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STABILIZATION METHODS OF BUBBLE TYPE FOR THE Qx/Qi-ELEMENT
APPLIED TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PETR KNOBLOCH1 AND LUTZ TOBISKA2

Abstract. In this paper, a gênerai technique is developed to enlarge the velocity space V^ of the
unstable Qi/Qi-element by adding spaces V£ such that for the extended pair the Babuska-Brezzi
condition is satisfied. Examples of stable éléments which can be derived in such a way imply the
stability of the well-known Q2/Q1-element and the AQ1/Q1 -element. However, our new éléments are
much more cheaper. In particular, we shall see that more than half of the additional degrees of freedom
when switching from the Qi to the Q2 and 4Qi, respectively, element are not necessary to stabilize
the Q1/Q1 -element. Moreover, by using the technique of reduced discret izat ions and éliminât ing
the additional degrees of freedom we show the relationship between enlarging the velocity space and
stabilized methods. This relationship has been established for triangular éléments but was not known
for quadrilatéral éléments. As a resuit we dérive new stabilized methods for the Stokes and Navier-
Stokes équations. Finally, we show how the Brezzi-Pitkaranta stabilization and the SUPG method for
the incompressible Navier-Stokes équations can be recovered as special cases of the gênerai approach.
In contrast to earlier papers we do not restrict ourselves to linearized versions of the Navier-Stokes
équations but deal wit h the full nonlinear case.
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1. INTRODUCTION

In this paper we introducé a gênerai class of stable finite element spaces suitable for a numerical solution of
the Stokes équations

p = / , divu = 0 in fî, w = 0 onff i , (1)

the Navier-Stokes équations

-vAu + (Vn)u + Vp= ƒ , divw = 0 in fi, u = 0 onôfi (2)

or other problems describing incompressible materials. In the équations (1) and (2), u is the velocity and p is
the pressure in a linear viscous fluid contained in a bounded domain fi C M? with a polygonal boundary dVt.
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The parameter v > 0 is the kinematic viscosity and ƒ is an external body force, e.g. the gravity. Denoting

a(u,v) = / Vu-Vvdx, n(u,w,v) = / v • (Vw)udx,
Jn Ja

b(v,p) = — I pàiyvàx,

the usual weak formulation of (1) reads: Given v > 0 and ƒ G H~1(Çl)2
J find u G i?o(fi)2 and p G LQ(ÎÎ) such

that

va{u,v) + 6(1;, p) - &(«,g) = <ƒ, v) V ^ e # 0 W , Q ^ Lo(^), (3)

where L§(fi) consists of L2(Q) functions having zero mean value on fi. It can be shown that this problem has
a unique solution (cf. [14], p. 80, Theorem 5.1). The weak formulation of (2) is given by

va(u,v) + n(t*,u,v) +6(v,p) - b(u,q) = <ƒ,«) V v G i ^ ) 2 . 9 ̂  ^o(n) • (4)

The problem (4) has a solution which is unique if v is sufficiently large and/or ƒ is sumciently small (cf. [14],
pp. 291 and 292).

A standard Galerkin finit e element discret ization of (3) reads: Find Uh G V^ and Ph £ Qh satisfying

va(uh,vh) + b(vh,ph) -b(uh,qh) = (f,vh) V vh G Vh, qh G Q^ , (5)

where Vh C Ü/Q (fi)2 and Q^ c ^o(^) a r e s o r n e finite element spaces defined using a triangulation Th of fi. In
this paper, we shall consider only triangulations consisting of quadrilatéral T (cf. Sect. 2) and we shall use the
spaces

Vi = {v G tfoW; r o F T G Q!(f )2 V T G T*} ,

Qh - {g G Jï^fï) H Lg(fî); q o FT G ö i ( f ) V T G Th}

for approximating the velocity and the pressure, respectively. Hère, Q\(T) is the space of bilinear functions
defined on the référence square T and F? G Q\(T)2 is a one-to-one mapping which maps T onto T. It is well
known that this pair of spaces does not satisfy the Babuska-Brezzi condition

sup 6fofr'fr) >H\\qh\\on V ^ G Q h , / i > 0 , (6)

which often causes that the problem (5) with V^ = V^ is not solvable or that its solution contains spurious
oscillations. One way to suppress these oscillations and to assure the solvability is to add some extra terms
to the discretization (5) (cf. e.g. [7,9,15,19]). Another way is to enlarge the space V^ by a space V2 so that
the Babuska-Brezzi condition is satisfied. Hère we shall first consider the second possibility and construct a
gênerai class of spaces V2 assuring the fulfilment of the Babuska-Brezzi condition. Then we shall show that,
for suitable spaces V^, the V^-component of Uh and the function p^ are solutions of the stabilized methods
of [9,15].

In case of the mini element [1], which is defined by enriching continuous piècewise linear functions by cubic
bubble functions, the close relation to the stabilized methods of [9,15] was already discussed in [3,18]. Similar
results for a convection-difïusion équation were obtained in [6]. In an abstract framework, the équivalence
between Galerkin methods with bubble functions and stabilized methods was investigated for linear problems
in [2]. For the linearized incompressible Navier-Stokes équations, the relation between a Galerkin method with
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the mini element and the streamline upwind Petrov-Galerkin method (SUPG) was studied in [12]. In [20], this
relation was investigated for residual-free bubbles and it was shown for the triangular Pi/Pi-element that also
the correct stabilization parameters in both the diffusion-dominated and the convection-dominated regimes can
be recovered. However, generally, e.g. for the Qi/Qi-element considered hère, a stabilization using residual-free
bubbles is not equivalent to the SUPG method (cf. [8]). Finally, it was also shown that bubble fonctions can
help to design new stabilized methods (cf. e.g. [11,13]).

