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LOCAL SOLUTIONS FOR STOCHASTIC NAVIER STOKES EQUATIONS*

ALAIN BENSOUSSAN1 AND JENS FREHSE2

Abstract. In this article we consider local solutions for stochastic Navier Stokes équations, based on
the approach of Von Wahl, for the deterministic case. We present several approaches of the concept,
depending on the smoothness available. When smoothness is available, we can in someway reduce the
stochastic équation to a deterministic one with a random parameter. In the gênerai case, we mimic
the concept of local solution for stochastic differential équations.
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1. INTRODUCTION

The usual approach to stochastic Navier Stokes équations is related to proving the existence of strong or weak
global solutions (namely in any compact interval of time), see références [1,2,4], and related papers. Strong
solutions are obtained in very limited situations. In gênerai, one relies on a background deterministic theory
which is the variational theory, see références [7,8]. As in the deterministic case, one considers a Galerkin
approximation method, and by a fondamental property of the nonlinear term, it drops out in writing the energy
equality. Therefore estimâtes can be obtained. Compactness is then necessary to proceed. In the stochastic case,
the compactness holds only in spaces of probability measures related to the trajectories and not in functional
spaces related to the trajectories themselves as in the deterministic case. Nevertheless, this is sufficient to prove
the existence of weak solutions. An other approach to Navier Stokes équations is that of Von Wahl [9]. It relies
on abstract parabolic équations and obtains more regular solutions, but only locally (on a small interval of
time). Such solutions are also unique. The objective of this paper is to use such a deterministic background to
construct solutions to stochastic Navier Stokes équations locally. In cases, which to some extent are reducible
to the deterministic case (namely stochastic intégrais of Ito type can be removed) then we can proceed in a way
similar to that of Von Wahl. A slight improvement is however used in comparison to the deterministic theory,
where solutions which are differentiable in time are possible. Because of the stochastic context, only solutions
which are hölderian in time are possible hère.
To treat équations of Ito type, we approach differently the concept of local solutions, in a way which is usual
in the stochastic context, for ordinary stochastic difïerential équations (see [5]). The method can also be used
to treat local solutions for deterministic équations, but it is not needed in the deterministic context. We show

Keywords and phrases. Navier Stokes équations, stochastic équations, abstract parabolic équations, Ito intégral, local solution,
Ito équation, Stokes operator, Functional équation, Mild solution, Random time.
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242 A. BENSOUSSAN AND J. FREHSE

that it fits perfectly to Navier Stokes équations of Ito type, and provides a resuit of existence and uniqueness
of a strong local solution.

2. FUNCTIONAL BACKGROUND

2.1. Notation

Let Ö be an open domain of Rn with regular boundary dö. Let V be the space of infinitely differentiable
n-dimensional vector fields u(x) on O with compact support strictly contained in 0, satisfying divu(x) = 0.
We call H the closure of V in (L2(O))n, and dénote by P the projection from (L2(O))n into H. We also call

V = {uin (

We consider the linear operator

Au = -PAu

with

D(A) = (H2(ö))nnV.

Note that A is a positive self adjoint operator in H and one has

(Au,u) = \\u\\2
v.

Considering the fractional powers A1, with 0 < 7 < 1, one has the properties

c(H2^(O))nnH , 0 < 7 < l . (2.1)

with continuous injection. Moreover

and

{Hls{O))n H H C D(A^), ^ < 7 < 3 < 1, s ̂ . (2.3)

Also

(H2^(O))n HH = D{A^), 0 < 7 < - . (2.4)

4
For the proofs, we refer to [9]. The operator A is called the Stokes operator, and —A générâtes an analytic semi
group, denoted by e~At. More preciseiy one has the properties

A ) - 1 ! ! ^ - ^ — , i î eA>0 (2.5)
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(2.6)

Note that if ƒ e H and

Au = f

then there exists an element TT € H1 (O) uniquely defined up to a constant such that

-Au + DIT = ƒ.

The function ir is called the pressure.

2.2. Auxiliary results

We first recall a useful resuit. We consider the intégral

tl>(t)= (2.7)

We note C^([0, T]; H) the space of functions of time with value in H, which are Hölder with exponent (3 , with
the norm

,T],H)= sup \g(t)\+ sup
{t£[0,T]} {t,t'6[0,T]}

then we have the

Proposition 2.1. If g e C&(%T]\H), then one has

with the estimate

where the constant c does not depend on (3,

Proof.
Note first the formula

The function g(t) - e~Atg(t) is clearly in C°([0,T]; H). Moreover

- 9{t)) as

Thanks to this estimate it is thus sumcient to prove the continuity in time of the function
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But for 0 < t < T - h, one has

Ae-A(t+h-s i:
Jo

Jt

>-g(t + h))-Ae~' - g{t)))ds.

The first intégral is estimated by

In the second we write the integrand as

(e~Ah A^ - g(t)) - - g(t))

and for s < t , it is easy to see that it converges to 0 in H as h —> 0. Moreover, thanks to the Hölder contimiity
of c/, we can bound the norm of the integrand by a function of s not depending on h , which is integrable. One
may then apply Lebesgue's Theorem to conclude that Aip(t) belongs to C°([0,T]; H) and

Next one writes

— dr i f
Since ij)(t) belongs to D{A), we can pass to the limit in the right hand side, as h —> 0 , to obtain

Thanks to the previous estimate, we can conclude the proof of (2.8).

Corollary 2.1. We have also

with the same estimate as (2.8).

