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FAST SINGULAR OSCILLATING LIMITS AND GLOBAL REGULARITY
FOR THE 3D PRIMITIVE EQUATIONS OF GEOPHYSICS*

ANATOLI BABIN1, ALEX MAHALOV2 AND BASIL NICOLAENKO2

Abstract. Fast singular oscillating limits of the three-dimensional "primitive" équations of geophysi-
cal fluid flows are analyzed. We prove existence on infinité time intervals of regular solutions to the 3D
"primitive" Navier-Stokes équations for strong stratification (large stratification parameter N). This
uniform existence is proven for periodic or stress-free boundary conditions for ail domain aspect ratios,
including the case of three wave résonances which yield nonlinear " 2 | dimensional" limit équations
for N —> +oo; smoothness assumptions are the same as for local existence theorems, that is initial
data in Ha, a > 3/4, The global existence is proven using techniques of the Littlewood-Paley dyadic
décomposition. Infinité time regularity for solutions of the 3D "primitive" Navier-Stokes équations
is obtained by bootstrapping from global regularity of the limit resonant équations and convergence
theorems.
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1. INTRODUCTION

The governing flow équations for three-dimensional stably stratified fluids wit h effect s of rotation included
(the 3D "primitive" équations of geophysics) are under the Boussinesq approximation:

dtU + U • VU + fe3 x U = -Vp + Pi e3 + i^AU + F, V • U = 0, (1.1)

dtpi + U • Vpi = -N2U3 + i^Apx + F4, (1.2)

U(tix)\t=o=V(O,x), Pi(t,x)\t=Q = pi(0,x) (1.3)

where the mean stratification gradient and the axis of rotation are aligned parallel to the vertical axis e%. Hère
x — {x\,X2,%'i)<i U = (UijU2^Uz) is the velocity field and pi is the buoyancy variable (relative density varia-
tion); N is the Brunt-Vàisàlâ wave frequency for constant stratification and £1 is the frequency of background
rotation, ƒ = 2fi is the Coriolis parameter, F = (Fi, i^, F3) is a divergence free force and p is the pressure. In
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physical fluid flows.

* Dedicated to Roger Temam for his 60th birthday
1 Department of Mathematics, University of California, Irvine, CA} 92697, USA.
2 Department of Mathematics, Arizona State University, Tempe, AZ 85287, USA.

© EDP Sciences, SMAI 2000



202 A. BABIN ET AL.

équations (1.1) es x U = (—C/2î U\yQ) is the Coriolis term. Equations (1.1) and (1.2) are called the primitive
(non-hydro static) équations of geophysical flows. We consider initial value problem for équations (1.1—1.2) with
i/i > 0 and i/2 > 0; hère v\ and 1/2 are the kinematic viscosity and the heat conductivity, respectively; the
ratio Pr = 1/1/1/2 is known as the Prandtl number. We consider periodic boundary conditions in a parallepiped
[0,27rai] x [0,27ra,2] x [0,27ra3], as well as stress-free conditions f/3 = 0, dUi/dxs = dU2/dx$ — 0 at X3 = 0}

2TTÜS- For stress-free conditions one only needs to restrict Fourier series to be even in £3 for Ui, U2 and odd in
x3 for t/3, px (see [25]).

In this paper we investigate the fast singular oscillating limits of équations (1.1-1.2) as ƒ —> 00, TV —> 00,
rj — f/N fixed. We average équations (1.1—1.2) over the fast time scales of inertio-gravity waves. The linear
parts of inviscid équations (1.1-1.2) are:

dtU + fe3 x U - Ple3 = -Vjp, V • U = 0, (1.4)

Ôtpi + N2U3 = 0. (1.5)

In our approach, the collective contribution to the nonlinear dynamics made by fast "inertio-gravity" waves
(solutions to Eqs. (1.4—1.5)) is accounted for by rigorous estimâtes of wave résonances and quasi-résonances via
small divisors analysis [4,6,8,12,14,15], The linear ized équations (1.4) with ƒ ^ 0, TV = 0, p\ = 0 was studied by
Sobolev [47] who continued the analysis of Poincaré [43] (Arnold and Khesin [2]). The extension of this analysis
to the genuine nonlinear équations (1.1-1.2) was done by Babin, Mahalov and Nicolaenko (henceforth BMN)
in [4-6,8,12,14]. Utilizing methods of small denominators and Diophantine incommensurability conditions on the
domain geometrical parameters ai, a2, a3, they investigate the fast singular oscillating limits of équations (1.1),
iV = 0 as ƒ = 20, —* 00. This mathematical approach in the context of geophysical flows was initiâted in
BMN [4,6,10,11], Mahalov and Marcus [40], In the context of symmetrie hyperbolic Systems (including weakly
nonlinear geometrie opties), related singular oscillating limits have been investigated by Joly, Metivier and
Rauch [31,34], Schochet [45] (where the weakly compressible limit of 3D Euler équations was considered),
Grenier [30], Embid and Majda [26]. For gênerai "primitive" équations of geophysics, following methods for
hyperbolic Euler-type Systems of Bardos [17], Bourgeois and Beale [19] have demonstrated convergence to
quasi-geostrophic limit équations for special classes of initial data (of infinité codimension). Lions, Temam and
Wang have analyzed the viscous équations (1.1-1.2) in a series of séminal papers [37,38], while restricting to
"prepared" initial conditions or conditional regularity hypotheses.

First results on regularity of solutions of three-dimensional Euler and Navier-Stokes Systems in rapidly ro-
tating frame were obtained in [5,8]. First results on regularity in the context of geophysical flows were obtained
in [6,10,11]. The crucial rôle of parameters #2 = 1/0,2,9$ = l / a | for the properties of the dynamics, in par-
ticular for smoothness, was revealed in these papers (we put a± = 1 using a rescaling; in the gênerai case one
has to put 62 = a\/a^>9% = a\/a\). Technical conditions of [5,6] and [8] on the smoothness of initial data and
forcing term were later relaxed in [28,29] (no considération of "2 ^-dimensional" nonlinear limit équations from
3 wave résonances) and [3,12]. An approach based on choosing special restricted sets of initial data with infi-
nité codimension which do not excite resonant 3-wave interactions is used in [21] to obtain long-time existence
theorems.

There are three foremost issues with the analysis of (1.1-1.2) for large parameters TV and ƒ. First, the
nature of the limit asymptotic équations as TV —> +00 and the regularity of their solutions ("2 ^-dimensional"
Navier-Stokes primitive équations). Second, the convergence of solutions of (1.1-1.2) to those of the limit
équations; and, nnally, bootstrapping from analysis of the first two questions the infinité time regularity of
solutions of (1.1-1.2) for TV large but finite.

The proof of global regularity of 3D primitive Navier-Stokes équations (1.1-1.2) for resonant domains pre-
sented in this paper relies on the global regularity of the "2|-dimensional" limit nonlinear "primitive" Navier-
Stokes équations and techniques for convergence theorems as TV —» 00 developed in [3,6,8,12,14]. The technique
of bootstrapping regularity of solutions of three-dimensional Navier-Stokes équations by perturbation from limit
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équations has been done in various contexts: thin domains [44], helical flows [39]. In these previous works, limit
équations are 2-D Navier-Stokes équations for which global regularity is well known. In the present work,
the limit équations are genuinely three-dimensional depending on all three variables X\7 X2 and z3 but with
restricted wave-number interactions in the nonlinear term. The existence and regularity theory for those limit
équations is non-trivial.

