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Abstract. We solve an optimal cost problem for a stochastic Navier-Stokes équation in space
dimension 2 by provmg existence and uniqueness of a smooth solution of the corresponding Hamilton-
Jacobi-Bellman équation
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1. INTRODUCTION

In this article, we study the dynamic programmmg approach for the control of turbulent nows. This control
problem has many mdustrial and engineering applications. In the context of aeronautics, the aim is to reduce
turbulence and this work is motivated by this application. In other areas, one wants to maximize turbulence,
this is the case in combustion where it is désirable to optimize the mixing of the components.

This problem has been the object of many articles. In [1], optimality conditions are derived and a numerical
algorithm is proposed. Then, in [7,18] this approach is further developed and tested numerically. Robust control
theory for this problem has also been addressed in [2] and in [3].

Also in [11,15,16], the existence of an optimal control has been proved thanks to the Pontryagin maximum
principle and it is shown that the minimum value function is a viscosity solution (see [14,17]) to the Hamilton-
Jacobi-Bellman (HJB) équation associated to the problem. Unfortunately, viscosity solutions are not smooth
enough to fully justify the dynamic programming approach.

In this work, we follow a strategy proposed in [4,5] to get smooth solutions to HJB équations. We consider a
model problem where the flow is two dimensional, governed by the stochastic Navier-Stokes équations and the
turbulence is to be minimized thanks to a distributed control. More realistic problems, with boundary controls
for instance, will be considered in future works. The unknowns are the velocity U(£, t) = ({7i(£, £), t^fé, *)) a n ( l

Keywords and phrases Stochastic Navier-Stokes équations, dynamic programmmg, optimal control, Hamilton-Jacobi-Bellmann
équations
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the pressure p(£, t) defined for £ in a bounded open subset D of K2 and satisfy

f^ + (U.V)U + Vp = vAU + z + f}y in D,
divC/ = 0, inD, ,
U = 0, on<9L> l ;

Z7|t=o = UQ, in D.

The control has been denoted by z — z(£, £), it is a random variable with values in the space of square integrable
functions, v is the kinematic viscosity and f] is a random term of white noise type. Since, it does not play a
particular rôle in this work we will, with no loss of gênerality, take v = 1. Intuitively, the amount of turbulence
in a flow can be measured by the time averaged enstrophy and it seems natural to try to minimize the following
cost functional:

J(z) = E / / (|rot U(Ç,t)\2 + \z(Z,t)\2)d!;dt+ f \U{Z,T)\2dÇ. (1.2)
Jo JD JD

The last term is not essential and could be omitted.
The HJB équation associated to this problem is a second order partial differential équation whose unknown

dépends on t and on a variable x in H, the Hilbert space of square integrable divergence free functions. The
linear part of which is the Kolmogorov équation associated to the uncontrolled Navier-Stokes équations and
whose solution is given by the transition semigroup. The nonlinear part of the HJB équation involves the
derivative of the unknown, it is quadratic if the control is allowed to be any square integrable process and
Lipschitz if we impose a boundedness condition on the control.

Hence, a way to find a smooth solution to the HJB équation is to write it in a mild form thanks to the
transition semigroup and to use a fixed point argument. This requires some smoothing properties of the
transition semigroup. This methodology has been successfully implemented in the case of équations with
Lipschitz nonlinearities [12,13] and of reaction-diffusion équations [6]. For the control of the stochastic Burgers
équation, smoothing properties of the transition semigroup have recently been proved in [8]. However it is shown
that the transition semigroup maps bounded continuons functions to smooth functions with exponential growth
and a fixed point strategy does not seem to apply. This dimculty has been overcomed by using a compactness
argument after delicate a priori estimâtes are proved. In this way, the dynamic programming approach has
been fully justified in the case of bounded control in [9].

The Navier-Stokes équations contain additional difficulties. First, it is not possible to have a noise term T)
such that J(z) is well defined and such that, at the same time, the transition semigroup is smoothing. Even,
in the case of the stochastic heat équation in space dimension 2, this is not possible. A smoothing effect of the
transition semigroup is possible only if we consider functions defined on a smaller space than H. This forces us
to assume that the control has some regularity properties. Thus we slightly change the problem by assuming
that the control is subjected to the action of a linear operator B which maps H into a smaller Hilbert space in
which the transition semigroup can have a smoothing effect. In other words, we replace z by Bz in (1.1). We
think that this assumption is not restrictive since in practise controls are smooth functions.

