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ON A MODEL SYSTEM FOR THE OBLIQUE INTERACTION OF INTERNAL
GRAVITY WAVES *

JEAN-CLAUDE SAUT1 AND NIKOLAY TZVETKOV1

Abstract. We give local and global well-posedness results for a System of two Kadomtsev-Petviashvili
(KP) équations derived by R. Grimshaw and Y. Zhu to model the oblique interaction of weakly non-
linear, two dimensional, long internai waves in shallow fluids. We also prove a smoothing effect for the
amplitudes of the interact ing waves. We use the Fourier transform restriction norms introduced by
J. Bourgain and the Strichartz estimâtes for the linear KP group. Finally we extend the resuit of [3]
for lower order perturbation of the System in the absence of transverse effect s.

Mathematics Subject Classification. 35Q07, 35Q53, 76B15.
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1. INTRODUCTION

This paper is directly motivated by the work of Grimshaw and Zhu [15], where a model is presented for the
oblique strong interaction of weakly, two dimensional, nonlinear, long internai gravity waves in both shallow
and deep fluids. The model consists of two coupled Kadomtsev-Petviashvili (KP) équations (shallow fluid) or of
two coupled "intermediate long wave" équations (ILW) (deep fluid). The interaction of internai gravity waves
propagating in one horizontal direction has been considered by Gear and Grimshaw [12]. Rigorous mathematical
results in this case have been obtained by Bona et al. [4], Ash, Cohen and Wang [3], Albert, Bona and Saut [1]
(cf. also Appendix A of the present paper for a complement to the paper [3]).

More precisely we are interested here in the case which Grimshaw and Zhu refer as the "strong interaction
I" type, in the shallow water situation (cf. [15] Sect. 3.2). Thus we require that the 2 interacting modes n and
m have closed phase speeds, cn ~ cm, and that the angle ö between the waves (which propagate in the x — y
plane) is closed to zero. In this case, Grimshaw and Zhu using a multi-scale perturbation method, found that
the vertical displacement £ of the fluid is given by

i = a{An(r,aua2,d)(i>ri(z) + Arn(T,aua2,6)(j>7n(z)} + a2^^O(az). (1)

Here the small parameter o; is a measure of the wave amplitude, 9 — X — cnT is the phase variable, r = aT7

<7i = aX} 02 = oàx are respectively the long time and space variables. They are related to the physical
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variables (x,y,t) by
X = ex, Y = ey, T = et,

where e is a small parameter representing the dispersive effects, namely the ratio of vertical to horizontal scales.
A KdV balance is assumed between dispersion and nonlinearity, le. a = e2. Moreover cm is close to cn, namely
cm = cn(l + OLV), where V is O(l) with respect to a. In (1) cj)j, j = m,n is the j * ' 1 mode of the vertical mode
function <j> = <̂>(z) with corresponding phase speed Cj (they are eigenfunctions of some linear eigenvalue problem
which we will not specify here). Finally, the amplitudes Am and An are shown in [15] to satisfy the system of
évolution équations

J H 9 A n , dAn 9A,
UnAn~df>

2 I A^

V
dA

d_( A dAn
ldo\ m de

, Ö 3 A m dA

= 0,

where

de\cn dr de
d2

-\~Ojlntnm o / l 9

d<f>s

de3 de da2

(2)

= 0,

X 2 f0 A2

= 2Ck J Po4>k
= ck J Po-g^-Q^dz-

Here fc,Z,s G {m,n} and öu is the Kronecker symbol. First we observe as in [15] that by transforming to a
référence frame traveling with speed cn we may ignore the dependence on ai in the system (2) up to higher
order terms.

Then the system (2) can be rewritten in the form

{ut + anuxxx + a12vXxx + h(uv)x + b2uux + b3vvx)x +uyy = 0

^yy = 0, (3)

u(Q,x}y) =

where

nCn,

— r, x = 0, y =

2/„ '

2/r,

2Im

xVn, h = -

- , &5 =
n Cn
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r = cnV = (cm - On)/a,
Assuming that cm — cn is very small comparatively to a (cf. [4]) we will take r = 0 in (3) from now on.

