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AN ADAPTIVE MULTI-LEVEL METHOD FOR CONVECTION DIFFUSION
PROBLEMS *

MARTINE MARION1 AND ADELINE MOLLARD2

Abstract. In this article we introducé an adaptive multi-level method in space and time for convection
diffusion problems. The scheme is based on a multi-level spatial splitting and the use of different time-
steps. The temporal discretization relies on the characteristics method. We dérive an a posteriori error
estimât e and design a corresponding adaptive algorithm. The efficiency of the multi-level method is
illustrated by numerical experiments, in particular for a convection-dominâted problem.
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1. INTRODUCTION

The aim of this article is to present some a posteriori error estimâtes and numerical results that show the
interest of adaptive multi-level techniques for the approximation of (linear) convection diffusion problems.
The spatial discretization we consider is of Fourier type. Such an approximation allows to simply define a
two-level spatial décomposition. But, we believe that the techniques extend to other types of discretization; see
Mar ion-Xu [13] for a fîrst step in that direction.
The time discretization relies on the characteristics method. It is well known that the approximation of convec-
tion (dominated) diffusion method is a difficult question due to the nearly hyperbolic nature of the équations.
In the characteristics methods, the governing équations are written in ternis of Lagrangian coordinates as de-
fined by the partiële trajectories (or characteristics). Then the Lagrangian total derivative is approximated
thanks to some divided différence operator. These methods have largely proven their efficiency (see for exam-
ple [1,2,6,15,16]

Let T > 0. We consider a (not necessarily uniform) subdivision of (0,T): 0 = To < 7\ < ... < TQ_I <
TQ — T. On the time interval Jq = (Tq-i,Tq)y the approximate solution lies in the space SMQ of trigonométrie
polynomials of degree < Mq in each variable. The multi-level strategy consists in introducing a cut-off value
1 < rnq < Mq and looking for an approximate solution of the form

V + W, with V G Smq and W G (I - Pmq)SMq-
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Hère, the high modes component W (= Wq) is integrated with the time-steps Kq — Tq — Tq~\ whereas the
low modes component V is integrated with a smaller time-step. This means that the above subdivision of
(0, T) is refined into 0 = to < t\ < ... < tjv-i < ÏN = T and the component V (= Vn) is re-evaluated at
the intermediate time-steps tn with In = (tn-i7tn) C Jq. Consequently the scheme involves two families of
discretized characteristics curves associated respectively to the time-steps kn = tn— tu-\ and Kq. The algorithm
is described in Section 2.

The motivation for such a strategy stems from Foias-Manley-Temam [9]. For 2D Navier-Stokes équations,
these authors showed that the energy carried in the higher modes of the solution is much smaller than the one
carried in the lower modes. Consequently, the contribution to the error of the higher modes should be small.
Therefore, it seems natural to integrate them with a larger time-step and hope not to spoil the overall accuracy.
Various works for parabolic problems confirmed this strategy [3-5,7,11]

The extension of such a strategy to convection dominated problems is not straightforward and this was the
aim of Marion-Mollard [12] where a non adaptive multi-level method for convection diffusion problems was
introduced. A priori error estimâtes and numerical tests showed that, for an appropriate choice of m and K,
the error is similar to the one of the classical (one-level) method with the fine discretization parameters M
and k.

Clearly, the multi-level method involves numerous parameters that have to be carefully chosen. Therefore, it
is natural to ask for an adaptive algorithm to détermine these parameters. This could allow an automatic and
more efficient choice as well as time varying values. Also, in order to investigate the interest of the multi-level
approach, the comparison of the numerical performances of the algorithm with the ones of a one-level adaptive
algorithm is an interest ing step.

In Section 3 we first dérive some a posteriori error estimate. Our techniques are inspired by the works of
Eriksson-Johnson [8] and Houston-Suli [10] for finite éléments methods. They include a représentation of the
error involving a dual problem, the dérivation of strong stability estimâtes and the use of Galerkin orthogonality.
We dérive a bound of the error in the norm of L2(0,T; L2(Q)). Of course we are also able to obtain a bound
for the (simpler) one-level adaptive method.

