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GEOMETRICALLY NONLINEAR SHAPE-MEMORY POLYCRYSTALS MADE
FROM A TWO-VARIANT MATERIAL* *****

ROBERT V. KOHN1 AND BARBARA NIETHAMMER2

Abstract. Bhattacharya and Kohn have used small-strain (geometrically linear) elasticity to analyze
the recoverable strains of shape-memory polycrystals. The adequacy of small-strain theory is open to
question, however, since some shape-memory materials recover as much as 10 percent strain. This paper
provides the first progress toward an analogous geometrically nonlinear theory. We consider a model
problem, involving polycrystals made from a two-variant elastic material in two space dimensions. The
linear theory predicts that a polycrystal wit h sufficient symmetry can have no recoverable strain. The
nonlinear theory corrects this to the statement that a polycrystal with sufficient symmetry can have
recoverable strain no larger than the 3/2 power of the transformation strain. This result is in a certain
sensé optimal. Our analysis makes use of Fritz John's theory of déformations with uniformly small
strain.

Mathematics Subject Classification. 74B20, 74Q20.
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1. INTRODUCTION

Bhattacharya and Kohn explore in [4] the use of nonlinear homogenization to estimât e the recoverable strains
of shape-memory polycrystals. Their approach is based on two hypotheses: (1) the identification of recoverable
déformation with stress-free mixing of martensite variants; and (2) the appropriateness of homogenization. The
first hypothesis identifies, for each grain in a polycrystal, the déformations recoverable by that grain. The second
hypothesis places the focus on kinematics: a macroscopic déformation is recoverable if it is consistent with a
iocally-varying déformation, recoverable in each grain. The paper [4] explains these hypotheses, and examines
their implications through the analysis of various model problems. Much attention is devoted to crystals with
few variants of martensite. For such materials, the strains recoverable in each grain form a lower-dimensional
set, and polycrystals are expected to have no recoverable strains.

The treatment of Bhattacharya and Kohn is physically nonlinear but geometrically linear. The use of linear
(small-strain) elasticity is convenient and in some sensé necessary, because it leads to a simple formula for the
strains recoverable by each grain. The adequacy of linear elasticity is questionable, however, since recoverable

Keywords and phrases. Shape memory polycrystals, recoverable strain, nonlinear homogenization.

* Research supported by the National Science Foundation.
** Research supported by the Deutsche Forschungsgemeinschaft.
*** Dedicated to Roger Temam for his 60th birthday
1 Courant Institute, 251 Mercer Street, New York University, New York, NY 10012. e-mail: kohn@cims.nyu.edu
2 Inst. fur Angew. Math., Universitàt Bonn, Wegelerstr. 6, 53115 Bonn, Germany. e-mail: igel@iam.uni-bonn.de

© EDP Sciences, SMAI 2000



378 R.V. KOHN AND B. NIETHAMMER

strains need not be small. Indeed, some shape-memory materials recover as much as 10% strain. Therefore it
is natural to ask how geometrical nonlinearity changes the conclusions of [4].

This paper provides the answer, for a spécifie model problem in two space dimensions. We call it the "two-
variant elastic material". In the geometrically nonlinear setting the stress-free déformation gradients occupy
the S O (2) invariant "wells" associât ed wit h transformation strains

for some (sufficiently small) £ > 0. The strains recoverable by each grain have been determined by Bail and
James [1]. The associated linear theory, obtained by treating e as a small parameter and linearizing, has
stress-free linear strains

1 0 \ ( - 1 0
o - î ; a n d e2 = (, o i

Bhattacharya and Kohn considered the latter, calling it the "diagonal trace-free elastic material". They showed
that a polycrystal with sufficient symmetry made from this material has no recoverable strain. The situation is
somewhat different in the geometrically nonlinear setting. We shall show, roughly speaking, that the recoverable
strain of a polycrystal with sufficient symmetry contains a bail of radius c\S2 and is contained in a bail of radius
C2£3/2. More precisely, déformation gradients in

- + 7 0
0 ï+7

are sure to be recoverable if 7 < c\s2 and cannot be recoverable if 7 > C2£3^2-
The geometrically linear theory predicts no recoverable strain, while the nonlinear theory predicts recoverable

strain between e2 and e3/2. These conclusions may seem contradictory, but in fact they are not. Nonzero
recoverable strain in the linear setting would correspond to recoverable strain of order e in the nonlinear setting.
The linear theory is naturally blind to higher-order corrections, such as recoverable strains of order e3/2.

Blind but not useless. In fact our treatment of the nonlinear problem makes fondamental use of the linear
theory. It is normal, of course, to study a nonlinear problem using results about its linearization. In some settings
- for example existence of elastostatic equilibria - the appropriate tooi is the implicit fonction theorem. Our
setting is different and less conventional, since we must consider all recoverable déformations. The appropriate
tool is Fritz John's theory of déformations with uniformly small strain. John developed this theory in the 60's
for precisely the sort of application we make hère - rigorous estimation of the error induced by geometrical
linearization. Its main hypothesis, uniformly small nonlinear strain, is quite natural in the present setting; it
simply requires e to be small, so the transformation strains Ui and Uo are close to the identity.

To connect the linear and nonlinear viewpoints, we need a sufficiently flexible version of the linear theory. It
is not enough to know that a polycrystal "has no recoverable strain". We need a more quantitative and flexible
bound, with room for error terms due to linearization. As we explain in Section 3, the appropriate flexibility is
provided by a quartic lower bound on the effective energy.

