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ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES * **

JERRY L. Bona ! AND JiAHONG WU?

Abstract. Evolution equations featuring nonhneanty, dispersion and dissipation are considered here
For classes of such equations that include the Korteweg-de Vries-Burgers equation and the BBM-
Burgers equation, the zero dissipation limit 1s studied Uniform bounds independent of the dissipation
coefficient are derived and zero dissipation hmt results with optimal convergence rates are established
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1 INTRODUCTION

The mncorporation of dissipative effects 1s often crucial in obtaiming good agreement between experimental
observations and the prediction of theoretical models describing the propagation of waves in nonlinear dispersive
media (¢f Bona et al [14] for an example from water-wave theory) To take account of dissipative mechanisms,
a Burgers-type tetm 1s often appended to nonhnearity and dispersion 1n these models (¢f Johnson [22,23] for
an early suggestion n this direction) Two such models are the well-known BBM-Burgers equation

Up + Ug + UWPUL — VUgy — 0P Uz = 0 (11)
and the (generalized) Korteweg-de Vries-Burgers equation (GKdV-Burgers equation)
Up + Uy + UPUL — VUgy + Uggy = 0, (12)

where u = u(z,t) 15 a real-valued function of two real varables z and ¢, p > 1 1s an integer, v > 0 and o > 0
are real numbers Numerous numerical simulations and analytical studies have been carried out to determine
the effect of such a term 1 these models (¢f [4,7,8,12,13,15,16,21,27-29]) Laboratory studies show (1 1) with
p = 1 and a switably chosen value of v has good predictive power 1n cases where nonlinear effects are not too
strong (e g the Stokes number 1s not too large i a water-wave context [14])

It 1s the purpose of this article to investigate theoretically aspects of the dissipative effects inherent in these
two models when v > 0 Consideration will also be given to a more general class of models of the form

ur + (P(w))z + vMu — (Lu)z =0, (13)
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where M and L are Fourier multiplier operators with non-negative symbols and P is a polynomial. say

p+1

P(u) = Z aru®

with ar € R, k = 1,2,---,p (see Bona [5] and Dix [21]). Interest will mainly focus on the pure initial-value
problem (IVP) for these equations wherein

u(z,0) = uo(z), is specified for z € R;
however, the initial- and boundary-value problem (IBVP)
u(z,0) = ug(z), for z € R,
u(0,t) = g(t), for t € RY,

for the BBM-Burgers equation will also be examined. In this article, particular interest is directed toward the
behavior of solutions in the zero dissipation limits.

In the limit as v tends to zero, equations (1.1, 1.2) and (1.3) formally reduce to the BBM equation, the
GKdV equation and a class of equations of KdV-type in generalized form,

Ut + Ug + uPuy — Ugzt = 0,
Ug + Uz + UP UL + Ugze = 0,
ut + (P(w))z — (Lu), = 0,

respectively. This suggests comparing solutions u to one of these equations with dissipation to the solution v
of the corresponding equation without dissipation. It is expected that for various spatial norms || - ||,

lu(,t) = o( Dl — 0 (1.4)

as v — 0, uniformly for ¢ > 0. Theory will be developed showing (1.4) is valid in certain circumstances.
Moreover, we will be able to determine the rate at which |u(-,¢) — v(-,t)| approaches zero. A crucial step in
proving such convergence results is to obtain v—independent bounds on solutions to the dissipative equations
and very often these are not available in the literature. Precise statements are provided presently.

The paper is organized as follows. Section 2 contains the relatively straightforward analysis of the zero-
dissipation limits for the IVP and the IBVP for the BBM-Burgers equation. In Section 3 we establish v-
independent bounds on solutions to the GKdV-Burgers equation in H* for all integers k > 0 (the Hilbert space
H* = H®(R) is the L2-based Sobolev class of functions whose derivatives to order k are all square integrable).
This result is interesting in its own right and crucial in obtaining the zero-dissipation limit results for the GKdV-
Burgers equation in Section 4. The relation (1.4) is determined to hold in |- || z+ and the convergence is shown to
be O(v) as v — 0. Section 5 is devoted to the equations of general type depicted in (1.3). Zero-dissipation limit
theory in this section relies upon growth conditions on the symbols of the dispersion and dissipation operators
L and M, respectively.

2. ZERO-DISSIPATION LIMIT FOR THE BBM-BURGERS EQUATION

This section is divided into two parts. The first part is devoted to the zero-dissipation limit for the IVP for
the BBM-Burgers equation while the second part deals with the zero-dissipation limit for the associated IBVP.
Consider first the IVP

Ut + Ug + UPUL — VUgy — O Ugge = 0, (z,t) e R x R, (2.1)
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u(z,0) = up(z), z € R, (2.2)

where p > 1 is an integer, ¥ > 0 and o > 0. As noted before, upon setting v = 0. equation (2.1) formally
reduces to

Ug + Uy + UPUL — P Uggs = 0. (2.3)

There is an adequate theory of well-posedness for the IVP (2.1--2.2) and the IVP (2.2-2.3) (¢f. Bona et al. [2,3]).
For our purpose, it suffices to have the following proposition, in which Cy(7, X) denotes the bounded continuous
mappings u: I — X, I =[0,T) C R*, with its usual norm.

Proposition 2.1. Let ug € H® with s > 1. Then there exists a unique solution u to the IVP (2.1-2.2) such
that, for each T > 0,

u € Cy([0,00); HYNC([0,T]; H®) and Ofu € C([0,T); H®)
for each k > 0. Furthermore, for each T > 0 and k > 0, the solution map from ug to u is analytic from H® to
C*([0,T); H?).
The preceding results hold for the IVP (2.2-2.3), but in this case Ofu € C([0,T); H*T1) for each k > 0 and
T>0.

We shall use u and v to denote the solution to the IVP (2.1-2.2) and the IVP (2.2-2.3), with initial data wug

and vp, respectively. The following lemma provides v—independent bounds and other helpful inequalities for a
solution u to the IVP (2.1-2.2).

Lemma 2.2. Assume that p>1 and s > 1.
(1): If u is a solution of the IVP (2.1-2.2) with ug € H®, then for all t > 0,

t o<
Ju(, )22 + 02 l|ug (- )12 + 20 / / uzdads = |Juol 7> + o ||uosl|Z2, (2.4)
JO — 00
Ue € PR XRY),  and Jul,)]z= < C(@)]luollas

where C(a) = max{a?, o ?}.
(ii): If v is a solution of the IVP (2.2-2.8) with initial data vo € H?®, then

(D)l < Cla)llvollm: (- Dlize < Cla)||lvo ]l m (2.5)

and, if s > 2,
/oo (’ug(:c,t) + azvgz(m7t)>dm < e“voc]iz1 ¢ /oc (vgx (z) + azvgm(z)> dz (2.6)
| st 9)lnmds < 2vBal ol <U‘L - 1) - (27)

