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SEMI-GLOBAL C1 SOLUTION AND EXACT BOUNDARY CONTROLLABILITY
FOR REDUCIBLE QUASILINEAR HYPERBOLIC SYSTEMS *

TA-TSIEN LI 1 , BOPENG RAO 2 AND Y I J IN 1

Abstract. By means of a resuit on the semi global C1 solution, we estabhsh the exact boundary
controllability for the reducible quasihnear hyperbohc system if the C1 norm of initial data and final
state is small enough
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1 INTRODUCTION

We consider the exact boundary control for the followmg reducible quasihnear hyperbohc system

dr .dr

ds v us

with the initial data

r(O,x)=ro(x), s(0,x) = so(x), 0 < z < 1 (12)

and the nonlmear boundary feedback controls

= g{t,r)+v(t) at x = 0, ( 1 3 )

= ƒ (£, s) -\r u{£) at x = 1

Without loss of generality, we may assume that

ƒ(*,()) = 5(i,0) = 0 (14)
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Since we consider only C1 solution^ we assume that the coefficients A,/z and the nonlinear feedback laws
ƒ, g are all C1 fonctions on the domain under considération. Moreover, we suppose that the system is strictly
hyperbolic and

A(r,s) < 0 < ti{r,s). (1.5)

Also we assume that the initial data (ro,$o) a n d the input control (u,v) are all C1 fonctions satisfying the
compatibility conditions

f so(0)=g(0,ro(O)) + v(0), , .
\ ro(l) U b ;

and

Mro(0),ao(0)K(0) = -^(0 , r o (0) ) + ^(0,ro(0))A(ro(O)>So(0)K(0) - T/(0),
at ar M^)

^ | £ o ( l ) K ( l ) - «'(0).

As in [5], we will consider the following exact boundary controllability:
Given initial data ro, so G C 1^, 1] and finial data TT^ST £ Cx[0,1], can we find a time T > 0 and boundary

input controls u,v G C^OjT] such that the mixed initial-boundary value problem (l.l)-(l.S) admits a unique
C1 solution (r(t)X),s(t,x)) verifying the final condition

r(T, x) - rT(z), s(T, x) = sT(x), V0 < x < 1? (1.8)

First of ail, because of the finite speed of the wave propagation, the exact boundary controllability of hyperbolic
System requires that the controllability time T must be greater than a given constant. On the other hand.
following the local existence theorem of C1 solution (see [6]), there exists a constant ö > 0 such that the mixed
initial-boundary value problem (1.1)—(1.3) admits a unique C1 solution (r(tjx), s(t,x)) on the domain

Ds = {(t,x)\ 0 < t < ö, 0 < x < 1}. (1.9)

But this C1 solution may blow up in a finite time (see Réf. [4]). So, the mixed initial-boundary value prob-
lem (1.1)—(1.3) has no global C1 solution in gênerai. We even don't know if the life span of the C1 solution
could be greater than a given T > 0. In order to avoid this dimculty, in [5] the authors considered the linearly
degenerate case:

A(r,5) = A(5), )tz(r,s) = /i(r). (1-10)

In that case, the global existence of C1 solution (r(£, x), s(t,x)) and the global exact boundary controllability
for the System (1.1)-(1.3) were actually proved.

In this paper, we consider the gênerai case that System (1.1) is not necessary to be linearly degenerate. We
first give suitable conditions on the initial data (r0, s0) and the input control (n, v) such that for a given T > 0,
the mixed initial-boundary value problem (1.1)-(1.3) admits a unique C1 solution (r(£, x), s(£, x)) on the domain

DT = {(t,x)\ 0<t<T, 0 < £ < ! } . (1.11)

We will refer to this solution as a semi-global C1 solution.
Let (r(t,x),s(t,x)) be a local C1 solution to the mixed initial-boundary value problem (1.1)—(1.3) on the

domain Ds with 0 < Ö < T. In order to extend this local C1 solution up to the domain DT, it suffices to
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establish the following uniform a priori estimate: for any given 6 with 0 < 5 < T,

V0<£<<5, (1.12)

where C is a positive constant depending on T, but independent of S.
In Section 2, we will prove the existence and uniqueness of semi-global C1 solution to the mixed initial-

boundary value problem (1.1)-(1.3), provided that the C1 norm of initial data (ro,so) and the boundary
control (u,v) is small enough. In Section 3, using a similar approach as that in [5], we will establish the local
exact boundary controllability for the System (1.1)—(1.3).