Proof.
One can write for 0 < t < T — h

•

(2.9)

/

t+h

A1

The norm of the intégral in the right hand side is estimated by /ip||y||co([o,r];if)- T n e norm of the second term
is estimated by frp||A0||co([o,T];iï) and the result follows. •
Note also the result, whose proof is obtained by similar methods.
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Proposition 2.2. If g € C°([0,T];iT), then one has

with the estimate, valid for 0 < ö < p

where the constant c does not depend on p} or on 5. For ö = 0, one should use the estimate

(2.11)
' J' } p

We then proceed with properties of the vorticity operator. The vorticity operator is defined by the formula

B{u) = P{u.Du) (2.12)

which makes sense at least for vector fields u such that u. Du G (L2(ö))n. We want to prove the following
important result

Proposition 2.3. Assume n < 6. Let

/1 s n \
(2.13)

then B(u) maps D(A1 p) into H and one has the estimate

\B(u) - B(v)\ < cflA1-"^ + |i41-'v|)|41-p(u - v)\ (2.14)

Proof
Set 7 = 1 — p, then

(\ 1 n
l>7>max^,i + -

We first check that if

then

<j>.D?pe (L2(O))n

and

Indeed, we can find Qi such that

n qi V n
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Therefore

~2qi > 2 ~ ~n

and

1 _ 1 1 1 27-I
2q2 ~ 2 2q~i > 2 n

By Sobolev embedding, we then have

C W1'2

but

which implies (2.14).
Now we can assert that if

then

and from (2.1) it follows

\P(<f>.Dil>)\ < c |

Then (2.14) follows easily. D

Remark 2.1. In [9] it is proven that

\B(u) - B(v)\ < c(\Au\ + IAVDIA1-^ - v)\ (2.16)

which is a less good estimate than (2.14). The improvement is minor in the deterministic context, although it
simplifies the proofs of [9]. More importantly, it is very useful for the type of équations we are going to consider
in the sequel.

3. LOCAL SOLUTION OF AN ABSTRACT PARABOLIC ÉQUATION

3.1. Setting of the problem and statement of results

We consider a function <j>{t) with values in D(Al~p) such that

")) (3.1)
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Note that the fonction

a{t) = — sup [A1-^^)!
P Q<s<t

is continuons in t on [0,T0] and increasing. Let T be defined by

T = T0, i fc t7(r o )<l , .
T = min{0 < t < To\ca(t) > 1}, if ca{TQ) > 1 { }

where c is some constant related only to those appearing in (2.14) and in (2.6). We shall designate by the same
notation c such constants. We then state the following

Theorem 3.1. Assume (3.1), then there exists a unique z such that

2£CH[0,T];iOnC0a0,T];L>(A)) z1 + Az + B{z + </>)= 0, Vt e [0,T] z(0) = 0. (3.3)

Remark 3.1. If ca(T0) < 1, then we can take T = To. So we can solve (3.3) globally on [0,T0], provided the
data is sufficiently small.

Remark 3.2. In f act, if we cannot solve (3.1) on [O,Tb] , it means that there exists T <T0 , which will be the
explosion time of |JA

1~p2:(t)| on [0,7b], namely

limi î f l A 1 - ' ^ ) ! = +oo (3.4)

and the équation can be solved on [0,T],\fT < T. Of course T > T. This will be apparent from the proof.

Proof of Theorem 3.1

By définition of T, we have

ca(T) < 1. (3.5)

We define a map from C°([0î7
1];D(i41~p)) into itself as follows

C(t) = T(r,)(t) = ~ f e-^-JflfoW + cP(s)) ds. (3.6)
Jo

Majorizing the norm of the intégral, and using the properties (2.6), (2.14) we obtain the estimate

sup I^- 'CWI^I— sup \A1-"r,(t)\2 + ~ sup lA1- '^)!2 (3.7)
0<t<T ^ P 0<t<T * P ö<t<T

with a convenient définition of the constant c.
Set

MT = {rjeC°([0,T]]D(Al-e)),r](0)=0i sup lA 1"^)! < c— sup lA
0<t<T P 0<t<T

Then, it is easy to check that T maps MT into itself. We can proceed with the itération

zn+l(t) = - f e-*<*
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starting with zo(t) = 0. By construction

sup \Ax-pzn{t)\ < c— sup \A^
0<t<T 9 0<t<T

jp

and also

^'(Wt) - w*))l <cfpjo M_^±M_füMll ds.

From these estimâtes, it follows, as well known, that

The function z is the unique solution of

ft
z(t) = - / e~A{t-s)B{z(s) +<£(s))ds. (3-8)

STEP 2:
We prove hère that

(3.9)

Indeed, the function B(z(t) 4- <f>(t)) belongs to C°([0, T]; Z)(y41 p)), so we can rely on Proposition 2.2, to obtain
the resuit.

STEP 3:

From Step 2 , and the properties of 5 , it follows, taking account of the assumption on 0, that

B(z + <j>)eCx([0,T];H), A = min(/3,tf), V<5 < p.

Using then Proposition 2.1, we deduce that

and also

The proof has been completed. D
Continuation Argument:

Suppose T < To, then we can extend a little bit the interval in which one can solve (3.3). Indeed, recall first
that

sup \
0<t<T

We can write
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and z\ is the solution of

z[ + Azi + B(z1 + <Êi) = 0, zx (0) = 0

with

So we get the same équation, with a new function <j>. It follows that we can define z±(r) on an interval [0,0]
such that

c-[f-+ sup l ^ - ^ T + r)!]^! .
p TP 0<r<Ô

We can proceed in the same way, defining successively smaller and smaller intervals, in which the équation can
be extended. The process can be continued as long as |A1~pz(t)| can be bounded.

4. LOCAL SOLUTION OF A FUNCTIONAL PARABOLIC ÉQUATION

4.1. Setting of the problem and statement of results

We introducé now a functional dependence in the équation (3.3): replace <f>(t) by <j>{t\y) as follows

with the assumptions

sup |J4
1^(r?1(s)-772(S))| (4.2)

in which

k(t) increasing, k(Q) = 0, k(t) -> 0, as t -> 0. (4.4)

We also assume

^(O;i/) = » )eI>(i4 1 -^ ,V»7 (4.5)

Note that it follows from (4.2), (4.3), (4.4), that

II</>(-;»?)IICO([O,T];.D(AW)) < K(T) + &(T)|Mlco([o,r|;ö(AIL-<>))- ^4-6)

The problem we are going to look at is formulated as follows

y(t)=z(t) + <j>(t;y) , .

z' + Az+B(y)=0, 2(0) =0 { '

and we look for solutions with the regularity

zeC1([0,r];tf)nC°([0,T];JD(A)), j / e ^ ^ T ] ; ^ 1 ^ ) ) . (4.8)

We shall prove the following
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Theorem 4.1. Assume (4.1-4-5), ^nd that T satisfies

c—(K{T) + l)2 + k(T){K(T) + 1) < 1
//> (4-9)

c—{K{T) + l)2 + k(T)(K(T) + 1) < 1

then there exists one and only one solution of (4-7)-

Proof of Theorem 4-1

STEP 1:
We prove uniqueness. Note that from (4.9), one has

k{T) < 1. (4.10)

Consider two solutions y1^1 and y2,z2. Set

~ 1 2 1 2
y = y -y , ^ = ^ -z .