In [14], we have demonstrated global regularity of équations (1.1) in the pure rotation case (N = 0, pi = 0)
for large Coriolis parameters ƒ including the case of 3 waves résonances with the "2 ^-dimensional" limit
Navier-Stokes équations. In this paper we extend the results of [14] to the full primitive 3D équations (1.1—1.2)
(N =£ Ö). The main resuit of this paper is the uniform existence in infinité time of regular strong solutions of
équations (1.1-1.2) for large but finite stratification parameters N. This resuit holds for ail domain parameters
ai, Û2Î a3 including the case of domains with three wave résonances for inertio-gravity waves; such résonances
yield strongly nonlinear "2 |-dimensional" limit équations. The global existence is proven using techniques of
the Littlewood-Paley dyadic décomposition.

Smoothness conditions in this paper are like in standard local regularity theorems and do not include technical
smoothness conditions of BMN [6,11]. Ail restrictions on the domain parameters are also removed. We also
relax in this paper (in viscous case using the approach of Avrin and BMN [3]) conditions on time behavior of
the forcing term. In regularity theorems including Theorems 1.1 and 1.2 we impose only an intégral regularity
condition on forcing term

pT+l
\\^\\l^dt<M2

aF (1.6)

for a > 3/4, where F f = (F, F4). We dénote by Uf the 4-vector Uf = (U, pi).
In this paper we prove the following main theorems; the Sobolev spaces Ha of periodic functions with zero

mean are defined in équations (2.4-2.5).

Theorem 1.1. Let 77 = f/N and the domain parameters ai, CL2, 0*3 be fixed but arbitrary. Let v\^vi > 0,
v = min{y\,v<i) and the condition (1.6) on the force ¥^(t,x) be satisfied. Let ||U^(0)||a < Ma where a > 3/4.
Then for N > AT^M^, M a^, 1/, ai,a2,a3) solutions of the SB Navier-Stokes "primitive" (1.1-1.2) are regular
for ail t > 0, and H U ^ ) ^ < M'a for all t > 0.

Theorem 1.2. Let rj = f/N and the domain parameters a\, a2, a3 be fixed but arbitrary. Let v\,v<z > 0;

v = min(i/i,i/2)j ex > 3/4 and the condition (1.6) on the force be satisfied. Let HU^O^Io < Mo, f =
T(Mo,MaF,v). Then for every N > N (ai ,a2,as,z^', Majp); N' independent of Mo and for every weak solution
V^(t,xi,X2,xs) of the three-dimensional "primitive" Navier-Stokes équations (1.1-1.2) defined on [0,T] which
satisfies the classical energy estimâtes on [0,T], the following holds: U^(t,Xi,X2,X3) can be extended to 0 <
t < +00 and it is regular for every t : T < t < +00; U*(£, x±, X2,xs) belongs to Ha and ||U^(i,xi,X2,X3)||a <
Ci(ai,a2,a3,Majp,^) for every t > T. If F^ is independent of t then there existe a global attractor for the
three-dimensional primitive Navier-Stokes équations (1.1-1.2) bounded in Ha; such an attractor has a finite
fractal dimension and attracts every weak Leray solution as t —» -j-oo.

In this paper we establish infinité time regularity theorems valid for ail domain parameters: for TV large
but finite in équations (1.1—1.2) this is obtained by bootstrapping from global regularity of the limit "2 \-
dimensional" équations and convergence theorems including the case of domains resonant in ai, a2, a3.

Remark 1.1. In [14] only the condition a > 1/2 is imposed on the force and the initial data. Hère the condition
a > 3/4 is restricted only by the minimal regularity results for the viscous quasi-geostrophic équations, cf.
Section 4 in [12].
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2. THE LIMIT RESONANT ÉQUATIONS

Following Métais and Herring [41] we introducé a change of variables pi — N p and combine velocity and
buoyancy variable in one variable U^ = (U, p) after which équations (1.1-1.2) written in non-dimensional
variables take the more symmetrie form:

9tUf + U - VUf + 7VMUf = -V+p + z>AUf + F t , V • U = 0 (2.1)

U t(t,a;)| t=o=U+(0,x)

where V+p — (V^O^F1* = (F,F4) (where F4 is rescaled),

j ) ' J = ( î ~o

D — diag(^i, ^1,^1, ^2) is the viscosity matrix, 77 is fixed. The linear parts of inviscid équations (2.1) are:

ötU
f + iVMU1 = -V jp, V • U = 0 (2.3)

where the skew-symmetric structure is apparent.
We use Fourier series expansions for redefined fields U^(x) = (Ui(x), U2(x), U^(x),p(x)), x = (#1,2:2, #3):

n2x2/a2 + 713X3/a3))VÏl = ^ e x p ( i n - arJU^ (2.4)

where U^ are the (4-component) Fourier coefficients, [ni,n2)n3] G Z3, n = [ni,n2/a2,n3/as] are wavenumbers
(ai = 1 without loss of generality). We introducé Fourier-Sobolev spaces of functions Hs with the norm defined
on Fourier coefficients Un as follows (where \n\ = (n2 + n^/a2* + n2/a2)1^2):

j|U^||2 = y ^ | n 2 s | U ^ | 2 (2 5)

We assume that all functions have zero average over the periodic parallepiped. Stress-f ree boundary conditions
at £3 = 0, 27ra3 correspond to Ui, U2 even in x% and [ƒ3, p odd in X3. Sobolev spaces are restricted to such
functions. In this paper Rn, Sn will dénote the action of R and S on n-th Fourier component, ?7Rn + Sn = Mn .

We recall the principle of averaging équations (2.1) over the fast time scales of inertio-gravity waves. We
dénote by E(JVT) the linear propagator solution to the initial value problem for équation (2.3); 'E(Nt) is in fact
a unitary group operator (preserves all Sobolev norms). The dispersion relation for inertio-gravity waves which
are solutions of équations (1.4-1.5) (hence Eq. (2.3)) has the form

jV2a;2 = N -y j
n |n|2 |n|2

where n = (ni/ 0,1,712/ Q.21713/ 0,3), n' = (ni/ai, n2/a2, 0), In 2 = n2/a2 + rû/ai + ni/a2*, n' 2 = n2/a2 + rû/ak.
77 = f/N. Here ai, a2 and as dénote aspect ratios of the domain parallepiped. We note that all results in
our work extend to boundary conditions periodic horizontally with zero flux in the vertical direction 63 and
no tangential stress on the boundary. One only needs to restrict Fourier series to be even in x% for U\, U2

and odd in X3 for t/3, p\. Such boundary conditions imply zero tangential stress on the vertical boundary
(see [25]). It follows from (2.6) that the effects of rotation and stratification are not uniform on scales. In the
case In'l/lfïsl > 1 gravity waves are fast and inertial waves are slow. On the other hand,'for scales satisfying
|n3|/|n /| >̂ 1 gravity waves are slow and inertial waves are f aster. This nonuniformity of the effects of rotation
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and stratification on different scales lies àt the very heart of the nonlinear scale adjustment process described
in [10,11] and [15].