There is a lot of further papers devoted to investigations of discretizations stabilized using bubble functions,
but the most of them are restricted to triangular éléments and to linear problems. In this paper, we deal with
quadrilatéral éléments and, in addition, we consider more gênerai functions than bubble functions. Apart from
investigating the relations to some well-known stabilized methods, we shall also dérive, éliminât ing a suitable
space V\ from the discretization, a new type of stabilization which can be applied to both the Stokes and
the Navier-Stokes équations. In addition, we shall establish a discretization of the Navier-Stokes équations
which is, after élimination of a suitable space V£, equivalent to the SUPG method studied for the linearized
Navier-Stokes équation in [12] and in the full nonlinear case in [21].

The space V\ added to V^ to satisfy the Babuska-Brezzi condition will be defined in a gênerai way as

where cpl
h E HQ(ÇL) and tl

h G M2 are some suitable functions and vectors, respectively. The proof of the Babuska-
Brezzi condition for the spaces V^ = Vĵ  © V | and Q/Ï,, which uses some ideas of [4] and a modification of the
Verfürth trick [22], requires that the functions (pl

h have localized supports and that, for any y?̂ , there exists a
point A\ e ft such that

tpl
h dx V qh G Qh , i = 1, . . . , iV„ , (7)

i

dqh
A,» V"ft/ * "*« ^ - *%«) •*• ^ - - ra • V " /

^ * r a

We shall give explicit examples of spaces V | such that (7) and (8) are fulfilled.
If Al

h lies on an edge E of the triangulation T&, the corresponding fonction (p\ can be associated with E
and we require that t\ is tangent to E. In other words, vector functions associated with edges used to stabilize
the Qi/Qi-element are tangent to the edges. This is not the case for a stabilization of finite éléments with
discontinuous pressure like the quadrilatéral Qi/Po-element or the triangular Pi /Po-element, where vector
functions orthogonal to the edges are used (see [5,10]).

The plan of the paper is as follows. In Section 2, we introducé some notations and summarize the assumptions
on the triangulations and the functions ip%

h needed for proving the Babuska-Brezzi condition in Section 3. In
Section 4, we give some examples of the functions <pl

h and construct proper subspaces of the stable Q2JQ\~
element and the stable 4Qi/Qi-element which satisfy the Babuska-Brezzi condition. Further, in this section, we
also recover the stability of the Q\-bubble/Qi-element by Mons and Rogé [17]. We investigate discretizations
obtained from (5) by eliminating the V^-component of w„ in Section 5 and discuss the genera! framework
between this technique and stabilized schemes. Particularly, we dérive a new type of stabilization in Section 6
and show the équivalence to the stabilized methods of [9,15] in Sections 7 and 8. Finally, in Section 9, we show
that, for a modified discretization of the incompressible Navier-Stokes équations and a suitable choice of the
space V|, the V^-component of Uh and the fonction ph are solutions of the SUPG method analyzed in [12,21],

2. ASSUMPTIONS AND NOTATIONS

We assume that we are given a family {Th} of triangulations of the domain f2 parametrized by a positive
parameter h —• 0 and having the following properties. Each triangulation Th consists of a finite number of closed
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convex quadrilatéral T (which will be often called éléments in the following) such that hr = diam(T) < h,
Çl = {JTeTh T and any two different éléments Ti, T2 6 T^ are either disjoint or possess either a common vertex
or a common edge. In order to prevent the éléments from dégénérât ing when h tends to zero, we assume that
any triangle T, the vertices of which are three vertices of an element T G 7 ,̂, satisfies

^<Ci, (9)

where

h f = diam(T) = sup \x — y\ , Qf~ sup diam(J3)
x,yET Bdf is a circle

and the constant C\ is independent of h.
We introducé a référence Cartesian coordinate System with axes x\, £2 &nd we defîne a référence element

T = [0, l]2 . For any T e T^, we dénote by FT = (FTI , -Fr2) a fixed one-to-one mapping FT G Qi(T)2 which
maps T ont o T. Such a mapping always exists and the assumption (9) guarantees that

lFT|lïOOïf <ChT , {FTX^J, <Ch?1 v r e r , , (îo)

where the constant C dépends only on Ci. Thus, we have

ChT \\v o FT\\Qt$ < \\V\\O,T <ChT \\v o FT | | 0 ) f V v e L2(T), TeTh, (11)

C\v o FT\ltf < \v\ltT < C \v o FT\hf \/ve H^T), TeTh. (12)

We shall use the notation JT(%) = DFT/T)X(X) for the Jacobi matrix of FT-
In the following, we formulate gênerai assumptions which are essential for the construction of the supplemen-

tary space V^. Later, in Sections 4, 6, 7 and 9, we shall show how these assumptions can be satisfied in special
cases.