Remark 1. In the proof that follows. and frequently in the rest of the paper, intermediate calculations are
made that use regularity in excess of that assumed on the data and hence in excess of that which the solution
possesses. The final inequalities do not suffer from this defect, however. Such calculations are easy to justify in
the presence of a strong continuous dependence result. Simply regularize the initial data, make the calculation
securely for the resulting smooth solution, and then in the final inequality pass to the limit as the regularization
weakens to the identity. This standard procedure underlies much of the theory developed here, but we will not
constantly remind the reader of its invocation.
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Proof. The formula (2.4) is obtained by multiplying (2.1) by u, integrating over R x [0,¢] and integrating by
parts appropriately. To show that ug, € L?(R x R*"), multiply (2.1) by us, and integrate. To finish (i), it
suffices to remark that

a2 < 20l Ollzzllus( t)lize < C@)?|luolFn-

The proof of (2.5) is similar. To establish (2.6), multiply (2.3) by vz, and integrate over R to obtain
o

d oo
d—t/ (V2 (z,t) + &®v2, (x,t))dx = 2/ (VgVzzVP) (2, t)d2

< o 8) B / (02 (z, 1) + 0?02, (z, £))dz, (2.8)

—

which leads to (2.6) after integration over [0, t]. The inequality (2.7) follows by combining (2.6) and the estimates
[vz(-. 8)l| Lo < V2l[va(, )l vaa (s 8)llz2 < C(@)l|vollm lvsa(:, 8)l L2,
where the constants depending on a may be different from line to line.

In the following theorem, explicit estimates are established for the difference between a solution u to the IVP
(2.1-2.2) and v to the IVP (2.3-2.2). As a consequence of these estimates, u converges to v with the sharp rate
of order v if the initial difference is maintained at order v.

Theorem 2.3. Assume that p > 1 and s > 2. Let u be the solution of the IVP (2.1-2.2) with ug € H® and let
v be the solution of the IVP (2.3-2.2) unth wmatral data vg € H®. Then the difference w = u — v satisfies the
mequality

lwllZz + (1 + o®)wsllfe + o lwesliZs < e*® (JwolZa + (1 + a®)woslfe + o |lwoss|72) +v?e*PB(2),
(29)

for all t > 0, where wy = up — vo,

: o e 1o liwoll? |
A(t) = max{1,0?) (t + lolt + 6vZapmax{ o2 Iuol 5"} el o s (o= 72 - 1)) ,

and

B 5 Ilvo“’f’ﬂt
B(t) = aflvoll i llvoll > [ e ™= "~ 1]).

If we consider a one-parameter family {uf},>o0 of mtial data such that ||uf — vollgz = O(v) as v — 0 (m
particular of uf§ = vo), then for any T >0 and t < T

lw( )12 + 1+ a®)lwa (-, O)lI72 + @ |was (8|72 = OW?)
as v — 0.
Proof. The difference w satisfies

wi + wg + (WPUy — VPUg) — Vige — 0P Waqt = 0. (2 10)
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Multiplying (2.10) by 2(w — wss) and integrating over R yields

0

d L
aﬂmﬁrH1+JMwu%+anN%)+b/‘0&+w@hx

—oC

=2 /00 (W — Wy )Uggda — 2 /_o:o(w — Wap ) (WPws + (uP — vP)vy )dz.

— 00

The first term on the right-hand side of (2.11) may be bounded by

lw(, lIZ2 + llwas (-, 2117 +2”2/ Vi de.
—o0
Using the results of Lemma 2.2, there obtains
(o] o0
| wa = o )unta| < pruactiuolt’ ool Hus 0l | wda,
—00 —0o0

o0 1 o
Shalls [~ wdz+ Juoll [ wias

— 00

} / wuPw,dz| <
oo

[t = 07)une] < Bt ol s )l [ i

-0
oo

279

(2.11)

+ B max{ ol [oollfa Mos(, Ola | wida,

=00

and

o0
]/ Wz WP W dz
— 0

These estimates are combined to give

1 *° 1 o
< gl [ widot Sluall, [ uida.

— o0

%Y@gAmYm+Bm
where
Y(t) = lw(, )ll72 + 1+ ) lwe (-, )17z + o |weellZ2,
At) = max{l»a_z}(l + [luo % + 3p max{|luol %", llvol B Hiva (-, t)'lLoo)
and

B(t) = 21/2/1;32535(3:, t)dz

By Gronwall’s inequality applied to (2.12), there is derived the upper bound

Y(t) < <Y(0) +/Ot B(S)ds) oo Alryar

(2.12)

(2.13)

(2.14)

(2.15)
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which is (2.9} after reintroducing Y, A and B as in (2.13, 2.14} and (2.15), respectively, and using the bounds
in Lemma 2.2.

Next. attention is given to the zcro-dissipation limit of solutions to the initial- and boundary-value problem
(IBVP)

Up + Ug + UPUp — Vligy — 0% Uy = 0, (2,1) ERT x RT, (2.16)
u(0,t) = g1(t), t € R, (2.17)
u(z,0) = uo(x), z € RT, (2.18)

where p > 1 is an integer, v > 0 and o > 0 and the consistency condition g1(0) = uo(0) is always assumed.
Our approach is to compare the solution u of the IBVP (2.16-2.17-2.18) with the solution v to the IBVP for
the BBM-equation

Vg + Vg + VPV — 0PUggy = 0, (z,t) € RT x RT, (2.19)
o(0,6) = go(),  tERY, (2.20)
v(z,0) = vo(z), z € RT, (2.21)

in which g2(0) = vy(0).

The well-posedness of both the IBVP (2.16-2.17-2.18) and the IBVP (2.19-2.17-2.18) has been established
by Bona, Bryant and Luo (c¢f. [6,10]). The following result suffices for our purposes.

Proposition 2.4. Let T > 0, 1 < p < 4, ug € CZRT) N H?*(R") and g1 € C*0,T) with ¢:1(0) = uo(0)
(respectively, vo € CE(RT) N HARY) and go € C'(0,T) with g2(0) = vo(0)). Then the IBVP (2.16-2.17-
2.18) (respectively, the IBVP (2.19-2.20-2.21)) has a unique solution u such that, for any finite T > 0, u €
B2'(R*) N C([0,T); H2(RY)) (respectively, v € B3 (Rt) n C([0,T); HR")). Furthermore, the bound for
|[ul| g2 is independent of v for small v.

In Proposition 2.4 B! (R*) stands for the functions u defined on R* x [0, T] such that 88 u are continuous
and bounded over R x [0,7T] for 0 < 4 < k and 0 < j < [. The principal zero-dissipation limit result for
solutions to the IBVP (2.16-2.17-2.18) is as follows.