Next in Section 4, we design the corresponding adaptive algorithms (both in the one-leveFand the multi-level
cases). The algorithm finds all discretization parameters Mq,mqyKq and kn so that the norm of the error is
below some given tolérance TOL. The procedure is based on an appropriate splitting of the estimator and also
of TOL.

Numerical tests for one-dimensional problems are presented in Section 5. The stability of the algorithm for
convection dominated problems and the interest of adaptivity are evidenced. Concerning computing time, the
multi-level procedure allows a gain up to 65% with respect to the one-level adaptive scheme.

This gain is in particular due to the use of FFTs of different orders in the multi-level procedure. Therefore,
it should increase with the space dimension. In a subséquent work we int end to present numerical results in
higher space dimension.

2. THE ÉQUATION AND ITS DISCRETIZATION

Let fl = ]0, 27r[d, d = 2, 3, and T > 0. We consider the following linear unsteady convection-diffusion problem
involving a function u from Cl x [0, T] into E

du
— + a.Vu - i/Au = ƒ, in flx]0,T[, (2,1)
at

u{x,Q) =uo(x), xeÜ, (2.2)

u is Q-periodic. (2.3)
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Hère v > 0 is the viscosity, ƒ is the forcing term and a is some divergence free vector field1.
It is well known that under the assumptions

u0 G L2(O), ƒ G L2(0,T;L2(tt)), a G L°°(0,r ; W^°°(Q)d) with div a = 0 (2.4)

problem (2.1)-(2.3) possesses a unique solution u G L2(0,T; H*(Q)) nC([0,T]; L2{Ü)).

We first describe a one-level code for the intégration of (2.1). It is inspired from the work of Houston-Suli [10]
for finite éléments approximations.

The spatial discretization relies on the space S M of trigonométrie polynomials of degree < M in each variable.
We dénote by PM the L2(ü) projection onto £M*

Let 0 = t0 < ti < t2 < ... < tN = T be a subdivision (not necessarily uniform) of (0, T) with the corresponding
time intervals In = (tn^i,tn) and the time-steps kn = tn — tn-\. On each time interval / n , the solution u of
problem (2.1) is approximated by Un G SM^-

The time discretization uses particle trajectories (or characteristics) associated with problem (2.1). Recall
that the path of a particle located at x G Ù at time s G [0,T] is defined as the solution of the initial value
problem

—X(x, s; t) = a(X(x, s; t),t) x G îî, t G [0, T]\{s}
dt (2,5)

X(x, s; s) = x.

Then setting
JĴ  ~ X(x t 't i) (2 6)

the séquence (Un)n is given by the following recursive formula

Un(x) — PMnUn-i(Xn_i(x)) — knvAUn(x) = knPMnf(x,tn) (2.7a)

where

^o = PMOUO- (2.7b)

Next we aim to introducé a multi-level procedure. The strategy consists in freezing the higher modes of the
approximate solution during several itérations of the lower modes. As explained in the introduction, we expect
that integrating the higher modes with a larger time-step will not spoil the accuracy of the method.

As above we use the décomposition of (0, T) in N sub-intervals In = (tn-i,tn) with kn — tn — tn-i- We
also introducé another décomposition of (0, T), 0 = TQ < Tj < T2 < ... < TQ — T with the corresponding time
intervals Jq =]Tg_i,T9[ and the time-steps Kq = Tq — Tq-\. Hère, each Jq is the union of successive Jn. It is
convenient to introducé the largest n such that In C Jg, that we dénote by nq. Hence, Tq = tUq.