A recurring thème in [4] is the accuracy of the constant-strain "Taylor estimate". In most (but not ail) of
the examples considered there, the Taylor estimate correctly predicts the dimension (though not the size) of the
set of recoverable strains. In our nonlinear example the Taylor estimate has radius C\t2 while the recoverable
strains can be of order C2£3^2. Thus the Taylor estimate correctly predicts that the recoverable strain tends to
0 with e, but it gives the wrong scaling law.

We mention briefly some recent related work. The paper [16] by Shu and Bhattacharya explores the rôle
of polycrystalline texture in determining the properties of some TiNi and CuZnAl alloys. The papers [6,7] by
Bruno and Goldsztein develop tools for numerical simulation and examine polycrystals with random texture.
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The paper [13] by Kohn and Lods gives another application of F. John's theory, involving the nonexistence of
déformations wit h strains rest r iet ed to two incompatible wells.

2. BASIC CONCEPTS AND MAIN RESULTS

Our use of nonlinear elasticity to model shape-memory behavior follows well-established convent ion, see
e.g. [1]. The physical domain occupied by our body is ft C R2. An elastic déformation is described by a
function y: Q, —y M2, and the associated déformation gradient is F = Dy. We are mainly interested in stress-
free configurations, but it is nevertheless convenient to allow for the possibility of stress by working wit h a
continuous free energy W(F). By frame indifférence W should be invariant under orientation-preserving rigid
rotations, in other words W(RF) = W(F) for all R e 50(2). Thus W dépends only on the symmetrie part
(FTF)1^2 of F, or equivalently on the nonlinear strain \{FTF - I).

To focus on the two-variant elastic material, we assume that W(F) is nonnegative, vanishing exactly for F
in the two "wells" S0(2)U\ and 30(2)1/2- To discuss relaxation and homogenization we need some growth
conditions, for example quadratic growth at infinity:

Ci|F|2 < W(F) < C2\F\2 as \F\ -> oo.

We do not assume that W tends to infinity as detF —* 0. There is no need for this hypothesis, since the
restriction to small strain will keep detF away from 0 (except perhaps in boundary layers).

Our modeling of recoverable strain follows [4]. Consider first a single crystal. Imagine applying the ho-
mogeneous boundary condition y = F • x, where F is a constant matrix. Hypothesis 1 of [4] says that F is
recoverable exactly if this boundary condition is consistent wit h a stress-free mixture of martensite variants.
The mathematical formalization is that F is recoverable exactly if it minimizes the relaxed energy

W(F) := inf -[ W(Dy(x))dx

where the slashed intégral dénotes spatial averaging. Put differently: the set S of recoverable déformation
gradients for the single crystal is

S = {F: W(F) = 0}.

Now consider a polycrystal, i. e. a composite made by mixing the given shape-memory single crystal with itself
in different orientations. The polycrystal is characterized by its local orientation, a rotation-valued function
R*(x) (constant on each grain). Imagine once again applying the homogeneous boundary condition y = F • x to
the polycrystal. Hypothesis 2 of [4] says that F is recoverable exactly if this boundary condition is achievable
by a pointwise-recoverable déformation. The mathematical formalization is that F is recoverable exactly if it
minimizes the macroscopic energy

W(F) = min ƒ W(DyR*(x))dx. (3)
y—F-xatdQ JQ

Put differently: the set V of recoverable déformation gradients of a polycrystal is

We remark that the relaxed energy W(F) is quasiconvex, so the existence of minimizers in the définition of
W(F) is easy to prove using the direct method of the calculus of variations. Another easy assertion is that
detF = 1 for every F E V; the proof uses the fact that detF is a null-Lagrangian, and our assumption that
det F = 1 on the "wells".



380 R.V. KOHN AND B. NIETHAMMER

The preceding définition of W, based on afBne boundary conditions, has the advantage of making sensé for
any domain Q, without any need for a séparation of scales. However, when the microstructure is spatially
periodic it is more natural to use a different définition, based on periodic homogenization:

W(F) = min min / W(DyR*(x))dx. (4)
N>1 £aNBy=F JQN

Hère QN consists of an N x N block of period cells, and Dy is understood to be periodic with period cell
Qjy. (One must minimize over N because W is not convex; see [5] and [15] for a treatment of homogenization
adapted to geometrically nonlinear elasticity.) The two définitions (3) and (4) are consistent in the following
sensé: if the polycrystal in a région fl is spatially periodic with length scale 5, then the value of (3) converges
to that of (4) as 5 —> 0. See Section 2.3 of [4] for further discussion, including another alternative viewpoint
based on F-convergence.

The Taylor bound is an elementary, one-sided estimate of V. It says that a homogeneous déformation is
recoverable if it is recoverable in each grain. The mathematical statement is this:

Proposition 2.1. The set V of recoverable déformation gradients of a polycrystal contains at least the set

T := {F: FR*(x) G S for almost all x eu}.