We introducé the linear propagator directly into the nonlinearity in équation (2.1) using the change of
variables

U t ( i ) -E(-7Vi)u t ( i ) , (2.7)

where U* = (E/i, Ui, Us,p) is the "fast" field variable; and ut is the "slow" called Poincaré's variable, after
factorization via the fast oscillating (N > 1) propagator 'E(Ni). We define

B(XJ\ Ut) = ( -P(U • VU), - U - W 4 ) , ^ = (U, U4) = (U, p) (2.8)

where P is the Leray projection on divergence free vector fields. For v\ = v2 = 0 and F* = 0 the rescaled
"primitive" Euler-Boussinesq équations (2.1) written in the Poincaré's variables ut have the form:

dtu* =Bp(Ntyu^ ut), Bp(iVt,u t ,u t)= E(A^)B(E(-A^)ut,E(-7V£)ut) (2.9)

where Bp is now an explicitly fast oscillating, non-autonomous operator in the "slow" variable ut. Equation (2.9)
are explicitly time-dependent with rapidly varying coefficients. This is a problem of fast singular oscillating
limits for a non-local hyperbolic System. Analogous problems are found in nonlinear geometrie opties, [31,34].

The following équations describing the asymptotic limit dynamics are associated with équation (2.9)
(BMN, [6]):

1 f2n

ötw = B(w) w), B(w,w)= lim —- / Bp(iVs,w, w)ds (2.10)

where the arguments w are s-independent. We refer to Lemma 4.1 for the convergence proof. Equation (2.10)
contains the "2^-dimensional" limit resonant équations. Clearly, when represented in Fourier modes in the limit
iV —» +00, rj = f/N fixed, the right-hand side of (2.10) will be determined by résonances zbc^ ± u^ =b ujf

n = 0
within terms of the type ex.p(iN(±u;f

k ± Lüf
m ± u)!

n)t), équation (2.6). Here u)f
n = 0 for quasi-geostrophic (QG)

modes and u)f
n — con is given by (2.6) for ageostrophic (AG) modes (similarly, tuk and cjm). With u)n being the

normalized spectral frequencies of inertio-gravity waves given by (2.6), the dependence of résonances

,n) = ±u>f
k(alya2, 03,77) ±ujf

m(au a2, a^rf) ±u)f
n(aua2,as,7]) ^0 (2.11)

where l = 1, ...,8 (eight combinations of +, - signs) and quasi-resonances

Di{k,m,n) = ±w'k(al9a2,a3,ri) ±üj'm{aua2,as,

on the parameters of the problem ai, a2, a3 and 7] and the algebraic geometry of this non-standard small divisor
problem are the basis of our analysis for 3D "primitive" équations in [6,8,12,14]. In équation (2.12) ö = 0 for
exact résonances and is a small parameter for quasi-resonances (see [1]).

Now we describe the structure of the limit équations which were derived in [4, 6,10,11]. From now on we
are going to restrict ourselves to 77 bounded, rj > 0, including rj <$: 1. The case of strong rotation and weak
stratification 77 ̂ > 1 must be treated separately and it will be published elsewhere. The case 77 = 00 (ƒ —» 00,
N = 0) was the subject of our papers on pure fast rotating limit without stratification ([4,5,7,9,14]).

For all parameters ai, a2 and as and all values of the parameter 77 = f/N in the asymptotic limit équations
the total field splits into the quasi-geostrophic field WQG(*) satisfying 3DQG (quasi-geostrophic) équations [6,
10,11,19]

= B0(WQG,WQG) + ^
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and the ageostrophic components WAG satisfying équations of the type:

= B 2 (WQG, WAG) + B 3 ( W A G , WAG) + ^AGAWAG + FAG; (2.14)

hère VQG (vi,V2) and I^AG(^1^2) are in gênerai non local zeroth-order pseudodifferential operators, whenever
^1 7̂  ̂ 2- Equation (2.14) are called the limit resonant " 2 | dimensional" primitive Navier-Stokes équation.

The limit (2.13) results from the "slow" ( WQG, WQG? W Q G ) triads as well as all resonant
(w AG,™AG^QG) triads (the contribution of the latter is exactly zero in the limit, hence the operator splitting).
The limit ageostrophic (2.14) is derived from both resonant ( V/AG^QG^AG) and ( WQG, WAGÏWAG) triads
as well as the strict 3-wave résonances (WAG3

WAG; WAG)- Notice that the slow-fast-slow (WQG, ^AG^QG)

triads are not resonant to the lowest order in l/N and appear only at the next order in 1/7V via 4-wave résonances
(see also [18]).

The quasigeostrophic équations in the inviscid case have a global regular solution according to Bourgeois
and Beale [19]; also if v\ > 0 according to a theorem proven in [12]. Note that the nonlinear operator B3
discontinuously dépends on the parameters 77, 0\ = l/a\, 62 — l /a | , #3 = l / a | (see also Sect. 4); it is non-zero
only on a set of measure zero (see the proof in BMN [8] for the similar pure rotating case). In BMN [5,6,8,10,11]
it was shown that if one deletes a resonant set 0* of parameters 77, 0i,02, #3, then B3(WAG, WAG) = 0 and only
"catalytic" interactions described by the linear in WAG operator B2(WQG, WAG)

 rule AG dynamics:

= B 2 (WQG, WAG) + vAGkwAG + FAG, (2-15)

where WQc(t) is a solution of 3DQG équations. In this paper we treat the case of the Ml "2^-dimensional"
équations(2.14), including all 3-waves résonances (B3 ^ 0 in Eq. (2.14)).

3. THE LIMIT RESONANT ÉQUATIONS IN CRAYA-FOURIER BASIS

In this section we present the limit resonant "2i-dimensional" primitive Navier-Stokes équations in Craya-
Fourier cyclic basis. The Craya basis was originally introduced in Craya [24].

We take into account divergence-free condition by applying the Helmholtz projection Pd onto divergence-free
vector fieids. The matrix (P M P ) n is a reaî skew-symmetrie matrix; the corresponding operator restricted to
the 3-dimensional subspace of divergence-free vector s U^ has one zero eigenvalue and two complex conjugate
eigenvalues ±iujn ^ 0. We introducé the divergence-free vectors (3.2) which form a real cyclic basis for it:

on = 0, ï>d
nMqln = -cünq2n, P ^ M ^ = ^ l n , (3.1)

where Vd
nqjn = qj7ly

Cou = {4>nP0n + V£,nP2n), Qln = Pin? Q2n = {<PnP2n ~~ V^nPOn)- (3-2)

Here Pon^Pin->p2n form an orthonormal basis of the divergence-free subspace for n-th Fourier mode; the pjn are
the Craya basis for the purely stratified problem [24]:

= [" WY WV ' \ ' Pln = LMM' WW\' "RUWT'°J ' P2n = u = [0' °' °'1]" (3'3)

The eigenvalues ±iojn are given by

, tn = j | , K = ^ , V = f IN (3.4)
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where \n\2 = n\ + n\/'a^-\-n%/'a§, \nf\2 — v^ + v^/o^. We consider the case when the ratio 77 = f/N is bounded.
by a bounded 770 > 1:

l/Vo<V = f/N<V<h (3.5)

lA/o < min(l,77) < un < max(l,77) < 770- (3.6)

In the case n\ = 712 = 0 (this case corresponds to taking horizontal averages) we choose the basis which is
obtained from (3.2) by putting n\ = 77,2 7̂  0 and taking n\ —> 0. In particular, when n\ = ri2 = 0 we obtain
ujn — rj and the eigenvectors are

go* = (0,0,0,1), glfi = ( - 1 , - 1 , 0 , 0 ) , «2n = ( ^ , - ^ , 0 , 0 ) (3.7)

where n = (0,0, n3) dénotes wavenumbers for which ui = n2 = 0.
Any arbitrary divergence-free vector field U^ can be written as

(3-8)

We shall use the variables V to dénote vector of coefficients corresponding to U^: Vn = [T^1, V^, V%] =
V^ — [V^1, V%]. Note that the relation between U^ and V variables is given by

= Ut • qin9 Vl = Ui • g2n. (3.9)

Clearly, Vn°* = - F ° n and V̂ * = VlnJ i = 1,2, for real U(x) and p(x). We dénote by U^G the projection onto
qon and call it as usual the quasi-geostrophic mode:

u

The project ion onto two-dimensional subspace corresponding to ±2o;n is denoted by UAG and defines the
ageostrophic component:

HÛGVi = V'qln + V*q2n.
The case when 77 —> 0 or 77 —• 00 was discussed in BMN [6]; detailed mathematical considération of this case
can be done along the lines of this paper and BMN [8], but requires additional non-trivial considérations; in
particular structure of resonant sets and smoothness conditions are different from those imposed her e.