We suppose that we are given functions {$a}ae^p C Hl(T) (where V is some parameter set which is usually
finite) such that, for any a ÇL V, the function (pa vanishes on at least three edges of T and there exists a point
Aa G T different from the vertices of T satisfying

f q(padx = q(Âa) [ i^dx VgeQi(f). (13)
JT Jf

Further, for any a € P, we introducé a unit vector t = (tf^t^) and we dénote n a — ( Ç , ^ ) . If Aa G <9T, we
require that t coincides with the direction of the edge of T containing Aa. We admit (pF = (p@ for a ^ f3 in
order to be able to use the same function (pa with two different directions t . For formai reasons, we also admit
(pŒ = 0. In this case, (13) is automatically satisfied for any point Aa.

Now, using the mappings FT, we transform the functions (p01 onto éléments T of a triangulation % and
introducé finite element functions (p\ G HQ(ÇÏ) \ {0}, i = 1, . . . , JV ,̂ having their supports always in one or two
éléments. Precisely, we assume that, for any i G {1,...,7V)J, either

3 T G T h , aeV: F T (A a ) G Ôfi U intT, ^ | T = ^ oF f 1 , <p\\^T = 0 (14)

or

] r ) r / e T ^ , ö
/ e ? : r n r ' = {edge}, FT(Âa) = FT,(Âa'),

' >)=0. (15)
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The assumption FT(Aa) = FTr(Aa') in (15) implies that Aa, Aa' e df. Note that the function ip\ defined by
(15) may vanish on one of the éléments T, Tf. In both cases (14) and (15), we set

, 4 = jT{Âa)T/\jT{Âa)T

and we dénote

i/rp Th

(and Ap, = Aa', VT, = ¥ , n^v = n01 ) .

In the case of (15), we then also have Al
h = FT'{Aa ) and

4 = JT,(Âat)T'/\JT>(Âa')¥'\ or tj, = -J^(Aa/)rV|JT'(Aa')T'\.

We suppose that the functions { ^ ^ t ^ } ^ are linearly independent and that

card{iG{l, . . . , iVh}; A\ e T } < C2 V T G T^ ,

where the constant C2 is independent of ft. The support of any function ipz
h is contained in the union of the

éléments containing the point A\ which will be denoted by P£. Thus, P^ consists of one or two éléments.
Further, we introducé the quantities

which influence the magnitude of the constant in the Babuska-Brezzi condition. Defining the functions (p%
h in a

suitable way, the value of jh can be made arbitrarily small. However, arbitrarily large values of 7^ cannot be
obtained. It can be shown that 7^ < 2 C\ and, if Th consists of rectangles, we even have 7^ < 1.

Finally, we introducé an assumption assuring the validity of (8). We assume that, for any T E Th, there exist
points A\, A3

hy A^ e T (with z, j , k € { 1 , . . . , Nh}) such that the number

S%k = (nip x nip) np-A^ + {nip x n£) n% • Âip + {n% x nip) nJ
T * AJ

T (16)

satisfies

|5^|>C3>0, (17)

where the constant C3 is independent of T and ft, the vector product a x 6 is defined as ai 62 — b\ a<2 and n^ • A%
T

is defined as n^ • (Aip ~ 0).

Remark 1. Using the identity (riT x n3
T) n% + (fi^ x n^) n ^ + (fi^ x fi^) fiJ

T = 0 , we have

If, particularly, fi^ and n3
T are equal and orthogonal to n£, then

which illustrâtes the meaning of (17).
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Remark 2. If Th consists of parallelograms, it is sufficient for proving the Babuska-Brezzi condition to assume

fia - f [x - ÂŒ) ̂ "(x) dx = 0 (18)
Jf

instead of (13) (cf. Remark 6 in Sect- 3). Functions satisfying the property (18) are easier to construct than
those ones satisfying (13).

Remark 3. Let (pa be given by a formula which is invariant to which vertex of T is chosen as the origin of the
coordinate System xi, x2 (with axes in the directions of edges of T). Let {q1}^ be a basis of Qx(T) consisting
of bilinear functions equal to 0 in three vertices of T and equal to 1 in the remaining vertex. Then Jf (pa q* dx =
Jf fi™ q1 dx for i = 2, 3,4 and since YlUi 5* = 1, we infer that Jf (pa q1 dx = \ Jf (pŒ dx, i = 1 , . . . , 4. Any
q e Qi(f) can be written a s g - J2t=i <** ? and hence Jf (pP qdx = \ Y,t=i a ' i f ^ d ^ = <&cf ) If ^ d2>
where Cf — ( | , | ) is the bary centre of T. Thus, (13) holds with Aa = Cf. An example of such an invariant
fonction <pa is the biquadratic function

<F*(x) = xi (1 - xi)x2 (1 - x2).

Remark 4. It is not necessary to construct invariant functions (pP to satisfy (13). An example of a non-
invariant function satisfying the relation (13) is the biquadratic function

^ ( x ) = xi (1 - xi) (1 - x2) (1/2 - x2) ,

for which Aa = (1/2,0).

Remark 5. If A\ lies on an edge of some element of the triangulation 7^, then t\ is a unit vector in the direction

of this edge. Therefore, the derivative ^r-f(Al) is well defined for any qh G Qh and any i ç j l , . . . , Nh}. That
öt"h

is essential for our proceeding in the following section.