Theorem 2.5. Let T >0, 1 < p < 4, ug,vo € CZRT)NH2(R") and g1, g2 € C*(0,T) with 91(0) = uo(0) and
92(0) = v5(0). Consider the difference
w(z,t) = u(z,t) —v(z,t)

between a solution u to the IBVP (2.16-2.17-2.18) with data ug and g1 and a solution v to the IBVP (2.19-
2.20-2.21) with data vo and g2. Then for any t € [0,T],

lwlZs + (1 + 6®)wall3s + 0?lwee 32 < C1(8) [wolifs + (1 + 0®)llwoall3s + 0 lwoss 3]

+ Co(t)? + Csllgr — g2llcr 0,1y + Callgr — 9211210,
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where wg = ug — v, C1,Ca are functions of t and Cs,Cy are constants, all of which depend only on o, p, T,
luoll a2 flvoll a2, |g1llcgo,my and ||gzllcro, -

As a consequence, if {uf}u>0 and {g¥}v>o0 are families of initial and boundary data for which ||ug —vol gz =
O(v) and ||lg1 — g2llcr0,7y = O(¥?), as v — 0, then

w2+ (1 + ) lwel2 + 0P [lwae |72 = O(?)
asv — 0.

Proof. The difference w = u — v satisfies equation (2.10) with initial value up — vg. Upon multiplying this
equation by w — wg,, integrating over {0, 00) and integrating by parts appropriately, there appears

d . ) ) >
&(llwﬂiz +(1+ Oé2)i|'wg;|‘2Lz + a2|lwmh%2) + 21// (w2 +w?2,)dz (2.22)
0
= 21// (W — Wy )vgeda — 2/ (W — wgg) (UPuy — vPug)dx (2.23)
0 0
—w2(0,t) — 2v(g1 — g2)us(0,t) + (g1 — 92)* (2.24)
—2(g1 — g2)1w(0,t) — 202 (g1 — 92)w(0,1). (2.25)

The terms in line (2.23) may be estimated as in the proof of Theorem 2.3 and, due to the bounds for ||u|| g2
and ||v|| g2 (see Proposition 2.4),

oo o0
2U/ (W — Wy )Ugpda — 2/ (W — Wgz) (WPuy — vPv,)dz
0 0
oo
< () (Jwlde + (1 + o) fwallfs + 02 waall3s) +20° / v, dz (2.26)
0

for 0 <t <T, where Cs5(t) is a function of ¢ with dependence only on p, «, |luo|| 2, l|vollz2, ll91llcr(o,r) and
ligallcr o,1)-

For 0 <t < T, the temporal integrals in lines (2.24) and (2.25) are estimated as follows:
ot ¢
[ w20, < [ fun(Dleds
0 0

< [ s e hnet Dzt < 5 [ (sl + osal DIEs) dr,
=y /0 (61(7) — 220, 7)dT < 2T g1 — galleormy a2,
/0 (61(7) = 92(r))%d7 < Tllgr — 9212 0.19,

1 t
*2/0 (91 — 92)we (0, 7)dr < 2/|g1 —gzllc*l(o,T)/O lwe || 12 [|Wae || L2dT
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, , 1t :
<o = gallbiomy + 5 [ (hoslts + el
and

—2a2/0 (g1 — g2)wz:(0,8)d7 = 202(g1(0) — g2(0))w(0,0)
—20%(g1(t) — g2(t))w:(0,t) + 20z2/ (91 — 95)wzdT
0

. . , a2 t . .
<2071 — g2llco,ry (lull 2 + vl ) + 7/0 (lwalZe + lweslZ2)dr.

Integrating equation (2.22) over [0,t) and combining the outcome with (2.26) and the last set of estimates
for the terms arising from lines (2.24) and (2.25), the inequality

t t o0
D(w)(t) < Co(t) / D(w)(r)dr + 202 / / V2, dadr
[¢] 0 0
+ (Crv + C8)llg1 — g2llcr 0,1y + Collgr — g2llZ1 0.1 (227)

obtains, where I'(w)(t) = [lw(-, t)||22 + (1 + &®)||wz (-, 1)[|22 + &®||wgs(-,t)||22. The desired result follows after
application of Gronwall’s inequality to (2.27).
3. V—INDEPENDENT H*-BOUNDS FOR THE GKDV-BURGERS EQUATION

This section focuses on the IVP of the GKdV-Burgers equation

Ut + uPUy — Viugg + Uggey = 0, (x,t) e R x RT, (3.1)

u(z,0) = up(zx), z € R, (32)
where p > 1 and v > 0. The GKdV-Burgers equation and its dissipationless counterpart
Us + UPUL + Uggr = 0, (z,t) € R x RT, (3.3)

have been the subject of numerous investigations (¢f. Bona et al. [8], Kenig et al. [24,25]). There is an adequate
theory of well-posedness for both the IVP (3.1-3.2) and the IVP (3.3-3.2). The following results of Bona
et al. [8] and Kenig et al. [24] serve our purpose nicely.

Proposition 3.1. Let v > 0 and ug € H*(R) with s > 2.
(1): Ifp < 4, then there 1s a unique global solution u of (3.1-8.2) such that

u € C([0,T); H®), for everyT >0

and ||u(-,t)|| g1 s unaformly bounded wn t.
(2): If p > 4, then there 15 a To = To(|luollzr) > O ndependent of v > 0, and a unique solution u €
C([0,To); H?). If ||uoll g 15 sufficrently small, Ty may be taken to be 400 and the solution s global.
Moreover, for t > 0, u(-,t) 15 an H®(R)-function of its spatial variables and consequently u 1s a C*®-function

wn the domawn {(z,t): z € R, 0<t < Ty} where Ty =00 1n case (1) or wn case (2) of the data s small. In all
the above cases, the solution u depends continuously on ug wn the exhibited function classes.
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Proposition 3.2. Let p > 1 be an wnteger and s satisfy

s> 3/4, ifp=1;
s>1/4, fp=2;
s> 1/12, fp=3;

s>(p—-4)/(2p), p>4

Then for any ug € H*(R) there exists T = T(||uolla=) > 0 and a unigque solution w of the IVP (3.8, 8.2)
satisfying

u € C([0,T); H®).
Whenp=1ands>1 orp <4 and s > 2 or when up 1s small enough, the solution u extends globally in
time. In any event, u depends continuously on ug wn the exhibited function classes.

Remark 2. The situation for KdV-Burgers is different from that arising with BBM-Burgers in the following
respect. At least for the pure initial-value problem, the BBM-Burgers equation is globally well-posed regardless
of how large p is. It is otherwise with the (generalized) KdV-Burgers equations where the indications are that
large solutions may blow up in finite time if p > 4 (see Bona et al. [8], [9] and Bona and Weissler [20]) even
when v > 0

However, bounds on solutions of (3.1-3.2) which do not depend upon v seems not to have been derived. It is
the goal of this section to provide such bounds. More precisely, it will be shown that for each positive integer
k, there is a constant Cy depending only on [lug|| g+ such that the solution u to the IVP (3.1-3.2) obeys

luC, Ol < Cr

forallt > 01if p =1 or 2 and for all ¢ in bounded intervals [0,7] if p > 3, where T' < T™*, the existence time
for the solution in question. The proof is made via an induction argument. Attention is concentrated on the
cases k =1 and k = 2. When k > 3, the argument simplifies because, with k = 2 in hand, it follows that u; is
bounded, independent of ¢ in the relevant interval.

Theorem 3.3. Let p > 1 and uo € H'(R). Then solutions u to the IVP (3.1-8.2) for the GKdV-Burgers
equation have the following properties.

