 [|v]| p2[lw| 2.

Let |o|3z > |§|%. We denote by Js2 the restriction of J5 on this region. We have

cl¢|s|&]t
K(T’C:TlaCI) < <0’ 3_92__(01>§—g+<0,2>%+,

and

el < deitlaltle - &l < clon)tont = clont.
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Therefore

C

K 36,71, < S 11 i,
(T C 71 Cl) <0’ E_(01>ﬁ+(o’2>5+

Proposition 3.4 yields
Js2 < cllullz2l|vl| 2 ||wll L2

This completes the proof of Proposition 3.2.

3.3. Proof of Theorem 3.1

Let
L X xX+— XxX

is an operator defined as

L(W) =U(t)W(0) —‘ /t Ut —t)B(W(t'))W,(¢)dt'.
0
Then Propositions 1 and 2 yield
[BOLW)xxx < e {llwi(0)llz2 + [lw2(0)]l 22 + fwi |k + w2l }

1@ L(Wy) — p(t) L(W2) || xxx < cl[W1 — Wallxxx|[W1 + Wa| xxx-

A standard fixed point argument provides a fixed point of ¥(t)L for jjwi,2(0)|jz> sufficiently small. To prove
local existence for arbitrary data in wy 2(0) € L? we shall perform a scaling argument. If u(¢, z,y) is a function
then we set

wurlt,z,9) = TPu(Te, T, 1),

Similarly if ¢(z,y) is a function then
¢r(z,y) = T*P(T %2, T*/%y).

Note that if u(t, z,y) is a solution of KP equation with data ¢r(z,y) on [—1,1] then so is up-1(t,z,y) with
data ¢(z,y) on [—T,T]. We have that ||¢r||r2 = T/9||¢| 2. Hence if T is sufficiently small then the equation
W = L(W) has a solution on [—T,T]. This proves the existence. For the proof of the uniqueness we refer
to [20,25).

3.4. Proof of Theorem 3.2

The first part is a direct consequence of Theorem 3.1 and the L? conservation law. It remains to prove the
smoothing effect. Set

R(t) = /O Ut - €Y BOW ()W (t)dr.

Due to a Sobolev embedding we obtain

”R(t)”HS’OXH“”O S ”R”szxs'
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Now a use of Propositions 3.1 and 3.2 yields

IR mooxrso < cfl|Blwr,wa)lly, + | Blwr,w2)lly, + | B(w1,w2)lly.}
>~ C 'U)]_ X W X
< fllwllk + lwall%}

< const.

This completes the proof of Theorem 3.2.

4. GLOBAL WELL-POSEDNESS IN H*(R?), s > 0

Finally we shall show that the global well-posedness of (3) can be extended to initial data of higher smooth-
ness. The difficulty is that there is no conservation of the H*(R?), s > 0 norms of the solutions. Nevertheless,
as it is noticed in [8] one can overcome this difficulty by using the special form of the nonlinear estimate in the
case of initial data of higher smoothness. We introduce the Fourier transform restriction norm

2\ 2
o)\
lull2, = /(4)23(0)” (1 + %) |a(r, )2 drd¢.
(&)=
Let I C R be an interval. Then we define the space Z(I) equipped with the norm

lullzyny = jnf {llwllz,, w(t) = u(?) on I}.

Similarly we define X (I). Let W(t) be a solution of (12) with W (0) € H® x H®, s > 0 (and hence in L?) on
the time interval I = [0, §], where § depends only on ||W(0)||z2. Our aim is to show that W € Z4([0,d]). Using
the elementary inequality

(€ <ce({Q)* + (¢~ ¢))

and the arguments of the proof of Proposition 3.2 and Section 3.4 of [25] one can obtain
IWliz,yxz.ry < ellWO)llsxas + 6 (lwillxnyllwillz, ) + lwallxnllwellz,

Hlwillxnyllwall z,y + llwall x(nyllwillz, 1))

where 6 > 0. The local existence argument in L? provides the smallness of 6°||w; 2| x(r) and hence one obtains
a bound for ||wy 2|z, (1)- The Sobolev inequality yields

sup [lwi2()llers < cllwi,2llz,(j0,5))-
t€[0,4]

Hence we control the H® norm of the solution on an interval of size depending only on the L? of the initial data.
Thanks to the conservation of the L2 norm we obtain a bound for the H® norm on any time interval. Therefore
we have the following Theorem.