Then one could use the same type of arguments as in [8] to prove a smoothing property but another difnculty
appears. The introduced exponential factor is very large and we are not able to apply the method of [9]. The
trick we use in this paper is to change the unknown of the HJB équation by multiplying it by an exponential
factor. In this way, the HJB équation is transformed into a similar équation but now the linear part corresponds
to a Feynmann-Kac semigroup with a potential Thanks to this potential, we are able to prove nice smoothing
properties of this Feynmann-Kac semigroup. It maps bounded functions to smooth functions with polynomial
growth. The fixed point argument does not seem to apply and we use the same type of argument as in [9] to
find a smooth solution to the transformed HJB équation. We deduce the existence of a smooth solution u to
the HJB équation. Since we are able to justify the formai identity which gives a relationship between J(z), for
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any z^ and u and since we can prove existence of a unique solution to the closed loop équation, we can use this
solution to construct a unique optimal control. In this way, we fully justify the dynamic programming approach
in our case.

To our knowledge, these arguments are new. They are gênerai and can be used for other control problems:
boundary control, other partial difïerential équations, ... Also, similar ideas will be used in a forthcoming work
to study the Dirichlet form associated to the stochastic Navier-Stokes équations in space dimension 2.

2. NOTATIONS AND MAIN RESULTS

Let D C l 2 be a bounded open set of regular boundary dD in R2 and let L2(D) be the Hubert space of all
real valued square Lebesgue integrable functions on D. We dénote by Hk(D), k e N, the usual Sobolev spaces,
and by HQ(D) the space of all functions in #*(£>) whose trace on dD vanishes. Classicaly, we introducé the
Hilbert spaces

H = {u G (L2(D))2 : div u = 0 in D, u • n = 0 in

= iu E (H^{D))2 : div u = 0 in £>} ,V

where n dénotes the outward unit normal vector on dD ; H (resp. V) is endowed with the inner product and
norm of (L2(D)) , (resp. (HQ(D)) ) denoted by (-, •) and | * | (resp. ((•, •)) and || • | |).

We also introducé the unbounded self-adjoint operator

where P is the orthogonal projector of (L2{D)) onto H.
The operator A has a compact résolvent and possesses a basis (e^) of eigenvectors associated to the eigen-

values:

0 > -Ai > -À2 > •-• - Afc —> -oo.

The eigenprojector Pn onto Sp(ei,..., en) will be used to deflne an approximation of the Navier-Stokes équations.
Also we will use the spaces D((—A)s) which are defined for any s G l . We set

We have

- V.

Furthermore, if s± < s2, the embedding D((—A)S2) c D((—A)Sl) is compact.
The space (resp. time) variable will be denoted by £ G D (resp. t > 0) and V^ (resp, Dt) dénotes the

derivative with respect to £ (resp. t).
The bilinear form b is defined by
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It can be extended to more gênerai x, y in various ways. When x = y} we set

b(x) = 6(x,x), x G V.

Among others, b has the following fundamental properties:

(b(x.v).v) = 0, (2.1)

2

for x, y, z G V and er E (0,1/2), the constant c±(a) depending on a and on D (see [19]).
The noise term is described by a stochastic basis (fi, J7, P, (^7

t)t>o)î a cylindrical Wiener process on H,
(W(t))t>o, associated to this basis, and a covariance operator Q which is symmetrie and positive.

The control z is chosen in the space

MR = {z G L2
W(Q x [0,T]; H), \z\ < R} ,

where the subscript W means that we consider adapted processes. The number R is fixed throughout the
paper. This control is subject to the action of a linear operator B G C(H). Now, we can rewrite the controlled
Navier-Stokes équations in the abstract form

f dX(t) - (AX(t) + b(X(t)) + Bz(t))dt + Q^2dW(t), (2 ,,
\ X(0)=xeH, [ ]

Using classical arguments, it is easy to prove that (2.4) has a unique solution X. Equation (2.4) is associated
to the cost functional

J(z) = E ƒ \rotiX(s)\2 + -\z(s)\2ds + \X(T)\2 , (2.5)

where T > 0 is also a fixed number and

is the rotational of X = (Xi, X2).
Our aim is to find z* E MR which minimize J(z):

J(z*) = min J{z).