3. PROOF OF THE BABUSKA-BREZZI CONDITION

In this section, we prove that, under the assumptions made in Section 2, the spaces V^ = V^ ® V | and Q^
satisfy the Babuska-Brezzi condition with a constant proportional to 7^. First, in Lemmas 1 and 2, we prove
the validity of (7) and (8). Then, in Lemma 3, we establish a Babuska-Brezzi condition with a 'wrong' norm of
qh and, finally, in Theorem 1, we prove the desired Babuska-Brezzi condition applying the modified Verfürth
trick.

Lemma 1. We have

f ^<pidx=^(Ai) f ^{dx V ^ G Q . , z e { l , . . . , J M . (19)

Proof. Consider any T C P^ and qh e Qh and set qr = qh° FT. Since

(Vqh)(FT(x)) = JT{X)~T VqT{x) V x € f, (20)

where V — (d/dxi,d/dx2)T, we have

= f ^ti^J^TVqT\detJT\dx. (21)
Jf
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It is easy to verify that

%)rp

det JT

f dFT2 dFT1 \

dFT\

Since the Xi-derivative of a function from Qi(T) is a linear function of x2 which does not depend on xi (and
similarly for the a^-derivative), we infer that (det JT) JT^ Vgr £ Qi(T). Using the fact that det JT ^ 0 on T,
it follows from (21) and (13) that

ƒ <p%
ht

l
h • Vqhdx = t\ • (JT

TVqr | det JT\)(Aa) I ^ d £ .

Applying (13) with q= | det JT\ and using (20), we get

f ^ @Qh f
^h) I ^P I dst JT\ dx = . (-A )̂ / v̂ h ̂ ^ •

Jf dtl JT

a
Remark 6. If Th consists of paxallelograms, then JT — const. and it follows from (21) that

/ <p\t\-Vqhdx= [ (^T VqTdx\detJT\/\JTT\,
JT Jf

where we assume that t%
h = Jrt /\Jrt \ (if t\ = —Jrt /\Jrt |, we can proceed analogously). Denoting

QT(X) = Co + CI ^ I + £2 %2 + £3 £1 %2 and Aa — (2i,S2), we have for x e T

Hence

t • V§r(ï) = * * V§r(^ a) + Ca ̂ a • (£ ~ ^ a )

and we see that, for proving (19), it suffices to assume (18) instead of (13).

Lemma 2. There exists a constant C4 independent of h such that, for any T e Th, we have

Nh

(22)

Proof. Let Ai e T, n l € E2, |fT| = 1, i = 1,2,3, be points and vectors satisfying (17) and let againV = (n|, n\),
i = 1, 2,3. Let us set for x G f and i = 1, 2, 3
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with the convention that i — 1 = 3 for % — 1 and i + 1 = 1 for i — 3. For any t =
have

^ — (^2,£i)> we

dt
D 1 • A% 1 ) — ( n x n

so that

i , j = 1,2,3,

where S 1 2 3 is defined by (16), ôij = 1 for i = j and 5ij = 0 for i ^ jf. Thus, for any ç G Qi{T), the function

i = i

satisfies

(23)

Let us show that p = q. We dénote p(x) — q(x) = 6 x\ + 6 #2 + 6 ^1 #2- Then it follows from (23) that

6 ^ 2 + 6 ^ 1 + 6 ^ - 7 ^ = 0, 2 = 1,2,3, (24)

which implies that

6 (ff x n3) -f 6 {(A* * rV) n^ - (A3 • n3) n^} = 0 , i = 1, 2 .

Subtracting the second équation multiplied by n 1 x n3 from the first équation muïtiplied by n2 x n3, we infer
that 6 ^2 Sl2Z = ö. Anaiogoualy we obiaiii from (24)

6 (n3 x ff) + 6 {(A* • n^nl - (A3 • n 3 )nl} = 0, i = 1,2,

and 6 "1 S 1 2 3 = 0- Thus, 6 = 0 and it follows from (24) that

6 (ff x nj) = 0 , 6 (n* x n j) = 0, «,j = 1,2,3,

which gives 6 = 6 = 0 in view of (17). Therefore, p = q. Since |x| < A/2 for any î t T, we have %*- (J") < 3 \/2

for any i G IR2 with \t\ = 1. Hence, applying (17), we get

n 2 M2 ^ 108 A

3 4 = 1

which implies (22) in view of (12), (20) and (10).

Lemma 3. We have

sup
vhev2

h\{o}

D

(25)
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Proof. Consider any VH e Y\. Then Vh = J2i^i a%^K^K f°r some real numbers a \ We can assume that
Jn tp\ àx 7̂  0 for % = 1,. . . , Nh since otherwise jh ~ 0 and (25) holds. Thus, we have because of the définitions
of C2 and 7/!

f o = > V/i f T < E
Terh i=i,

(26)

Applying Lemma 1, we obtain for any qh € Qh

b(vh,qh) =

Choosing

it follows that

oth i=1 oth Jn

which implies (25) owing to (26), (9) and (22).

dtï

Theorem 1. There exists a constant C5 > 0 independent of h such that the spaces
satisfy the Babuska-Brezzi condition

sup > C5 lh \\qh\\Q n V gA € Qh .