(i): Ifp € (1,4), then there 1s a constant C1 depending only on p and |[uo|l g2 such that for any t € [0, c0),
uC, Dl < Cr- (3.4)

(ii): If p > 4, suppose that € = ||ugl||gr s such that

4
, 4 4\ 7%
(1+pp)e®t% <1 and (1 + ppef) < <1 — 5) (;) ,

where pp = 2/(p+ 1)(p+2). Then for any t € [0,00), there 1s a constant Cy depending only on p and €
such that

u(-, ) r < Co.

Remark 3. These bounds are not only independent of v, but also uniform with respect to ¢, regardless of the
value of p.

Proof. For notational simplicity in the calculations here, references to the measures dz and dt are omitted when

we write integrals. First, recall that
oo t o0 oo
/ u? =j~21// / u? :/ u3. (3.5)
—oC 0 J— —co



284 J.L. BONA AND J. WU

Multiplying (3.1} by vz, — u?*1/{p+ 1) and integrating on ® x [0.¢] leads to

/:x; 9 2 O Lo ot x5 5
u, o ————— uP™ +2:// / U
e (P +2) /=x 0 Jox
oC t lo'e]
_ 2 p+2 2v / / p+1
= U UggeUP . 3.6
/_x e (p+1)( p+2)/ p+1Jo Jou (3:6)

This formula constitutes the base for our further estimates. Clearly, we have

/ w2 (a5, 8) < )5 uC, 02 < uoll 7 # ua(- £)] - 3.7

—oC

To simplify the presentation, define

€= |luolgr and o(t) = sup |jua(:,$)|| L2
0<s<t

Integrating by parts and using (3.5) gives

umup+1—=21/// wPu2 < sup |lu(-,s HLx//
0<s<t

p + 1
<@ sup [lu(, )75 lus ()" < 4 sup flug(-,s)175
0<s<t 0<s<t (3.8)
Putting (3.6), (3.7) and (3.8) together yields
» - o
0‘2(t) — 030'5(?5) + 2v / / uix < Cy (39)
J O —oc
for all t > 0, where
C3 = (1 + —zh—> 62+g and C4 = €+ ___?____62+p
(p+1)(p+2) (p+1)(p+2)

depend only on p and e. Formula (3.9) suggests a natural trichotomy.

(i) If p € [1,4), then £ < 2 and we can apply Lemma 3.4 below to inequality (3.9), whereafter the desired
result (3.4) follows.

(ii) When p = 4, we insist that € is such that

(1+~.—2_—_
p+1)p+2)

and then (3.8) implies o2(t) < (1 — C3)71Cy.

) 5 <1, e, C3<l,

(iii) For p > 4, if € is small enough that

4

4\ [ 4\
Cy<|1—~— —_— ,
! ( P) (PC:a)



ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES 285
and since o(t) is a continuous function of ¢, it follows from (3.8) that
o(t) < v(e), forallt>0,
where y(e) is the smallest positive root of
o2(t) — Cso % (t) = Cy.

The proof of Theorem 3.3 is thereby completed.

Lemma 3.4. Let P,Q and B < 2 be positive numbers. If Y > 0 satisfies
Y?-PYP <@,

then Y is bounded by
Y < max {(2P)2+ﬁ, \/QQ} .

A simple proof of this lemma is provided in [31].
We now proceed to the case k¥ = 2. A crucial step in establishing the uniform bound in this case is the

derivation of a particular integral identity valid for smooth solutions of (3.1-3.2). This result is the subject of
the next proposition.

Proposition 3.5. Let v > 0 (respectively, v = 0) and ug € H® with s > 2. Then the associated solution u of
the GKdV-Burgers (respectively, GKdV) equation with initial data ug satisfies the formula

/:’C [ (o) - e t)] dx””/ / eaodads = / m { 2.(2,0) - Su2ur(a, 0>] do
/ / {ﬁ ~1)(p — 2uuP® + gPUiuz”"l] dzds

+§V/ / [2uixu” - gp(p — 1)uiup“2] dzds,
0 J-oo (3.10)

for allt > 0 for which it exists.

Proof. We write [ [ for fo J=° and omit dz and ds for simplicity of reading and writing. The proof of this
proposition involves two steps. The first step is to derive the identity

/ M(a:t)+21/// mzacsdacds+5p//umu Pt

- [ @0+ - 0o [ [ue (311)

and the second is to establish that

/ [uZ,(z,t) — uluP(z,t)] +21///u.im + 2p//uxuf;zup’l
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:/:’"[ =(2,0) - ““p(xo\'—//{ p—1)(p - 2)ubuP? + pudu?~t

1
+ u// [2uizu” — §p(p — Dulur™?|, (3.12)
provided u is the solution of (3.1-3.2) with initial data uo.

The purpose of deriving these two identities is to use them jointly, but at the same time eliminate the troublesome
term
/ /uzuizup_l,

For (3.11), differentiate the GKdV-Burgers equation with respect to x, multiply the result by u,,. and
integrate over (—00,00) x [0,t], so coming to

oo o0
/ W2, (2,8) + 20 / / w2 = / w2 (2,0) +2 / / U (1P ). (3.13)
—o —o0
The last term may be treated as follows:
//szz(upuz)x = //u:cx:c(upuzz +pup_1ui)
1 _
= / Jtoar —p [ [umtrid),
= / /Uzu uP ! ——p(p~1) / /uiuzzup_Q
JoJ
1
= //uzu uP ! Zp(p—l)//(ui)zup_2
2 o1 L 1 2 Sup—3 14
_'2— Ug Uy U T Zp(p= )(p_ ) Uy W . (3 )

Equation (3.11) follows from (3.13) and (3.14).

after which (3.10) follows easily.

For (3.12), multiply the GKdV-Burgers equation by uzzzz + (uPus ), and integrate over (—oc,00) x [0, ).
After suitable integrations by parts, we obtain

oo r
/ uiz(xat)+21///u:2tmz+/ /(upuﬂi)ﬁ:ut
:/ u2,(z,0) +y//u§xu3”+pv//umuiu”“1. (3.15)
//umuiup“l and //(upux)xut

need further elucidation. First of all, note that

-1
//umuiup"l //(u YaUguP = ——//umu uP~? 2 //uiu”"2

In (3.15), the two terms
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//umuiup—l = —p—;—l-//uiup'z. (3.16)

On the other hand, it is clear that

//“puw)x“t ‘_// z)tup‘——//uupt+ //uu” Lag.

Use the evolution equation itself to represent u:, so obtaining

[ [erwn= =5 [ (2w - @0

f [ B[ [t [

while the last term in (3.17) can be further expressed as

P - -1, 1 _
—5//uiup lumzzp//uzuizup ! +—2—p(p—1)//u2uuu” 2

- 1 -
:p//uzuixup 1+§p(p—— 1)(p—2)//uiu” 3.
In summary, there obtains

//(upuz)zut =— %/_ [u2uP(z,t) — w2uP(z,0)] // 3,,20—1 //uiuzzup—l
+p//uzu uP™! p___(p—lgp—Q)//uzup_?’. (3.18)

Collect the estimates (3.15, 3.16, 3.18) and the desired identity (3.12) follows.
This completes the proof of Proposition 3.5.

and therefore

The v—1ndependent bounds in H? are now stated and proved.