This control problem is a model problem for the control of turbulence in a viscous and incompressible fluid.
Using the Itô formula it is easy to see that J has only infinité values unless

Tr Q < +00, (2.6)
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thus we assume from now on that this condition is satisfied.
We follow the dynamic programming approach to solve this problem. Let the Hamiltonian F be defined on

Hby

i fi2j i f | B * p | > R (2.7)

The Hamirton-Jacobi-Bellman équation associated with our control problem is

Dtu = -Tr[Quxx] + {Ax + b{x),ux)-F(ux) + g{x), z e tf, £ e [0,T],

u(0,x) = \x\2, x £ H,

where the subscript x means differentiation with respect to the variable x E H and g(x) = |rot^x|2. If we are
able to find a smooth solution u of (2.8), then the optimal control is given by the formula

z*(t) = -DpF(ux(T-t,X*(t))), (2.9)

where the optimal state X* is the solution of the closed loop équation

f dX*(t) = (AX*(t) + b(X*(t)) - DpF(ux(T - t,X*(t))))dt + Ql>2dW{t), , m

\ = xeH. [2AQ)

A way to find a smooth solution u of (2.8), is to introducé the transition semigroup (Pt)t>o associated to the
uncontrolled Navier-Stokes équations. It is defined by

where <p: H —» M is a Borel function and Y satisfies

Then we write (2.8) in the mild form

u(t, •) = PM-) + f Pt-sF(ux(Sl -))ds + / Pt-,g(-)d8, (2.12)
Jo • Jo

where tp(x) — \x\2. Due to the loss of one derivative in the second term of the right hand side, solving (2.12)
requires some smoothing properties of the transition semigroup. We need to know that Pt maps continuous
into differentiable functions. For équations with Lipschitz nonlinearities or in the case of reaction-diffusion
équations, such properties hold (provided Q is suitably chosen), and a fixed point strategy can be used to find
a smooth u satisfying (2.11) (see [4-6,12,13]). When the Burgers équation is considered a smoothing effect for
(Pt) c a n still be proved but now a factor of exponential growth appears and it seems that a fixed point strategy
cannot be used. Using the fact that the introduced exponential growth is arbitrarily small, this problem has
been overcomed in [9]. A compactness argument has been used to find a solution u and the control probiem
has been solved.

In the case of the Navier-Stokes équations considered here, two difficulties appear. First, the transition
semigroup does not map continuous on differentiable functions on H. This is due to assumption (2.6) and even
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in the linear case, Le. if we take 6 = 0, the transition semigroup does not have such a smoothing property.
However, it can be seen that (Pt) has a weaker smoothing property. It can be proved that if <p is continuous,
Pt(p is differentiable at any point x, in a smaller space D((—A)1) for some 7 > 0, along directions in this same
space. This is true under the assumption that Q is not too degenerate:

\Q~1/2x\ < cQ\(-A)i+^x\, for any x G D((-A)i+^)7 (2.13)

with \ > 71 > 0. The second difficulty is that, again, exponential growth are introduced but hère they are not
arbitrarily small and, apparently, the technique in [9] fails.

We then introducé a new ingrédient which consists in the following change of unknown:

v(t,x) = e~K^2u(t,x)} t > 0, x G D. (2.14)

This transforms (2.8) in

Dtv = - Tr[Qvxx] + (Ax + b(x)} vx)

\2v + F(x,v,vx)+g(x), x e H, *G[0,T],
v(0,x) = <p(x), x G Hy

where

F(x, v, vx) = 2K(Qx, vx) + (2K2\Q^2x\2 + 2KTr Q)v - e'K\^F [eK^(vx + 2Kvx)) ,

and

g(x) = e~KW2
9(x), $(x) = e-KW2\x\2.