The proof is easy, using the homogeneous déformation y = Fx in the définition of W, for any F € T.
We now begin specializing this gênerai framework to the case of our two-variant material with wells SO(2)Ui

and SO(2)U2- The set S of recoverable strains for the single crystal is characterized in Section 6 of [1]. We prefer
to work in a different set of coordinates than the one used there; a discussion using our choice of coordinates
can be found in Section 9.3 of [3]. The characterization is this:

where 1Z is the set of symmetrie 2 x 2 matrices C satisfying

det C = 1

and

Cu + C22 ± 2Ci2 < (1 + e)2

To visualize <S, we focus on 1Z and take advantage of the hypothesis that e is smalL For C € 1Z let ô := Cn - 1.
Then the condition det C = 1 gives

c22 = ̂ ^ - (i + c?2)(i - s + Ô2

Cil

Substituting this in the définition of 1Z we obtain

1 + ö + (1 + C1
2
2)(l - Ö + Ö2 + O{63)) ± 2Ci2 < 1 + 2e + e2 + 1 - 2e + 3e2 + O(e3).

At principal order this says

62±2C12<4e2.
We conclude that \ö\ < 2e + O(e2) and |Ci2| < 2e2 + O(e3). Figure 1 shows the projection of the set 72, into the
(Cn - C22) - Ci2-plane.
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FIGURE 1. The projection of 7Z onto the (Cn — C22) — Ci2-plane.

Given this understanding of *S, it is easy to evaluate the Taylor bound T. We see that S contains a set of
the form

{F: det F = 1 and \FTF - I\ < ce2} .

Since this set is rotationally invariant, T must also contain it, hence so must V. We conclude that every
polycrystal recovers strains of magnitude \ce2, subject to the obvious incompressibility constraint det F — 1.

The Taylor bound gives an inner estimate for V\ Our main resuit is a complementary outer estimate, showing
that a polycrystal with sufficient symmetry can recover at most a strain of order e3/2. Following [4], rather
than restrict the texture of the polycrystal to be symmetrie, we work with the sum of énergies

where RQ is a fixed rotation. We understand a "polycrystal with sufficient symmetry" to be one such that

dW(F) < W(RjFRe) < C2W(F)

for some constants C\^C2\ for such a polycrystal W(F) = 0 <=> W(RjFR$) = 0. It suffices to consider
diagonal F, since by frame indifférence we can replace F by RF, and by rotating a polycrystal we can replace
F by FR.

T h e o r e m 2 .2 . There is a constant €Q with the following property. Consider any polycrystal made front the

two-variant elastic material with wells SO(2)U\ and SO(2)Ü2 defined using e < EQ. Let F = ( n 1 1
V U 1+7 /

with 7 > 0; and suppose

W(V) + W(RjTRe) = 0

for some 6 e (0, f]. Then

(5)
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Here C is an absolute constant, independent of 6, e, and the polycrystal This result apphes both when W is
defined using affine boundary conditions (3), and when tt is defined using periodic boundary conditions (4)-

In particular, if due to symmetry a polycrystal satisfies W(F) = 0 4=> W(RJFRQ) = 0, then every F € V
has \FTF-I\ <Ce^2.

It is natural to ask whether the estimate in Theorem 2.2 is sharp. The answer is yes, and the example could
hardly be simpler. It consists of a "rank-one-layered" polycrystal, i.e. a composite made by mixing the crystal
with itself in different orientations, in layers orthogonal to some (carefully-chosen) direction.

Theorem 2.3. There is a constant c with the following property. For any sufficiently small e > 0? there %s a
rank-one layered polycrystal made from the two-variant elasüc maternai such that

det F = 1 and \FTF -I\< ce3/2 = > W(F) = 0.

Here W is defined using periodic homogenizatzon. The constant c is independent of e, but the polycrystal dépends
on e.

If one insists on using affine boundary conditions rather than periodic homogenization to define W', then the
conclusion is slightly different. We can no longer assert W(F) = 0, due to the présence of a boundary layer at
dQ. Instead we can say that W{F) —» 0 as the length scale of the laminate tends to 0. This convergence is
asserted, of course, only for F such that det F = 1 and \FTF — I\ < ce3/2.

Finally, we consider an alternative modeling hypothesis concerning the set of recoverable strains. The déf-
inition given above was: F is recoverable if there is a déformation y satisfying the appropriate boundary or
averaging condition which is pointwise recoverable (DyR*(x) e S for all x). A more flexible alternative is to
ask only that y be pointwise nearly recoverable, in the sense that dist (DyR*(x), S) < g for all x. Here Q > 0 is
a fîxed parameter. The argument used for Theorem 2.2 extends easily to this setting.

/ 1 + 7 0 \
Theorem 2.4. Assume once agam that e < £Q. Consider any polycrystal and let V = ( n _j_ . If

\ " ï+7 /
there exist déformations y and z such that

y = T 'X and z = RJTRQ • x at dil (6)

and

dist{Dy{x)R*(x),S) < g and dist(Dz(x)R*(x),S) < g pointwise m ü

where g > 0 is sufficiently small, then

(sin2Ö)2 - < C U 2 + (-J ) . (7)

ƒƒ £/ie micro structure is periodic, then the same conclusion holds when (6) is replaced -ƒ Dy = F and ^Dz =
ttó/i Dy and Dz periodic.