There is a number of publications concerning the exact controllability and uniform stabilization for linear
hyperbolic Systems (see [7, 8, 9] and the références therein). Furthermore, the exact boundary controllability
for semilinear wave and plate équations were also established in [10] and [3], However, only a little is known
concerning quasilinear hyperbolic Systems. We mention that M. Cirinà [1, 2] considered the local exact boundary
controllability for quasilinear hyperbolic Systems with linear boundary controls. In order to obtain the semi-
global solution, the author of [1, 2] needed very strong conditions on the coefficients of the System (globally
bounded and globally Lipschitz continuons). This is a grave restriction to the application. Since except [2]
there is little results on the semi-global C1 solution to quasilinear hyperbolic Systems in the literature, we hope
that the discussion in this paper on the semi-global C1 solution to quasilinear hyperbolic Systems would also
promote a systematic investigation in this area.

2. EXISTENCE AND UNIQUENESS OF SEMI-GLOBAL C1 SOLUTION

In this section, we will give the existence and uniqueness of semi-global C1 solution to the mixed initial-
boundary value problem (1.1)—(1.3). The main resuit is the following

Theorem 2.1. For a given T > 0, the mixed initial-boundary value problem (l.l)-(l.S) admits a unique
semi-global C1 solution (r(£, a;),s(£, #)) on the domain DT defined in (1.11), provided that the C1 norms
||(r0) 5o)||c1[o,i] and ||(u> ÎOIIC^OJT]

 are small enough. Moreover the C1 norm of the solution (r(t,x),s(t,x))
can be arbitrarily small.

Proof. Following the local existence theorem of C1 solution (see [6]), the mixed initial-boundary value prob-
lem (1.1)—(1.3) admits a unique local C1 solution (r(£,a;),s(£, #)) on the domain D$. In order to obtain the
semi-global C1 solution on the domain Dy, it is sufficient to prove that, for any given ô with 0 < S < T. the
local C1 solution (r(£, ce), s(£, x)) on Ds satisfies the following uniform a priori estimate

V0 < t < S, (2.1)

where C is a positive constant independent of 5.
We first assume that there exists a constant M > 0 such that

]<*f> V0<t<6. (2.2)

We will justify this assumption at the end of the proof. Let

Ti= min {-, T S T J X ) . (2.3)
\r\,\,\<u\n' \X\1

For any given point (£o,£o) £ ^Ti, we consider the À-characteristic x — x1(t) passing through (£o,#o):

dx±(t)
d£

= X(r{t,x1(t)),s(t,x1(t)))> xi(to) = xo. (2.4)
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We distinguish two cases: (a) The A-characteristic x = x\{t) intersects the x-axis at a point (0, a). Then, since
r is the corresponding Riemann invariant, we have

r{0,a)\ = \ro(a)\ < ||r0||co[o,i]- (2.5)

(b) The A-characteristic x = xi(t) intersects the right boundary of DTl at a point (£0,l). Then, we consider
the /x-characteristic x = x2(t) passing through (to,l):

dx2(t)
dt

(2.6)

By virtue of the choice of Ti, the ^A-characteristic re = x2[t) must intersect the o;-axis at a point (0, /?). Since r
and s are the corresponding Riemann invariants respectively, we have

r(tOixo) = r(ïo,l), s(to,l) =so(f3).

On the other hand, using the boundary condition (1.3) we have

Then, noting (1.4) we get

< m a x ^j(*o,

where

a0 =

max

Similarly, we have

Combining (2.9) and (2.11) we get

||(r(t, •), s{t, -))llco[o,i] < (Ao + l)ao, VO < t < Ti.

Repeating the previous procedure with the new initial data (r(Ti,x)5 s(Ti,x)) ont = Ti, we obtain

||(r(«, •), s(t, -))Hc7O[oti] < (Ao + l)2^o, VTi < t < 2Ti.