We associate the Feynman-Kac semigroup

RMx) = E

for (p: H —> R Borel, x E H and with Y solution of (2.11). Then Ç(t,x) = Rtip{x) is formally the solution of
the linear équation

and (2.15) can be rewritten in the mild form

Tr[QCxx] + ( ^ + ^ ) , G ) 2 ^ | | x | | 2 C , a; 6 ff, t € [0,T], ( 2 J 6 )

Rt-9F(;v(s>')>Va;(sr))àa+
JO io

Rt-ag(')ds. (2.17)

Due to the présence of the exponential inside the expectation, (Rt) has nicer properties than (Pt). It has a
similar type of smoothing property in a smaller space than H under the assumption (2.13) and, instead of
introducing exponential growth, it introduces only polynomial growth.

We now define spaces of fonctions on D((—A)7), 7 > 0, havîng polynomial growth. For 7 = 0, k G N, l G N,
and a G [0,1] we define

ço,k,i+a = ) ip: H ^ ~$i: ip [s 1 times differentiable and |^|0,fc,i+a < 00 >,
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where (1)

MO,M+« = sup(l + \%\)~k\^)\ + sup(l + r)~k sup ^ ^ ^
xeH r>0 \x\<r,\y\<r F ~

For 7 > 0 we set

and

It is easily seen that

M7 l M=
4)T) heD((-A)i) \nh

and

i l / 1 1 , X-fc, / M / , X-fc {D2<p{x)h,h)
|̂ |7,fc,2 = §up (1 + |a;[7) |^(x)|+ sup (1+ x 7 ) sup r ^ -•

Also for A € [0,1], C7 ' f c ) i + a is the interpolation space of C 7 ' f c l 'Z l + a i and C7)A:2 ' i2+a2 with

(A:, Z + a) = A(fci,Zi + a i ) + (1 - A)(fc2, Z2 + <*2).

We will prove that if 7 > 71} fit maps C^*1^ into C 7 ) / c + 2 a ' a + ^ whenever l > / 3 > O a n d O < a + / 3 < 2 . Due to
the loss in the exponent describing the polynomial growth it is again impossible to solve (2.17) by a fixed point
argument. Instead we construct a solution by a compactness method.

Due to the fact that we can only prove smoothing effects in D((—A)J) with 7 > 71, the differential of the
solution will not belong to H but to D((—A)1) for some 7 > 71. Thus we need a further assumption on B,
namely

\Bx\ < cB\(-A)-^xl V x e D((-A)-^), (2.18)

for some \ > 7I > 71.
In this way we prove in Sections 3 and 4 the following result.

Theorem 2.1. Assume that (2.6), (2.13) hold and that K > if 1(71,71). Then there exists a function v G
C([0,T];C7ïd'2) for any 7 £ (71,71), with d > 0 depending on 7,71, and 71, such that v satisfies (2.17), Le.
which is a mild solution to the transformed équation (2.16).

1The expression below needs an obvious modification if a = 0.
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Now setting «(£, x) = eK^ v(t, x), it can be shown that u is a mild solution to (2.8). It is thereby continuous
in time with value in a space of C2 functions on D((—A)1) with exponential growth. It follows that ux(t,-)
is locally Lipschitz from D((—A)7) to D((—A)"7) for 7 G (71,71). (This can be obtained from (4.6) below for
instance). More precisely, for any r > 0, there exists L(r) such that for x,y E D((—A)7), t G [0,T]:

\Du(t,x) - £>u(t,y)|_7 < L(r)|a; - 2/|7, (2.19)

if |x|7, |y|7 <r.
Also, taking the limit in (2.24) below and using similar arguments as in [8], we deduce that for any z e M R

we have

J(Z) = U(T,Z) + ± E ( j f % ^ (2 20)

where x(a) = a2 for a > 0 and x(a) = 0 for a < 0.
Also, thanks to (2.19) and since 7 < 1/2, it can be checked that the closed loop équation (2.10) has a unique

solution X*. Hence, there exists a unique optimal control z* which is given by (2.9). Therefore we can state our
second main resuit which justifies complet ely the dynamic programming approach for our control problem.

Theorem 2.2, Assume that (2.6), (2.13) hold. Then, for any control z e MR, the fundamental idenüty (2.20)
holds. Moreover the closed loop équation (2.10) has a unique solution X* and there exists a unique optimal
control z* which is gwen by (2.9).