Proof. Applying the modified Verfürth trick presented in [7], pp. 255-256, we obtain

sup
vhevh\{o}

> C \\qh\\Ota - /Y, h2
T\qh\\T V qh 6 Qh

ë

D

= V^ © V^ and

(27)

(28)

with a constant C > 0 independent of h and the theorem follows from Lemma 3 and the bound 7^ < 2 CV For
completeness, we recall the main arguments leading to (28). Since the spaces HQ(Q,)2 and LQ(Q.) satisfy the
inf-sup condition (6), we have

P\\Qh\\o,n< (29)

Using an operator nh : i?o(^)2 satisfying

liT < C \v\u

Terh
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where C is independent of fo, we get for any v G HQ(Q)2 and qh € Q^

= / (V-TT^) • Vghdz < C|v|ljn / ^
Jn y T€Tfc

ç C\v\1Q sup
' ^ev,\{o}

Substituting the sum of these two relations into (29), we dérive (28). D

Remark 7. Let ff <pa dx > 0 for any a G V. Consider any T eTh and i G {1 , . . . , Nh} and let <^JT = (paoF^1

for some a G P. Then, according to (13),

JT
[ [ (pi* dx

T Jf Jf

and hence, in view of (10) and (9),

f ^\dx>C\Pi\ inf f ^ d x , i = l,...,iVfc

where C > 0 is a constant independent of h. Finally, applying (12), we get

inf f (p"dx

where C > 0 is again independent of /i. Thus, if V is finit e and /^ (pa dx > 0 for any ^ a ̂  0, then 7h > C > 0
wit h C independent of h.

4. EXAMPLES OF STABLE ÉLÉMENTS IMPLYING THE STABILITY OF KNOWN ÉLÉMENTS

In this section, we dérive several explicit examples of supplementary spaces V^ such that the pair V^ =
V^ © V|, Qh satisfies the Babuska-Brezzi condition. All examples which will be discussed in this section can
be divided into three classes. The first class is characterized by the fact that V^ © V^ is a proper subspace of
the space

V«2 = {v e Hl
Q (Q)2; v o FT e Q2[T)2 WTeTh},

where Qi (T) is the space of biquadratic functions defined on T. In this way, we get an alternative proof for the
stability of the Q2/Qi-element. The second class will be constructed such that V^ © V | is a proper subspace
of the space

Vf1 = {ve # 0 W ; v o FT e Q^ff V T e Th/2} ,

where Th/2 is a triangulation obtained from Th by dividing each quadrilatéral T G Th into four quadrilaterals
Connecting the midpoints of opposite edges of T. This also represents a new proof for the stability of the
4 Q1/Q1—element. The basic feature of the last class is that the space V^ consists of bubble functions, ie.,
any function from V^ vanishes on all edges of the triangulation Th- Here we recover the stability of the Q\~
bubble/Qi-element [17] by our genera! approach.
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We start with the first class and introducé functions (pa and points Aa satisfying the relation (13). As we
have already seen in Remark 4, the biquadratic function

^ ( x ) = £i (1 - ï i ) (1 - x2) (1/2 - x2)

satisfies (13) with Al = (1/2,0). Analogously we define the biquadratic functions (p2, $>s and (ffi satisfying (13)
with Aa equal to (1,1/2), (1/2,1) and (0,1/2), respectively. Purther, we define the functions

^ ( x ) = ifP(x) = xi (1 - xi) X2 (1 - x2)

which satisfy (13) with A5 = A6 = (1/2,1/2) (cf. Remark 3). Finally, we introducé the vectors î = t =

t = (1,0) and t — t — t = (0,1). Now, we follow the lines of Section 2 and construct the functions ipz
h

and vectors t%
h generating the space V\. Each <pz

h is constructed using either the functions (p1,..., (pA or the
functions v?5, (jfi. In the former case, the point A\ is the midpoint of an inner edge of 7^, t\ is a unit vector in
the direction of this edge and supp</?^ consists of the two éléments containing A\. In the latter case, the point
A\ = FT(l/2,1/2) lies in the interior of an element T, t\ is a unit vector in the direction determined by the
midpoint s of two opposite edges of T and supp (p\ = T.

The last assumption for satisfying the Babuska-Brezzi condition is the relation (17). According to Remark 1,
this relation is satisfied if, for any element T, there exist three points A\, AJ

h, A^ 6 T such that the corresponding

vectors TT, t°T and tT are not all equal. For example, it is sufficient if, for a given element T, there exist three
functions ipl

h with A%
h e 8T or if there exist one function (p\ with A\ G dT and two functions <pl

h with A\ G int T.
Thus, using the above defined functions (px

h and vectors tl
h1 we are able to define various spaces V^ such that

the spaces V^ = V^ © V^ and Q^ satisfy the Babuska-Brezzi condition (27). Moreover, in all these cases, the
Babuska-Brezzi condition holds uniformly with respect to h (cf. Remark 7). As a simple conséquence, we also
see that, owing to

the Babuska-Brezzi condition is also satisfied for the spaces V^2, Q^. The remarkable aspect of the new class of
éléments described above is that the <22/Qi-element remains stable if more than one half of the basis functions
from the velocity space are dropped. Particularly, the functions <pl

h defined using (pb and <pP are needed for the
validity of the Babuska-Brezzi condition only on those éléments which have two or three edges on dQ.

We now dérive the second class of éléments implying the stability of the 4 Qi/Qi-element. The construction
of V^ is similar to the class above, however, we have to use piècewise bilinear functions instead of biquadratic
functions (pa. First, we introducé the functions

J i 3-7x2 fo rx 2 e[0 , i ] ,
! 2

[ , l ] , (̂  Î 2 - 1 f o r x 2 € [ - , l ] .