We have

5(t) = f e-A^\B{y\s)) -B(y2(s)))ds
Jo

y{t) = z{t) + (pfoy1) - </>(<;y2).
Setting

0(t)= sup |y(5)|
0<s<t

we deduce easily the estimate

(l-k(T))0(t) <C f 0(s)ds
Jn

and thus the uniqueness follows.

STEP 2:
We define a map from C^([0, T]; DiA1"?)) into itself as follows. Pick r/ G C^([0, T]; D(A1~^)) such that

sup
(

then it follows from (4.6) that

sup l A 1 " ' ^ ; r?)| < i^(T) + k(T)(K(T) + 1).
0<t<T

We next have from (4.9)

c—(K(T) + k(T)(K(T) + 1)) < c~(K{T) + l)2 < 1
P 9

and thus also
Tp

c— sup \A1~p<f>(t]T])\ < 1.
P o<t<T
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Therefore we can apply Theorem (3.1) to assert that there exists a unique solution

X G ^([0,T]; H) n C°([0,T];D(A)) n C*([0,T];D{Al~"))

of

<t>(t;v)) = 0, x(0) = 0.
We then set

which belongs to Cl3{[0,T};D(A1~p)). The map is the following

From Theorem 3.1, we can assert the following estimate

sup \A f

0<t<T
}x(t)\ <

rpp

c—
p

sup
0<t<T

Recalling previous estimâtes, it is easy to convince oneself, that thanks to the choice of T, one has

sup I
0<t<T

Thus considering the set

sup l
0<t<T

we see that T maps A4T int o itself.

STEP 3:
Consider the itération

yk+\t)=T(yk)(t)

or more explicitly

yk+1(t) = zk+1(t) + <Kt;yk) u u )

(zk+1Y + Azk+1 + B(yk+1) = 0, zk+1(0) = 0 l j

with

y°(t) = ï/o. (4-12)

We deduce

/" '^ 'yL-/ (^ t ) ) ld, (4.13,
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So one is led to an inequality of the form

fl 0(s) fl g(s)

which implies

8(t) < K'{T) f 9{S) as. (4.15)
J0 \l — S) r

Therefore we can write

\A1~p(zk+2(t)-zk+1(i))\< K'(T) ^ , V—x; ~^s'y ^1 ds (4.16)

and thus also

,k+1)-ó(t:yk))\+K'(T) I ' " ^"'" ' ^"'"'"ds. (4.1'(T) f
JQ

Using the assumption (4.2), and setting

(f)k(t)= SUp \AX p(yk+1(s) — yk(s))\
0<s<t

it easily follows from (4.17) the inequality

An itération shows that

<r(t) < {k(T))kK"(T).

Thus

sup IA1-V+ 1(s) - y*(*))l < (fcCT))*^"^).
0<s<T

Since k(T) < 17 the series converges and thus

"))• (4-18)

STEP 4:
We prove here an estimate with respect to the Hölder norm. Going back to the fonctions x, C associated with
77, and recalling the estimate (2.8) in Proposition 2.1 and Corollary 2.1, we can assert that

P)) < c\\B(C)\\c°([0>T\',H) + C— \ \B(()\ \C0([O,T];H)

therefore also

(4-20)
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We can replace in the left hand side ||XIICP([O,T];D(AI-P)) by \\x\\cP([otT];D(Ai-p))-
Finally, using (4.3) we deduce

We know that

hence from (4.21), it follows

or

where in particular

1 j (i - c Ç(j f (T) +1))

From (4.9), we have fc'(T) < 1. Applying this relation to the séquence yk, it follows

from which it follows that

Therefore the limit y belongs also to C^([0,T]; ̂ (A1"^)). The proof has been completed.

|1C||C^([0,T];D(A1 P)) | [C| |C0([0,T];D(A1^))- (4.21)

P)) < K(T) + K(T)(K(T) + 1) -

+ c(K(T) + l)2 + c y ||C||c/»([olri;i>(Ai-p))(^(r) + 1)- (4.22)

Therefore we arrive at

5. S T O C H A S T I C É Q U A T I O N S

5.1. Model wi th ex te rna l noise

We consider a probability space fi, A, F, a filtration Tl and an T1 m—dimensional Wiener process w(t). Let
g(t) be an adapted stochastic process, with values in (D(AP ))* such that

];H),^.s.,0<p',p-p'>^- (5.1)

Consider next a stochastic process G(t), with values in (D(A£ ))m , such that

A£'G(.) G L2r(ü, A, P; L~(0, T; F)), P + ^'>^ + \-

Let finally

yoi-F0 measurable with values in Z^A1"^0), po < P-
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We then define the stochastic process

= e-Aty0
JQ

(5.4)

We state the following

Proposition 5.1. With the assumptions (5.1-5.3), the process <f>{t) has a.s. trajectories in C^([Q,T]\D(A1~P))1

with

/3 < p - po, 0 < min(p - p' - - , p + e' - — - -)

Proof.
STEP 1:
Writing

it follows

hence

STEP 2:
Set

then

Write

{lhl'

/

t+h
e~A{t+h-s)g{s) as -h A

/

t+h
s)nfa\ Ao\ I / Al — p+p^—Aty+h — s) A-

9(s)as\ — \ A e A

Jt (t + h - sy-p+p'

and from Hölder's inequality we get
< chp-p'-î

Turning to the second intégral, we pick any f3 < p — p1 — ̂ , and write

\Ax-p{e-Ah -l)X{t)\ = hP\ [ h1-^A1^e-AhTdr [ A1

JQ JQ

-<*+*>' *)A-r'g(s)ds\

Using again Hölder's inequality we get

(5.5)
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So X{t) is a.s. Hölder with exponent (3 < p - p1 - K
STEP 3:
Set