We now describe the approximation scheme used to prove Theorem 2.1.
The approximated solution to (2.17) will be obtained thanks to a standard Galerkin approximation. For

m G N, we consider the control problem in finite dimension which consists in minimizing

1 \zm(s)\2ds

for Zm G MR n L ^ l î x [0, T]\PmH), where

(t) = (AXm(t) + bm(Xm(t)) + Bmzm(t))dt
xm(0) = xe PmH,

with bm(x) = Fmfr(Pmx), Bm = P^BP^, Qm = PmQPm- Then we consider the following équation for

where,

Fm(x,vm,v™) = 2K(Qrnx)v™) + (2*r2|Q^2;rf + 2i^ Tr

We associate the Feynman-Kac semigroup (R™)

R?<p(x) = E
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for (p: PmH —> R Borel, x € PmH. Ym solves the équation

DtYm = U2

467

and (2.21) has the following mild form

f
JO

(2.23)

It is not difficult to prove that there exists a smooth function t>m satisfying (2.21) and (2.23). Indeed this is
a Hamilton-Jacobi-Bellman équation in finite dimension with smooth coefficients. The only slight difHculty is
due to the quadratic term 6m but this may be overcomed very easily by a truncation argument for instance.

Once vm is obtained, it is easy to write the équation for wm(£, x) = eK^ t>m(£, x) and a classical computation
based on the Itô formula proves that for any zm E A4R n L^r(fi x [0, T]; PmH):

(2.24)

so that the optimal control is obtained by taking

z*m(t) = -DpF(u™(T - t, X*m{t, x)),

where X^ solves the closed loop équation

f dX*m{t) = {AX*m{t) + bm(X*m(t)) - DpF(u™(T - t, X
\X^(0)=x£H.

(2.25)

Qll2dW(t),

It is easy to prove existence and uniqueness of X^.
We will use the differential of Ym(t,x) with respect to the initial data. For h e PmH we set r]^x(t) =

(DYm(t,x),h) ; r)m
>x is the solution of

Dtrfc* = Art' + bmÇYm(t,x),rfif) + bm{rt\ Ym(t,x)),

The second differential in the directions h,k G PmH is denoted by &k'x(t) = (D2Ym(t,x)h,k); ^h'x is the
solution of

&k>*(0) = 0.
(2.28)

Often we will write rj^ and Cm or even r]m or Cm instead of rföf and Cmh>x-
In all the article, we use c% or C% to dénote constants that may depend on A, Q, 6, T, B or D. These will never

depend on ra. When they depend on another parameter, it will be explicitly precised.



468 G. DA PRATO AND A. DEBUSSCHE

3. SMOOTHING PROPERTIES OF THE FEYNMAN-KAC SEMIGROUP

Following [10], we have the following generalization of the Bismut-Elworthy formula which expresses the
differential of R^tp:

f

for y? G CtiPmH), x G P m i J , /i e P m i 7 and t G [0,T]. Moreover, by differentiating (3.1) we obtain

x - (3.2)

In (3.1, 3.2), Fm,7?^x and C^f are the solutions of (2.22, 2.27) and (2.28) respectively. To estimate DR^ip and
D2RYlip) we will use the following technical lemmas whose proofs are given in Appendix.

Lemma 3.1. (i) For any k G N, there exists cs(k) such that for any t G [0, T] and x G PmH

E ( sup \Ym(t,x)\2 + f
\te[o,T] ./o

(ii) i^or any 7 G (0,1/2) and any fcGN there exists 04(7, A;) and 05(7, A;) 5^c/i i/ioi for t G [0, T] and x G

Lemma 3.2. (i) For any A: G M, iAene ea;isis C6 and c7(k) such that for any t G [0, T] and x,h G

E ƒ e-c ƒ„• <

and

E

fcn

<O7(fc)|/l|4fc.

(ii) For any 7 G (0,1/2) and k G N there exists c$(j) and 09(7, k) such that for t G [0,T] and x G PmH

E ƒ *
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and

E

With these lemmas, using (3.1, 3.2), we prove the following result.