On the time interval Jqi the approximate solution lies in SMQ- We introducé a cut-off mode mq with
1 ^ wïq £ Mq and write

Suq = Smq + (/ - Pmq)SMq-
Correspondingly, the approximate solution splits into the sum of a low frequency term and a high frequency
one. More precisely, on some time interval In C Jqi the approximate solution reads

Vn + Wq, with Vn G Smq and Wq G (/ - Pm)S.Ma

IThe condition div a = 0 is not compulsory and is only introduced for simplicity.
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The component Vn is ad vaneed in time thanks to the (small) time-step kn while the component Wq is advanced
in time thanks to the (large) time-step Kq. Hence, we consider the two families of characteristics curves

Wit h these notations the two-level algorithm reads

Vn - (V„_i + Wq-i)(Xn-i) - knuAVn = knPmJ(tn),
n= l,...,N, In c Jq

wit h

Wq - {PMq

q=l,...,Q,

VQ = Pm0V>Q, WQ = (PMQ -

= Kq(PMq -

(2.8a)

(2.8b)

(2.8c)

Hère, on the time interval Jqy one needs to solve the équation (2.8b) and successively the équation (2.8a) for
the appropriate values of n. Note that this algorithm is an adaptive version of the one intro duced in Mar ion-
Mollard [12].

3. A POSTERIORI ERROR ANALYSIS

The aim of this section is to dérive an a posteriori error estimate for the algorithm (2.8). This estimate
dépends on the data, the approximate solution and the discretization parameters.

At time t e In C Jq} the error reads

(3.1)

It is convenient to introducé the functions m, M, fc, K defined on (0, T) by

m(t) = mq, M(t) = Mq, k(t) = kn7 K(t) = Kq for t e In C Jq.

Also we dénote by |.|, (.,.) the norm and product scalar of L2(Q) and by |.|T the norm of L2(0,T; L2(Ct)):

/ N \ 1 /2 / iv \

= f E / M2d* ) = E / / u ^ l ) 2 dtdx) (3-2)

The following error estimate holds.

Theorem 3.1. Under the assumption (2.4), the error e given by (3.1) satisfies

T < (3.3)

where
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(Pm - I)RX +

M2

^Rf
A,R§ are defined on In (In C Jq) by:

Vn - V i

W —
(J - PmQ)(a.V(Vn + Wq)),
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(3.4)

(3.5)

wn -

~ Vn-l
kn

W,)) -
W — W i

(3-6)

(3.7)

Kn

" f{Tq))

Ka

(3.8)

(3.9)

(3.10)

T/ie constants /xi,/X2,M3 depend only on T, v and a.

Remark 3.1. Thanks to techniques similar to the ones in the proof of theorem 3.1 below, an a posteriori error
estimate for the one-level algorithm (2.7) can be derived. Let U{t) = Un, M(t) = Mn, and k(t) = kn for t G In.
Then, under assumption (2.4), the following estimate holds

|« - U\T < £o{uo,Mo) + £{U, M, k) (3.11)

where

£o(uo,Mo) =y/ïï\(I - PMO)UO\,

£(U,M,k) = 772 {PMn -
(3.12)
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Moreover

U ~ U l - f(t), (3.13)

Un-Un-l\ ,» ,
a.VUn I , (J.14J

n ~

The constants 71,72,73 depend only on T, 1/ and a.
Hère, T̂ i represents some residual term on the équation while IZ2 represents the error in the approximation

of the time derivative along the characteristic curves. The term IZ3 corresponds to a discrete time derivative of
Un while IZ4 represents some residual term related to the forcing term.

Remark 3.2. The constants ji\, /i2, Ms m (3.3) and the constants 71, 72, 73 in (3.12) are stability constants
related to appropriât e backward dual problems. Some remarks on their computation can be found in Section 4.2.

Remark 3.3. The terms Ru i?2, 3̂> R4, R[, R^ R3, R4 'm the estimate (3.3) can be interpreted as above
for the one-level method (Remark 3.1). They correspond respectively to the V and W équations. The term R5

can be viewed as a de-refme term. It vanishes if mq < mq-\.

Proof of theorem S. 1
The proof consists in the following steps:
a) Introduction of a backward dual problem and strong stability estimâtes for this problem.
b) Représentation of the error in terms of the residual of the approximate solution and the solution of the dual
problem.
c) Projection error estimâtes for the solution of the dual problem.
d) Conclusion of the proof.

a) The dual problem.
The error e is deflned by (3.1). We introducé the following backward dual problem:

~~ - a.Vip - vAip = e
at

= 0

ip is fi-periodic.