Y(t)= / V
Jo/o

Then, we are in the framework of Appendix 1, with

and

A-P$(s) = Al-p-^G{s) = A£'G{s)

with /? — 1 — p — e'. Applying Theorem 7.1 of Appendix 1, we get immediately that Y(t) is a.s. Hölder with
exponent strictly smaller than p + ef — \ — ̂ .
The proof has been completed. D

It is thus possible to take in équation (3.3), the stochastic process </>(t). Then

is the mild solution of the stochastic équation

, y(0) = yo (5.6)

and is defined as an adapted process, with trajectories in C^([0,T]; D(A1~P)), with (3 as in (5.5). We can take
as minimal interval of définition the stopping time T such that

T = inf{t |c- sup \Al~p<j>(s)\>l} (5.7)
P 0<s<t

provided, of course, that the assumptions (5.1),(5.2)hold for any compact interval.

5.2. Model with smooth functional dependence

We introducé now a stochastic process <j>(t) with functional dependence, namely

4>{t] v) = e~Atyo + f e-A^~s^g(V)(s) ds + / * e-A^-^G(V)(s)dw. (5.8)
J J

The functional dependence is assumed to be smooth, which means that we are able to perform an intégration
by part in the stochastic intégral, so that we have, in fact

</>(£; rj) - e~Atyo + f e~A^-^T(7])(s),w(s) ds + G(r])(t).w(t) (5-9)
Jo

with the définition

= g(r,)(t) - AG(V)(t) - G(r,)'{t) (5.10)
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with t he assumptions

sup | A 1 ^ G ( 7 7 y ( t ) | + |^1-£G(7?)(O)| <K + K sup [A1'^^ e<p (5.11)
0<t<T 0<t<T

r(r?2)(i))| < K sup \Al-'(rn(8) - r?2(s))| (5.12)
0<s<t

- G(r,2)(t))\ < K sup ^ " ^ ( s ) - r?2(s))| (5.13)
Q<s<t

sup \A-£g(0)(t)\ <K. (5.14)
0<t<T

The constants may depend on e, 0̂, but not on T. Set

(3<p~e (5.15)

and assume

2/o G ̂ ( A 1 - ^ ) . (5.16)

We then state the

Lemma 5.1. We have the following conséquences of assumptions (5.11-5.14)

sup \Al-eG(ri)(t)\<K + K sup \Al-pri(t)\ (5.17)
0<t<T 0<t<T

sup \A~£r(r})(t)\ <K + K sup |A :-^(^)| (5.18)
0<t<T 0<t<T

sup \A-£g{ri)(t)\<K + K sup lA1'^)]. (5.19)
0<4<T 0<i<T

Froo/.
Since

G ( T 7 ) ( * ) = G ( » 7 ) ( O ) + lt

Jo
then (5.17) is an obvious conséquence of (5.11). Since p > eywe also have

sup lA^GfoX*)! <*: + # sup lA1

0<t<T 0<t<T

Now
A"£r(0)(i) = A-e^(O)(t) - A^£G(0)(i) - A-£G(0)'(t)

and using (5.14), (5.17), (5.11), we have

sup \A~£Y(O){t)\ < K
0<t<T

which together with assumption (5.12) implies (5.18). Using (5.17, 5.18) with (5.11), we obtain (5.19). The
proof has been completed. D

Lemma 5.2. For the the process <f>(t]Tj) defined by (5.9) the assumptions (4-2), (4-3) are satisfied with the
following values ofk(t), K(T)

k(t) = Kf(l + tp~£) sup \w(s)\ (5.21)
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K(T) = cWyoWo^-^) + K'\\w\\c^>T],Rm) + K'iTr-se ^

where c:K
f are constants, with Kf depending on j9,p,e, but not on T.

Proof. Let

= f
then from the définition (5.9) we can write

e~ *

The first term is estimated by c\\yo\\D^Ai-P+i3y To estimate the second one, we rely on Proposition 2.2, see
(2.10), applied with

and p changed into p — e. We can then assert that

where c dépends hère on ƒ?, />, e. Hence

Next

But, as easily seen

Collecting results, and recalling (5.11) and Lemma 5.1, we obtain the value of the constant K{T), to verify the
assumption (4.3). In fact, there is no term invoiving explicitly |M|C£([O,T];£>(A1-P))-
Let us now check (4.2). It is an easy conséquence of the assumptions (5.12), (5.13). We obtain the value (5.21)
for k(t). The properties of the Wiener process imply that a.s. k(t) is increasing, vanishes at 0 and tends to 0
as t -> 0.
The proof has been completed, So we can state the following: D

Theorem 5.1. We assume (5.11-5,14)- Then there exists one and only one mild solution of the stochastic
Navier Stokes équation

dy + (Ay + B(y))dt - g(y)(t)dt + G(y)(t)dw(t), y(0) = y0 (5.23)

on the interval [0,T], where T is the rondom time defined by the first condition (4-9), where k(T),K(T) are
defined by formulas (5.21), (5.22). The trajectories of the process y belong a.s. to C^([0,T]; D{A1~P)) with
(3<p-e.