Equation (2.1) in Fourier représentation in V variables can be written in the cyclic basis (3.2) as

dtV?=-i J2 QkZ^Viï - NtJniMW - («>|n|2Vn)« + F? (3.10)

where Î I , Ï2JÎ3 = 0,1,2, Mf is the matrix M in 1^-variables given by (3.11); û is the viscosity matrix ü in the
sis. Here J, M^ are given by

° o \ / o - i \
0 - l , J = ( " X ,
1 0 / V x u /

(3.11)

o
(3.12)

O



208 A. BABIN ET AL.

In équation (3.10) quasi-geostrophic modes correspond to 0 eigenvalue of the linear problem and ageostrophic
modes are cyclic, see (3.11) and (3.1). The coefficients Q^2^3 are determined from the équation using (3.2), see
BMN [11]:

Q%£?= foi* -^farn '<&*)• (3.13)

We use notation for the skew-symmetric product n' A m' = nirri2 — ri2m\. To save space, we give formulas only
for 0-wave interactions, see BMN [11] for gênerai coefficients:

000 _ u)m\fh\ h1 A m'

when n = k + m; clearly \Q%^^ | < |m|.
In équation (3.10)

ö tVn + NunMnVn = (B(V, V))n - AnV„ + F„, An - i>|n|2 (3.15)

we introducé the linear propagator direct ly int o nonlinearity using the change of variables

V = E(~Nt)v, Vn = exp(-iVa;nM^t)vn (3.16)

where v = [v°,vx ,f2] and M' is defined by (3.11).
The action of the linear propagator on the Fourier components E(JV£) can be written in V-variables in the

Craya cyclic basis using (3.11):

E(Nt)[V°, V']n = expiNcVntM'JlV0, V% = [V°y exp(7VWnU)V/]. (3.17)

Obviously, Ft(Nt) represents vector rotation in F1,y2-plane; orthogonal y 0 component (called QG) is not
afFected. To save space, we always write V^ = [l/^V'jn as a row, understanding that it is a column in the
matrix multiplication. Equation (3.15) written in v variables have the for m

3tv = B(JV£, v, v) - E(Nt)AE{~Nt)v + F Q G + E(Nt)FAG, (3.18)

B(JVt, v, v) = E(iVt)B(E(-iVt)v) E(-JNTt)v) (3.19)

where F"̂  = FQG + T?AG in Craya basis. Equation (3.18) are explicitly time-dependent with rapidly varying
coefficients. The corresponding équations for Fourier coefficients have the for m:

Vk Vrn ^ ^ ^km
0 n=k-\-m1i\ ,Ï2

Ânv
l
n* - Ân(Nt)vl? + FQG>n + En(Nt)FAGtn (3.20)

where the first sum consists of resonant terms. In the second sum every matrix element Q^mn3 (^^) °^ non~
resonant part as well as Ân(Nt) equals a sum of terms of the forrn Cexp(±iDiNt) with Dg ^ 0. Generally,
Dg — ±w^ ±(jĵ  ±<jj'k, £ — 1,..., 8, where either cjf

n — ujn or uif
n = 0 and, similarly, for k and m. When Di = 0 we

call these interactions resonant, when De ^ 0 the interactions are non-resonant; see BMN [8] for more details.
When ail three ÜJ^LO^U)^ are non-zero we have strict 3-wave résonances; when exactly two of 0^,0^,0^ are
non-zero we have 2-wave résonances; when exactly one of OJ^LJ^UJ^ is non-zero we have 1-wave résonances.
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The resonant contribution An from the viscous term does not coincide with the original operator ÙA since
ù does not commute with M\ ù is given by (3.12). Simple computation gives the resonant terms. Let v\ and
i/2 be the kinematic viscosity and the heat conductivity, respectively. We have in V-basis

exp{PdMfPdNt)ùexp(-PdMfPdNt) = d ) , vAG{n)) (3.21)

where all the éléments of the non-resonant matrix 3ft include factors ex.p(±i2Nujnt). Thus we obtain the diagonal
resonant matrix ù(n) — diag(^QG(^)5 vAG(n), vAG(n)) in terms of the QG and AG viscosities VQG and VAG given
by (see BMN [11])

where rj = f/N, \hf\2 —n\

I n ' 2

, vAG(n) = (3-22)

^. Clearly

(3-23)

= min(z/i, z/2) < < max(z/1; (3.24)

and the same inequality holds for
The limit resonant équations are obtained by annihilating all terms in (3.20) which contain fast oscillating

factors:

dtw = B(w, w) - Aw + F (3.25)

where A — — vA and where v is the nonlocal linear matrix operator with symbol u{n) (when F dépends on
Nt, the limit équations may include F 1 and F2 resonant components). Clearly, when represented in Fourier
modes, the operator B in the right-hand side of (3.25) has coefficients Q1^^3 in (3.20) and the limit resonant
équations are

E teX^-A^+^S (3-26)

where An = v(n)n2 and the summation is over resonant terms. In équations (3.26) F^3 = FQc,n f°r 3̂ — 0
and F^ in the appropriate component of FAG,n for i3 = 1, 2. Projecting (3.26) on the QG mode (with i3 = 0)
and projecting to the ageostrophic subspace we obtain separately the équations for QG and AG components.
In this paper we usually consider the case FAG non-resonant.

We note that projection of (3.25) on QG mode (which corresponds to zero eigenvalue of the linear problem)
leads to the additional constraint u)f

n = 0. Then the conditions ±ujf
k ± CÜ^ ± uf

n = 0 and cüf
n = 0 reduce to 2-wave

interactions ÜJ^ — com. For 77 ̂  1 the condition u>k = wm is equivalent to the condition |fc'|/|fc| = |m'|/|m|
(équivalent^ cf>k = <t>m\ see (3.4)). Clearly, the asymptotic limit équations (3.25) projected on QG mode involve
only the coefficients with £3 = 0 (n = k + m). One trivial solution of uf

k = is ujf
k = = 0 which

corresponds to the QG coefficient Q^ n * An important observation is that other terms involving the coefficients
Q^mn (zi 7̂  0 or z2 7̂  0) in équation (3.25) are annihilated for all n, m when the résonance condition (pk = 4>m
is used (see BMN [6,11]). Therefore the quasigeostrophic component of the resonant équation (3.25) completely
découplés. This fact was proved in BMN [6,11] by direct computation and also proved by Embid and Majda [26]
using Ertel's theorem.
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The quasi-geostrophic équation (2.13) is given by

dtw°n = B0{w°,w°)n - Â%Gw°n + FQG,n, Bo^ 0 ,w% = - , Y, Q™nvK- (3-27)
k+m=n

We introducé variables g, ÜQG5 ^° (quasi-geostrophic potential, velocity and stream function)

™ Ü* = [-fc2/a2, fci, 0,0]*2, *2 = gfc/(^|fc|2). (3.28)

Recalling that cj||fc|2 = Ifc'l2 + rç2/^, 77 = jf/iV, we have the familiar formula which relates Sb° and q in physical
space

° = q. (3.29)

Using (3.28), équation (3.27) can be written in the form:

J2 U Â « G n | F ° ; (3.30)

q(t,x) obeys in physical space the 3D quasi-geostrophic équations (see Bourgeois and Beale, [19], for invis-
cid case) where the viscous dissipation operator Â®G is linear pseudo different ial operator which in Fourier
représentation is multiplication by Â®G = VQG{n)\n\2\ VQG{TI) given by (3.22).