Setting 0^{x) = (p(xi)i})(x2), we obtain a function which is piecewise bilinear with respect to a subdivision
of T into four equal squares and which satisfies (13) with A1 = ( | ,0) . Analogously we define the functions
(p2, (p3 and (p4 satisfying (13) with the same points as in the biquadratic case. The functions <p5 = (p6 are
now piecewise bilinear functions which vanish on the boundary of T and are equal 1 in the point (1/2,1/2).
According to Remark 3, the functions y?5, (çP satisfy (13) with A5 = A6 = (1/2,1/2). Now we can proceed
in the same way as in the biquadratic case and construct various spaces V^ which guarantee the fulfilment of
the Babuska-Brezzi condition. The assumption (17) can be satisfied as in the case of the first class. In ail
possible cases, we have V^ © V^ C V^Ql and hence we particularly infer that the 4 Qi/Qi-element satisfies
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the Babuska-Brezzi condition with a constant independent of h. Again, the 4 Q1/Q1-element remains stable if
more than one half of the basis functions from the velocity space are dropped.

As an example of the third class mentioned at the beginning of this section, we shall investigate the Q\-
bubble/Qi-element by Mons and Rogé [17]. To describe the space V|, we divide the référence element T into
the triangles Ti, T2 having the vertices (0,0), (1,0), (0,1) and (1,0), (1,1), (0,1), respectively. Denoting

^ f Xi X2 (1 — x\ — X2) for x G Ti,

[0 for x e T2 ,

^ f 0 for x e f1,
ip (x) = <

[ (1 - xi) (1 - x2) (xi + x2 - 1) for £ E T2 ,

we have

V2
h = {v e Hù(n)2; voFTe [span{^\i?}}2 V T e Th} .

We want to show that the stability of the Qi-bubble/Qi-element follows from our gênerai theory. For this, we
cannot use the functions ip1, ip2 since they do not satisfy (13) for any points A1, A2. Therefore, we introducé
new basis functions

21 - V2Ï 21 - V2ï\ 72 f21 + V2Ï 21
A

for which (13) holds with

_ / 21 - y/2Ï 21 - \ / 2 ï \ Av _
" " ^ 42 ' 42 ) ' \ 42 ' 42 J'

respectively. Further, we set cps = tp1, (p4 — (p2\ A3 = A1, AA = A2, t = î = (1,0), t = t = (0,1). Defining
functions ip%

h and vectors t^, i= 1 , . . . , Nh (Nh = 4 cardT/J, as in Section 2, we deduce that

It is easy to check that all the assumptions made in Section 2 are fulfilled and hence it follows from Theorem 1 and
Remark 7 that the Qi-bubble/Qi-element satisfies the Babuska-Brezzi condition with a constant independent
of h.

5. GENERAL RELATIONSHIP BETWEEN ENLARGING THE VELOCITY SPACE AND STABILIZING
THE CONTINUITY EQUATION

It is well known that a standard Galerkin finite element discretization of the Stokes or Navier-Stokes équations
with the spaces V^ and Q^ cannot be used because of failing the Babuska-Brezzi condition (6). We have already
seen in Section 4 that, enlarging the velocity space by V|, the stability for the spaces V^ = V^ 0 V|, Qh can
be achieved. An alternative way for stabilizing a Galerkin finite element discretization using V£, Qh consists in
adding some terms to the continuity équation

b(uh,qh)=0 V^GQ^.
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Here, we shall show that this technique is in some sense equivalent to eliminating the degrees of freedom of the
corresponding supplementary space V2 from the discrete problem formulated for the spaces V^ = V^ © V^, Q^.
In the following, we shall confine ourselves to functions (p\ and vectors t%

h satisfying

« t ó 4 , ^ * i ) = 0 V i ^ j , i,j e {!,...,Nh}. (30)

Examples of such functions and vectors will be given in the following sections.
We start with a reduced discretization of the Stokes équations given by:

Find uleVl.ule V2
h and ph € Qh satisfying

va(ulvl) +Kvlph) = <ƒ,«£> V v U V i , (31)
va(ulv2

h)+b(vlph) = 0 V ^ G V g , (32)
b{ul

h, qh) + b{u\, qh) = 0 V qh G Qh. (33)

This problem was obtained from the discretization (5) with V^ = V^ © V | by dropping the terms v a(u\^ t;^),
i /a (u^v | ) and (/,v^). In [16] it has been shown that, for ƒ G L2(Q)2, the solution Uh = u\ + IA2, p^ of
(31)-(33) has asymptotically the same rate of convergence as the solution of the original problem (5). Note
that, in the special case when the triangulation Th consists of rectangles only and the functions from V | vanish
on all edges of 7^, the terms a{u\^v\) and a{u\^v\) vanish identically. Owing to (30), the élimination of
u\ by means of (32) becomes simple. Indeed, using the basis représentation u\ — J2f=i a-? ̂ 1 ^h an (^ se^ting
^ ^4

h) - 0 .