Theorem 4.1. Suppose that a11a22 — a12a21 > 0. Then for any
(uo,v0) € H*(R?) x H*(R?), s>0,

such that
€17 Fluo)(&,m) € S'(R?), [€]7 F(wo)(€,m) € S'(R?),
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there ezists a unique solution (u,v) of the Cauchy problem (3). In addition the solution satisfy
(u,v) € C(R; H?(R?)) x C(R; H*(R?)).

APPENDIX A. A REMARK ON THE CASE OF THE GEAR-GRIMSHAW SYSTEM

Note that we have taken r = 0 in (3) assuming that c,, — c, is very small comparatively to a. If it is not
the case then an additional difficulty appears because of the lower term perturbation of the system. In this
appendix we shall show that one can overcome this difficulty in the absence of transverse effects. Thus consider
the Gear-Grimshaw (c¢f. [12]) system which we refer to in the introduction

Ut + 011Uzze + C12Vzze + b1 (uV)z + bouusz + b3vuy =0
Vg + 21 Ugzz + Q22Vzzz + TV + ba(uv)y + bsuuy + bsvvy =0 (27)
'LL(O, .’E) = uO(x)a ’1)(0, "E) = 'UO(‘T)‘

In both papers [3,4] r is assumed to be zero, similarly to the present paper. For the approach of [4] the presence
of r does not affect the analysis, since the oscillatory integral estimates are still valid. On the other hand for the
approach of [3] a technical difficulty appears when r # 0. Essentially one has to derive the bilinear estimates in
Bourgain spaces with different phase functions. Our aim here is to show that one can get rid of this difficulty.
We have the following Theorem.

Theorem 4.2. Assume that r # 0 and that the matriz (a;);,c(1,2) has real distinct eigenvalues. Then the
Cauchy problem (27) is globally well-posed for data (ug,vo) € L?(R) x L3(R).

Proof. Write (27) in the form
( Us + AUgys + BUy + C(U)U, =0,
U(0) = Uo(z),
where U = (u,v)" and
_{ a1 a2 (0 0 _ bu+biv biu+bsv
A= ( as1 Qo2 )’ B= ( 0 r )’ C= ( bsu +bgv  bgu + bsv )

Let T € GL(2) such that T-'AT = diag(a4,a-), where o are the eigenvalues of A. Let U =T~'V. Then
V satisfies

{ Vi + diag(oy, 0 )Vagz + B1Vy + C1(V)V, =0,
V(0) = T~U,,

where B; = T7'BT and C,(V) = C(T'V)T~!. Note that det By = 0. Let V(t,z) = (v1(¢, ), v2(t,2)) .

Perform the scale change
x z
vi(t,z) = wr <t, W) , o ve(t,z) = w2 (t, 1—/3> .
ay a’’

The equation satisfied by W = (wy, w2) is

Wi+ Wazs + Bo Wy + Cz("V)W,; =0,
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with some matrices Bz and C,. We now explicit the relationship between By and Bj. Let
B. = b1 b1
1 = .
b1 b2
Then

L_b 1 b

173Y11 1/3 V12
—373 bo1 ﬁ—l boo
o/ al/?
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Hence det By = det By = 0. Therefore Bs has two real eigenvalues including zero. Moreover we can assume

that there exists 71 € GL(2) such that 7, ' BTy = diag(0,v). Then T W := g satisfies

gt + gzea + diag(0,v)gz + C3(g)g = 0.