Thus, in the asymptotic limit équation (3.25) w = (w°^wl,w2) splits into the limit quasi-geostrophic field
w°(t) = WQG satisfying (3.27) and found independently and into ageostrophic component W^G = (wl

}w
2)

which satisfies in gênerai équations of the type:

dtWAG — B2(WQG<(£)) WAG) + B 3 (W^G, WAG) - ÂACwAG + FAG- (3.31)

And in Fourier représentation:

&£?«>>% ~ VAG(n)\fL\2w« + FXGin (3.32)

where %% ^ 0; %\^%2 = 0,1,2. These are the "2^-dimensional" limit resonant équations in the Craya basis for
the ageostrophic component W^G = (w1 ,w2).

4. GLOBAL REGULARITY OF THE LIMIT RESONANT ÉQUATIONS

In this section we prove global regularity of the limit resonant "2|-dimensional" primitive Navier-Stokes
équations for ail domain aspect ratios and ail 3-waves résonances. The limit resonant operator B inherits
properties of the operator B. This statement follows from the following

Lemma 4.1. Let (u, v, w) e H3/4 x #3/4 x H\ given in Craya basis. Then

(B(u,v),w) - lim 1- f "(B(JVS,u,v),w)dS. (4.1)

Hère u ; v and w dénote genene time-tndependent vectors tn Craya baszs.
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Proof. We introducé projections TTR on finite-dimensional subspace of Fourier modes with \n\ < R. We fix
(u, v,w) G i/3/4 x JÏ3/4 x Hi. We put u^ = TTRU and similarly for v and w. Clearly,

,v),w) - (B(u,v),w) = [(B(JV£, u, v), w) -

4- [(B(i\rt,ujï, v*), wfl) - (B(uji,vJl),Wfl)]

+ [(B(uR,vR),wR) - (B(u,v),w].

The operators B and B are continuous on i73/4 x # 3 / 4 x i? l t Moreover, since the unitary Poincaré propagator
~E(Nt) preserves all Sobolev norms, the operator B(Nt, u, v) is continuous uniformly in Nt. Therefore, the first
and third brackets in the right-hand side tend to zero as R —• oo. Let e > 0, we find such R that the absolute
values of the first and third brackets are less than e.

After that we consider the second bracket

(B(iVt,UK,VH)-B(uH,VH),WH) = (Bosc(iVt, UK, Vfl), WH).
Since Bo s c contains only non-resonant terms, we obtain intégrât ing by parts like in [8,14] that

1 f2n

— / (Bosc(Ns, uRi Vfl), wH)ds = O(l/N) - . 0 as TV -> oo.

Therefore, the intégrais of all three brackets are less than e when TV is large, and the lemma is proven.

Corollary 4.1. Let a > 1 andw be the Craya vector variable, w = (/u;0,ii;1,it;2) (w° corresponds to QG modes
and w1, w2 correspond to AG modes). Then

(B(w, (-A)CT/2w), (-A)CT/2w) = 0. (4.2)

Proof. From Lemma 4.1, it suffices to prove the similar identity for the genera! operator B(7V£, v, v) in équa-
tions (3.18)-(3.20) for the non-averaged équations (3.20) written in Fourier space in the Craya basis. Using
équation (3.13)

ciexp(iDi(fe,m,n)iVt)(qtlfe • m)(qï2m

fc+m+n=O,*i ,i2,23,^=1, ,8

Vk VmVn

^

,m,n)Nt)(q t l k • m)(qZ3n • 9,am)|iftr|ftr«fclvm«n
n=0,ii,i2, i3,/=l, ,8

,(-Ar/2v),(-A)-/2v) (4.3)

where in the above sum we interchanged indices m and n, i2 and za and used the divergence free condition
k • qnk = 0. Hère ci are absolute constants indexed by ^l,^2,^3 with values ±1 /8 (cf. (3.17), (3.19)). We use
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(E(JVt))* = B(-Nt) to ensure symmetry of the terms (E(-JVt)v)m and (E(-JVi)v)n. Then from (4.3) we have

(B(Nt, v, (-A)" / 2v), (-A)CT/2V) = 0. (4.4)

Equation (4.2) follows from (4.4) and Lemma 4.1.
We follow with the estimate for the resonant operator B(w, w) in Craya basis:

Corollary 4.2. Let a > 1 and w be the Craya vector variable. Then

|(B(w,w),(-A)w)|<Cé Y, |fc||wfc||m||wm||n||wn|. (4.5)

Proof. Recall that the Craya basis vectors q/s are normalized with norm one. We fîrst prove such an estimate for
the non-resonant gênerai operator B(iV£, v, v) for every fixed t (but without the restriction i a
We have using (4.4) with a = 1

, v, v), (-A)v) J2
fe+m+n=0;ii,i2,t3;ï = l,.--)8

^ ctexp(iDi(k,m,n)Nt)(qilk - m){qi2rn - qi3n)\n\(\n\ - N K ^ ^ X 3 . (4.6)

Note that ||n| — |m|| = ||fc + rh\ — \rh\ < 7\k\, to get:

|(B(iVt,v,v),(-A)v)| <CB Y, l^l|vfc||m||vm||n|ivn|. (4.7)
fe+m+n=0

The same estimate follows for B(w, w), from the skew-symmetry Corollary 4.1 and from averaging équa-
tion (4.6); this only further restricts fc, m, n interactions to the set ±ujf

k ± uj'^ ± ujf
n = 0 where u)f

n = 0 for
quasi-geostrophic modes and u)f

n = ojn for ageostrophic modes, and similarly for fc,m. In équation (3.20), the
resonant operators Q]^^3 are first order Fourier intégral operators. Then for B(w,w) we obtain:

|(B(w,w),(-A)w)|<Câ J2 |fc||wfc|H|wm||n||wn|. (4.8)

Remark 4.1. Since WAG is orthogonal to WQG (orthogonality of the q's) and from the skew-symmetry of B2

proven in [12] we also have:

= 0 (4.9)

and the estimate (4.8) is valid for | (B 2 (WQ G ,WAG) + B3(wAG, wAG) ; (-A)WAG)|-

Remark 4.2. The above estimate (4.8) will be used together with the Lemma 4.2 on restricted convolutions
to obtain the global regularity in H\ for équations (3.25-3.26).