Since a{ip%
ht

%
h^ ip^t1^) = l^fWi Q ̂  0, we can eliminate u\ from (31)-(33). Lemma 1 implies that

f

and hence we obtain a stabilized Qi/Qi-discretization of the Stokes équations in the form:

Find u\ € V^ and ph G Q^ satisfying

ua(ulvi)+b{vlph) = (ftvl) \fv\eVl, (34)
b(Uh,qh) - ch(ph,qh) = 0 V qh e Qh, (35)

where the stabilizing term is given by

It is easy to show (cf. [16]) that u\ converges to the solution u of (3) with the same rate as Uh — u\ + u\.
That means that any stabilized discretization of the Stokes équations having the form (34),(35) with Ch(phi qh)
given by (36) possesses optimal approximation properties.
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FIGURE 1. Supports of the functions {^}f=1-

Similaxly as for the Stokes équations we can also proceed for the Navier-Stokes équations. We start with the
reduced discretization:

Find u\ € u\ G and satisfying

i/a(ul,vl) + b(vl,ph) = O
< + b(ul,qh) = O

(37)

(38)

(39)

the solution of which has asymptotically, for ƒ € £2(Q)2, the same convergence rate as the solution of the
standard Galerkin finite element discretization of the Navier-Stokes équations (cf. [16]). Assuming (30) and
eliminating u\ from (37)-(39), we arrive at the stabilized discretization:

\ and pu e Qh satisfyingFind u\ G

b{ul
h, qh) - i Qh) = 0

(40)
(41)

where the stabilizing term c^iphiÇ
optimal approximation properties.

given by (36). Again, it follows that this stabilized discretization has

Remark 8. Since the matrix {a((pz
h t\, (pj

h t^h)}f^=1 is regular, the assumption (30) is not necessary for trans-
forming the problem (31)-(33) (resp. (37), (39)) 'into the form (34)-(35) (resp. (40), (41)) with some stabilizing
term Ch{Ph-> Çh)- However, the stabilizing term then generally cannot be written in a compact form like (36).

6. NEW STABILIZATION TERMS
In this section, we discuss some choices of tp\ and t\ satisfying (30) and leading to new stabilization terms.

A sufficient condition for (30) is

( intsupp^) H ( intsupp^) = 0 or t\ (42)

The functions tp%
h introduced in Section 4 do not satisfy this condition but we can easily modify them so that

(42) holds. We define the sets S 1 , . . . , E5 c T as depicted in Figure 1 (the set E5 is a square with the vertices
(1/4,1/4), (3/4,1/4), (3/4,3/4), (1/4,3/4)) and we transform the biquadratic functions £\. . . ,<£5 from Sec-
tion 4 onto S 1 , . . . , S5, respectively. For simplicity, we dénote the transformed functions again tp1,..., (pb and
we set (pP = (p5. We remark that the sets S2 could be defined in many other ways (it is only important that
their interiors are disjoint) and we could also use various other functions (p1 (e.g., we could transform the
piecewise bilinear functions from Section 4 onto the sets E*). However, to fix ideas, we shall now consider only
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the biquadratic functions defined on the sets from Figure 1. Thus, for example, the function §l satisfies

ipl(x) = (xi - \ ) ( \ - xi) (\ - x2) (g - x2) for x E Ê1

and vanishes in T \ E1. The points A1 , . . . , A6 and the vectors t , . . . , t remain the same as in Section 4, ie.,

£j £i £j £J £i ZJ

and

The construction of a space V | is analogous as in Section 4. Thus, using the functions (p1,..., </?4, we construct
functions ^ with points Az

h lying on inner edges and, using the functions (p5 and cp6, we construct functions (pz
h

with A^ lying in the interiors of éléments. However, using the functions tp1 , . . . , ^€, we are not able to construct
ip%

h with A\ lying on a boundary edge. Therefore, for i — 1, . . . ,4, we further introducé functions (p1* G HQ(T)
with supp^* C Eï satisfying (13) with Al. The function ^x* is given in E1 by

^1+ _ _ 1 3 _ _ 1 _ 3 _ .
4 4 : 4 20

and the functions (p2*, ̂ 3*, £>4* are defined analogously. Now, for any edge lying on ÖQ, we introducé a function
ip\ with A^ belonging to this edge. For clarity, we shall not use the functions ^ * , . . . , (p4* for constructing
functions ip\ with A\ G ̂ . Now, if we choose a subset of the functions {(f^} so that the assumption (17) is
satisfied and define the space V^ as the linear huil of this subset, then the Babuska-Brezzi condition (27) will
hold. The question which functions <pl

h should be chosen in order to have (17) was already discussed in Section 4.
We recall that, for example, the assumption (17) is satisfied if, for any element T, we have three functions <f%

h

with A\ on edges of T. As we know, it is also sufficient if, for a given element, we have two functions (p%
h with

A%
h G intT and one function tpl

h with Al
h on an edge of T. However, there is an important différence between

these two possibilities: A set of functions (p\ with Az
h on edges of the triangulation satisfies the condition

(42) (the supports of these tpl
h are disjoint) whereas if the points A\ also lie in the interiors of éléments, (42)

generally does not hold. The reason is that functions tpl
hi (p

3
h defined by <^JT = (p6 o F^1, ^ I T — ̂ P6 ° E^1 for

some element T have the same supports and the corresponding vectors t \ , iPh are not orthogonal unless T is a
rectangle.