Theorem 3.6. Let p > 1 and v > 0 (respectwely, v = 0). Assume that the matial data uo € H? and for p > 4,

that ||uol| g1 s sufficiently small. Then for all t > 0, the solution u of the GKdV-Burgers (respectwely, GKdV)
equation with data ug obeys

t oo
(e, ) 2 + 1// / w2, (z,s)dzds < CseCet, (3.19)
0 J—o0

for some constants Cs and Cg depending only on p, o and ||ug||gz. For p =1 or 2, we may take Cs = 0 and
thus the bounds are uniform wn both t and v.

Proof. The argument is first made for general values of p. Recall the already established uniform bounds

t oo
v / / 2z, s)deds + u( )12 < [[uolZa,
0

—00
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1 oo
v / / u2,(z, 8)dzds + |[u(-,t) |3 < Cr, (3.20)
JO —oC

for all £ > 0, where C7 depends only on p, o and ||upl|z:-

In outline, the argument is to combine (3.20) and the identity (3.10) in Proposition 3.5 to obtain the bounds
advertised in (3.19). Formula (3.10) implies the inequality

5 . 5 [
a0l +20 [ [ aentoo)dnds < fuoeale = 5 [ wrzte + 3 [ a0

+ o — 1) —2)//Iul” “tusl® + 50 [ [ 10 o
+ ?u//um|u|p + -g-up(p— 1)//|u|z’*2ug. (3.21)

But since |jul|ze < |jullp2||uz]|%2, it follows that for r > 2,

« —2 2 2 2
/ ual” < a5 lunllZe < Nuall 5 fuasll T

—o0

Using this relation with 7 = 3,4 and 5 in (3.21) yields

luae(, )72 < Cs + Co / [ T Ntz ey IS + ey )55 -, ) 147

()3 liza(, ) a]

+ V||uga (-, 5) i

where Cg and Cg depend only on p and ||uo|l g2. That is,

t o0 t
luge( )22 + 20 / / W2, (z,5)dzds < Cs + Cho / luzo (-, )| 2ods
0 — 00 0

for some C1p depending on p and ||Jug||g2 only. A standard Gronwall-type argument gives (3.19).

The case p = 1 and 2 are special because in these cases, when v = 0, there are higher-order invariant
functionals and these may be used to obtain (3.19) with Cs = 0. The case p = 1 is worked out here, but the
case p = 2 is entirely similar. The crux of the matter is to use rather than (3.10), the more specific identity

| [Bueten) - sutw (w6 + futa,0)]d
+ Z// / :cza:(w 3) + 6U(ZI3 S)Uiz(x, 8) + 3U2($, S)Ui(:{), S):l dxds
- /_oo [? 22(%,0) — 3u(z, 0)uz(z, 0) + %u‘}(m,())]dx

which holds for H2-solutions of the initial-value problem (3.1-3.2). This relation is obtained by multiplying
(3.1) by 43 + 3u2 — 6uugz, + 1—58umm, integrating the result over R x [0,¢] and integrating by parts suitably.
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This identity implies that

9 00 9 18 t oc 0
& us (z, t)dz + v ; ul . (z, s)dzds

—oC

i o0
< 6vju(,t)| L / / w2, (2, s)dzds + 3[lu(:, 1) | Lo flua (-, D)7z + Cu1,
0 —00
where Cy; depends only on the H?—norm of the initial data. Because of the prior results in (3.20), it follows
that
o0 i o)
/ u2_(x,t)dz + I// / u2__(z,s)dzds < 6C2 +3C3 + Cy; = 9C5 + C13
—o0 0 —oc
is bounded, independent of t and v, solely in terms of p, @ and l|ug|| gz only.
Attention is now turned to the inductive step which corresponds to the cases k > 3.

Theorem 3.7. Let p > 1 and v > 0 (respectively, v = 0). Assume that the initial data uo € H* with k > 3
and if p > 4, that ||luol| g is sufficiently small. Then the solution u of the GKdV-Burgers (respectively, GKdV)
equation with initial data ug is uniformly bounded in H*. That is, for any T > 0, there exists a constant Cy,
depending only on p, a, T and ||ugl| g+ for which

ol +v [ [ @8 wPaas < o (3.22)

forallt € [0,T]. If p=1 or2, Cy can be taken to be independent of T'.

Proof. The argument for k = 3 is representative. Multiply the GKdV-Burgers equation (3.1) by Ugzzezz and
integrate over (—o0o,00) x [0, t]; after integrations by parts, we have

oo o0
/ uim(a: t) +2V//uimz =/ uim(:v, 0) +2//u”uxummm.
—oo -0

Only the last term needs attention. Integrate by parts further to obtain

//upuzuzz:ca:wz = _//(upuz)zmmumzz

= -p(p - 1)(p - 2) //upﬁsuiuxzz + 7p<p - 1) //up_zuiuzmuzxx

9
+4p//up_1uizu:c:tz + 510//”&”_1%;“2”-

The last two identities enable us to argue successfully for the bound (3.22) as in the proof of Theorem 3.6.
The argument for arbitrary k is similar.

As in Theorem 3.6, for the cases p = 1 and 2, a more elaborate argument can be mounted which leads to
bounds that are independent of both v and t. The argument relies upon the hierarchy of conservation laws that
obtain in case v = 0. Briefly, for each k = 1,2, -- -, a sufficiently smooth solution of the KdV-equation (p = 1),
or the mKdV-equation (p = 2) satisfies a sequence of identities of the form

%Ik(u) - %Fk(u), (3.23)
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where, I and F} are polynomials in u and the partial derivatives 8Ju, which we write as u(; for convenience,
j =1,2, ---. In more detail, for KdV, I depends on u, d,u, ---, O%u and F) depends on u, d;u, ---, 85+2y,
Moreover, suitably normalized, I has the form

I (u) = 2ufk) + auu%k_l) +ee, (3.24)

which is a finite sum of terms of index k + 2 where the index of a monomial

Ugy) UGBy (3.25)
is
T 1 T
a; + = . 3.26
2otp 2 f S

The fluxes Fj have a similar form except that their general term, which is also of the form (3.25), has index
k + 3. The formulae in (3.23) are derived by multiplying the KdV-equation by a factor Ag(u), where Ax(u) is
a polynomial in u, %z, - - -, ¥(2x) composed of monomials of index k 4 1. In general, Ax(u) may be normalized
to have the form

Ai(u) = (—l)kU(zk) + ookt (3.27)

These facts follow directly from the original analysis of the KdV- and mKdV-conservation laws given by Miura
et al. [26].

When v > 0, the formula
Ag(u)(ug + uug + Ugge — Vigz) =0
may be put into the form

Ok (u) — Vugr Ak (1) = Op Fi(u). (3.28)
The second term on the left-hand side of (3.28) may be written as
— VU Ak (U) = —VUzy ((—1)k2U(2k) + 4+ auk“)
= 2[udsy) + Qulw)] + vB:Gi(u), (3.29)

where @y, is a linear combination of the other monomials of index k + 3. Integration of (3.28) with respect to
z over R, and after imposing zero boundary conditions on u, u,, ---, at £o0o, leads to the relation

oC

d >0 o
3 I (u)dz + 1// u?kﬂ)dx = 1// Qr(u)dz.