We recall some f act s on the geometry of résonances (see [12]). We dénote

r, = f/N, 0i = I/o?, 02 = l/ol, 03 = 1 / 4 (4.10)

Let K dénote the set of resonant wavenumbers fc, m, n for given 77, ai, 02, as:

(4.11)
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where uj!
n = 0 for QG modes and tüf

n = ujn for AG modes and similarly for k and m. We also define the set of
strict 3-waves résonances

K* = {±UJk ±üüm±LJn = 0, U>kVmUn / 0}. (4.12)

For non-generic values of these parameters, the limit inviscid équations for the ageostrophic field wAG are
nonlinear:

= B2(wQG(t),WAG) + B 3 ( W J 4 G Ï W A G ) ; (4.13)

fc + m + n = 0
%\%%2 — 1 o r 2

the coefficients Q^n3 c a n easuY be computed in the Craya cyclic basis and are not detailed in this section for
conciseness sake. For B3, the domain of summation is determined by the set K* of strict 3-wave résonances.
This set is deflned by condition ±ujn±u)rn±ujk = 0 where a>n,u;m,u;fc / 0 dépends on (77, l/a^, l/ai) = (??> 02, Ö3);
that is i*T* — K*(r], 62,03) (6\ = 1 without loss of generality). For every fixed 02 = 1/ajjj and 03 = l /ai , the
set K*(r},92,0s) is not empty when 77 e 6*(#2,03); the singular set O*(62, Os) is countable. We call it a strict
3-wave resonant set. When 77 G 6*(02,03) is strictly resonant, B 3 is non-zero and dépends strongly on 77; the
sets i^*(?7,02,03) with different, but close 77 do not intersect (a nontrivial result from the study of the small
divisor problem, cf. [12]). This implies that the operator B 3 dépends on resonant 77 discontmuously, at every
point 77 € 6*(02,03) is a point of discontinuity of the operator B3 . Since B 3 is not zero, solutions of the limit
system with gênerai initial data disconhnuously depend on rf as well. As solutions of the original 3D primitive
équations depend on 77 continuously (on a small time interval [0,Ti]), the convergence to solutions of the limit
équations cannot be uniform m r\, a2) a3. When (k^m^n) ^ K* {i.e. 77 ̂  ©*), only the catalytic operator B2 is
present. We refer to [10,12] and [15] for an extensive study of the analytic form and properties of B2-

We present new estimâtes for the nonlinear "2^-dimensional" operator B 3 corresponding to strict 3-waves
résonances which do ensure global existence of strong solutions of the limit ageostrophic viscous équations (3.31—
3.32) and, consequently, équations (3.25-3.26) for all domain parameters and all 3-waves résonances. The
following theorem which will be proven below provides the main estimate for the resonant operator B 3 for the
'worst' case of all interactions on the "2 |-dimensional" interaction manifold K*:

Theorem 4.1. Let W ^ G ^ I , ^ , ^ ) € H2 (Sobolev space of periodic vector fields with zero mean). Then the
following estimate holds

|(B3(w^G,wAG),(~A)wAG)|<Cm | |wAG | |2 | |wAG | |f. (4.14)

Remark 4.3. Estimate (4.14) is of the same type as the classical estimate of Ladyzhenskaya [36] in the two-
dimensional case with Dirichlet boundary conditions. For the periodic boundary conditions in 2D it is well-
known that the analog to the left hand side of (4.14) is identically zero ([23]). Of course, in (4.14) the divergence
free vector field wJ4G(xi,rc2ï^3) and the Sobolev spaces Ha are three-dimensional with space variables X\, x2

and X3.
From the estimate (4.14) we immediately obtain in a standard way (cf. [16,23,48,49]) (note that if the force

F(t, x) in the original équation does not depend on N and ƒ = 2H, then FAG — 0):

Theorem 4.2. Let v\^v2 > 0, v = min(v\,v2)} ||wAG(0)||a < MŒ, 1 > a > 3/4; F^G satisfies (4*15) with

sup / ||FAG||a-idt<M2F. (4.15)
T JT
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Then there exists a unique regular solution W^G(^) of i<fl\-àimensionaln primitive Navier-Stokes (3.31-3.32),
||w>u?0Olli < M{(z/,MiF,MQ,ai,a2)a3) for ail t > 0.

Proof. A local regularity solution to the "2^-dimensional" équations (3.31-3.32) exists on a small interval of
time 0 < t < ti (see BMN [8]) and belongs to H\ for 0 < t < t± thanks to the smoothing property which follows
from

VAG
f \\WAG\\î+ydT + ||wAG(t)||2 < C(t),0 < t < tx. (4.16)

Therefore, it is sufHcient to consider 7 = 1 .
Multiplying équation (3.31) for WAG by (—A)W^G we obtain

+ 2 ( B 3 ( W A G , W A G ) , ( - A ) W A G )

( - A ) W A G ) . (4.17)

For the 3-wave resonant operator B S ^ ^ G , W A G ) W ^ have from Theorem 4.1

| (B 3 (WAG, WAG), ( - A ) W A G ) I < CIIIIIW^GIWIWAGIII- (4*18)

We have according to [12]

(4.19)

where the QG velocity ÎJQG was defined in équation (3.28). Estimâtes for the viscous QG équation are derived
in [12]. Using the above estimâtes, a standard Gronwall inequality yields the estimate in H\ for ail £, and
uniqueness of the solutions WAG follows in a standard way (cf. [23,49]). Theorem 4.2 is proven.

Remark 4.4. Using Theorems 4.1 and 4.2 one can develop regularity theory for solutions of "2 |-dimensional"
Navier-Stokes équations in Hyiy > 1 spaces. This is done similar to the well-known higher regularity theory
for sufficiently regular solutions of three-dimensional Navier-Stokes équations (see Temam [49]).

Now we prove Theorem 4.1; it is based on the following Lemma on Restricted Convolutions. Here without
loss of generality we put 9\ — 62 = #3 — 1.

Lemma 4.2 (Lemma on Restricted Convolutions). Le£x(fc,m,n) be the characteristic function ofsome set K*
in (Z3)3 such that x(fc,m, n) = x(m, fe,n) = x(/c,n, m) is symmetrie. Let a > 0, (3 fixed and

sup
n ,

for every i = 0,1,2,... where

Then for any séquence un with u(0,0,0) — 0 ;

2* < \k\ < 2i+\\k\ - yjk\ + kl + kl}. (4.21)

where C =
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Proof. Let a > 0. We first give the proof for j3 > 0. Since the left sum in équation (4.22) is symmetrie with
respect to k,m,n

\ukUmUn\x{k,rn,n) < 6 \ukumun\x(k,m,n) (4.23)
=O,|n|>|fc|>|m|

and it is sufficient to take k,m}n such that \n\ > \k\ > \m\. After that, we apply the technique of dyadic
décomposition of Littlewood-Paley (Stein [46]). We estimate

S= E \uku-k-n\x{k, -k - n,n).
t,In|>|fc|>jm|

Since \n\ > \k\ > \m\ and k + m + n = 0, we have 2\k\ > \n\ > \k\. Therefore,

Therefore,

-k-n\x(k, -k - n, n)

< E E
n€S,US,+1

E WkU-k-n?\k\a

\fc6St /
-k -n,n)

<E E w E
1/2

sup
n

E

• — n}n)

1/2

E

^ °o

< rl/2
s o0 E

E

E

E E
1/2

VU,™!2

^1^

E

<Q1 / 2(E E

V2 1 / 2

y^ l«*|2|A:r
1/2

1/2

Ei
V k

\ m

1/2 > 1/2

E E
^ m

Ein*
1/2
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Considering similarly other permutations of \k\7 \m\ and \n\ we obtain (4.22) with C — 6\/2CQ. The proof
extends to j3 < 0 with a different constant C.