We are interested in the local well-posedness of the Cauchy problem (3) in Sobolev type spaces based on L2.
In gênerai local well-posedness in the classical Sobolev spaces Hs for s small enough may allow us to establish
global existence using the conservation laws of the System. It is easy to see that the L2 norms of the solutions
of (2) are conserved. Another conservation law of (2) is due to the time translation invariance of the System,
i.e the energy. The quadratic part of the energy of (2) is not positive definite in the relevant values of the
parameters, and therefore the only reasonable conservation law which may allow to establish global existence
seems to be the conservation of the L2 norm. In [6,7] Bourgain developed a new method for studying the local
well-posedness of some nonlinear évolution équations. One of the main points of the method is the introduction
of Fourier transform restriction norms. The method was also applied for KP-II équation (cf. [8,18,24,25]). In [8]
local well-posedness for KP-II in L2 is shown. The proof uses a suitable dyadic décomposition associated to
the symbol of the linearized operator. The arguments are mainly performed for the case of periodic boundary
conditions. But the proof could be adapted for data in M2. In the present paper we are going to show that
(2) is globally well-posed for data m L2. In the nonlinear estimâtes, similarly to [25], we shall make use of
the dispersive properties of (2) (Strichartz type inequalities) and of some simple calculus inequalities similarly
to [20] for the KdV équation, [21] for the nonlinear Schrödinger équation or [18] for the KP-II équation. As
in [18,25], the proof turns out to be simpler that the one of [8]. We also shall prove a smoothing effect in the x
variable for (2). Actually we shall show that the linear évolution of the System propagates the main singularity.
More precisely in the main direction of propagation the solution turns out to be a compact perturbation of the
linear évolution. The main goal of this paper is to prove the following Theorem.

Theorem 1. Suppose that anü22 — &12&21 > 0. Then for any

(uo,vo) e L2(R2) xL2(R2),

such that

\£,\-lT{u0){ï,v) e «S', ^r^K)(£,??) e S'
there exists a unique solution (u,v) of the Cauchy problem (3). In addition the solution satisfy

(u,v) e C(R]L2(M2)) x

Moreover the following décomposition of (u, v) at any time t holds

where (u1 (t), v1 (t)) e L2(R2) x L2(R2) is the fret évolution of the system and

(u2(t),v2(t)) G Hs'0(M.2) x HS'°(R2) for s G [0, ^ ) .

Remark 1. Coming back to the notations of (2), the condition ana,22 --&12&21 > 0 is equivalent to c2
lc

2
n\

2
nn <

The paper is organized as follows. In Section 2, we first diagonalize the linear part of (2). Then using the
parabolic régularisation method similarly to [17] we prove the local well-posedness of (2) in anisotropic Sobolev
spaces HSliS2(M?) with regularity si > 3/2, 52 > 1/2. This is an improvement of the resuit of [17] which states
local well-posedness for KP équations in the classical Sobolev spaces üP(M2), s > 2. We must set the restriction
on the pair (si, S2) in order to control the L°°-norm of the x derivative of the solution. On the other hand, the
resuit does not depend on the nature (KP-I or KP-II) of the System. Sections 3 and 4 are devoted to the case
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when the system (2) consists of two coupled KP-II équations. In Section 3.1 we first define the functional spaces
where the solutions are expected to belong. Then we state the linear and nonlinear estimâtes. Section 3.2 is
devoted to the proof of the nonlinear estimate. First we state the Strichartz inequalities injected into the frame-
work of Bourgain's spaces and some simple calculus inequalities needed for the proof. The rest of the Section
contains the proof of the intégral représentation of the nonlinear estimate. In Section 3.3 we apply a fixed point
argument to prove Theorem 3.1. Section 3.4 is devoted to the proof of the smoothing effect. In Section 4 we
extend the global well-posedness to spaces of higher smoothness. In Appendix A we consider the system of
Gear-Grimshaw (cf. [12]), ie . two coupled KdV équations. We treat the case when the différence of the speeds
of the two int er act ing modes is not necessary small comparatively to a measure of the wave amplitude. Finally in
Appendix B we prove the estimate needed for the local well-posedness in anisotropic Sobolev spaces of Section 2.

We shall use the following notations. By~or T we dénote the Fourier transform, while by J7~1 the inverse
transform. \\.\\LP dénotes the norm in the Lebesgue space Lp

1 while üTSl'S2(3R2) dénotes the anisotropic Sobolev
space equipped with the norm

where (.) = (1 + \-\2)^- With Hs we dénote the classical Sobolev spaces. The notation a ± 0 means a ± e for
arbitrary small e > 0. The operators Dx and Dy are defined respectively by Dx = \dx, Dy = \dy. Constants
are denoted by c and may change from line to line.

We thank R. Grimshaw for helpful explanations on the system (2) and I. Gallagher for useful discussions on
the anisotropic Littlewood-Paley décompositions.

Set

2. A LOCAL EXISTENCE THEOREM

/ \
/ \t A I &11 G>\2 \

g = {u,v)\ A= [ a^ ^ ) ,
f(u,v) = (bi(uv)x + b2uux

Therefore the System (3) can be written as

Note that

(dtdx + d2y)g + Adtg + dx ƒ(u, v) - 0.

mn m

(4)

mn m n > 0-

There exists T G GL(2) such that T~XAT = diag(7+,7~), where 7̂ = are the eigenvalues of A

* ( ± V ( )2

We have that 7 + > 0 and the sign of 7" is that of a\\a22
we arrive at the system

Now setting g — Tft,, where h = (w+ ,w~)

(dtdx = 0, (5)

where

= (bi(w+w~)x
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with some constants 5 1 ; . . . , &e- Note that (5) has a structure of 2 coupled KP-II équations (7" > 0) or of a
KP-II équation coupled with a KP-I équation (7" < 0).