In this way, after at most TV < [T/Ti] -h 1 itérations, we arrive at the estimate

||(r(t, •), s(*, 0)llco[o,i] < (^o + 1)%),

Then, collecting the estimâtes (2.12)-(2.14), we obtain

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

= Ci(T)a0, V0 < t < 6, (2.15)
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where C\(T) is independent of 5. Moreover, since CLQ can be taken to be small enough, (2.15) also vérifies the
validness of (2.2).

Now we estimate the C° norm of -^- and —-. First let us recall the well-known Lax transformation [4] :
dx dx

U = e * -r— j V = e * TT—, (2.16)
dx dx

where the fonctions ft, k are given by

dh __ \ dX
ds A — /i ds '

dr /x — A dr

A straightforward computation shows that along the A-characteristic ce = x\ (t), U satisfies the following Riccati's
équation

dU dX
d±t dr

where -— = -r- +A(r, s)-—-, and along the jLt-characteristic x — x2(t), V satisfies the following Riccati's équation
dit ot ox

d2t~ dse v ^ ' i y j

à__d_ ( )JL

We next define some constants:

6o = max{||(rQ,SQ)||CO[O,I]Ï II(^/,'ïj/)lio°[o,cr]}7 (2.20)

Ai = max < — (t, s) , — (t, r) >, (2.21)

M i - max (e | / l ( r ' s ) l , e
| f c ( r ' s ) l ) , (2.22)

M 3 = max {|A(r,a)|, /x(r, s)}, (2.24)
|r|,|s|<M

M 4 = max I , . . 1 , - T ^ T , l ) . (2.25)
|r|,H<M l|A(r,s) | M(^,S) J

As in the previous stage, we distinguish two cases:
(a) The A-characteristic x = X\ (t) passing through (to, xo) G DTX intersects the cc-axis at a point (0, a) . Then

solving (2.18), we get

„ v U{0,a)
X0) i + u(0,a) J*° f

From the définition (2.16) and noting (1.2), we have

17(0, a) =
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Then

|tf(0,a)| < MiK(a ) | < Mi&o- (2.27)

Thus

^e-fcCrCr,*!^))..^.»!^)))^ > ! _ TlMfM2bo > ̂  (2.28)

provided that 6o is small enough. It follows from (2.26)-(2.28) that

\U(tQ,xQ)\ <2Mlbö. (2.29)

(b) The A-characteristic x = x\{t) passing through (to,^o) £ D^ intersects the right boundary of DTX at
a point (îo, !)• Then by virtue of the choice of 7\, the /i-characteristic x = #2(£) passing through (£Q, 1) must
intersect the #-axis at a point (0,/?). Therefore, solving (2.18) and (2.19) respectively, we get

V(t0,1) = f a
 V{0'P) (2.30)

1 + V(0, 3) / * ° f s * ( ( ( ) ) ( ( ) ) )

and

i } ^ e M ( i l ( ) ) i ( ^

Similarly to (2.29), we get

|V(to,l)|<2Mi&o. (2-32)

On the other hand, differentiating the boundary condition (1.3) at the end x — 1 with respect to t, we have

Thus, noting (2.16), we obtain that

U(to, 1) = -^(%(to, s(tQ, 1)) + uf(t0)) + ̂ ( * o , s(*o, l))cfc-*y(fo, 1). (2.34)

It follows from (2.32) and (2.34) that

\U(tOil)\ < MiM4(Ax + 6o) + AQMfM3M4\V(t0,l)\ < MXMA{AX + b0 + 2i40M1
2M360). (2.35)

Moreover, noting (1.4) and (2.15), it is easy to see that Ai —y 0 as ÜQ -~* 0. Therefore, similarly to (2.28), we
have

1 + U(to, 1) / ^VW^M^^MHdT > i (2.36)
Vfo d r 2

provided that ao,6o are small enough. Noting (2.35) and (2.36), it follows from (2.31) that