Proof.
It is a direct application of Theorem 4.1. A mild solution is a solution of the intégral équation

y(t) = e-Aty0 - f e-A^-^B(y(s))ds + f e-A^-s\g(y)(s)ds+ G(y)(s)dw(s)). (5.24)
J J
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Setting

<j>(t;y) =e~Aty0+ f e-A^s\g(y)(s)ds + G(y)(s)dw(s)) (5.25)
Jo

and considering

<t>(t;y) (5.26)

we are in the framework of Theorem 4.1. Thanks to Lemma 5.2, all assumptions are satisfied. We do not need
to use the second condition (4.9), because there is no dependence in ||7?||c0([o,T];i)(yi1-p))) m the condition (4.3).
The proof has been completed. D

Example
Suppose we take

= - F
a Jo

= g(r,{t)) (5.27)

^ M (5.28)

and we assume the following properties

1 (5.29)

s' < e (5.30)

then the assumptions (5.11-5.14) are ail satisfied. In fact, (5.30) is more than necessary. It was made in order
to verify (5.11). That is to say. to estimate A1~£G(rj)f(t). This last assumption was a compromise in order
to estimate at the same time A1~eG{rf){t)^ needed to estimate A~€T(rj)(t)^ and A1~pG(rj)f(t)1 used to check
that that G(r}) belongs to C^([0, T]; D{A1~P)). Hère, because of the form of G(77), in particular thanks to the
présence of the operator the semi group e~At in the intégral, we can verify more directly the conditions of
applicability of Theorem 4.1. It is enough to replace (5.30) by

e' < e (5.31)

and we state the following

Theorem 5.2. We assume (5.27, 5.28, 5.29, 5.31). Then there exists one and only one mild solution of the
stochastic Navier Stokes équation

dy + (Ay + B(y))dt = g(y(t))dt + ( - / e~^^-s^a(y(s)) ds)dw(t), y(0) = y0 (5.32)
a Jo

on the interval [0,T], where T is the random time defined by the first condition (4-9), where k(T),K(T) are
defined by formulas (5.21, 5.22). The trajectories of the process y belong a.s. to C^([0,T]; D{A1~p))} with
P<p-e.

Remark 5.1. The model (5.32) can be seen as taking account of the memory of the state y(s),s < t, with
a discount factor. It is convenient to use as a discount factor, the semi group related to the operator A. As
a —> 0, we recover A~la(y(t)).
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6. FORMULATION OF A LOCAL SOLUTION

We formulate in this section the problem of finding a local solution for a stochastic Navier-stokes équation.
We consider a process y(t) with values in D(A1~P), such that

y(t A aM) = e-AtA°MyQ - / e
Jo

ptAaM
 rtAaM

+ / e~A^° ^g(y(s))ds+ e'A^tAa -s^G(y(s))dw(s), MM (6.1)
Jo Jo

where

aM = inf{0 <t<T: \Al~py(t)\ > NO + M} - (6.2)

We make the following assumptions. There is given an underlying probability System Q,A<> P, with an m
dimensional Wiener process w(t) , and let

Tl = a — algebra generated by w(s), 0 < s <t.

The operators A, B are of course those of Section 2.1 and (2.12). We assume in addition that

\A-p'(g(u) - g(v))\ < K\Al-p(u - v ) | , 0 < pf < p (6.3)

\Ae\G(u) - G(v))\ < KlA'-^u - v)l 1 > e' + p > \ (6.4)

and

yo is deterministic |A1~py0| = No < oo. (6.5)

Our objective is to prove the following

Theorem 6.1. We assume (6.3, 6.4, 6.5), then f or each T we can construct an increasing séquence of stopping
Urnes aM < T, and a process y(t) defined on [0,â)7 where

à =T aM.

The process y(t) is adapted, is a solution of (6.1,6.2), has a continuous modification with values in D(A1~P)}

which is Hölder with exponent strictly smaller than min(p — p\ef + p — ̂ ) . The solution is unique in the sensé
that two solutions y(t),y*(t) verify

a.s. y(t)=y*(t), Vt< a.

Moreover, if â <T, then
^ î o o , ast]â.

Proof
We begin by constructing the process yl(t) which is the solution on any finite time interval [0, T] of the équation

-At [ f e-A^-^g(y1(s))ds+ f
Jo Jo

= e-Aty0 - [ e - ^ - ^ + i ^ O O ) ^ + f e-A^-^g(y1(s))ds+ f e-A^-^G{y\s))dw{s). (6.6)
J J J
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We use Appendix 2 to solve this équation, see Theorem 8.1, and (8.1) for the définition of I?JVO+I- Note that
condition (8.7) holds for r = +oo. So we know that there exists a unique process yx{t)^ defined on any interval
[0, T], which has a continuous modification with values in D(A1~P), which is Hölder with exponent strictly
smaller than min(p — p', e/ + p — | ) , and satisfies (6.5). We then define the stopping time

a1 = inf{0 < t < T\ I ^ - V l > ̂ o + 1}. (6-7)

One has

l ^ - ' î / V ) ! < *b + 1 (6-8)

and we set

î/ffi=yV)- (6-9)

Using again Appendix 2, we look for y2 to be the solution of

y2(t) = Ele-^-^+y^J*] - f\s>ale'A^^BNo+2(y
2(s))ds

Jo

+ [ ns^e-A^-^9(y
2(s))ds+ f ns>ale-A^-^G{y2(s))dw(s). (6.10)

Jo Jo

The process y2 is well defined on any finite interval of time [0,T], and enjoys all the properties stated for y1

except that the continuity and Hölder continuity hold for

We define the stopping time

a2 = i n f { 0 < t < T\ [A1"py2\ >N0 + 2}< (6.11)

and set

yaz = y\a2). (6.12)

In gênerai, suppose we have defined ykj<Jk
}yak} then we define y^1 by solving the équation

yk+\t) = E[e-A^^+
y<jk\^\ ~ f ns^ke-A^-^BNo+k+1(y

k+1(s))ds

+ f Tls>ake-A^^g(yk+l(s))ds+ f Hs><Tfce^t-s)G(2/
fe+1(s))dt(;(s) (6.13)

Jo Jo

and we set

ak+l - inf{0 <t<T\ \Al-pyk+l {t)\ > N0 + k + 1} (6.14)

^+ 1=/+V+ I)- (6-15)

We have constructed the séquence of stopping times ak. We then construct the process y{t) as follows

= yk+1(t), Vt&[ak,ak+1]- (6.16)
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Let

* =î °k.
The process y(t) is defined on [0, â). It is a continuous process, since on a switching point afc, whenever ah < T,
one has

y(ak)=yk(ak)=yak=yk+1(ak).