Since the symbol of the linearized operator has a singularity near the origin we introducé an anisotropic
Sobolev space HSliS2(R2) spaces similarly to [22], equipped with the norm

7R2

Note that (formally) any u G HSliS2(M?) has zero x mean value. Now we write (5) in the form

(ht + diag(7
+, l~)hxxx -h A{h)hx)x + hyy = 0, (6)

where the matrix A is defined by

Note that in (6), ^4(0) is the zero matrix and that A(h) is smooth. These are the conditions which allow us to
apply the par abolie regularization method to the system (6), which is a vector ial variant of the équation studied
in [17]. Consider a regularized version of (6)

{ht - e Ah + diag(7
+,7-)/ixxx + A(h)hx)x + hyy = 0, (7)

where A is the Laplace operator on M2 and e is a small positive parameter. Due to the par abolie char act er
of (7) and using Proposition 2.1 below, for any s\ > 3/2 and s2 > 1/2 we have a unique solution h6 G
C([0,T];#Sl'S2(R2)) of (7) with initial data h° = h(0). Hère T dépends on e and \\ho\\fjS1,S2- We have to show
that T can be chosen independent of s. Multiplying (7) by h and intégration over (x, y) we obtain

where (.,.)si,*2 stays for the HSliS2 scalar product. Now we state a Proposition which will be proved in
Appendix B.

Proposition 2.1. Let si > 1/2 and s2 > 1/2. Then the space HSl>S2(R2) is an algebra.

Using Proposition 2.1 we obtain for s\ > 3/2 and 52 > 1/2

Similarly we obtain

Hence

/o

Furthermore

\\he
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Once we obtain (8) it remains to use standard arguments (cf. [17]) to dérive local well-po&edness of (6) in
HSl'S2jSi > 3/2,52 > 1/2. To the solutions of (6) will correspond solutions of the original System (2). Hence
we can obtain the next Theorem.

Theorem 2.1. Let Si > 3/2, s2 > 1/2 and

(u(0),v(0)) G Hs"S2(R2) x #Sl>S2(E2).

Then there exzst T > 0 and a unique solution (u,v) o f the Cauchy problem (3), In addition

(u,v) # 2 È 2

Remark 2. Obviously the same resuit holds for any scalar KP-I or KP-II équation with "gênerai" nonlinearity
f(u)ux, where ƒ is a smooth function. Note that HSl>s*(R2), s± > 3/2, s<i > 1/2 defines a larger class of
possible initial data than the one considered in [17], where the data is supposed to be in a classical Sobolev
space ifs(ÏR2), s > 2. The anisotropic Sobolev spaces seem to be a natural set for the initial data of KP type
équations, since the scale invariance of these équations could be stated in terms of some anisotropic Sobolev
spaces. The resuit of Theorem 2.1 does not depend on the sign of anO22 — 012^21 («.e. does not distinguish the
"KP-I" and "KP-II" case). In the next section, we will improve it a lot, in the "KP-II" case.

3. GLOBAL WELL POSEDNESS IN L2 (7* > 0)

3.1. Préliminaires

We first perform a scale change. Set

t,x,y) = w+ (t,

Let W = (wi,w2)
t. Then W satisfies

(Wt + Wxxx + B(W)WX)X + Wyy = 0, (9)

with

B(W) =
^ C5W1 + C4W2 C4W1 4- CQW2

Write (9) in the form

zdtW = p(D)W - iB(W)Wx, (10)

where D = (D±, D2), D\ — — idx, D2 = — idy and the operator p{D) is defined through the Fourier transform

Hère C = (£, v) stays for the Fourier variables corresponding to (x, y) and

Let Î7(t) = exp(—ztp(D)) be the unitary group which generate the free évolution. We shall solve the intégral
équation corresponding to (9)

f*
= U(t)W(0) - U(t- t')B{W{t'))Wx{tf))àt'. (11)

^0
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Let xp be a cut-ofï function such that

îp G Co°(R), supp ip C [-2,2],^ = 1 over the interval [-1,1].