Like Theorem 2.2, this estimate is sharp:

Theorem 2.5. The rank-one-lammate example demonstratmg Theorem 2.3 also has the following property, for
a suitable choice of c > 0: whenever F satisfies

| de tF — 1| < eg and
FTF-I

2e

4

< C I £2 + ( ^
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there exists a déformation y with Dy spatially periodic and ƒ Dy — F such that

dist (Dy{x)R^(x)iS) < Q,

3. THE IDEA OF THE ANALYSIS

In proving Theorems 2.2 and 2.4 we shall apply geometrically linear theorems to deduce geometrically nonlin-
ear conclusions. This section explains the program for doing so, in a simple nontechnical fashion. In particular
it explains why the odd-looking conclusion (7) of Theorem 2.4 is actually quite natural.

We start with a brief review of Section 5.3 of [4], concerning the "two dimensional, trace-free, diagonal,
linearly elastic material". In the geometrically linear theory the microscopic energy (p dépends on the linear
strain e(u) = \{Du + DuT) associated with a displacement u. The relaxed energy (p is given by

£(0 = , inf T ^(e(w))ti=£ x at dQ JQ

and the macroscopic energy Tp is deflned by homogenization:

ip(0 = min ƒ <p{RÏe{u)R*(x)) dx
y=Ç x at dÜ JQ

using affine boundary conditions, or the analogue of (4) for the periodic theory. The case of interest here is the
two-well energy

ip{e) = m i n { i | e - e i | 2 , | | e - e 2 | 2 } ,

where ei and e<z are given by (2). lts relaxation is its convexification, which can be expressed as

using the notation t+ = max{£, 0}, so that

ƒ ° if
)+

The relaxed energy vanishes exactly on the line segment

in three-dimensional space of 2 x 2 linear strains. For a polycrystal to recover strain £, there would have to be
a displacement u such that u = £ • x at dü and R%(x)e(u)R+(x) G Sun pointwise in Q. For polycrystals with
sufficient symmetry, no such u exists. This is a conséquence of the following result, which is Theorem 5.3 of [4],

Theorem 3.1. For the ip defined above, the associated macroscopic energy satisfies

j > d( t re) 2 +c2(sin20)2|eIJ|4 (9)

where c\ and C2 are texture-mdependent constants, and the estimate is only asserted when eD = e — | ( t r e ) / is
sufficiently small.
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R*e(u)R

FIGURE 2. Schematic showing location of Rje(u)R* relative to 5^n .

This theorem has the following easy conséquence. Suppose two displacements u and v satisfy

dist (R^e(u)R^Sii7l) < S and dist(Rje(v)R*,SHn) < 6 (10)

pointwise in Q, with affine boundary conditions

u — £ • x and v = RJ^RQ • x

at dQ. Then, assuming ^ is suflficiently small and 0 < 0 < TF/4, we have an estimate of the form

(H)

as an immédiate conséquence of (9).
We turn now to the nonlinear setting of Theorem 2.2, focusing on the case when W is defined using afRne

boundary conditions. If W(T) + W(RjTRe) — 0 then there exist déformations y and z satisfying

DyR*(x) e S and DzR*(x) e S

pointwise in Q, with

at dil. Suppose in addition that

y = r - x and z = RJ
e TRe • x

y(x) = x

and assume Du is uniformly bounded (pointwise in Q, and uniformly in e). Then DyTDy — I = 2ee(u) +
e2DuTDu = 2ee(u) + O{e2) and similarly RjDyTDyR* - ƒ = 2eR^e(u)R„ + O(e2). Our hypothesis that
DyR*(x) E <S implies that R^e(u)R* has distance at most of order e to the line segment Sun (see Fig. 2). The
same applies for e(v) with z(x) = a; + ev(a;). We are thus in the situation of (10), with 5 replaced by a constant
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times e and £ = ^—•• Applying (11), it follows that

which is essentially the conclusion of Theorem 2.2.
The justification of Theorem 2.4 is almost the same. If we have dist (Dy(x)R* (x),S) < g in the above, rather

than DyR*(x) € <S, the distance from R^e(u)R* to Sun is at most of order e + g/e by the triangle inequality.
The same applies to z and v. Therefore (11) gives

which is essentially the conclusion of Theorem 2.4.
The preceding argument is completely honest except for one crucial point: the assumption that Du and Dv

are uniformly bounded. We do not know whether such a bound is valid. But it is almost valid, as we shall
explain presently. F. John's theory of déformations with uniformly small strain gives Lp bounds on Du and Dv
for every p < oo. Section 4 shows that the argument sketched above can be made rigorous using just the L4

bound.

4. THE UPPER BOUND ON RECOVERABLE DÉFORMATION

This section proves Theorems 2.2 and 2.4. Our argument makes essential use of F. John's results on défor-
mations with uniformly small strain [9-11]. So we begin by summarizing the relevant part of John's theory,
following mainly the introduction of [10].

It is convenient - and it will prove sumcient - to address the case when Q, is a square in M2. The maximum
strain of a déformation y(x) is deflned to be

^ Dy - / | |LOO (Q) .

If emax 'ls sufficiently small then there is a constant orthogonal matrix R such that

(12)£fa
The "average rotation" of y is defined as the orthogonal matrix Q such that

QT4 Dy
Jn

is positive definite and symmetrie. For emax sufficiently small the matrix Q is uniquely determined and Q — R~
0(emax), so we can replace R by Q in (12). Notice that when -fQ Dy is positive definite and symmetrie the
average rotation is Q = / .