The following lemma provides strong stability estimâtes for this problem.

Lemma 3.1. Let tp be the solution of (3.17). Then, there exist constants /xi(T), ^(T, v, a) and
such that:
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~dt

Proof of lemma 3.1. By taking the L2 scalar product of (3.17) with ip we have

Using the periodic boundary conditions, we obtain since a is divergence free that:

(a.V^,^) = -(ip7a.Vip) and (a.V^,^) = 0.

Then, (3.21) becomes

which provides by intégration on [£, T]

f
Using Gronwall lemma this gives that

that is (3.18) with jii = eT. Also this inequality for t = 0 provides that

Now, taking the scalar product of (3.17) with —i/Aip we have that

hence

By intégration of (3.24) on [t, T] we have that

< 2|e|

f v
J 't

f

and

445

(3.19)

(3.20)

(3.22)

(3.23)

(3.24)
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This inequality for t = 0 yields (3.19).

Finally, taking the scalar product of (3.17) with — —- we have that
at

chp
dt

~ 2 dt

dt + ~dt

hence

~dt

By intégration on [0,T], using moreover (3.23), we obtain (3.20). This concludes the proof of lemma 3.1.
b) Error représentation.
Here we dérive a représentation of the norm |e|r of the error (where \.\T is defined by (3.2)) that uses the
solution of the dual problem (3.17).
We start by multiplying (3.17) by e and integrating by parts both in space and time. This gives that

Î\e\rp — Î2 [ , Ve)\ dt~
/

where

\_x) = lim e(t) = u(t„_i) - (Vn + Wq), e(t") = lim e(t) = u(tn) - (Vn + Wq).

This equality re-writes

I |2 V^ f ff^e

ƒ
AT

n = l 9 = 1

(3.25)

On the time interval /„, thanks to (3.1) and (2.1) we have that

fê + a.Ve, v) = (ƒ + ^Au - a.V(V„ + W,), V)

= (ƒ - a.
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Therefore (3.25) becomes

N

N

J2jI <v{y™+w*)> v^dt - ^ + w ° -«<>, ^(°)) (3 26)
N Q

n = l

Let us now introducé # = *i + * 2 , such that * i j J g € Smq, ^2\jq G (/ - Pmq)SMq- Also we assume that the
value of \I>i does not depend on time on In while ^2 does not depend on time on Jq. Taking the scalar product
of (2.8a) and (2.8b) with *, we see that

Vn Pmq{Vn-l . " q - i / v " n - i / . . A U VT, \ _ / D fU \ ty\

and

These inequalities together with (3,26) enable us to say that

N r N

|e|y = Y^ / (ƒ — a.V(Vn + Wg),V;)dt - T^(Ki -
n=l ^ Jn n= l

1))-(Vb + W b - i
9=1

AT

n = l

Next, we have that

(JjWg "rog/y^V! i "g - iA^- i ; /p p \ f ( T \ r ( T
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Thus, using the projectors Pmq and I — Pmq i we obtain the following error représentation (recall that In C Jq):

N

A r (v -v_i
E ] ( " kn

n + pmq(a.V(Vn + Wq)) - Pm, ƒ(*), * i - i> ) dt

, ^ f (q - {PMq -

-(/-PTOJ(a.V(Vn + W,))--^_^zi,*2)dt

Q

+E
iV

+ E / « 7 - pmjƒ(t) - (PMQ - Pmq)f(Tq), *2)dt. (3.27)

c) Projection estimâtes for the dual problem.

Note that the spatial projectors P m and Pu defined by

PmvlIn - Pmqv, PMv\Jq = PMqv, In C Jq. (3.28)

satisfy the following orthogonality properties:

for v € 5mg , u e f^(fî), (u - Pmflu, v) - (V(« - Pmqu),Vv) =0;

for t; S SMq, u e fl^(îî), (u - PMgu,v) = (V(« - PM,«), V«) = 0.