Proposition 3.3. For any 72 > 71, a G [0, 2], /? €E [0,1] such that a+(3 < 2, and k > 0, there exists Cio(7i, 72,
and cn(7i,72,fe) 5wc/i tfm£ i / X > cio(7i,72,&) then for any ip e C&(Pm#), t G [0,T];

Remark 1. It follows easily that (Rt) satisfies the same smoothing properties. Also, we deduce that (Rt) and
(R™) can be extended to functions having polynomial growth.

Proof. In all the proof we set for simplicity:

Ym(s) = Ym(s x) 77 = r)h'x C = Ch'x

We begin with a = /3 = 0 and write

R^ip(x)=E(e~2KSo\\Y^\\2

and

\R?p(x)\<\v\l2,k,oE(e-™iï^

The result follows in this case from Lemma 3.1.
We now consider the case a = 1,/? — 0. By (3.1) and the Cauchy-Schwartz inequality, we have:

where

(3.3)

and

B

Using Lemma 3.1, 0 < l — | < 1 , the Cauchy-Schwartz inequality and Lemma 3.2, we easily show that, for K
large enough,

c1 2(7 ) (3.4)

and

B < c13\h\2. (3.5)
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To estimate A we introducé

z(t) =

and use the Itô formula to obtain

G. DA PRATO AND A. DEBUSSCHE

[\Q -W Vm{s),dW(s)),

- f
Jo

Thus

A=\ E(*(t)a) < i E

We now use (2.13) and an interpolatory inequality in the space D((—A)1) to dérive

and

E

fo | |y™(ff)l |adff|»?m(*)|^- lri)|r?m(5)|2
è;

4i'ra-7l)da

1 2(72-7l)
1 s u p | E l e ~ ' " J o ii'mv*;ii ^ | r y m ( " ' •
te[o,T] L ^

1-2(72-71)

We now infer from Lemma 3.2 with 7 = 72, that if i^ is sufnciently large:

A < c15(7i,72)t-2(1- (- r2-7l))(l +

Gathering (3.3-3.6) we deduce

(3.6)

This gives the resuit for a — 1 and /? = 0. If a = j3 = 1, we use several times the Cauchy-Schwartz inequality
to obtain from (3.2)

\(D2R?<p(x)h,h)\ <

+ i |y m ( s ) | |2 d s

,fcll (E

x E
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where A, B are as above,

C = I E

and

471

£> = _ £)

Similar arguments as in the preceding case show that if K is sufïiciently large, we have

\{D2Rr<p{x)h,h)\<cu{'n7.

and we obtain the case a — {3 = 1.
Using the semigroup property, we have

= R?/2{R?/2v)

and using the two preceding results we have

so that the result is true for a = 2, ƒ? = 0. The other cases are proved by interpolation.

4. A PRIORI ESTIMATES AND CONSTRUCTION OF A SOLUTION

D

We now use Proposition 3.3 to estimate the solution t;m of (2.23) and also um. We first estimate the first
and the last term of (2.23).

Lemma 4.1. There exists c20 such that, if K is large enough, for any m G N and t G [0,T]:

< C20-
0,0,2

Proof. For x G P m # , t G [0, T], we have

Moreover for ft € PmH

{DR?${x),h) = E

and we obtain from elementary inequalities and Lemma 3.2:

\{DR?(p{x),h)\<c21\h\.
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The second differential of K^îp is estimated in the same way. Also

f* R7Lsg(x)ds = E ( ƒ e-2KSo- ll*Wa,*)llad<7-Kïyra(t-8.*)|»|rot Ym(t - s,x)\2ds^j

and again this term and its derivatives are estimated by elementary inequalities and Lemma 3.2. D
We will use the following simple lemma whose proof is left to the reader and uses (2.7, 2.18).

Lemma 4.2. Let 7 < 71, k > a. There exists 021(7, &, a) such that for any v e Cy^^+a, F(%, v}vx) belongs to
C^.Z,_L2.« and

We now give the estimate on v771.