The restriction of y to any smaller square has the same property. It follows that Dy has bounded mean
oscillation of order emax- (This was in fact the original motivation for John and Nirenberg's study of functions
with bounded mean oscillation [8].) Functions in BMO need not be bounded uniformly, but they are bounded
in every Lv. In the present setting the BMO theory gives

\Dy-Q\vdx) <pCemax (13)
Q )
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for 1 < p < oo, where Q is the average rotation of y on the square domain fi, and C is an absolute constant.
Another expression of the "almost boundedness" of Dy — Q is the estimate

-f \Dy - Q\P dx < Ce^i -f \Dy - Q\* dx,
Jn Jn

valid for any 0 < q < p < oo with C = C(p, q). We shall use much less than the full force of these estimâtes.
Actually all we need is (13) with p = 4.

Proof of Theorem 2.2. We proceed in three steps. The first two demonstrate the theorem when Çl is a square
using either affine or periodic boundary conditions. The third step extends the conclusion to a gênerai domain
Q (with W defined using affine boundary conditions), using a standard packing argument.

First step (Application of John's theory). We assume throughout this step that Q, is a square and we focus
initially on the use of affine boundary conditions. The assertion W(T) — 0 with

er - [ - + 1 ?i - i 0 i

is thus equivalent to the existence of a déformation y satisfying

y = T-x at dû (14)

and

R^DyR^(x) e S pointwise in Q (15)

where R* describes the texture of the polycrystal.
We expect the maximum strain of y to be of order e, since the matrices U\ and U2 associated with our two

nonlinear wells have nonlinear strain of order e. This expect at ion is correct: from (15) we have

j y y - J||Loo(n) < Ce

using the characterization of 5, whence

\\DyTDy - J||LOo(n) = \\E?DyTDyR+ - / | | L ~ ( Q ) < Ce.

Thus John's theory is applicable if e is sufficiently smalL Since the theory addresses normalized Lp norms we
may assume, after rescaling if necessary, that il is the unit square.

The boundary condition (14) implies

ƒ Dy = T, (16)
Jn

which is positive définit e and symmetrie, so the average rotation of y is Q = I. We therefore define the "linear
displacement" u associated to y by

y :~ x + 6u(x).

Since Dy — I — sDu and emax < Ce, (13) gives

\\Du\\LP < C. (17)
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Here and henceforth, we stop making the p-dependence of the estimate explicit, since we have no need for it.
The déformation y must be incompressible, since U\ and U2 have determinant 1. This is borne out by the fact

that det F = 1 for every F G <S, so that (15) gives det Dy = 1. It follows that Du is approximately trace-free:
in fact, since

1 = det Dy = det (7 + sDu) = 1 + etr Du -f e2 det Du

we get

\\txDu\\LP < Ce\\Du\\2
L2p <Ce.

Consider the matrix A := I , ) defined by

RjDyR* = I + eR^DuR* =: I + eA.

We know that

< C and \\tTA\\Lj> <Ce

using that tr A = tr Du. Furthermore we have R^DyR* G <S, and in terms of the components of A this condition
says

2(a + d) ± 2(6 + c) + £(|^|2 ± 2(a6 + cd)) < Ae + O(e2).

Since

||a + d||La = ||trA||La <Ce, (18)

we deduce that

ll&+c||L2 < ||a + rf||L2 + Ce||A|||2 + Ce < Ce. (19)

To estimate a — d, we use the condition

IC11-C22I < 4 + o ( £ )

in the characterization of <S, and the fact that for C = RjDyTDyR*,

C11 - C22 - 2(a - d)e + (a2 + c2 - b2 - d2)e2.

It follows that

ƒ (|2(a - d)\ - 4)1 < Ce2 4 \a2 + c2 - b2 - d2\2 + Ce2 < Ce2. (20)

The other hypotheses of Theorem 2.2 is that W(RJYRQ) = 0. This is equivalent to the existence of a
déformation z satisfying

z = RjTRe 'X dit dn
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and

RJDZR*(X) e S pointwise in Q.

The preceding analysis applies to z as well as y, since all we used about F was its positive définiteness and
symmetry. It gives estimâtes analogous to (18)-(20) for the associated displacement v defined by

z :— x 4- £v(x).

ïf we use periodic homogenization rather than affine boundary conditions to define W. the preceding analysis
still applies. Our only use of the affine boundary condition was to get the symmetry of average déformation
gradient (16), thereby deducing that the average rotation was /. In the periodic setting the average gradient is
specified.

Second step (Application of the linear theory). We apply the linear theory to the displacements u and v. Focusing
first on u: the (relaxed) linear energy <p, defined by (8), satisfies

- 1 , (21)

so our estimâtes give

j{u)R*)<Ce2. (22)

The same reasoning applied to v gives

Theorem 3.1 applied to e ~ (F — I)/e gives an estimate of the form

C(sin26>)2 \~\4 < ƒ (p(RZe{u)R*) + ƒ

Assembling these estimâtes gives the desired conclusion

(sin20)1 / 2 |7 |<C£3 / 2 . (23)

This argument works for periodic as well as affine boundary conditions, since Theorem 3.1 is applicable in both
settings.

Third step (Extension to gênerai domains). We have proved the theorem when Q is a square. The extension to
gênerai domains uses a familiar packing argument (see e.g. [2]), similar to the proof that relaxation does not
depend on the choice of domain. We naturally assume that Q, is bounded, and that dQ. has measure zero.