We consider a cut-off version of (11)

507

W(t)=tl>(t)U(t)W(O)-il>(t) f U{t-t!)B(W{t!))Wx{tf))à£f.
JQ

(12)

We shall solve globally in time (12) requiring smallness of the initial data. To the solutions of (12) will correspond
local solutions of (11) in the time interval [—1,1], Then removing the smallness condition on the data we obtain
solution of (11) in a small interval due to the scale invariance of the system. Now we construct the functional
space where the solutions are expected to belong. Let Xs be the space equipped with the Fourier transform
restriction norm

The factor (l+ <r+p^>32 j is not needed in the KdV case (cf. [7,20]) but it will be used here to deal with

the low frequency cases in the bilinear estimate. It is clear that XQ C C(M; L2(R2)). NOW we introducé the
auxiliary spaces Ys equipped with the norm

\M\Y. =

For simplicity we set X = Xo and Y = YQ. NOW we can formulate the estimâtes for the two terms in the
right-hand side of (12).

Proposition 3.1. (linear estimâtes, cf. [6,7,13]). Let iwi^O) € L2. Then the following estimâtes hold

, (13)

f
Jo

+ + (i4)

where B(u,v) = dx(uv).

We shall solve (12) in X. Due to Proposition 3.1, in order to apply a fixed point argument, it is sufficient to
estimate the Y norm of the bilinear form B(u,v) in terms of the X norms of u and v. We have the following
Proposition which will be proved in the next section.

Proposition 3.2. Let s E [0, ̂ ) . Then the followmg estimate holds

\\B(u,v)\\Ys <c\\u\\x\\v\\x.

Using Propositions 3.1 and 3.2 we shall prove the following Theorem.

Theorem 3.1. For any ^1,2(0) G L2(R2) there exists T > 0 dependmg only on 11̂ 1,2(0)11 £2 and a unique
solution W = (wiJW2)t of (11) m the time interval [—T^T] satisfying
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Let Wit2 be a solution of the intégral équation (11). Then ^ i ^ is a solution of (10) only if an additional
restriction on the initial data is imposed. This is because of the singularity of p(Q at £ = 0. The operator
U(t) is defined for any <p e L2(R2) but U(t)<f> has a time derivative which is a tempered distribution only if we
suppose that formally <j> has a "zero x mean value". Actually U(t)4> has a well-defined time derivative provided
I£I~1(K£Ï v) £ S'(R2). This condition means that formally ƒ </>(x, y)dx = 0. Furthermore due to the conservation
of the L2 the solutions can be extended globally in time. We are going to prove the following Theorem.

Theorem 3.2. Let
tüi,2(0) e L2(R2), with l e r ^ K ^ O ) ) ^ ? ? ) e S'(R2).

Then there exists a unique global solution W = {w\^W2)t of (10) satisfying

wll2

Moreover the following décomposition o f W for any t > 0 holds

where R(t) e HS>°(R2) x iP'°(M2)? for s e [0, ^ ) .

To the solutions of (10) correspond solutions of (3), provided ^ > 0. This last condition allows to perforai
the scale change reducing the diagonal matrix diag(7+,7~) to the unit matrix. To the global solutions of (3)
correspond global solutions of the original System (2). Note that 7 ± > 0 is equivalent to c2

1c
2
nX

2
7in < 4/m/nÀmÀn

and therefore Theorem 1 is a direct conséquence of Theorem 3.2.

3.2. Proof of Proposition 3.2

Set

7]2

a :=cr(r,C) = r - £3 + y , ai := cr(n, Ci), &2 := <T(T - n , C - Ci)-

Now we state an inequality which is actually the Strichartz estimate for KP injected into Bourgain's frame work.

Proposition 3.3. Let 2 < q < 4. Then for any u € £2(R3) the following inequality holds

l l^ -^^- 'Kr .ODIU^cl l t i l l^ , (16)

where b = 2{\-\){\+).

Proof. For any <f> G L2(M.2) the classical version of the Strichartz inequality for the KP équation (cf. [22],
Prop. 2.3) yields

< cWh*- (17)

Once we have (17), Lemma 3.3 of [13] gives for any u E X

i <c\\u\\L*. (18)

Interpolating between (18) and Plancherel identity complètes the proof of Proposition 3.3. Now we state a
Corollary of Proposition 3.3 which will be intensively used hereafter.
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Proposition 3.4. Let 0:1,0:2,0:3 € [0, \ + e] and u} v, w be positive. Then

ƒ
provided ai 4- a2 + 0:3 > 1 H- 2e.

Proof We dénote by / the left-hand side of (19). Clearly we can assume that a i + a% + 0:3 = 1 -h 2e Then
Hölder inequality, Plancherel identity and Proposition 3.3 yield

provided a3 = 2(1 — —)( | + e), j = 1,2,3 and — + — + — = 1. But the last equality is equivalent to
ai + a2 4- 0:3 = 1 + 2e which complètes the proof of Proposition 3.4.
We shall also make use of the following calculus inequalities.