Integration with respect to ¢ over the interval [0, o] then yields

oc to oo
/ u%k)(a:, to)dz + 21//0 / u%kﬂ) (z,t)dzdt

= /_oo I.(g)dz — /_00 I (u(z, to))dz + U/o ’ /_00 Qr(u(z, t))dzdt, (3.30)



ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES 291

where o
Bl ) =Tu(uC,) = [ uly(at)da.

-0
The stage is now set for an induction on k. Assume that (3.22) is valid for all & < m and that Cy does not
depend on v and t. We then use (3.30) to show that, provided g € H™*!, then (3.22) is valid for k = m + 1.
As it is already established that (3.22) is true for k < 2, this will finish the proof. It suffices to bound the
right-hand side of (3.30) for ¥ = m +1, independent of v and ¢. By the induction hypothesis, there is a constant
C depending only on ||g||g= such that

t od]
lu(,O)lgm < Cp  and u/ / u?mﬂ)(a:, s)dzds < Cyp (3.31)
0 J—co

forallv,t > 0 It is easy to see that if g € H™*!, then [ I,41(g(z))dz is finite — a fixed constant independent
of t and v. Moreover, it is straightforward to determuine that all the terms in [*°_I,,.1(u(z,t))dz except the
top-order term [ ¢ 1 1y(2, t)dz are bounded by a suitable power of the constant Cr, in (3.30) (cf. Bona-
Smith (17}, §4) Thus [ Imy1(u(z,t))dz is bounded independently of ¢ and v. A similar conclusion may be
drawn about fot I, Qu(u(x,t))dzdt. Indeed, the only terms that might be troublesome are

t [ t o]
v / / wuf,,ydzdt and v / / U U,y ddt. (3.32)
0 J—-o0 0 J—oo

Neither of these gives trouble since ||u(-,t)||g2 is already known to be bounded, independently of v and ¢ on
account of Theorem 3.6, and so |ju(-,t)||r~ and ||uz(-,t)| L~ are bounded, independently of v and ¢. Thus the
terms in (3.32) are bounded by C1C% and C>C2,_,, respectively. Thus, for kK = m + 1, the right-hand side of
(3.30) is seen to be bounded, independently of ¢ > 0 and v > 0. The inductive step is completed and the desired
result follows.

4. ZERO-DISSIPATION LIMIT FOR THE GKDV-BURGERS EQUATION

The uniform bounds derived in Section 3 lead directly to the zero-dissipation limit results for the GKdV-
Burgers equation. It 1s shown in this section that for each nonnegative integer k, the solution of the IVP
(3.1-3.2) converges in H* to the solution of the IVP (3.3-3.2) with the sharp rate of order v. Our approach is
again inductive and the focus is on the cases k = 0 and k = 1, which correspond to the results in L? and H*.

The first result is the zero-dissipation limit in case k = 0.

Theorem 4.1. Let p > 1 be a positwe wnteger. Assume that vo and {uf},>o he m H?*(R) and consider the
dufference

w(z,t) = u(z, t) — v(z,t)
between a solution u = u,, to the IVP (3.1-8.2) with witial data uf and a solution v to the IVP (3.8-3.2) with

wmatral data vo. Let Ty be the mazwmal existence time for v. By Proposition 3.1, the solutions u = w, all exist
at least on the time wnterval [0,Tg). Then, for any T with 0 <T < Ty and t € (0,77,

t t t o0
(1 8) = v, 122 < elo PO ug g2, + Vz/o el Cl(T)dT/ v2, (%, s)dzds (4.1)

— o0

where Cy 15 a function of t with dependence on p, ||ug||gr and ||vo||g2 only In particular, of ||uf —vol|L2 = Ov)
as v — 0, then

lu(,t) —v(, )lLe = O)
as v — 0, unsformly for t € [0, T].
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Proof. The difference w solves the equation
wy + (UP — VP vy + uPwy — Vwgg — Wiy + Weze = 0. (4.2)

Multiplying (4.2) by w and integrating over (—oc, oc), we obtain

1d [ ©
= w?iv | wER=I+II+1I1 (4.3)
2dt | . o

where the three terms on the right-hand side may be estimated as follows:

o 1 oC ’/2 o0
I= 1// Wgg < —/ w? + —/ v, (4.4)
oo 2/ o 2 ) o
) -1
II = —/ (u? — VP )vpw = — Z/ (WP~ I0Iy, w?
p—1 .
<Y I (e [, (4.5)
7=0 —
and
oo P ]
r=— [ (w+vPow, =-3 ( i ) | @it
-0 ]:0 ] - 00
p—1
— ( p ) P=J P91y i +2
par NSV A 2 )
p-1 . ‘ o
<SP Bt (ol [ (16)
=0 \J / j T 4 J—OO

Noticing that
[va ()l < [[ve( OIS w15
and using the results in Theorem 3.3 and Proposition 3.2, we obtain from (4.5) and (4.6) that

II < Cs(t) / w?, IIT < Cs(t) / w?, (4.7)
for some functions C3 and C3 which depend on p, ||uol g: and |lvg|| g2 only. Combining (4.3), (4.4) and (4.7)
gives
d [ o < 9 2 [T 2 < 2
T w” +2v wy < v vz + Ca(t) w, (4.8)

where C4(t) is a function of ¢t which depends only on p, ||ug||z: and ||vg|lz2- The desired result (4.1) follows
from (4.8).

Remark 4. It seems likely that the result of Theorem 4.1 actually holds for any p of the form m/n where m
and n have no common prime factors and n is odd, provided we interpret y'/™ as that branch of the n-th root
which is positive for y > 0.
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A familiar bootstrap argument allows us to extend the convergence results to higher values of k. The
v—independent H*-bounds play an important role mn obtaining this general result.

Theorem 4.2. Let p > 1 be a positwe wnteger. Assume that {uf},>0 and vy le i H® with s > 2 and suppose
that there 1s a constant Cs such that ||uf — vo|lgs < Csv as v — 0. Then for any wmteger k with 1 < k < s—2,
the difference u — v between the solution u = u, of the IVP (3.1-3.2) unth wmatwal data ug and the solution v of
the IVP (3.3-3.2) wnth wmtwal data vy has the property

lu(,t) —o(, )|l gn < Csv (4.9)

unaformly for 0 < t < T, where Cs 15 a constant depending only on Cs, p, T, l|uollz+ and ||vollgs and T > 0 1s
any fized time less than the existence time Ty for v.