Also the following approximation properties hold:

TRq
for u e iÇ(îî), a > 0, |(J - Pm,)u| < -^| | t t | |a , |(/ - P M > | < -^ll«l|a; (3-30)
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for u e H2(ü), \(I - Pmq)u\ < -L|Au|, |(7 - PMq)u U

449

(3.31)

Properties (3.31) are easily deduced from (3.30) by using that the functions (/ — Pmq)u and (/ — PMQ)U> have
zero mean value.

Next, we introducé some temporal projections. For u E L1(/n; Hg(SÏ)) we define 7rnw by

7TnU = — / u(t)dt.
Kri Jln

Then for u e L1 (0, T; fÇ(fi)), we set

(3.32)

Similarly we write:

Uv{Jq
Ki JJq

(t)dt. (3.33)

It is easily checked that the projectors n and II satisfy the following orthogonality and approximation properties:

for u G L^I»;*£(«)), « e fl^(îî), ƒ (u - Trnu,v)dt = f (V(u - 7rnu), V«)dt = 0; (3.34)

for ueLl(Jq]Hl(iï)), veH*(n), f (u~Uqu,v)dt= f (V(u~Uqu),\7v)dt = 0]
J Jg J Jq

for u S L2(0,T;L2(Çï)) such that ^ e L2(0,T;L2(ü)),
at

(3.35)

(TT - I)u
k r

(n - i)u
K T

du
dt (3.36)

With these notations, the choice of \I> in (3.27) is as follows

- (PM ~ Pm)U1> = U{PM -

with

d) Conclusion of the proof of theorem 3.1.
We now proceed to estimate the right hand side of (3.27) with the above choice of \I>. We will use the residual
notations (3.4)-(3.10).
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For the fîrst term we have
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N

N

n=l Jl™
N

71=1

iV

n = l

Since

we have by using also orthogonality properties

N

The second term is

= 0, (vyn,
= o,

Wq), = 0.

N

n = l

(3.37)

We re-write * i — ip as (Pmq — I)i> + (ftn — I)Pmq^P^ and use properties (3.31) and (3.36). This gives that

NN

Y, (üi,*i- < \kRi\r

< \kRi\T

( 7 T -

dt

-I)F
k

T

(Prr

T

( T) T\T>

m2
T

\m2(Pm -
(3.38)

Now, applying the stability results of Lemma 3.1, we obtain that

N f
Y, (RuVi-
n=l < ' /"

(Pm -
(3.39)

Next, for the third term, we split *2 — ip as follows

We need to estimate

N f N f

(3.40)
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The first term of (3.40) is bounded thanks to computations similar to the ones before (3.38) and (3.39). We see
that

N (PMq-i)R[
\e\T- (3.41)

For the second term of (3.40) we have

N

N

-si Ka
- , p m nqip &t.

(3.42)

Note that, if mq < mq-i (that is W is de-refined), this term is equal to zero. By using Lemma 3.1, we estimate
that term as follows

N

< \KqRs\T\il>\T

Next for the fourth term we have

N

n = l

< \knR2\T\ip\T <

and thanks to (3.18) we obtain that

N

Similarly, the fifth term gives

n = l

N

<

N

J2 (KqR'2,*2
<

For the sixth term, using (3.20), we have

N

y ; f (R3, ?*/
JV

< \kR3\T
dt

2 X 1 / 2

ds I

<\kR,•3|r dt
<

1/2

(3.43)

(3.44)

(3.45)

(3.46)
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Similarly, the seventh term gives

Q

2 f (M> < (3.47)

The eighth term corresponds to the part EQ of the estimate. We have

|(«o - (Vo + Wo), V(0))| < y/m\{I - P M O M M T . (3.48)

Next, the ninth term of (3.27) is estimated with computations similar to the ones before. We have

N

S
Finally, we split the last term of (3.27) as follows:

(I - Pmq)f{t) - (PMq ~ Pmq)f{Tq) = I

We have

Q

(3.49)

- Pmq){f{t) - f(Tq)) + (I - PMq)f{Tq).