The key observation is that the unit square can be covered, up to a set^f measure zero, by a disjoint union of
scaled copies of ft. We fix such a cover ing, which makes the unit square Ö, a polycrystal wit h a spécifie texture
R(x). Now, if

y = F 'X at dÜ
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and

RjDyR*(x) G S pointwise in n,

then the scaled displacement y\{x) = Xy(x/X) has the same properties on the scaled domain Xiï, for any À > 0.
Gluing a suitably scaled version of y into each scaled copy of 17, we deduce the existence of a displacement y
defined on the entire unit square Q satisfying

y = T • x at on

and

ËjDyR*(x) G S pointwise in Q.

The same construction applies to z. (Notice that the texture R* on the square Ó dépends only on the choice of
packing, not on y or z). Applying the resuit of Step 2 to O, we deduce the desired estimate for any domain Q. •

The preceding argument rests mainly upon the observation that when F — I ~\-eA G <S, the symmetrie part of
A lies within distance of order e from the analogous linear set Sun. Aside from this fact and frame indifférence,
the structure of S is hardly used at all. Therefore the argument is quite robust, extending easily to the case
when replace S by 0-neighborhood of S.

Proof of Theorem 2.4- We claim that if fi is the unit square and g is sufficiently small, then

y = r • x at ön

and

dist (RjDyR+ix), S) < g pointwise in n (24)

imply

j ( Ç (25)

with the usual convention y = x + eu(x). This claim suffixes to prove the theorem: indeed, arguing as for
Theorem 2.2 but using (25) in place of (22) leads directly to the desired conclusion

(sin2<9)2|-
4

e

in place of (23).
We commence the proof of the claim. It is easy to see that under the pointwise hypothesis (24), the maximum

strain of y is of order e + g. The average rotation of y is still Q — / , as a conséquence of the boundary condition.
So F. John's theory gives

\\Du\\LP < c ( l + - ) (26)

in place of (17).
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Our pointwise hypothesis is equivalent to dist (DyRt)S) < g, which implies that C := RjDyTDyR* satisfies

(\Cu-C22\-4s)+ < 2

In terms of A, defined as before by

this implies

(|C12|-2£
2) + <

\CnC22 - C\2 - 1| < CQ.

c|-2e)

The estimate (26) gives

Using these estimâtes in (21), we conclude that

as asserted. D

5. OPTIMALITY OF THE BOUND

This section proves Theorems 2.3 and 2.5, showing that the bounds just established are optimal. Interestingly,
the geometrically linear and nonlinear versions of this result use essentially the same construction: rank-one
lamination. This stands in stark contrast to the "two-well problem" [1,12], where rank-one lamination suffices
for the linear version but rank-two lamination is required for the nonlinear one.

We begin by discussing the optimality of the linear lower bound (9) restricted to the incompressible hyperplane
tre = 0. This result is not explicit in [4], but it parallels the scalar theory developed there. We claim that for
any trace-free e near 0 there exists a rank-one-laminated polycrystal such that

^{e)^(p{RjeRe)<C\e\\ (27)

(Since a rank-one laminated microstructure is spatially periodic, we naturally choose to define (p using periodic
homogenization.)

To justify the claim, we fix /3 > 0 sufficiently small, and consider a polycrystal obtained by mixing the

two-variant material in its standard orientation - which has "easy direction" ( J ̂  ) - with the same material

rotated so that its easy direction1 is parallel to ( A l i ) • We fix the area fraction of each orientation to be 50%;

1 The standard crystal recovers strains parallel to eo = ( o -?i ) • After rotation by angle 0 it recovers strains parallel to

eQ = R$eoRoT. We call e$ the "easy direction" and use it to identify the rotation 6.
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the layer direction will be chosen presently. To estimate the macroscopic energy we use the following test fields:

e(u) = f « _ 1 ) in the standard layers,

e(u) = f .# i ) *n ^ e r o^ a t ed layers

and

, , ( - 1 + 2/3 4{32 \ . ,_ , , , .
e(v) = I .ra oft) i n standard layers,

e(v) = [ Aa _i ) m t n e rotated layers.

One easily checks that these choices are admissible, in other words there exist such u and v (with u, t; continuous
and piecewise linear), if the layer normal is parallel to (1,2/9+ -y/l + 4/?2). The average strains are

and j e(v) =

so averaging the energy over the composite gives

<P (Je(«)) < i ((1 + 16/32)1/2 - l ) 2 < C/34

and

(Je(v)^j < 8/34 + \ ((1 + 16/32)1/2 - l ) ' < C/34.

The relaxed single-crystal energy (p is convex, with ^(e) = <p{—e). These properties are inherited by the
homogenized energy (p, Thus the set {e: <p(e) < Cf34} contains the convex huil of the four matrices ± ƒ e(u),
± j-e(v). In particular it contains a bail of radius Co/3 around 0 in the space of trace-free strains.

This construction suffices to establish our claim, and even a little more. In fact, given any trace-free e near
0, we may choose j3 so that |e| = CQJ3. Our construction with this choice of (3 gives a polycrystal such that

(p(RjeRo) < C\e\4 for every angle 6.

This obviously implies (27). Notice that the polycrystal dépends on |e|; we do not know a construction that
works at once for all e.

We turn now to the geometrically nonlinear setting.