We note that one obtains similar results for gênerai ôi, 02, #3 bounded away from 0 and +oo. Then the
constants depend on #i, 02, #3-
P r o o f of T h e o r e m 4 . 1 . From Corollary 4.2 we obtain the following inequality

î^)- (4.24)

Hère x{k,m,—n) is the characteristic function of the resonant set K* of strict three-wave résonances defined
in (4.12). This set lies in the manifold of solutions of a polynomial équation P(/c,m,n) — 0. Indeed, we have
the identity (similarly, for other combinations of + and — signs):

The dénommât or is — P = ((^fc)
2 H- (tt;m)2 — (cjn)2)2 — 4(o;fc)2(a;m)2. P is a polynomial of degree 2 of À = rf.

We write LJ^ in the forai (see Eq. (3.4)):

+ A(l - Xk),Xk = \k'\2/\k\2 = 4>l,l-Xk= ek-

The polynomial takes the form (with À = rf) P — P2X2 + PiÀ + Po, where

P2 = Xk + Xm + Xn ~ 2XkXn - 2XfcXm ~ ^XmXn ~ 3 + 2(%fc +Xm
2 l - ÏXmXn + Xk + Xm +

= Xfc + Xm + Xn ~

Instead of considering P as a polynomial in ?72, we renormalize it as

n(/c,m,n) = |fc|4Im|4 |n|4P(/c,m,n). (4.25)

where II is a homogcncous polynomial of degree 12 in the variables k,m,n and 7] is considered as a parameter.
For given 77, #1, 62, #3, II(fc, m , n ) ' = 0 is equivalent to (k7m^n) G K* (vice-versa, fixing k^m^n as parameters,
and solving for 77 as a function of 9\ = 1, 02 , #3 defines the singular values of 77 G 0*(#2, Os)). It follows that
for fixed 77, Ô2, #3, n(A, —A; — n1 —n) is a polynomial of degree at most eight in k3. The leading power in fcf is:

-A | ( |n ' | 2 +r ?
2ni)(3r ?

2n| + (4r?2 - l ) |n ' |2) , (4.26)

where m was eliminated via m = —k — n. If this leading term (4.26) is not zero, there are at most eight h$
satisfying II(fc, —m — n, — n) = 0 for given &i, fc2, n\ this holds provided that

3772n^ + (4T72 - l ) |n ' |2 ^ 0. (4.27)

Note that if nf = 0, the condition (4.27) is trivially satisfied as n / 0. Also, the condition is satisfied whenever
4T72 — 1 > 0. If the condition (4.27) is not satisfied, Le. if n belongs to the manifold:

3772n^ + (4T72 - l ) | n f = 0,n' ^ 0, (4.28)

then we must verify that the polynomial II is not identically null. This is not trivial, as one vérifies that the
coefficient of fcj is null under the condition (4.28). Under the latter condition the coefficient of k$ reduces to:
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which is strictly négative whenever 0 < rf1 < 1/4 and n' / 0. Therefore, the polynomial n(fc3) does not
vanish for any value of admissible parameters, for fixed ki, k2, n. Then there are at most eight fc3 satisfying
x(feï-fe-n,-n)=0.

Now we estimate the sum in (4.20) with a — 1 as follows

_k _ n7 n) < 8 + 8 £
0<|fc'|<2*+1

where Co is an absolute constant. The first 8 on the right hand side of the above inequality accounts for kf = 0.
Therefore, the inequality (4.20) holds with a = (3 — 1. Let Vk = I^HW^G,*;! and similarly for m and n. Since
IMI1/2 = ||WAG||3/2I INIO = | |W^G| | I , équations (4.22-4.24) imply

/ ^ . (4.30)

After that we apply the interpolation inequality ||WAG||3/2 — cons^llw^<3||i||w^G||2 and obtain from (4.30)
the estimate (4.14) (where the constant dépends on ai,a2,a3 in gênerai case). This concludes the proof of
Theorem 4.1.

We note that the operator B3 is a bilinear convolution-type operator with the domain of summation K*
given by (4.12) (the set of strict 3-waves résonances). The estimate (4.14) for B 3 is for the "worst case" of all
interactions on the "2 |-dimensional" interaction manifold K*.

5. INFINITÉ TIME REGULARITY FOR FINITE LARGE N

In this section we establish global existence and regularity of solutions of équations (2.1) (hence (1.1—1.2))
for N large enough, including the case of all 3-wave résonances, where B3(W^G> WAG) is present in the limit
équation (2.14). The proof of global regularity of 3D "primitive" Navier-Stokes équations (2.1) for resonant
domains presented in this paper relies on the global regularity of the "2^-dimensional" limit nonlinear Navier-
Stokes équations (2.14, 3.31, 3.32) and techniques for convergence theorems as TV —» oo developed in [3,8,12].
We impose in our regularity theorems only an intégral regularity condition on the forcing term F^ of the type
(where F4 was rescaled as in Sect. 2)

sup
T

pT+1
/ | |Ft| |2

a_idt<M*F (5.1)
JT

where a > 1/2.
In BMN [5,8,12] we proved the regularity of solutions for smooth enough initial data U^(0) and forcing term

Ft for almost ail aspect ratios (no strict 3-wave résonances were allowed in these regularity theorems). Now
we prove the regularity for ail aspect ratios and ail 3-waves résonances. Also, following Avrin and BMN [3] we
relax the smoothness conditions on U* (0, x) and F* (i, x) using a simple argument based on our previous results
on équations with smooth data and using approximation of the data by smooth functions. In fact, we show
that we can extend our previous results with very smooth initial data and forcing terms to non-smooth case by
continuity. First, we replace TJÎ(O) and F* respectively by smooth initial data Uj(0) G Ha and force F^(t) with
Fl(t) G Ha, dtFl(t) G Ha, a > a + 4, which are close to U^(0) and F*. Namely, for approximation of initial
data

| |Ut(0)-Ul(0) | |Q<e. (5.2)
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Further, we assume that F**" is approximated by Fj . We dénote F' = F"1" — F\ and assume

/•T+l

sup/ ||F'||;Ud*<e2 (5.3)
T JT

with a > 1/2.
Of course norms in Ha, a > a + 4 of approximations Uj(0), F* and 9t F* tend to infinity as e —• 0, but

they are bounded for every non-zero e. Using results of [8] we will find a solution Uj(£) of (2.1) with mollified
data which satisfies e-independent estimâtes in Ha for large N (see Theorem 5.2 below). The solutions Uj, U*
satisfy équations of the form

, U1) + PAUf - iVP tMP tU t

5tUj(t) = B(UÏ,Uj) +Î/AUJ - iVP+MP^Î +F+ (5.4)

with the same bilinear operator B and different (but close) initial data. In the above équations 9 =
diag(i/i, v\, vi, V2) is the viscosity matrix, pî = (P,/d) where P is the Leray projection operator, The dif-
férence S(t) — U" (̂t) — Uj(t) satisfies the équation

dtZ{t) = B(S, Uj) + B(Uj, S) + B(S, S) + î>AS - iNTP+MP+S + F', S(0) = \J*(0) - U+(0)

(5.5)

with a small forcing term F' = F* — Fj , and small initial data S(0).

Theorem 5.1. Let a > 3/4, i/i,i/2 > 0, To > 0. Let (5.2-5.3) hold and

\\Ut(t)h < MSiai 0 < t < To, 1/ r ° ||UÎ(*)|£+1 < MS
2
Q; (5.6)

let e < €Q, where €Q dépends on MSyOi,a, v,To- Then a regular solution S of équation (5.5) exists and

||S(*)||a < Coe,0 < t < To; 1/ / ° ||H(t)||2+1 < C262. (5.7)

where CQ dépends on MSja, a, ^; ^ = mm(i>'i, 1̂ 2).