It is also Hölder continuous, with the same exponent as the processes yk. Clearly, by construction,

ak = inf{0 <t<T\ \A1~py(t)\ > NO + k} • (6.17)

Let us check that the équation (6.1) is satisfied, with M = NQ + fe. Note that, for 0 < s < a1, one has

BAfc+ifo1^)) = Biy1^)) = B(y(s))

and thus one has

rtAa1

Jo
rtAa ^ rtAa ^

Jo Jo

In particular,
i i i

i fa i fa i r

Jo Jo Jo

Similarly, one has, for t A a2 > a1,

y(t Aa2)^t
tAa2 rtAa

2 /

rtAa2

Combining the above two relations, and using Proposition 7.1, we obtain

r

y(t A a2) = e-AtA° yQ - /
Jo

rtAa2 r
+ / e-A^A"2-^g(y(s))ds + /

Jo Jo

rtAa2

This can be carried over to obtain (6.1).
Let us show the uniqueness. Indeed, consider two solutions y(t), y*(i), and let afc,cr*'fcî be the corresponding
exit times

ak = inf{0 < t < T\ {A1'^^ > N0 + k}

a*'fc = inf{0 <t<T\ l ^ - V K H > iVo + fc}.
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y(t AakA a*>k) - y*(t A ak A a*>k) = - / e'A^k^tk"HBNo+k(y(8)) ~ BNo+k(y*(s)))ds
Jo

ptAakAa*'k f

+ / e-A^k^'k-sHg(y(s))-9(y*(s)))ds+
Jo Jo
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We can write

ftAcrkAa*>k

For t < Ti, sufficiently small, we can proceed with a contraction argument, as in Theorem 8.1 of Appendix 2.
This will prove that

y(tAak Aa*>k) - y*(t A ak A a*>k), te [0,Ti].

The argument can be reproduced on [Ti, 2Xi], and so on . So we obtain

y(t AakA a*>k) = y*(t A ak A a*'fc), t € [0, T].

Necessarily
ak = a*'fc

and

à = a*.

From

and t < ay we can let fc —» oo, and obtain, from the continuity of trajectories

y(t) = y*(t), a.s.

Finally, assume à < T, then ak < T, which implies

|^1-"2/(cxfe)| = iV0 + k.

Therefore

oo, a s t î * .

The proof has been completed. D

7. APPENDIX 1

We are concerned hère with the study of the stochastic convolution

Y{t) - f e-A^-s^(s)dw{s) (7.1)
Jo

where $(£) is an adapted process such that A~&&(t) belongs to H for 0 < /3 < | , so with values in (D(A^))*.
We shall make the following assumption

E sup 1,4-^(5)1^ < +00, / ? + J i < I / ? > o , r > 0 (7.2)
O<S<T 2r 2

so in particular
r > 1.
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We follow hère Da Prato, Zabczyk [3], with some compléments. One of the difficultés in studying the process
Y(t) is the dependence in t inside the intégral. For any fixed t, it is an ordinary stochastic intégral , but moving
t forbids to apply the standard properties of stochastic intégrais. For example Y(t) is not a martingale. We
begin by checking the following estimate

Theorem 7.1. With the assumption (7.1), then one has

(t QY ( ( ) )

E\Y(t) - Yis)^ < Cr(E sup \A-^{a)r){^^r-f——-—, 0 < s < t (7.3)

for any e such that

and the constant CT dépends only on r. The process Y(t) has a continuons modification which is Hölder with
any exponent strictly smaller than | — /? — ^ . Moreover, for any e as above, one has also

[E sup \Y{t)t) <Cr[E sup \A-^(a)\2r) —— —^ — — • (7.5)
V o<t<T } \ o<a<T J (1 - 2(e + /3))â(26:r-1)1"^

Proof
Proof of estimate (7.3):

Take 0 < s < t. We can write

ptpt

Y(t)-Y(s)= /
J s

By the norm inequality

(E\Y(t) - Y(s)\2r)£ < (E\ [
Js

and by the Burkholder-Davis-Gundy inequality, see I. Karatzas, Shreve [6] one has

{ ! Cr (E{ f Ke-^-'î - I)e-A^s-"^{a)\2 da)' N *"

In i i , we write

and thus, by using the estimâtes on the semi group,

h<CT

<Cr (E sup |A-/?$(a)|2r

\ s<a<t (1 - 2/9)4
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which we may also majorize by

h <Cr [E supsup \A*{*)\) ( \
0<C7<t / (1-2/3)2

with any e satisfying (7.4).
We turn now to I^- We first write

(a) = (t - s) ƒ dfle-^^*-
Jo

r1

= (t- s)£ / d6(t - sY
Jo

and thus

Thus

T (̂ T
Introducing the term A"'9 as above, we obtain

and flnally

h < Cr(E sup * 2 ) ^

Adjusting the constants we get

The estimate (7.3) follows immediately.
We then use the Kolmogorov-Centsov Theorem, see [6], to conclude that Y(t) has a continuous version which is
Hölder with exponent strictly smaller than s — ~, and therefore any exponent strictly smaller than ~ — j3 — ^
is fine.
We turn now to estimate (7.5). Again the difficulty is that we cannot use the usual martingale estimâtes. One
way to proceed, following Da Prato, Zabczyk [3] is to make use of the identity

rt

= / (t- s)£~l(s - <J)~£ ds, Va < t, 0 < e < 1. (7.6)

Then we can write obviously

/ '
Jo

f
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and from Fubini's Theorem we dérive the formula

Y(t) = ̂ ^ [\t - sY^e-W-'^is) ds (7.7)
^ Jo

with

* ( s ) = ƒ (s-ff)-ee-A(a-ff)*(a)du;(CT). (7.8)
Jo

We can then dérive from (7.7), making use of Hölder's inequality

o<t<T ^

: • sinTre / f1
 2r

~ r "" \ Jo
recalling the condition 2re > 1. Next, we have

pt
E\9{t)\2r = E\ / (t-a)~£e-A(t-a)$(a)<

Jo

ƒ
/

(* - a)"2£ |e-A( t-CT)$(a)|2 dcr

< CrE sup

and then
pT Tr(i_2(e+/3)) + l

E / |^(i)|2rd^<CrE SUP |/-^^M2r^f \$(t)\2

Jo
Collecting results, we obtain easily (7.5). The proof has been completed. •
It is important for the following to introducé random times, with respect to the filtration T1 generated by the
Wiener process in relation with the process Y(t). More precisely, let r , f be two random times such that