J2 f

So, we only need to estimate the term

Q

Thanks to (3.18) we obtain that

((I-Pm„)(f(t)-f(Tq)),*2)dt.

Q .

q=l JjQ

< (3.50)

Bringing together (3.37), (3.39), (3.41), (3.43), (3.44), (3.45), (3.46), (3.47), (3.48), (3.49), (3.50) and (3.27)
leads to the a posteriori estimate (3.3). The proof of Theorem 3.1 is complete,

D

4. ADAPTIVE ALGORITHMS

In this section, we describe an adaptive algorithm relying on the a posteriori error estimate (3.3). Since we
aim to compare this algorithm with the one-level method (2.7), we first present an adaptive algorithm for (2.7).
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4.1. The one-level adaptive algorithm

Let TOC be a given tolérance. Thanks to the a posteriori estimate (3.11) we design an adaptive algorithm
which guarantees that

u - U\T < SQ(uOi Mo) + £(U, M, k) < TOC, (4.1)

where U is the solution of (2.7). Note that the first term in (4.1) is easily controlled by an appropriate choice
of MQ. Hence, the question is to find discretization parameters such that

£(U,M,k) < TOC' ̂  TOC.

The quantity £ naturally splits into the sum of a term £u that controls the spatial discretization and a term
£ & that controls the temporal discretization with

£M(U,M,k) =
(pMn -

M 2 (4.2)

£k(U,M,k) =

It is easily seen that

where

and

£n =

kn 4\T.

- I)n1]In | , l-l - norm of L2{Q),

(4.3)

This leads us to require that

£f

m a x irk <
l<n<N M% ~

> and max A^f'; < TOCk

where TOC! - TOCM + TOCk.

At this point, choosing the parameter TOCM — TOCk = TOC/2 could seem natural. However since the
parameter Mn is discrete, this choice would often lead to £M <C TOC/2, so that the estimated error would be
about half the tolérance which implies a loss of efficiency for the algorithm. Therefore, we will set

TOCM = JQ and TOCk = ~

The adaptive algorithm proceeds as follows,
Mo is chosen so that £0(^0, Mo) <^ TOC.
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• At a typical itération n, the parameters fen, Mn and the approximate solution Un are determined by requiring
that

• ^ « TOC M and kn£^ « TOCk. (4.4)

Note that £'n and f̂  depend on (Lr
n_i,Mrï_i, /cn-i) and (Un,Mn,kn). Therefore the conditions (4.4) are

reached thanks to some itérative procedure yielding (knyMn,Un). More precisely, we introducé a séquence
{k3

n1M^U^)3>o that tends to (&n,Mn,£/n) satisfying (4.4) as follows. Suppose that (fcn_i,Mn_i,£/n_i) is
known. We set k^ — &n-i; M° = Mn_i and U® is the corresponding solution of (2.7a). Then, for j > 1,

are defined as follows

. hPn is the solution of *&£;'( A

. M£ is the smallest integer M satisfying — ^ ( f c ^ " 1 , ^ , ^ " 1 ) = TOCM\

is the solution of Wn - - ! ƒ(*«)•

The procedure is re-iterated till reaching the stopping condition 8(k3
l1M

3
l,U

3
l) < TOC. Note that it con-

verges in one or two itérations.

Some remarks on the estimation of the stability constants 7^ % = 1, 2, 3 can be found in Section 4.2.

4.2. The two-level adaptive algorithm

Hère, thanks to the estimate (3.3), we define an adaptive algorithm for the scheme (2.8) that guarantees that

| u - {V + W)\T < E0{u0>M0) + E{V,W,M,m,K,k) <TOL (4.5)

where TOL is some given tolérance. We first note that

E' E"
E(V,V/,M,rrhK,k)< max —^ + max —^ + max KqË" 4- max knEn

1<9<Q M 2 \<q<Q ml l<q<Q q Q l<n<N
max ^ + max

1<9<Q M 2 \<q<Q
(4.6)

where

Eq = Eq = - I)Ri\,

and

In view of (4.6), it is natural to split the tolérance into four terms: two of them related to the spatial discretiza-
tion: TOL M, TOLm, and two of them related to the temporal discretization: TOLK, TOLk and to require
that