Proof of Theorem 2.3. We shall use the same rank-one laminate as in the linear theory. The new work lies in
the construction of suitable test fields. Here is the main idea. It would be nice to use, as déformation gradients
in the two different layers, F1 = I + ejAi and F2 = / + ejA2, where Ai and A2 are taken from the linear
example. This does not quite work: F\ and F2 are not rank-one related. But since Ai and A2 are compatible in
the linear theory, there exists a skew-symmetric A such that Ai + A is rank-one related to A2. Thus if we add
XA to Ai and subtract (1 - X)A from A2, the resulting i<\ and F2 are compatible. We shall choose the parameter
A so that det Fi = det F2 ; this allows us to normalize the determinant of each matrix without destroying the
rank-one relation. Finally, choosing the parameter 7 sufficiently small - independent of s - we shall verify that
JFI and F2 lie in S.
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We commence the task of making this précise. Our polycrystai mixes the two-well material in its standard
orientation wit h the same material rotated to have its easy direction parallel to

( - 1 -4/3 \

The associated rotation R$ is determined by

so the angle is

As in the linear case, we fix the area fraction of each orientation to be 50%. It is convenient to set

0 = sTe (28)

for reasons that will émerge later on.
Let us characterize the sets <S and SRj for matrices of the form

a b
c d

The parameter 7 will be used below to control the magnitude of FT F — ƒ, while A will be chosen to have
magnitude of order 1.

(1) The matrix F bclongs to *S when

det F — 1, or equivalent ly tr A + £7 det A — 0,

and

c<i)] < Ae + O(e2).

(2) The matrix F belongs to SRj, in other words FR$ G <S, when

det F — i, or equivalently tr A + £7 det A = 0,

and

27 (a + d ± (2(a - d) cos6»sin0 + (6 + c)(cos2 6» - sin2 fl)))

+72e [|A|2 ± 2 (sinöcos<9(a2 - d2 - b2 + c2) + (cos2 0 - sin2 Ö)(a6 + cd))]

< 4e + O(e2).

Since 9 ^ —2(3 and /3 = i^e, this gives

2 7 (a + d ± (-4)3(a - d) + (6 + c))) < C(|il|)e.
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Remark 5.1. We shall use these characterizations mainly through the following simple conséquences:
(1) We can be sure that F =: / + £7 A e S if

detF = 1
|a + d| < Coe
\b + c\ < Coe

and 7 = 7(Co, \A\) is sufficiently small.
(2) We can be sure that F e SRj with 0 « -2j3 if

detF = 1

\a + d\ < Coe
|6 + c - 4 / 3 ( a - d ) | <

and 7 = 7(Cb, |A|) is sufficiently small.
(3) If \a + d\ < CQ€, that is if A is approximately trace-free, then

|de tF-1 | = \ejtxA + e2j2detA\ < Ce2.

We can obtain a matrix with determinant 1 by normalizing F, i.e. considering (1/VdetF)F. Since

F - F (1 + O(e2)) ,

the normalization can be viewed as changing jA by a term of order e. We can easily compensate for such
a change by reducing the size of 7.

We now begin the proof in earnest. Consider the matrices

- 1 -41 O \
O - l ) and F2 =

They are not rank-one related, i.e. F\ — F2 does not have rank one. But notice that F\ = / + £7^1
F2 — / + £7^2, with 4̂i and A2 compatible as linear strains. This means Ai — A2 is the sum of a rank-one
matrix and a skew-symmetric matrix f _°a Q J. It is convenient to distribute the skew-symmetric term between
the two matrices by a parameter À. We are thus led to consider

and

- 1 - 4 / ? - ( l - A ) a

They are rank-one related when a2 — 4 + 16/32, and the layer normal is parallel to (1,2/? +
is necessarily the same normal we used for the linear construction.)

We choose the parameter À so that det F\ = det F%, which occurs when

2V " a 2 ; 2 + 8/?2
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With this choice of À we can normalize the matrices to

Fi := 1/VdetFi Fu F2 :=
\ J

without loosing the rank-one relation.
We claim that F± e S and F2 G SRj if 7 is small enough. This is an easy conséquence of Remark 5.1. Notice

that part (3) of the Remark is applicable since F\ — I and F2 — I are trace-free. Thus our test field is finally

Dy = Fx = I + 7e ( x 1 I + O (e2) in the standard layers
-Aa - 1

\ s

and

Dy = F2 = I + je ! , « , . ̂  ]) ^v^ ) + O(e2) in the rotated layers.

The average déformation is

Our argument shows that W(F) = 0 for this rank-one laminate polycrystal, provided that we define W(F)
using periodic homogenization. If we insist on using affine boundary conditions, then the conclusion is instead
that W (F) can be made arbitrarily small. The argument is standard, choosing the lengt h scale of the laminate
to be small and introducing a thin transition layer near dtl.

We digress briefly concerning the boundary layer. It is convenient to choose ü to be a rectangle with sides
paraiiei and perpendicular to the layers. Then the condition y — Fx is automaticaJly valid on the sides parallel
to the layers, and a boundary layer is needed only on the other two sides. It is easy to keep Dy uniformly
bounded in the layer (see e.g. Lem. 5.2 of [14]). It is not so easy however to arrange that the strain in the layer
be recoverable, ie. Dy(x) G SR*(x) for some R*(x). Indeed, we do not know whether this is possible - but
even if it were, it would lead to a polycrystal whose texture (in the boundary layer) depended on F. Therefore
it is not fruitful to fuss over the structure of the boundary layer.