\U{t0,xo)\ < 2MlMi{A1 + b0 + 2A0MfM3b0), (2.37)
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provided that ao, b0 are small enough. Since M4 > 1, the estimate (2-37) remains true for the two cases.
In a similar way. we can prove that \V(to,Xo)\ satisfies also the estimate (2.37). Then, noting (2.16), we

obtain

- 2M?M*(Ai +bo + 2AoM?M3bo) (2.38)

for ail t with 0 < t < T\. In particular, we see that the C1 norm of (r(Ti, x)y s(Ti,x)) can be sufficiently small
as ao, bo —> 0. Thus we can repeat the previous procedure with the new initial data (r(Ti, x), s(Ti, x)) ont = T\.
After at most [T/Ti] + 1 itérations, we obtain the following uniform a priori estimate

dr ds \ i
CC[0,l] - C 2 ( T ; G ° ' 6 O ) ' V 0 " * ~

where C2(T;ao,6o) is a positive constant independent of ö and can be sufficiently small as aO;6o —> 0. The
combination of (2.15) and (2.39) gives the uniform a priori estimate (2.1), The proof is then completed.

3. LOCAL EXACT BOUNDARY CONTROLLABILITY

Now we can précise the framework of the exact boundary controllability. First of all, for a given constant
M > 0, we put

= max À(r,s), Mmin = min u(r, s) (3.1)
j r | l s j < M \r\,\s\<M

and we define the time 2~b by

r o = m a x f - - , )• (3.2)
^ ^max Mmin ̂

By Theorem 2.1, for any given T > TQ} the mixed initial-boundary value problem (1.1)-(1.3) admits a unique
semi-global C1 solution on the domain DT, and the C1 norm of the solution can be sufficiently small, provided
that the C1 norm of the initial data (r0) SQ) and the boundary control (w, v) is small enough.

Using the same idea as in the proof of Theorem 2.1, we can get without any difficulty the following preliminary
resuit.

Lemma 3.1. The Cauchy problem (1.1)-(1.2) admits a unique global C1 solution (r(t,x),s(tyx)) on the max-
imal determinate domain enclosed by the fji-characteristic passing through (0,0), the X-characteristic passing
through (0,1) and the x-axis, provided that the C1 norm of the initial data || (r*o, ̂ o) || cx [o,i] ^s small enough.
Moreover, the C1 norm of the solution (r(t,x),s(t,x)) can be arbitrarily small.

Now we give the local exact boundary controllability for the System (1.1)—(1.3).

Theorem 3.1. Let T > TQ. For any given initial data (ro, so) and anV given final state (ry, ST) with C1 norm
small enough, there exist two boundary controls u, v with C1 norm small enough such that the mixed initial-
boundary value problem (l.l)-(l.S) admits a unique semi-global C1 solution (r(t,x), $(t,x)) on the domain DT,
which satisfies the final condition (1-8).

Proof. First, thanks to Lemma 3.1, if the C1 norm of the initial data (rO)so) is small enough, the Cauchy
problem (1.1)-(1.2) admits a unique global C1 solution (rd(ty x), Sd(t,x)) on the maximal determinate domain
ÏÏd enclosed by the #-axis, the À-characteristic x = Xi(t) passing through A = (0.1) and the /i-characteristic
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x = x2(t) passing through O = (0,0). The C1 norm of the solution (rd(t,x)iSd(t,x)) can be arbitrarily small.
Moreover, it is easy to see that the two characteristics intersect at a point D = (td,%d) with

td < ^ - 5 — • (3-3)

Next, for the given final data (r^, sT) with C1 norm small enough, the backward Cauchy problem for the System
(1.1) with the final data (rT} $T) ont = T admits a global C1 solution (ru(t, x), su{t, x)) on the maximal deter-
minate domain VLU enclosed by the À-characteristic x = yi(t) passing through C = (T, 0), the ^-characteristic
x = y2(i) passing through B = (T, 1) and the segment BC. The two characteristics intersect at a point
U = (tUixu) with

tu>T 1 - (3.4)
Mmin ^max

Noting (3.2), it follows from (3.3) and (3.4) that

tu-td>T ^— >T-T0. (3.5)
Mmin ^max

In particular, the subdomains fî^, Qu are disjointed provided that T > To.
Finally, let fij be the subdomain enclosed by the characteristics x = x2(t),x = yi{t) and the segments

DU,OC: and Qr be the subdomain enclosed by the characteristics x = xi(t),x = y2{t) and the segments
DU,AB. The domain DT is then divided int o four subdomains Qd^u^i and £lr. Moreover, since T > TQ,
we know (see Appendix in [5]) that the angle between the segment DU and the characteristic x = x\{t) (resp.
x = X2{t), x = Vx(t) and x = t/2(0) 'ls ^ess than ir. Thus we can consider the following mixed initial-boundary
value problem on the subdomain fij:

dr 1 dr
dx X(r.s) dt ' /o «\
9s _ 1 _ Ö £ _ O

 ( 3 '6 )