To keep the notations transparent let denote again g = (u,v)?. Then (28) has the form

{ Ut + Uzgg + C1(UV)y + Couuy + C3vvy =0
V¢ + Vggzg + YUz + Ca(uv)z + Csuuy + Cgvvg = 0.

Next we define the functional spaces where the solutions of (29) belong to
x* = {uill(r =€) a(r, )z < oo} ,

X~ = {u: {7~ € + 181 0(r, 1> < 00}
Now we state the bilinear estimates needed for the proof of Theorem 5.1.

Proposition 4.1. The following estimates hold
16z (wv)llx+ < llullx+lvllx+
10z (uo)llx+ < llullx+ vl x-
16z (wv)llx+ < llullx-llvllx-
10z (uv) | x- < lJullx+lvllx+
10z (wv) |l x- < llullx+lv]lx-

10z (uv)llx- < llullx-llvllx--

(28)

(29)

(30)
(31)
(32)
(33)
(34)

(35)

Obviously the linear estimates in the proof of Theorem 5.1 are similar to these of the proof of Theorem 3.1.

Then a standard fixed point argument completes the proof. Hence it remains to prove Proposition 5.1.

Proof of Proposition 5.1. We shall prove (31). The proofs of the other estimates are similar (some of them

are simpler). Set
o=7-8, oi=n-§&, oa=m-n-E¢-&)P+v(¢-&)

J= //|5|U(7'1,§1)v(7—71,§ fl)w( +§)

(01)2 % (02) 3

and furthermore

drdedrdé;.
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We want to obtain a bound
J < cllufizllvlizzljwliz2-
Assume first €] < ¢ (¢g to be fixed later). Then we have the next version of Strichartz inequality

IF 72 = € + af) P fa(r, ))llpe < [lull L2, (36)
for b > 1/3 and @ € R. Actually in [20] the estimate (36) is proved with @ = 0. However the lower order
perturbation of the symbol does not affect the analysis since the essential assumption to prove (36) lies on the
second derivative of the phase function. Now a use of (36), Holder inequality and Plancherel identity gives a

bound for the contribution to J of the region where |¢| is bounded. Let now [¢| be away of zero. Denote by J
the contribution of this region to J. Cauchy-Schwarz inequality yields

i< [16,9 ( [t ot —m.6 - 51)l2dﬁd€1) " (r, )drde,

0= 2 (/[
I(r,€) < clf' (/<01+02% >_

n =01+ 092.

where

A use of (20) yields

Perform a change of variables

Then a straightforward computation leads to

de, = cdp
“sl — 1 362 22 1
lﬂélﬂ_’a"")/g_(gmg lé

Hence a use of (21) yields

clélt

I ) < 1 1
78 = ot e + B

‘We claim that

(o)}~ (o + € + (—l> E> et (37)
Actually we have
2 _ 2 4
o+ o+ + EZ N > Bepe - Dlig - T2 > R,

for |€] sufficiently large. Hence we proved (37) and therefore I(7,¢ ) is bounded. Another use of Cauchy-Schwarz
inequality completes the proof of (31).

Remark 3. With the arguments of this Appendix one can prove local well-posedness with data in L? for the
equation

ut + 1p(D)u + vuy =0,
where p(D) is a real Fourier multiplier with symbol

p(€) = €3+ lower order terms,



ON A MODEL SYSTEM FOR THE OBLIQUE INTERACTION OF INTERNAL GRAVITY WAVES 521

for £ > 1. In particular when p(§) = &2 + £|¢| one obtains that the Benjamin equation is well-posed in L2,
which is the result of [19].

APPENDIX B. PROOF OF PROPOSITION 2.1

We shall use the following Sobolev inequality which holds for any s; > 1/2, s3> 1/2
lullzee < cllullerea. (38)

The inequality (38) is an anisotropic version of the classical Sobolev inequality. In order to prove it we may use
the inverse Fourier transform formula, the Cauchy-Schwarz inequality and that

()75 (6a) ™2 € L, ¢,, for s1>1/2, s3> 1/2.