Returning to the main argument, we now construct a second test field in the same polycrystal, arguing as
above but start ing from

and
2 : =

instead of F\ and F2. We distribute a skew-symmetric matrix ( _?â Q ) De^ween the two, using a parameter À.

The resulting G\ and G 2 are again rank-one relat ed (with the same layer normal as before, dictated by the
linear analysis) when à2 — (1 — f3)2a2. We choose À to make detGi = det(?2; one vérifies that such À exists,

with Â « | (1 - j3) as (3 -» 0. The normalized matrices G± := f 1/ydetGi ) Gx and G2 := f l /ydetG 2 ) G2

are thus compatible, and we can define Dz = G± in the standard layers and Dz = G% in the rotated ones.
This time we use the smallness of /? (as well as that of 7). In the conditions for G\ G S we need |6 + c| < Ce,

which amounts to

102 < Ce.
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Our choice j3 = >/ë assures that this is true for sufficiently small 7. The other conditions for G\ e S and
G2 E SRj are easily seen to be satisfied for sufficiently small 7. The average déformation gradient is

! / 3 - ( A - | ) â

We have shown for this rank-one laminate polycrystal that

W(F)+W(G)=0

with

FTF-I / o
2e ' \ -2y/ë 0

and

One vérifies that FTF = RVGTGR^ to leading order in e when 2 = cos 2rj and 2sin2?7 = cos 27/. (This gives
7] « 0.15TT when sgn7 = sgn7 and rj « — ̂  + 0.15TT otherwise.) For such 7, 7, and 77 we have shown, aside from
higher-order terms,

Thus we have (nearly) given an example showing the optimality of (5).
But we can do better, with only a little more work. We claim that this polycrystal has W(F) = 0 for all F

such that detF = 1 and \FTF— 1| < Ce3/2. In the linear theory an analogous statement was obtained using the
convexity of Tp. In the nonlinear theory we must proceed differently, since det F — 1 is not a convex constraint.
The successful argument still starts with convex combinations of the examples already in hand, but these must
be adjusted to account for the determinant constraint. This works because for small e we are close to the linear
theory and Remark 5.1 shows that the conditions which have to be satisfied are linear to principal order in e.

We shall be somewhat brief, leaving straightforward but tedious details to the reader. For any K G (0,1),
consider the déformation v defined by

Dv := KDy + (1 - n)Dz,

with

Dv = KFI + (1 — K)G\ in the standard layers

and

Dv = KF2 + (1 — K)G2 in the rotated layers.

(We drop the distinction between F\,Fi,F\ and similarly for G, since we shall be making new choices of 7,
À, etc. presently.) We keep the parameters /?, o. and à fixed to maintain the rank-one relations. However the
parameters 7,7, À and A can be varied. In the following we choose À = À and 7 = ±7, which leaves two free
parameters.
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.3/2
-r K=l

K=0

12

11 C22

FIGURE 3. The values of C = JÏT iJ obtained using 7 = 7.

The condition that Dv G S in the standard orientation uses again that /3 = y/ê. For ail * G [0,1] and small
enough e we find that there exists À — A(*) G [0,1] such that det Dv is the same in the standard and rotated
layers. So we can normalize again without changing Dv at principal order. Using 7 = 7 and setting H = -ƒ Dv
we obtain

T / 2,0(1 - K) 4)8(1 - 2*)
+ 7 £ V 4/?(l ~ 2«) -2/3(1 - «)

As * and 7 vary, the value of C = HTH ranges (to principal order) over the shaded région in Figure 3. The
same procedure with 7 = —7 gives H with

-2 /3 (1 - K)

- 4 / 3

- 4 / 3

2/3(1 - «)
4- O(e2).

As Ac and 7 vary, the value of C = # r i ï ranges (to principal order) over the shaded région in Figure 4. Taking
bot h constructions together, we see that range of HT H contains a bail about the identity with radius of order
e3/2 in the space det C — 1. This complètes the proof of Theorem 2.3. D

Our construction is robust enough to apply, with almost no additional work, to Theorem 2.5 as well.

Proof of Theorem 2,5: It is easy to give conditions analogous to those of Remark 5.1, assuring that a matrix
F satisfies dist (F>S) < Q or dist (F, SRj) < g. For example, the condition \b + c\ < C$e gets replaced by
|& + c| ^ Cb(e-h f ). Using the examples presented above, but with f3 = yje + (g/e), we get average déformations
with det H = 1, such that the range of C = HTH includes a bail about the identity with radius of order
eyje + (g/e) in the space det C = 1.
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A C

K=0

K=0

FIGURE 4. The values of C ~ HTH obtained using 7 = - 7 .

These déformations are incompressible, but it is equally easy to get déformations with det H / 1. Indeed, if we
multiply our test fonctions Dy, Dz by a constant E satisfying \E~ 1| < Cg, they still satisfy dist (Dy, SR* (x)) <
G g and similarly for z. Thus we need not normalize to make the determinant 1. Appropriate normalization
permits det H to take any value 1 ± Cg, leading to the conclusion of Theorem 2.5. •

Acknowledgements. We are grateful to K. Bhattacharya for the crucial suggestion of combining F. John's theory with
the quartic lower bound from the linear theory.
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