9a; + /x(r, s) 9t ~

with the boundary conditions

r = rd(t, x2{t)) o n ar = x2(t), 0<t<td, , ,
» = 3 t i ( t , y 1 ( t ) ) o n x = î / i ( t ) , tu<t<T [ ' }

and the initial data

sm(t), *d < * < *u, (3.8)

where x = X3(t) dénotes the équation of the segment DU-
We notice that Theorem 2.1 applies well to problem (3.6)-(3.8). In fact, if the C1 norm of the initial data

(r0y so) a n d the final data (VT, ST) is small enough, the C1 norm of the boundary value (rd(t, x2{t)), su(t, y\(t)))
is also small. In order to solve problem (3.6)-(3.8), the initial data (rm(t),sm(£)) should be small in C1 norm
and satisfy suitable compatibility conditions. Observing that rd(t,x) (resp. Sd(t,x),ru(t,x) and su(t,x)) is
constant along the characteristic x = xi(t) (resp. x = x2(t),x = y\{t) and x = 2/2W), we get

) = r o ( l ) , sd(td,x2(td)) = so{O), (OQ\
1) = r r(0), 5„(tu, y2(t«)) = 5T(1). l J
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Then noting that the C° compatibility asks

f ru(tu,yi(tu))=rm(tu), sd(td,x2(td)) = sm(td), f3 10)
\ rd(td)X\(td)) = rm(£^), su(tu,y2(tu)) = sm(tu),

we deduce the C° compatibility conditions:

rm{tu) = rT(0), sm(td) = 50 (0),
rm(td) = ro(l), sm(tu) = ST(1).

(3.11)

Next, differentiating rm(t), sm{t) with respect to t and noting that the segment DU is described by the équation
X = Xs(t)

•tu), td<t<tu, (3.12)

where

A = Xu~_x\ (3.13)
vu "d

we obtain that

r'm{t) = (A-X(rm(t),sm(t)))^(t,x3(t)),

as

Then, noting (3.11), we obtain the C1 compatibility conditions:

^(td,xd),
% (3.15)

r'm(td) = (A-X(ro(l),s0(0)))^(td,xd),

Similarly, on the subdomain £7r, we consider the mixed initial-boundary value problem for System (3.6) with
the boundary conditions

s = Sd(t,xi(i)) o n x = xi(t), 0<t<td,
(3.16)

r - ru(t}y2(t)) o n x = y2(t), tu<t<T

and the same initial data as in (3.8). This time, except the C° compatibility conditions (3.11), we need the
following C1 compatibility conditions:

ftr
r'm(tu) = ( A - A(TY(0),sT(l)))ir(t»,su),

s'm(td) = (A - Mro(l),sO(0)))^(td,xd).

Taking (3.11, 3.15, 3.17) into account, we can choose the initial data (rm(i), sm(t)) as the Hermite interpolation
on the interval [td,tu], which is uniquely determined by the values ro(l), SO(0),TT(0), 5T(1) and the derivatives

-T—(td,xd)i ~^—(td,xd)} -^(tu.Xu), -r-^(tu,xu). Since the C1 norm of (rm(£), sm(t)) can be sufficiently small,
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applying Theorem 2.1 we can find (n (£,#), si(t,x)) and (rr(t,x),sr(t,x)) which solve the problem (3.6)-(3.8)
and the problem (3.6, 3.8, 3.16) on the subdomains fij,fir respectively.

Finally, taking (r(t,x). s(£, x)) as the collection of the solutions on the four subdomains üd,ÜU7Qi,ür^ and
defining the boundary controls u^ v by

f v(t) = s,(t,0)-p(t,ri(i,0)) at x = 0, f .
\ u(t) = ry(i, 1) - ƒ(£, sr(t, 1)) at a: = 1, ^'18>

we check easily that (r(£, x), s(£, as)) solves the problem (1.1)-(1.3) and satisfies the final condition (1.8). The
proof is thus achieved.
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