Proposition 3.5. For any a € M the following inequalities holà

r
( 2 0 )

Set

A duality argument shows that (15) is equivalent to

Vf- )«(T - n, C - (22)

where

Without loss of generality we can assume that v, > 0, v > 0 and {u > 0. By symmetry we can assume that
|<7i| > |cr21- To gain the loss of a derivative in the nonlinear term we shall use the relation (cf. [8])

^V^f (23)

and hence

)\- (24)
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Let J we be the left-hand side of (22). We consider several régions for (r, Ç, ri, CI)-

Case 1. |£| < Co, where CQ is a sufficiently large constant. We dénote by Ji the restriction of J on this
région. Using that (6) < c(a)2" we obtain

It suffices to use Proposition 3.4 to get a bound for J\.

Case 2. \a\ > |ai|, |£| > Co- We dénote by J2 the restriction of J on this région. Using Cauchy-Schwarz
inequality and (20) we obtain

J 2 <

where ma (20)

™ ()i~ \ J ( < r ) 1 + W ) 1 + { 9 ) 2 < 0 2 ) * ) - (a)è- \J fa + <r2)
1+J '

We perform a change of variables similar to [18]

Note that

0 G [-3|cr|, min{3/4£3,3|a|}], when £ > 0

and

0 G [max{3/4£3, -3 |a |} , 3|a|}], when £ < 0.

We assume that £ > 0. If £ < 0 then the arguments are similar. We have that

c\0\ïdad{3

Therefore we obtain using (21)

- a

. ) •

Consider two cases for
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< 4|cr|. We have that

I(T,0 <

Let w e

Let |a|Â > |{|V4. it follows

f-3\cr\ JO

(a)i~

, ,i const.

c o n s t -

• 4|cr| < | |£|3 . In this case we have

511

Let |cr|A < |^ | i . Then we have

Let |cr| 32 > |^| 4. Then we have

ƒ (r, C) < — r < const.

J ( T i C ) < c o n s t .

Hence / (T, C) is bounded and the use of Cauchy-Schwarz inequality yields
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Case 3. \a\\ > |<rj, |£| > Co, |£i| < 1. We dénote by J3 the restriction of J on this région. We shall
estimate J3 by a localization with respect to £1 and (ai). Set

= f f
AKM

where

We have
J3 < 2 ^ J3 »

where the sum is taken over X == 2fc, fc = 0,1, 2 , . . . and M = 2m, m = 0, —1, —2,... Note that in this case (24)
implies

Now we shall estimate J^M in two ways. First by a direct estimate for K we bound J^M. Then we estimate
J ^ M by the aid of Proposition 3.4. A suitable interpolation provides the needed inequality. Cauchy-Schwarz
inequality yields

jKM < f JKM^QU l^ruCiMr-nX-Ci^dndCiY w(rX)drdC
JlR3 {JA"™ J

where

We change the variables
a = a1+

As in Case 2 we suppose that (, >0. We have

Hence using that (0) < c(a) 2 we obtain

f /•oo />oo /•cM|^|2 |^|i_{_2s|/O

I^ M < |y ƒ _ƒ i + a - J '+ 5 3- 4 a

Since |/3| < c|ai| we obtain

Hence

>cM|€ |2
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Since |£| > c0, for sufficiently large CQ we have |§£3 - (3\ > §£3 and therefore

Cauchy-Schwarz inequality yields

J

Now we shall estimate JfM(r, Q by the aid of Proposition 3.4. We have

< cK&+*MÏ-*\\u\\L*\\v\\L2\\w\\L*. (25)

(Cr)2 (CTX) 32 + (öT2> 2 +

Let |a|â2 < 1̂ 14. We dénote by J^X
M the restriction of J%M on this région. We have

^ (T ,C ,TI ,CI ) < . , i
(CT>2

Using Proposition 3.4 we obtain

MTjf 8-2-

Let |a|A > |^| Î . We dénote by jf2
M the restriction of jgM on this région. We have

Using Proposition 3.4 we obtain

Further we have

J*M < JàM + J£M < M-i-*K-i+*+\\u\\v\\v\\L2\\w\\L2. (26)

Interpolation between (25) and (26) with weights | + ^ + and | — ^— respectively yields

For
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and

2 2s \ / 1 s\ (l 2s \ (1 s \ l-29s

Hence since s > 1/29 we obtain that ai and a2 are positive. Summing over K and M yields

Case 4. \a\\ > |cr|, |Ç| > Co, |^| < 2|^i|. We dénote by J4 the restriction of J on this région. In this
case we have

Hence

Using Cauchy-Schwarz inequality we obtain

LOI,CIM / \W(TX)V(T ~ rxX ~ Ci)\2drdC

where

J

<

where we used that |<7i| dominâtes in this case. We perform a change of variables

We can assume that £1 > 0. If £1 < 0 then the arguments are similar. Purther we have

c|£|idad/3

Therefore we obtain using (21)

} \0\idp

Now we consider two cases for
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I. We have

e,
< 1 < const.