Proof. The proof of (4.9) is sketched for ¥ = 1. The proof of (4.9) for ¥ > 2 is similar. Differentiate the
equation (4.2) for the difference w = u — v with respect to z, multiply by w, and integrate over (—o0, 00) X [0, £]

to obtain
o o] [ee]
/ w2 (z,t) +21///w2m :/ w2(z,0) +21///vl.mwaC
—00 —00

- //(u”wz)zwz — //[(up — VP vy Wy
Further integrations by parts show that

//(upwz)zwm = =//upwzwmz; = g//uzup_lwi
//[(up — Pzl wy = p//(up_luz — P o v w, +//(u” — VP Vg Wy
:p//(up_1 S +p//u”’1vmw§ + //(u” — VP )Ugpwy.

It is known from Section 3 that the H?-bound on u is independent of v. This in turn implies v-independent
L*-bounds for u and u;. Thus, the terms above may be bounded as follows:

2V/_o:ovmxwz <v? /_Zvim +/_c:w3,-
[ @ < Bl 0l [ [ u?

1
1P~ " 0 ) (- 8) | e lwl|wz]
> v L // wl|w

p—1

N RS

—
—
—
S
[

-
<
S
A
N’
S
S
g
8
VAN
s

&

<

[P " R 02) (1) || e (w? +w?)
. u U L //w w

[ [t < u(;%)(-,t)nm [ [w

[ @ = vyoezn sgu(up-l-ﬂvam)(-,t)um [ [+ u).

N
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Combining these estimates, applying Gronwall’s inequality and using the zero-dissipation limit result in L?
establishes (4.9). This completes the proof of the theorem.

5. ZERO-DISSIPATION LIMIT FOR THE EQUATION WITH MORE GENERAL FORMS
OF NONLINEARITY, DISPERSION AND DISSIPATION

This section is concerned with the more general IVP

du+ (P(u))y + vMu — (Lu), =0, (x,t) e RxRT, (5.1)

u(z,0) = up(x), z € R, (5.2)
where v > 0, P: R — R is of the form

p+1
Pu) = Zakuk for some constants ag, 1 <k <p+1, (5.3)
k=1

and L and M are Fourier multiplier operators defined in terms of the Fourier transform by

Lu($) = a(©)a(e),  Mu(é) = BE)a(), (5.4)

respectively. The symbols « and  are even, positive and are presumed to satisfy the growth conditions
Cile < a() < Cofél, (5.5)
Csl€]” < B(§) < Calél’, (5.6)

for some numbers C; > 0,1 <7 <4, where 0 < A< pand 0 <~y <o.

The goal of this section is to establish zero-dissipation limits (the limit as v — 0) of solutions to the IVP
(5.1-5.2). Guided by what has gone before, the approach is to compare the solution to the IVP (5.1-5.2) with
the solution to the IVP for the corresponding equation without dissipative effects, namely

O + (P(v))g — (Lv)z =0, (z,t) € R x RY, (5.7)
v(z,0) = vo(x), z €R. (5.8)

The well-posedness of the two initial-value problems (5.1-5.2) and (5.7-5.8) was developed by Saut [30] (see
also Abdelouhab et al. [1]) and the following propositions will serve our purpose. In what follows D(L'/2) C
L?(R) denotes the completion of C§°(R) in the norm induced by the inner product [+, ] defined by

fu, ] = /R AE)BE)AE + / (€)A(E)A(E)de.
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Thus D(L'/?) is a Hilbert space and it follows from (5.5) that
H*?  D(LY?) ¢ HM?. (5.9)

Proposition 5.1. Assume that the symbols o of L and 8 of M are positwe, even, satisfy (5.5) and (5.6),
respectwely, and that P 1s of the form (5.3) with

A+vy>0 and p<2(A+7v-—o0).
If ug € D(L'/?), then for any T > 0, there 1s a solution to the IVP (5.1-5.2) such that
u € C([0,T}; D(LY?)) n L*([(0, T); D((LM)'/?)).

Proposition 5.2. Assume that the symbol « of the operator L 1s positive, even and satisfies (5.5), and that P
15 of the form (5.8) wnth 1 < p < 2X. If vo € D(LY?), then for any T > 0, there emsts a v € C([0,T]; D(L/?))
solving the IVP (5.7-5.8). Moreover, v 1s unique and vy € L (R x (0,T)) of A > 3.

In additron, of vo € H*(R) unth s > 3/2, then there 1s T* = T*(||lvo|lms) such that v € L*®([0,T*); H?).
Moreover, the correspondence between wnitial data and the associated solution 1s an analylic mapping between
the displayed function classes.

Remark 5. In Saut’s original paper, solutions were obtained as weak*-limits of solutions of the evolution
equation with a strong parabolic regularization. Consequently, the function class obtained was only L*°([0,T;
D(L?)). In (1], a limiting procedure was developed that featured strong convergence, and hence solutions
were inferred to lie in C([0, T'); D(L'/?)), and, moreover, they were shown to depend continuously on the initial
data. Using the techniques of Zhang (see [33]), the analyticity of the solution map may be adduced.

To establish zero-dissipation limit results, we need v-independent bounds for the solutions to the IVP (5.1-
5.2) . These are obtained in Theorem 5.3 below, following the developments of Saut [30].

Theorem 5.3. Assume that the symbols oo of L and B of M are positwe, even and satisfy (5.5) and (5.6),
respectwely, and that P s of the form (5.3) with

Ad+v>0 and p<2(A+v—o0).

If ug € D(LY?), then a solution u to the IVP (5.1-5.2) unth watial data ug 1s bounded as follows. For any
t>0,

/ a(§)la(g, t)*de + V/ / a(§)BE)[a(g, 7)*dédr < Cs + Cevt
R 0 JR

where Cs and Cg are constants depending only on |[uol| p(r1/2)-

Remark 6. As an important consequence of this theorem and the Gagliardo-Nirenberg inequality, for A > 1,
there is inferred to exist a constant C7 for which

1-1 1
lullzee < Crllullye ™ [ull a2

which shows there is an L°°-bound on u which is independent of the dissipation coefficient v.

Proof of Theorem 5.3. For notational convenience, [ will mean the spatial integral [ _. Multiplying (5.1)
by u and integrating over R X [0, t] yields the analog

t
|2 +21//0 /uMu < [luo| %2 (5.10)
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of (3.5). Multiplying {5.1) by P(u) — Lu and integrating by parts over R x {0,¢] gives

[umu=2 [r@ v [ o = [wmo -2 [xwo o [ [ e (5.11)

where A’(u) = P(u) and A(0) = 0. The individual terms in (5.11) are now estimated. First, notice that
pt+1

o] < gt [ <35

and since p < 2(A+v — o) < 2, it follows that (k — 1)/X < p/A < 2. Hence, after applying Young’s inequality
to (5.12) and using (5.5), there obtains

‘/A(u

For the integral [ P(u)M (u), it suffices to consider the leading order term

p+1
k+1—=——

|IUI|HA/2, (6.12)

<Cs+ ~|1u|[Hm <Cyt2 / o)Al (5.13)

where C is as in (5.5).

/upﬂzwu:/“/m(f)ﬁ(ﬁ)@(&) < N Hlgerallullmors

The Gagliardo-Nirenberg inequality implies that

lullzor2 < Collullya ™ loul 5

However, the term [[u? || go/2 requires a little more effort. The following standard lemma is helpful.