For the proof of Theorem 5.1 we refer to [12,14].
We now sketch the existence theorem for équation (2.1) with smooth in Ha initial data extending the results

of [12] to cover 3-wave résonance operator.

Theorem 5.2. Let rj — f/N and the domain parameters ai, a2 and as be arbitrary and fixed; let a > 3/4,
^1, V2 > 0, a > a + 47 TQ > 0 and let U^ (t) be a solution of (2.1) with smooth initial data and forcing term such
that

rT+l

/ IIFÎU^dt < (MaF)2; (5.8)
JT

sup /
T JT

T+l i.T+1

/
/•T+l i.T+1

||UÎ(0)|U < MaF, sup / HP+ll^d* < {MaF)\ sup / \\dt¥\\\làt < (MaF)2. (5.9)
T ir T JT
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Then for every N > N0(Ma,MaF, Map, v,Q>\,0,2,(13), there exists a unique solution Uj(t) to équation (2.1) for
0 < t < To such that

a < M ; , 0<t<T o , (5.10)

+iàt<(Mf
a)

2 (5.11)[
where M'a dépends only on Ma , MaF, ̂ ,ai, 02,£3,To; v = mm (i/i, 1/2)-

For the proof we refer to [12] and [14]; note that in [12], the "2|-dimensional" case was not included, in
contrast to [14].

We now conclude with the existence and regularity theorem for less smooth U*(0) and F*, by bootstrapping
local existence with the help of Theorems 5.1 and 5.2.

Theorem 5.3. Let TJ = f/N and the domain parameters a±f 0,2, as be fixed but arbitrary. Let v\,v2 > 0,
v — min(i/i}i/2), & > 3/4 and the condition (5.1) on the force F^(i,x) holds. Let

and N be large: N > Ni(Ma, Map,u, ai, 02,03). Then solutions of the 3D rescaled primitive Navier-Stokes
System (2.1) (hence (1.1-1.2)) are regular for ail t > Q, and

HU^OIIa < M'a for ail t > 0.

Proof. First, we have a regular solution \j\t) G Ha with ||U*(£)||Q < Ma(MaiMaF^ v) on a small time interval
[0,Ta], Ta — Ta(Ma,MQ/r,z/). We consider the case 3/4 < a < 1. We have the energy estimate for regular
solutions:

\\UHt)\\o<M0{Ma,MaF,v) W>0 (5.12)

v / IIU^)!!? < Ml VT > 0; 0 < r < 1, (5.13)
JT

where v = min(z/i, 1̂ 2)-
Remark 5.1. Uniform boundedness of the energy for the condition (5.1) on F^(t,x) follows from the usual
Gronwall inequality estimate:

2-f,
'*ï Jo

and

whence

Ml
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Hère Ca is embedding constant from HQ to Ha and Ai is the first eigenvalue of the Stokes operator.
For every t > r, équation (5.13) implies that on every interval [t - r,t] including t = r, we have a point t*

for which:

From now on, we choose T = Tai local existence time defined above. For every t > r a , we take U^(t*) as new
initial data, with t — Ta < t* < t. To prove that the solution is uniformly bounded in Ha for ail t > Ta, it
sufïices to dérive uniform bound for t G [t*,t* + Ta], with the help of Theorems 5.1 and 5.2; in both theorems
we set To = Ta. At t = £*, the initial condition (5.8) of Theorem 5.2 becomes:

Ma = C a l l M o / ^ ^ ï ^ (5.17)

Ca,i embedding constant from Ha to H\.
Approximatif the force F^t) , c^F^) and initial data Ut(t*) by smooth functions Fj(*), dt¥\(t), Uj(t*)

in i ï a we obtain that

\\„ < Me.

Moreover, the inequality (5.3) holds and, with F ' = F^ — F*:

||F'(t)||ff <M€,\\dtF'(t)\\a <M€, t* <t<t*+Ta (5.18)

where Me dépends on Ma , Map and e only; of course, Ma in (5.17) dépends on the original Ma, and MaF, ^ ai,
Û2Î &3- We choose e so small that we have by Theorem 5.1 (where MGF is replaced by Map) a regular solution
E(t) on [£*,£* +T a ] which is bounded in Ha by 1 when the initial data are in Ha. After that we consider the
Navier-Stokes équations with smooth initial data Uj(£*) and force F\ which satisfy (5.9) for t* < t < t* + Ta.

The J/cr-norms of these smooth functions are bounded by (a possibly large) constant Me depending on
this fixed e and Ma (hence Ma), Map. After that we choose N > Ni(e,Ma,Map) so large that we have
(5.10) and (5.11) for solutions U|(t) of équations with smooth data. By (5.10) and (5.7) with Cbe < 1 we
have ||U+(t)||a < ||Ut(*)lla + ||XJt(*) - Ut(t) | |a < M^ + 1 with M'a = M;(M a )M a F , i / ,ai ,a2 ,a3) . Setting
M'a = max{Mon Mf

a + 1) complètes the proof of boundedness of U^(t) in Ha for all t > 0. We also have

V
JT

for every T > 0 and 3/4 < a < 1. To extend the above to the case a > 1 we use uniform-in-t boundedness
in Hi already proven and then apply the smoothing property for solutions of Navier-Stokes équations (see
Theorem 8.2 in [8]) and obtain that the solutions are bounded for t > t+ > 0 in i î a , a > 1 and we get the
statement of Theorem 5.3 in this case as well. Theorem 5.3 is proven.

Finally, like in [8] we obtain regularity for all large-enough times for weak solutions of the 3D "primitive"
Navier-Stokes équations (1.1-1.2) with a force F^(t). This theorem describes the situation when TV is fixed,
and large enough (depending only on magnitude of F^(t) and independent of the initial data). The situation is
that of non-smooth and arbitrary large initial data in Ho. Then weak Leray solutions U^(t) always exist (with
a possible blow-up in H\ at some values of t < t*, see [20]), here we show that blow-up cannot happen if t is
large.

Theorem 5.4. Let n = f/N and the domain parameters ai, a<i, 0,3 be fixed but arbitrary. Let 1/1,1/2 > 0; v —
mm(z/i, 1/2), a > 3/4 and the condition (5.1) on the force be satisfied. Let ||U^(0)||o < Mo, t = T(Mo, MaF, v).
Then for every N > N (ai,a2,a3,ï/, Map), N independent of MQ and for every weak solution U*(£,xi,X2 ,£3) of

pT+l
/ ||Ut(t)||2a+1dt<(M4')2 (5.19)

JT
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the three-dimensional "primitive" Navier-Stokes équations (1.1-1.2) defined on [0,T] which satisfies the classical

energy estimâtes on [0,T], the following holds: U^{t,Xiyx2ixs) can 6e extended to 0 < t < +oo and it is regular

for every t\f <t< +oo; \J^(t,xux2,x3) belongs to Ha and \\Vi(t,x1,X27xs)\\a < C i ( a i , a 2 , a 3 î MaF, v) for

every t>T where Map is the Ha-norm ofF^. If¥^ is independent oft then there exists a global attractor for

the three-dimensional primitive Navier-Stokes équations (1.1-1.2) bounded in Ha; such an attractor has a finite

fractal dimension and attracts every weak Leray solution as t —> +00.
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