4|oi| < f|£i|3. In this case we have

f3!"1' dp l 1

0+
j — < const.

Hence I\ is bounded. Therefore we obtain by Cauchy-Schwarz inequality

Case 5. |<7i| > |a|, |^| > co, |^| > 2|^i|, |£i| > 1. We dénote by J5 the restriction of J on this région.
In this case we have that |£| < 2|^ — ^i|.
Let |cr| 32 < |^| 4. We dénote by J51 the restriction of J5 on this région. We have

Proposition 3.4 yields

Let |cr|32 > |^|a. We dénote by J52 the restriction of J5 on this région. We have

and
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Therefore

Proposition 3.4 yields

Jh2 < clluH^llvll^ll^ll^.

This complètes the proof of Proposition 3.2.

3.3. Proof of Theorem 3.1

Let

L:X xXi—> X xX

is an operator defined as

L(W) = U(t)W{0)~ / U{t-t')B(W(t'))Wx(t')de.
Jo

Then Propositions 1 and 2 yield

U(t)L(W)\\XxX < cflMOJIU» + ||^(0)||La + Wv^fx + \\w2\\
2
x}

- il>(t)L(W2)\\xxx < c\\W! - W2\\xxx\\Wi + W2\\XxX.

A standard fixed point argument provides a fixed point of ip(t)L for j|î^ii2(0)Jii,2 sumcientiy smali. To prove
local existence for arbitrary data in ^1,2(0) G L2 we shall perform a scaling argument. If u(t,x} y) is a function
then we set

Similarly iî </>(x,y) is a function then

Note that if u{t,x,y) is a solution of KP équation with data (j>T{x,y) on [—1,1] then so is «T-I(£,x,y) with
data <f>(x,y) on [-T,T\. We have that H^TIIL* = ^ 1 / 6 | | 0 | | L 2 . Hence if T is sufficiently small then the équation
W = L(W) has a solution on [—T7T], This proves the existence. For the proof of the uniqueness we refer
to [20,25].

3.4. Proof of Theorem 3.2

The first part is a direct conséquence of Theorem 3.1 and the L2 conservation law. It remains to prove the
smoothing effect. Set

/o
Due to a Sobolev embedding we obtain

R(t)= f U{t-tf)B{W{tf))Wx(t
f)dtf.

Jo

,o < \\R\\x.xX..
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Now a use of Propositions 3.1 and 3.2 yields

< C{\\B(W1,W2)\\YS + ||S(iüi,W2)||y. + \\B(WI,W2)\\Y.}

< const.

This complètes the proof of Theorem 3.2.

4. GLOBAL WELL-POSEDNESS IN HS(R2), S > 0

Finally we shall show that the global well-posedness of (3) can be extended to initial data of higher smooth-
ness. The difficulty is that there is no conservation of the Hs(R2)y s > 0 norms of the solutions. Nevertheless,
as it is noticed in [8] one can overcome this difficulty by using the special form of the nonlinear estimate in the
case of initial data of higher smoothness. We introducé the Fourier transform restriction norm

NI!. =

Let / C i be an interval. Then we define the space ZS(I) equipped with the norm

Mzs{i) = inf {\\w\\Zs,w(t) = u{t) on / } .
wE.Zs

Similarly we define X(I). Let W(t) be a solution of (12) with W(0) e Hs x Ha, s > 0 (and hence in L2) on
the time interval / = [0, ö], where ö dépends only on ||VF(0)||L2- Our aim is to show that W G Z3([0, S]). Using
the elementary inequality

(0' < c((Ci)s + (C - Ci)s)
and the arguments of the proof of Proposition 3.2 and Section 3.4 of [25] one can obtain

\\W\\Za(i)xza(i) <

where 9 > 0. The local existence argument in L2 provides the smallness of <5ö||wi,2||x(/) and hence one obtains
a bound for ||wi,2|Us(/)* ^ n e Sobolev inequality yields

sup ||wi,2(t)lliïa <c\\wi,2\\zs{[o,ó})-
te[o,ö]

Hence we control the Hs norm of the solution on an interval of size depending only on the L2 of the initial data.
Thanks to the conservation of the L2 norm we obtain a bound for the Hs norm on any time interval. Therefore
we have the following Theorem.

Theorem 4.1. Suppose that a\\a22 ~ ai2ö2i > 0. Then for any

{uo,vo) e HS(R2) x HS(R2), s > 0,

such that
l^l"1 ̂ (uo)K, v) e S'(R2), ICI" 'HvoKt, V) e <S'(M2),
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there exists a unique solution (u,v) of the Cauchy problem (3). In addition the solution satisfy

(u,v) € C(R;HS{R2)) x C(M;iP(JR2)).