0 < f < r < To

where To is deterministic. We want to consider the quantity

e-A(T-s)${s)dw(s) (7.9)

where the difficulty stems from the présence of r inside the intégral, and not just as an end point of the
intégration interval Setting

*r ïr(s) = Hf<a<r*(s) (7.10)

we know that Q^.T{s) is still an adapted process, and we may try to mimic the usual stochastic intégral by
setting

YrlT= [ e - ^ r " s ) ^ T(s)dw(s)
Jo

(7.11)



266 A. BENSOUSSAN AND J. FREHSE

but the process e~A^T~s^f,r(s) is not adapted. So (7.11) cannot be defined as a stochastic intégral. Of course,
since the process Y(t) is well defined, we can still consider

rt
Y(t) = / e-A(t-s)^>f,T(5)d^(s) (7.12)

Jo
which is perfectly well defined, and then set, as a définition

Yf >T(w) = Y(T)(U). (7.13)

But, this définition is not sufrlciently convenient, as it cannot be expressed as a stochastic intégral. In this
context, formulas (7.7), (7.8) are very useful. In particular, we have

y_

with

^ Jo

f'TK ' ~ Jo K ~ ' f'TV ' K } ^ ' '
and (7.14, 7.15) make perfect sensé. Note that, among other things,

psAr

JsAr

and the random times appear only as end points of the intégration interval. The formulas (7.14, 7.15) will
provide the convenient définition of YT,T, although we shall keep the writing of the right handside of (7.9), since
it is not only mnemonic, but also compatible with the manipulations that we expect from such a writing, as we
shall see now. In particular, we want to check the

Proposition 7.1. The following formula holds

fT + To pT /"T+TO

f ° e-A(T+T0-s)3>(s)dw{s)=e-AT0 [ e-A(T-s)${s)dw(s)+ f ° e-A(T+T°-s)$(s)dw{s). (7.17)
JT Jf JT

Proof. We first notice that, by using standard properties of stochastic intégrais, if we define for deterministic
numbers 0 < t < t

psAt

#(£, t, s; w) = / (s - a)-ee-A(s-a)$(a)dw(<r) (7.18)
JsAts At

then we have a.s.

*f,r(5)(o;) = 9{T(U>),T(U>),SIW). (7.19)

We next take note of the relation, valid for any 0 < t < ty and to > 0

/•t+to rt
/ (t + to-s)e-1e-A^t+to-s^(t,t,s;u)ds = e-Ato / (t - Sy-1e-A(t-s)y(t,t,s;u)ds. (7.20)

Jo Jo
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Indeed, expressing the leffc hand side of (7.20) with (7.18), we have

rt+to
/ (t + to - s)e~1e~A^t+to~s^*(fï £, s; UJ) ds =

Jo

/ (t + to — s)£~1e~A(t+t°~s\ / (s — <r)~ee~A(s~(T^<ï>(a)lIî<a<tdw(o~)] ds
Jo Jo

and using Fubini

where we have used the fact that the integrand vanishes, for a > t, and of the identity (7.6). So (7.20) is
obtained.
In replacing, for any LO, t by f, t by r, and to by TQ, where TQ is another random time, and recalling (7.19), we
can write

/*r+r0 pr

Now, to check (7.17) means

Y~ , — p - A T û y . _i_ y (7 99\
ÏT,T+TQ — 6 J:r,r i^ XT,T-\-TQ \i •££}

or from (7.14)

- T Q pT

\ ' ~r ' 0 ^) ^ ^JT-I-TQ \ ^ / O.S — c I ^7 o j c Mf •j-.xi / ^-S

JO
/•T+To

_i_ / fn-_i_-Tv, _ o^—ip—^( r+To-s)vi> fq'irlQ f 7 O ^

Jo

But it is easy to check that
^T,T+T0 ^TjT+T'O ^T,T

and thus (7.23) amounts to (7.21) and thus is proven. The proof has been completed. •
We can state also the somewhat natural

Proposition 7.2. The variable YT,T is TT measurable

Proof.

Let B be any Borel set of H. We must check that

{Yf^r GB}n{r<t} <z TK (7.24)

However considering formula (7.14), if r < t, we can also write

Yr,r = / (r - s)£-le-A^-s)^fyT(s)Hs<r ds
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and the integrand is, for each s7 T
s measurable, hence also J^ measurable. Therefore the intégral on the right

handside is !Fl measurable. Hence (7.24) is obtained. The proof has been completed. O
Now from (7.13), we can write

E\Y^T\2r <E sup \Y(t)\2r

0<t<TQ

and making use of (7.5), we obtain

(E\YrtT\2r)^ <Cr l E sup \A-P$(a)\2r) = ^ j—j- ?EZ[£ . (7.25)

Consider finally the pröcess

ptAr

Y(tAr)= / e-A{tAT-s)$(s)dw(s) (7.26)
Jo

where r is a random time. Then we have the

Proposition 7.3. The process Y(t A r) has a continuous modification which is Hölder with exponent strictly
smaller than ~ ~ (3 — £.

Proof Let 0 < s < t, we know from Proposition 7.1 that

ptAr

Y(t AT)-Y(SAT)= / e-A{t*T-a)${<T)àw(a) + (e-
A{tAr-sAr) - I)Y(s A r).