Ef E"
max -~^<TOLM, max - \ <TOLm,

I<<Q M\ i<<Q m\I<Q<Q i<q<Q m\

max KqË" < TOLK) max knEn < TOLk.
l<q<Q q l<n<N



AN ADAPTIVE MULTI-LEVEL METHOD FOR CONVECTION DIFFUSION PROBLEMS 455

For similar reasons to the ones above in Section 4.1, the splitting of TOL will be such that:

TOLM + TOLm = ̂ TOL and TOLK + TOLk = j^TOL. (4.7)

Also, recall that we aim to compare the method with the one-Ie vel algorithm. In the non-adaptive case, we
previously evidenced that the error of the two-level method with parameters (M, m, X, /c) is similar to the one
of a one-level method with parameters M and fc, at least for some convenient values of m and K (see [12]); of
course it can not be better than that error. Therefore we will ask for the two adaptive algorithms to yield close
values of k and M. In view of the different expressions of the estimators, this leads us to introducé a small
parameter (3 <C 1 and to set

TOLM = ~P TOL and TOLk = -^ /? TOL. (4.8a)

TOLm = -L (1 - 0) TOL and TOLK = ^.(1-/3) TOL. (4.8b)

TOC = pTOL, (4.8c)

This strategy is checked numerically in Section 5 below.

The algorithm proceeds as follows. At time Tq (corresponding to a large time interval Jq)7 we compute
the parameters Mq,mq,Kq, the time-step /cng_1+i corresponding to the first small time interval In c Jq and
(V^_1+i, Wq) by requiring that

- ^ » TOLM, \

KqEq" « TOLK, knq^+1Enq_1+1 « TOLk (4.9)

Next, we proceed with the successive small time intervals In c Jq. That is, for nq-i < n < nq, we compute
successively the parameters kn and Vn by requiring that:

knEn « TOLk. (4.10)

Again the conditions (4.9), (4.10) are obtained thanks to some itérative procedure that converges in one or two
itérations.

We conclude this section by some remarks concerning the numerical interpolation as well as the computation
of the stability constants.

Practical implementation requires some numerical quadrature. We introducé an interpolation operator of
order l > m for équation (2.8a) and an interpolation operator of order of L > M for équation (2.8b). It was
shown in [12] that the use of two different operators is crucial for reducing the Computing time and that a
reasonable choice is l = m + 1 and L = M + 1. Numerical tests for the adaptive scheme show that this choice
is indeed pertinent, see [14].

Concerning the stability constants, it is well known that the estimâtes of lemma 3.1 can not be used in
practice due to their exponential dependence. Following [10], the constants are numerically estimated by solving
(2.1), obtaining some error e and solving the backward problem (3.17). The reader is refered to [10], [14] for
more details. It is worth not ing that the numerical values of the constants for the one-level and the two-level
algorithms are quite similar, so that the constants can be evaluated trough the standard one-level method.
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5. NUMERICAL EXPERÏMENTS

We present some numerical tests for one-dimensional problems.
Example 1.
We consider the following problem (see [17]):

!-<-*>!-' (5.1)

for which the char act eristics curves are determined exact ly. We choose T=10>z/ = 10 2 and consider the test
fonction:

u(x, t) = sin(t) sin f 2 arctan ( 10 tan ( - j J J +2 . (5.2)

The two adaptive algorithms were implemented but here we only present results concerning the two-level
method. We refer to [14] for further considérations.

We first discuss the choice of (3 in the décomposition (4.8) of the tolérance. For TOL = 0, 5, Table 1 présents
the error \{u — (V + W ) | T / M T f°r varions values of /?.

TABLE 1. TOL = 0.5.

0
1/5

1/10
1/20
1/25

Error
3.51 x IQ"3

1.76 x lO-3

9.18 x 10-4

7.59 x 10"4

TABLE 2. TOLM + TOLk = 0.05.