APPENDIX A. A REMARK ON THE CASE OF THE GEAR-GRIMSHAW SYSTEM

Note that we have taken r = 0 in (3) assuming that cm — cn is very small comparatively to a. If it is not
the case then an additional difficulty appears because of the lower term perturbation of the system. In this
appendix we shall show that one can overcome this difficulty in the absence of transverse effects. Thus consider
the Gear-Grimshaw (cf. [12]) system which we refer to in the introduction

ut + auuxxx + ai2Vxxx + bi(uv)x + b2uux + b3vvx = 0

vt + a2\uxxx + a22Vxxx + rvx + b±(uv)x + fouux + b$vvx = 0 (27)

u(0,x) = UQ(X), U(0,X) = vo(x).

In both papers [3,4] r is assumed to be zero, similarly to the present paper. For the approach of [4] the présence
of r does not affect the analysis, since the oscillatory intégral estimâtes are still valid. On the other hand for the
approach of [3] a technical difficulty appears when r ^ 0. Essentially one has to dérive the bilinear estimâtes in
Bourgain spaces with different phase functions. Our aim here is to show that one can get rid of this difficulty.
We have the following Theorem.

Theorem 4.2. Assume that r ^ 0 and that the matrix (a^)i)je{1)2} has real distinct eigenvalues. Then the
Cauchy problem (27) is globally well-posed for data (UQ,VQ) G L2(R) x L2(M).

Proof. Write (27) in the form

f Ut + AUxxx + BU

\ U(0) =

where U = (tt, v)1 and

= ( 0 0 \ c _ / b2u 4- &iv
0 r ) ' \̂  65w -h b4v

Let T G GL(2) such that T~XAT = diag(o;+,a_), where a± are the eigenvalues of A. Let U = T~lV. Then
V satisfies

= 0,

where Bx = T ' ^ T and Ci(V) = C^-^T"1. Note that detBi = 0. Let V(t,x) - (vi(t,x),v2{t,x))K
Perform the scale change

The équation satisfied by W = (wi,W2) is

Wt + Wxxx + B2WX + C2(W)WX = 0,
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with some matrices B2 and C2. We now explicit the relationship between B2 and B\. Let

' 2 1 <?22

Then

T/3^21 ^73-^22 ƒ

Hence deti?2 = deti?i = 0. Therefore B2 has two real eigenvalues including zero. Moreover we can assume
that there exists ï \ G GL(2) such that T^xBiTi = diag(0,7). Then T~lW := g satisfies

9t + 9xxx + diag(0,7)^ + C3(g)g = 0. (28)

To keep the notations transparent let dénote again g = {u^v)1. Then (28) has the form

{ ut + uxxx + c\{uv)x + c2uux + C3^Î;X = 0
(29)

)x + c$uux + c6ui;x = 0.

Next we define the functional spaces where the solutions of (29) belong to

X-= {V:\\{T-e+>y£)i+v{T,t)\\L> <<*>}•

Now we state the bilinear estimâtes needed for the proof of Theorem 5.1.

Proposition 4.1. The following estimâtes hold

l|ôxMlljr+<ll«llx+IMIx+ (30)

\\dx(uv)\\x+<\\u\\x+\\v\\x- (31)

\\dx{uv)\\x+<\\u\\x-\\v\\x- (32)

R M I U - < N|x+||t;|k+ (33)

I|ÔX(T«;)|U-<II«||X+II«IIJC- (34)

\\dx(uv)\\x- <\\u\\x-\\v\\x-. (35)

Obviously the linear estimâtes in the proof of Theorem 5.1 are similar to these of the proof of Theorem 3.1.
Then a standard fixed point argument complètes the proof. Hence it remains to prove Proposition 5.1.

Proof of Proposition 5.1. We shall prove (31). The proofs of the other estimâtes are similar (some of them
are simpler). Set e ^ 3

and furthermore
//KW^Wr-?,{-&)C(r.{)

(a)2 (ai)2 + (cr2)2 +
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We want to obtain a bound

Assume first |£| < c0 (CQ to be fixed later). Then we have the next version of Strichartz inequality

for b > 1/3 and a G M. Actually in [20] the estimate (36) is proved with a = 0. However the lower order
perturbation of the symbol does not affect the analysis since the essential assumption to prove (36) lies on the
second derivative of the phase fonction. Now a use of (36), Hölder inequality and Plancherel identity gives a
bound for the contribution to J of the région where |£| is bounded. Let now |£| be away of zero. Dénote by J
the contribution of this région to J. Cauchy-Schwarz inequality yields

è

where

J < f I(r, 0 ( J \Û(n, fc)v(T - T!, £ - &)fdrid

H* n - slÈL ( f f d T l d ^ V
1 ' 4 j (a)i- U J (0i)i + (<T2)i+J '