Proposition 4,3. For any 71 < 7 < 71, there exists ^(71,7) and 022(71,7) such that for any m G N:

sup \vm(t, ')\lid{nin),2
tG[O,T]

Proof We first recall that tim is the value function associated to the approximated control problem. We deduce

0 < um(T,x) = min Jm(z) < Jm(0) < c23(l + \x\2).
eMnLl{n[oT}PH)

We could have considered the same control problem on [£, T) and obtained

This gives

\vm(t,x)\<c23(l + \x\2)e~K^2

for any roeN,te[O,T],ie PmH. We deduce

|vm(t,-)l0,fc,0<P24(fe) (4.1)

for ajiy k 6 N.
We set e = 7 — 7i > 0. Let us choose a > 0 such that:

(l + a ) ( l - e ) < l .

Then by (2.23)

Jo

[
(4.2)
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where we have set da = — (4 + 2a). We use Proposition 3.3 and Lemma 4.2 to dérive

/ ( t -

( |i )7 ïa)( SUP

By interpolation we have

and, by (4.1), Lemma 3.1, (4.2), (4.3), we deduce

S U p \ v m ( t } • ) | 7 ) « , + ( )
t€[0,T]

It is now easy to use this estimate and to dérive from Proposition 3.3 (with (a,/?) replaced by (1 + a,a) and
Lemma 4.1, 4.2 an estimate on vm(ti •) in cJ>8+4:Oi>1+2a. After a finite number of steps of this argument, we
obtain

^ \vm(t,%jat2< 029(7,0).

D
We deduce easily from Proposition 4.3 and (2.21) that for any r > 0

SUp ()|
te[0,T},xeD(A),\Ax\<r

where cso(r) dépends only on r.
Then, arguing as in [8], Section 5, we prove that there exists a subsequence (vmk) and a fonction v in

Cr7,rf(7i7))2 for a n y 7 € ( 7 ) ^ ) such that

vmfe (t, x) -^ u(t, x) in M, (4.4)

L»ï;mfc (t, x) -» öv^ , x) in D((-A)- 7 ) , (4.5)

for any 7 G (7,71), a: e D((—A)7), i € [0,T]. Moreover for any r > 0:

*,2/)|_7 < c3i(r)|a: - y|7, (4.6)

for x,y G D((-A)7) such that |x|7, |y|7 < r. Then, using (4.4), (4.5), (4.6) and standard results on the
convergence of the Galerkin approximation ym to the solution Y of (2.11) we get that v satisfles (2.17), from
which we deduce that v is continuous in time:

for any 7 e (71,71) and some d > 0.
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A. PROOF OF LEMMAS 3.1 AND 3.2

Proof o f Lemma 3.1 — (i) is standard and follows easily from the Itô formula and the martingale inequalities.
To prove (ii) we set

= f
Jo

then

dt
= Aym + bm(Ym)

and taking the scalar product with (—A)27ym yields

by (2.3) and elementary inequalities. Thus, by the Gronwall lemma:

s,x)|I2dS | .2 < i |2 ,
\ym\-y -^ | X I 7 I

-2c1(7)2 /o lirm(s,x)|I2dS|

The conclusion follows easily since, as it is well known:

*e[o,T]

E f sup \wm%k) <Cx(fc),
V[ y

for any k G N.
Proof of Lemma 3.2 — Since no ambiguity is possible here we set for simplicity rj^

We take the scalar product of (2.27) with 7?m and use (2.1) to get

1 d 2 2 2 1
2 1 i 'iTTi I ' I (Tfl | ^JTUi \ '\Vn ") •*• Til ) ' fTYl j ___ ^ 1 ']Tfl I 1 / 4 1T^ I —— ^ I / T l 1 'ƒ771 II ] T71 11 __ n

at ' 2

\wm\* + ^ \ym\*/2_^

D

2\V

by (2.3) and an interpolatory inequality. The fîrst claim of (i) follows. Similarly, using (2.2) we have for
h

\ \

Again we can conclude easily using the above inequality and noticing that it can be assumed that c% > c\.
We take the scalar product of (2.27) with (—A)27?7m and use again (2.3) to obtain

from which we have after few manipulations

|î/m|l/2+7+Cl(7)hm|7llim

\\Ym\\2,
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and

e-c«(7)/„* I I^WII 2 ^
JQ

We conclude thanks to Lemma 3.1 and the first part of the lemma. The final inequality concerning (J^ is
proved similarly. •
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