In order to prove Proposition 2.1 we shall use the arguments of Coifman and Meyer [10] (cf. also [2,5,9]). The
statement of Proposition 2.1 is an anisotropic version of the fact that the classical Sobolev spaces H*(R™) is
an algebra for s > n/2. Our proof relies on an anisotropic Littlewood-Paley decomposition of functions defined
on R?. We refer to [11,16], where anisotropic Littlewood-Paley decompositions are used in other contexts. Let
¥ € C(R), $(¢) = 1 for ¢] < 1/2 and $(€) = 0 for [¢] > 1. Let ¢(¢) = ¥(€/2) — (). Then clearly

1=9(&) + Y d(277¢).

p=0

Now we define the Fourier multiplier operators A7, AY, S7, S¥, Sy, as follows
§=v(Ds), A§=u(Dy), Af=¢(27HD;), AY=¢(279"D,),

S;:ZAZ’ 532243%= Spq=ZZA§1A21, p,q=12,...

q<p q<p P1<pqi1<q

Then we have the following Littlewood-Paley type decomposition of u € S'(R?)

U= Z Zquu,

p>0¢>0
where Ay = AZAY. Let u,v € H***2(R?). Then we may represent the product uv as

w = I (u,v) + Ia(u,v) + I3(u,v) + Ls(u,v),
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where

Li(u,v) = Z Spagat - Dpygpv = Z Ifzqz(u’ v),
P2,92 P2,92

Lu,w) = Y SLAYu-AZSY jvi= > IF%(u,v),
P2,q1 p2,q1

Is(u,v) = > AZSYu-SE_ A%v:=> IF%(u,v),
P1,q2 P1,92

I4(u7 ’U) = Z APlQlu' ) S(pl—l)(‘h—-l)v = Z Izl{r,lq1 (u,v).
P1,01 P1,q1

A scaling argument easily yields that the operators S7, S, Spq are bounded in L™ (R?) with an operator norm
independent of p, q (¢f. [2]. Lemma 1.1.2 for example). Now we use the Holder inequality and a one dimensional
Sobolev inequality in order to bound the L?(R?) norm of I5*% (u,v)

1% (uo)lze < 11S25,A% ull 12 |AZ, S _ollzarg

INA

Cpaqr - 27 |lull mrersz - 2772 || prevea, (39)

where cp,q, € 12

p2q1- We have the following support property of 2% (y,v)

supp (F(I3*% (u,v))) C {(,&): |Gl S c- 27, |&| <c-29}.
Hence summing over ps and ¢; in (39) yields
1 L2(w, v)l| oresz < cllullmorsa o)l morise.
Now we shall estimate ||I1(u, v)| ge1.22. Holder inequality and (38) yield

172 (uw, v)llz - < [Spagrtillzes, [ Bpagzvlizz,

IA

Cp2qz * 27P25 . 2_q232“u"Hsl”?”U”Hsl's?a

2

where ¢p,q, € 15,4,

Now summing over p2, g2 we obtain

12w, 0)[monee < lullaronse 0] roasee

similarly to the estimate for ||I2(u, v)| ge1.52. The estimate of || I4(u, v)|| gs1.+2 is similar to that of || I1(u, v)|| gs1.s2
and the bound for ||I3(u,v)||gs1.¢2 is similar to that of ||Iz(u,v)| fs1.52. Hence we obtain that

l[wvllpreves < lullrrossz [0 proaoca,

for s; > 1/2, s5 > 1/2 which completes the proof of Proposition 2.1.
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Remark 4. Arguments similar to that presented above allows us to establish the following product estimate in
the anisotropic Sobolev spaces H*®1*2(R?) for s; and s; positive and u,v € H**2(R?) N L®(R?)NH3' LP(R?)N
Ly H»(R?)

luvligsee < c(llwflaas [vlize + llullaz e lvll Lo rge + Ul Lo gz 10l 2 Lo + [l Lo ([0 roro02).-
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