A use of (20) yields

* V " W - < * > * - \J (<r1+a*)i+J '
Perform a change of variables

Then a straightforward computation leads to

Ac c c ^

Hence a use of (21) yields

We claim that

(Cr) 2 /(j-L. /-y>- _U ) 4 -^ Cc 4 l \ô ( )
\ i \ ' i s 1 -i 2 1 / — i ^ i \ /

Actually we have

+ . , _ . , , (3e 2 -7 ) 2 '
*± JU 1 Z |Ç j O

for |4| sufBciently large. Hence we proved (37) and therefore /(r,4) is bounded. Another use of Cauchy-Schwarz
inequality complètes the proof of (31).

Remark 3. With the arguments of this Appendix one can prove local well-posedness with data in L2 for the
équation

ut + ip(D)u + uux = 0,
where p(D) is a real Fourier multiplier with symbol

lower order terms,
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for £ > 1. In particular when p(£) = £3 + f |£| one obtains that the Benjamin équation is well-posed in L2,
which is the resuit of [19].

APPENDIX B. PROOF OF PROPOSITION 2.1

We shall use the following Sobolev inequality which holds for any s± > 1/2, S2 > 1/2

(38)

The inequality (38) is an anisotropic version of the classical Sobolev inequality. In order to prove it we may use
the inverse Fourier transform formula, the Cauchy-Schwarz inequality and that

<£i)-S l(6r5 3 G L\1Â2, for S l > 1/2, s2 > 1/2.

In order to prove Proposition 2.1 we shall use the arguments of Coifman and Meyer [10] (cf. also [2,5,9]). The
statement of Proposition 2.1 is an anisotropic version of the fact that the classical Sobolev spaces Hs(Wn) is
an algebra for s > n/2. Our proof relies on an anisotropic Littlewood-Paley décomposition of functions defined
on R2. We refer to [11,16], where anisotropic Littlewood-Paley décompositions are used in other contexts. Let
ip e Cg°(R), <K0 = 1 for |£| < 1/2 and ^ ( 0 = 0 for |£| > 1. Let 0(0 = ip^/2) - ^(£). Then clearly

P=o

Now we define the Fourier multiplier operators A£, A^, 5^, 5 | , Spq as follows

c) , A y
0 =

q<p q<p Pi<PQx<q

Then we have the following Littlewood-Paley type décomposition of u G <S'(R2)

p>0q>0

where Apq = A£A|. Let u, v G iJSl)S2(M2). Then we may represent the product uv as

uv = h{u,v) + h(u,v) + h(u,v) + h(u,v),
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where

I2(u,v) = Y l > ^ q
P2,Ql P2,Ql

I3(u,v) =

A scaling argument easily yields that the operators S£, S|, Sp? are bounded in L°°(R2) with an operator norm
independent of p, q (cf. [2], Lemma 1.1.2 for example). Now we use the Hölder inequality and a one dimensional
Sobolev inequality in order to bound the L2(IR2) norm of i j 2 9 1 (u, v)

\\I?*(u,v)\\L2 < IIS^ulU-ijHA^S^IUsio.

< Cp2gi • 2-« l S 2 \ \U\ \H*I . '2 • 2~P2S11|«| |jï-i. .a , (39)

where cP2Ql G /p29l. We have the following support property of /f291 (u, v)

supp(f(I™i(u,v))) C { (6 ,&) : | ^ |<c -2W, | & | < c - 2 « } .

Hence surnming over ^2 and q\ in (39) yields

||^2(^,^)lksi's2 < c||u||iï*i,»2||v||Hai.s2.

Now we shall estimate ||/i(u,v)||#si-a2. Hölder inequality and (38) yield

where cP2Q2 G ïp2q2. Now summing over p2, <?2 we obtain

similarly to the estimate for ||/2(u, V)\\HSI>S2 . The estimate of ||/4(u, V)\\HSI>*2 is similar to that of ||/i(n, V)\\HSI>S2
and the bound for \\Is(u,v)\\Hn^2 is similar to that of | | /2(^)^)| |HSI>52. Hence we obtain that

for Si > 1/2, S2 > 1/2 which complètes the proof of Proposition 2.1.
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Remark 4. Arguments similar to that présentée! above allows us to establish the following product estimate in
the anisotropic Sobolev spaces HSuS2(R2) for sx and s2 positive and u,v G i/Sl 'S2(R2)nLoo(M2)niJ|1L^°(M2)n

2

\\UV\\HS1'S2 < C(\\U\\HS1,S2 \\V\\L™ + ll^lliï^L00 \\VIIL™HS2 + I M I L 0 0 ^ 3 2 ll^ll/f^L00 "+" IMU 0 0 \\v\\HSI>S2 )*
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