Lemma 5.4. If f1, f2, -+, fm lie in HP(R) with mp > (m — 1)/2, then their product f1fa--- fm is in H2(R)
for any o <mp—(m—1)/2 and

Ififz- - fmllze < \fillmell foll e - - | fonllare-

Since v+ A — o > 0 and p < 2(y + A — o), which is to say,

p+o
2

[
A— —
<7+ X

there is an s > 0 such that

pto

5 <(p+l)s<y+r—-=

g, (5.14)
or what is the same, 0/2 < (p + 1)s — p/2. Applying Lemma 5.4 gives
[wP | pgore < [lullB,

and then the Gagliardo-Nirenberg inequality leads to the inequality

lull s < Crollulla el Il"*“m
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In summary, we obtain the inequality

1 23(1:+1)?+0
Vupﬂ“ Mu| < CuuullHj;T*; . (5.15)
From (5.14), the exponent in (5.15) has
2
slp+1)+o <2
T+ A
and thus another application of Young’s inequality yields
" CiCs, 1 N
[ aau < 0+ CR R s < Ot [ BN (5.16)

where C; and C3 are as in (5.5) and (5.6).

Collecting the estimates (5.11, 5.13) and (5.16) and using the L2—bound in (5.10), there obtains

¢
Jo@renra v [ [ a@perate nPasr < Cs + Can
for some constants Cs and Ce depending on |[uo|| p(r1/2)-

These preparatory results set the stage for a proof of the following zero-dissipation limit result.
Theorem 5.5. Assume that the symbols oo of L and 3 of M are positive, even and satisfy (5.5) and (5.6),
respectively, and that P is of the form (5.8) with
A>1, A+y>0 and p<2(A+v—o0).
Let ug,vo € D(LY?). Consider the difference

w=u—7v

between the solution v = u, to the IVP (5.1-5.2) with initial data uo and the solution v to the IVP (5.7-5.8)
with initial data vo. Then as long as v has the properties

T
v e L*([0,T); D(M*?)), and A(T) =/ e (-, T)|| e dT < 00, (5.17)
0
for some T > 0, then
sup [lu(t) — v(, )22 < 34O |lug — w25 + CravteCrsAM (5.18)
0<i<T

where C13 and Cha depend only on [luol| p(ri/2y and |lvoll pr1/2)-
The condition (5.17) is fulfilled when either X\ > 3, and then it holds for all T > 0, or when vy € H® for some
s > 3/2 and then it is valid for some T = T*, where T™* is as in Proposition 5.2. If {u§}.>0 is a one-parameter
family of initial data for which ||ug — vol||2. = O(v) as v — 0, then it follows from (5.18) that
sup_lu(,t) —v(t)[72 = O(v)
0<t<T

asv — 0.
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Proof. The difference w = u — v is a solution of the equation
Oyw + P'(w)wg + [P'(u) — P'(v)jvy — (Lw)z + vMw + vMuv = 0. (5.19)

Multiplying (5.19) by w and integrating over R leads to

2dt /lw|2 /Pl(u)w'wx /[P’(u) — P'(v)Jwug — /w(Lw)I +V/wa+,,/wMU —0.

Since « is positive and even, L is self-adjoint and so

[wtw. =i [earoras =o

For the remaining terms, argue as follows. First,

v [wrre <2 [aonr+ [seiar,

and also
/P/(u)wwm = Z(k+ Daks1 /(w + v)Fww, = ZZ(k+ Dajs1 ( k ) /wj+1vk—ij
k=0 k=1 =0 J
k—j j+2, k—j—1 2
== ZZ(k + 1)ags+1 Y (wJ v vw) w*.
k=1 j=0 J+

As a consequence of Theorem 5.3, the L°°-bound on u is independent of the dissipation coefficient v. It then
follows that

| r | r
U P’ (w)ww, gclsnvx”m/ w?.
Similarly, it is seen that
|p+1
‘/[P'(u) P’ (v)|wvg Zkak/ 1 P D,
|k=2
p+1k 2
Zkak/(uk i— 21)—71) )w2 <016”'Uz |L°°/ w?

k=2 j=0

Collecting the above estimates and letting Y () = [ |w(2,t)|>dz, there appears

Y + I//wa < V/B(f)ﬁlQ + Cis||vz|l LY.
The desired result (5.18) now follows from Gronwall’s lemma.

The convergence rate obtained in Theorem 5.5 can be improved if the solution v of the dissipationless equation
is smoother, as the following theorem attests.
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Theorem 5.6. In addition to the assumptions made in Theorem 5.5, we further assume that vo € D(LY?)NH*
with s > max{3/2,0}. Then for any t < T*,

u(-,t) = v(, )72 = O(?) (520)
where T™ is the mazximal existence time for v.

Proof. According to Proposition 5.2, the solution v of (5.7-5.8) remains in H® over [0, 7*). Thus for any t < T*,

v [wmn] <% [s@nr+ 3 192 < Stoll + 5 [

Consequently, the following inequality emerges:

d
a/]w!deﬂtZu/wa < /|w|2dx+u2|]vﬂgs +C’14|Isz|Lw/iw|2dx,
and this leads to the conclusion (5.20).

We illustrate the application of the zero-dissipation limit results obtained here for the equation in general
form in the context of several well-known wave models. We start with the generalized KdV-Burgers equation

Ut + Uz + UPUL — VUgy + Uggz = 0.

In this example, the symbols of the operators are a(¢) = B(¢) = £2. The exponents A\ = u = v = o = 2 satisfy
the assumptions of Theorems 5.5 and 5.6. If p < 2(A+v —0) = 4, ug € H* and vp € H!, then by Theorem 5.5

lu,t) = v(, )2 = O(vF).
If further vy € H?, then Theorem 5.6 indicates
lu(,t) — v(-,t)| 2 = O(v),

where v is the solution of the corresponding equation without the dissipative term. This reproduces part of the
results in Section 4.

Attention is now turned to the version of these types of wave equations originally proposed by Ott & Sudan [29]
and Ostrovsky [28]. They have the form

o0

t
up + uPug + Upas + Zp.v./ Ly’)dy =0 (5.21)

T oo T—Y

and
o0
U + UPUL + Ugge + VU + UV sgnl(y ) vy, t)dy =0, (5.22)
y — x|

respectively. These two equations with p = 1 describe ion-acoustic waves in a plasma with Landau damping.

The symbols of the operators are o(€) = €2 and B(¢) = |¢] for (5.21) and «(€) = €2 and B(¢) = 1+ /€]
for (5.22).
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The growth exponents are A = p =2, vy =0 =1 for (5.21) and A = = 2, v = ¢ = 1/2 for (5.22). These
fall within the range of applicability of Theorems 5.5 and 5.6. That means, if p < 4, up € H' and vg € H?,
then the solution of (5.21) or (5.22) with initial data ug converges in L? to the solution of the corresponding
equation without dissipation,

Vg + 'Up'Ux + Ugzz = 0: 'U(O) = ’UO('),
and the convergence rate is of order v%. If further vo € H 2, the estimate for convergence rate may be improved
to order v.
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