JSAT

By the norm inequality, we can write

ptAr

(E\Y(tAr)-Y(s/\r)\2r)^ < (E\ / e-A{tAT"a)^(a)dw(a)\2r)^
J SATSAT

A{thT-sr-T) - I)Y{s A

We can write, using (7.6)

ftAT
 e-A(tAr-.)$(a)du;(CT) = !EZ[£ /"*AT

JSAT K JSAT

tAT A(tA) !EZ[£ / A T _ ey-^A^T-e^aAT(e) de

with

From Hölder's inequality, we dérive

S

Next
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<CrE suP \
0<a<t

and then

Collecting resuit s, we get

SUP

0<a<t

j
 x [E sup |

) 1 - * V o<a<t

We turn to ƒ2 ; which we express using

p s A T

'\ T ) — ƒ \S /\ 7~ U ) \& J. )& Mr I (7 j Q.U

K Jö

with

Then

Using Hölder's inequality we obtain

9(0)= / (6-a
Jo

f

5 C c 2r

It follows that

/2 <
 s m 7r£ \ _ — £ i _ [ E l \ ^ ( 0 ) \ 2 r d 0

K £f V Jo

Also

2r /̂  f6 \A~Pi

which, combined with the previous estimate, yields

7T e' VTT £f \ o<a<s J (2r(£-£')-lV-l

Adjusting the estimâtes for I\ and I2, we obtain easily

• -Ç, (± _ Q\2re' fr(l-2j3-2e'

jB|y(t A r ) - Y(s A r ) | J r < Cr(- ) ^——^—{E sup
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Let then piek

< 2 ~~^~ r
and choose £,e' such that

then from the Kolmogorov-Centsov Theorem again, we obtain the desired property. The proof has been com-
pleted.

D

8. APPENDIX 2

8.1. Statement of the problem and results

We consider a Lipschitz bounded approximation of the vorticity operator B, as follows

BM{U) ~ B(V>)[ÏÏ-{\AI-PU\<M} + (M + 1 — |A1~pii|)lI|M< |^i-pu |<M+i}] (8.1)

then as easily seen

\BM{u)\ < C ( M + 1)2 (8.2)

\BM(u) - BM(v)\ < c(M + l ) 2 ^ 1 " ^ - v)\. (8.3)

We next consider functions g(u),G(u) defined also on D(Al~pu), satisfying

\A~P'\g{u) -g(v))\ < KIA^P^U-V)^ 0 < pf < p (8.4)

\A£' (G(u) - G(v))\ < K\Al-p(u - v)l 1 > sf + p > i . (8.5)

Let us consider a probability system f2, Ay P, with an m dimensional Wiener process, and let

ft = a~ algebra generated by w(s)i 0 < s < t.

Let r be a random time, with

T < ïo determinist ie. (8.6)

We consider a random variable

yT is TT measurable , {E\Al-pyT\2r)^ < oo (8.7)

with

£'+p>l + h' (8'8)
We are interested in the following équation

pt

Jo
pt nt

Jo Jo ~
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We want to prove the following.

Theorem 8.1. We make the assumptions (8.1, 8.4, 8.5, 8.6, 8 7, 8.8), then there exists a unique solution of
(8.9), such that

\£
; sup \A1'py(t)\2r ) <C[(1 + M '

and

y(t) is an adapted process, y(i) —

has a contmuous modification with values in D(Al~p), which is Hölder wzth exponent stnctly smaller than
min(p — p' ,e' + p — g ~~ 2f)-

Proof. Let for T < To, HT be the Banach space of processes z such that

| | |z| | |r = [E sup IA1 pz(t)\zr ) < ex».
\ 0<t<T /

Consider for ( e HT, the map

+ f1

Jo S~T M

+ f Ks>re~A^9(Ç(s))ds + f tts>re-A{t-s)G(a$))dw(s).
Jo Jo

We first check that z G HT- Indeed, from martingale properties

E sup [A1"

Therefore

f E sup [A1

Jo "

We note that

sup
0<t<T Jo P

We next have

0<t<T
p | f Us>TAl-^e-A^-^g(as))ds\2r = £ sup | /
<T Jo 0<t<T Jo

E SUÜ ' 7 1 T AL-pn-A{l-s) „(/•(„WA^Ytr _ JJI „ „ ^ I / 1T . /( -L-P+P' «--A^t-sj / | -p ' rt/
r/-/p„^^^ «|2r

^ 7 ( l + s u p
P - P 0<t<T
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Therefore, from the norm inequality, we get

sup | f tts>rAl

<t<T JQ
<

Y(t) = [ n^rA
JQ

0<t<T

Finally, setting

and

we are in the situation of (7.1, 7.2) of Appendix 1, with

Hence, applying estimate (7.5), we obtain

SUp \Y(t)\2r) <Cr,p,e<T*+£-3
0<t<T /

^^j ( 1 + (E sup l
P~P \ \ 0<t<T

sup |
0<t<T

1 + (E sup
V 0<t<T

Hence z G HT-
Let us show that T is a contraction. Indeed, piek C1? C2?

Then we have

zl(t) - z2{t) — - f jIs>Te~^^"s(5M(C1(s)) - BM((2(s)))ds
JQ

rt rt

JQ ~ JQ

Hence, it follows

\A^{z\t)-z\t))\2r\
Q<t<T
sup |A1-"(z1(t)-2!2(t))|2'-yP < (E sup | /*ïïs>TA1

0<t<T J \ 0<t<T Jo

E sup | /
0<t<T 70

E sup
0<t<T

II + III.

Then from the assumptions

I<c{M + l)2— (E sup
P \ 0<t<T

^

\s)) - G(C(s)))dw(s).

P
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Similarly

II<cK -(E sup \A1~p(Ct
x(t) ~C2

P ~~ P V o<t<r
Then. using again Appendix 1, with

and the saine value of j3 as above, we obtain

; sup \A^{C[t)-c
0<t<T

So we hâve obtained

where

2
and C dépends on ail constants p. p1\ef

} M, K^ To- Taking T such that

Ci < 1

we obtain that T is a contraction in the space HT- Hence, we obtain a unique solution of (8.9) in TÏT- We can
extend such a solution a finite number of times to get a solution y in 7ÏT0, which is necessarily unique.
Applying the first part of the argument with £ — y, we obtain easily

T < M ) 2

where the constant C dépends on p, p',67, K, T]> We can proceed in the same way, to evaluate a bound on
intervals of time of length T. and dérive the estimate (8.10). The last part of the statement follows immediately
from the formula (8.9), applying Theorem 7.1, with the adéquate value of /?, and estimating conveniently the
intégral with g. The proof has been completed. •
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