0
1/5

1/10
1/20
1/25

Error
1.79 x IQ"3

1.76 x ÎO"3

1.79 x lu"3

1.9 x IQ"3

Running time
30.02 s
22.43 s
19.50 s
18.94 s

The error decreases with f3. Indeed, f3 being small, its value mainly influences the détermination of M and k.
This leads to finer discretizations for smaller (3.

Next, Table 2 provides the values of the error for various /?, the quantity TOL M + TOLk = f3TOL being
fixed (the value of TOL varies). It is interesting to note that the error dépends very slightly on ƒ?. Also, the
smaller (3 is, the quicker the algorithm runs. Indeed, then, TOLm increases, so that m decreases leading to
fewer opérations (the corresponding FFTs are of order m + 1). However note that (3 should not be chosen too
small since the error tends to increase for very small (3 due to a less efficient choice of m and K.

Next, Figure 1 shows the évolution of the parameters M, m and K. k with respect to time for TOL = 0,5 and
p — 1/10. The variation of the parameters follows the time-periodicity of u. Also, it is worth noting that the
ratio K/k varies from 12 to 40. This ratio is fixed and chosen a priori in [4] that deals with parabolic problems.
Here the algorithm is able to détermine all discret izat ion parameters and their variation justifies the interest of
adaptivity.

Now, we want to compare the performances of this algorithm with the ones of the one-level adaptive method.
As already mentioned, we use the value TOL (resp. TÖC = (3TOL) for the tolérance of the two-level (resp.
one-level) method. Table 3 gives the error and the computing time for the two methods with different values of
TOL and f3 = 1/10.

We see that the errors for the two methods are similar. Of course this justifies our choice of the respective
tolérances. The errors being similar, the computing times of the two methods can be compared. The two-level
procedure yields a gain of the order of 50%.
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FIGURE 1. (a) mq, Mq in function of t\ (b) i n , Kq in function of

TABLE 3. Error and computing time for the two methods.

TOL

1

5 x KT1

IQ"1

Error (1 level)
3.5

1.8

3.9

X lu"3

x ÎO"3

x 10"4

Error(2 levels)
3.5 x IQ"3

1.8 x ÎO"3

3.9 x 10~4

Comp
19.19 s
41 s
235.65

time (1

s

level) Comp.
9.77 s
22.5 s
142.16

time (2

s

levels) Ratio
0.51
0.55
0.6

nu=0 1
nu=0 01

nu 0 0001

FIGURE 2 Convergence of the two-level method.

Example 2.
We now want to test the behavior of the algorithm for small values of v. Following [17], we consider the
équation (5 1) with ƒ = 0 and the initial condition UQ(X) = sin x, Then, the solution of the hyperbolic problem
(v = 0) is:

v(xit) = sin (2arctan (e*tan f ^ ) ) ) •

Figure 2 présents v at t = Tmax = TT/2 as a function of x E [0, 2?r] and the approximate solution obtained thanks
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to the twolevel method for various values of v [y — 10 \ 10 2, 10 4 ) . Clearly, the multi-level approximations
converge to v as v —> 0. This indicates the stability of the algorithm for v <C 1.
The influence of j3 can be studied as in Example 1. The conclusions are completely similar and the détails are
omitted.

Let us now investigate the performances of the algorithm. We choose v = 10~10 and compare the one-level
and the two-level adaptive methods. For a similar error, Table 4 gives the Computing times of the two methods
and their ratio.

Error

3.3

1.6

8.0

3.2

1.6

X

x

X

X

X

TABLE 4.

10"3

1CT3

ÎO"4

10"4

10~4

Comp.

6.93 s

16.51 s

47.94 s

115.42

270.08

Running times
time (1 level)

s

s

of the two methods.
Comp. time (2 levels)

2.89 s

7.61 s

17.37 s

47.71 s

106.23 s

Ratio

0.41

0.46

0.36

0.41

0.39

Now the gain in Computing time due to the multi-level procédure is of the order of 65%. It is worth noting
that it is much more important than the one in [12] for the non-adaptive algorithm (that was of order of 25%).
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