We dénote by £h the set of all edges E of the triangulation 7^, by CE the midpoint of each edge E and by
ÏE a unit vector in the direction of E. Further, for each edge E, we have a function (pz

h with Az
h — CE and we

dénote <PE = (p^ Finally, for any T G 7^, we set tpx = <?5 ° F^1 and we dénote by CT the barycentre of T. As
we know from the previous paragraph, the space V | = Span je tE}Eeeh guarantees the validity of (27) with
lh ^ C > 0. For this choice of V^, the stabilizing term (36) can be rewritten into

ch(ph,qh) = E - ^ Q^(CE) Ö^(CE) , (43)
Ee£h

where hs dénotes the length of the edge E and the parameter

_ \fa<pEdx\2

E h

is bounded from below and from above by positive constants independent of h (cf. Remark 7).
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FIGURE 2. Supports of the fonctions {^}f=1 and directions of the vectors {T}^=1.

If we also use the fonctions ipx and the triangulation 7^ consists of rectangles, then (36) can be rewritten
into

Ch(ph,qh) =
8E h%

(44)

rerh

where 6 E is the same as above and

8

Again, ÔT is bounded from below and from above by positive constants independent of h. We recall that, in
the sums of (43) and (44), it is sufïicient to consider only those terms which assure that the assumption (17) is
satisned. For instance, îf some T ç 'Jfc is present in the second sum of (44), we need only one edge E C Tin
the first sum of (44). Note also that the number of entries in each row of the matrix corresponding to (43) is
equal to one plus the number of edges containing the vertex associated with the given row. Thus, for a uniform
triangulation, the matrix corresponding to (43) has only fîve entries in each row like the usual five point star
for the discretization of the Laplacian. The matrix corresponding to (44) has typically nine entries per row.

We have seen in Section 5 that the stabilized fînite element discretizations (34), (35) and (40), (41) of the
Stokes and Navier-Stokes équations, respectively, possess optimal approximation properties provided that the
stabilizing term Ch(phiQh) can be written in the form (36). The results of this section show that, particularly,
the mentioned discretizations have optimal approximation properties if Ch(phi Qh) is defined by (43) or (44) with
some suitable parameters 5E and ÖT, which is a new resuit.

7. RECOVERING OF THE BREZZI-PITKÂRANTA STABILIZATION

Eliminating the space V^ from a discretization, we can not only dérive new stabilized discretizations as in
the previous section, but we can also obtain some existing ones. That often provides a deeper insight into their
behaviour. Hère, we show that, choosing the fonctions ip\ and vectors t%

h in (36) in a suitable way, we can
recover a stabilization introduced and studied by Brezzi and Pitkâranta [9]. For this, we introducé fonctions
(p1,..., (p4 G HQ(T) having their supports in the sets E 1 , . . . , E4 depicted in Figure 2. The sets E* are squares
with side length ^ ^ and barycentres in the points Âl = ( | , ^ = ^ ) , A2 = ( ^ ^ , | ) , ^ = (|, ^ ^ ) and
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A4 = (3 g , | ) , respectively. The choice of the points A% assures that

X ix = \ [g{£) + g(Â4)} for g{x) - (£0 + Ci i

for = (Co

(45)

(46)

where and £ch £1 a r e arbitrary real numbers. Each function (p1 is biquadratic in E% vanishes on the
boundary of T,1 and is equal to 1 in A1. The corresponding vectors t are depicted in Figure 2 and are defined
byî 1 ^ î 3 = (1,0) andî2 = t = (0,1). Now, for any T G Th and i G {1, . . . ,4}, we set

The functions </?̂  and vectors tj. satisfy all the assumptions made in Section 2 and the space V^ =
Spanje^ £^}TeT^ i==1 4 guarantees the validity of the Babuska-Brezzi condition for the spaces V^ © V | and
Q^. The condition (42) is clearly satisfied and therefore, the discretizations (34), (35) and (40), (41) are stable
for the stabilizing term

t=i T T v\(PT\itn

Denoting pr =Ph° FT, QT = Qh° FT for any T e %, it follows using (13) and (20)-that

krh kdt{ ] dt ( } | JH#) tV - ƒ, I JfT V^l2 I det JT| d£

If the triangulation 7^ consists of parallelograms, then JT is constant for any T G 7^ and we obtain

|JTt

| det JT\ I / f y1 dx|2

v Jf |JrT

Since dpr/dxk is a linear function independent of üc/t, /c = 1,2, we infer applying (45) and (46) that the terms
in the square brackets are equal to

\JTï
^

Applying (20), we obtain

where the parameter
TeTh

dph dqh

_
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is bounded from below and from above by positive constants independent of h. The vectors t\} t% are unit
vectors in the directions of the edges of the parallelogram T. Thus, if the triangulation Th consists of rectangles,
we obtain

ChiPh^qh) = 2 ^ ~TT- /
Terh

which is the stabilization introduced by Brezzi and Pitkàranta [9] for stabilizing a discretization of the Stokes
équations.

8. CONSISTENT STABILIZED DISCRETIZATIONS OF THE STOKES ÉQUATIONS

A drawback of the stabilizations discussed up to now is that they are not consistent. First of all, the
consistency error comes from the dropped right-hand side in (32), resp. in (38). Let us consider the Stokes
équations (the Navier-Stokes équations will be treated in the next section) and let us replace the équation (32)
in the reduced discretization (31)-(33) by

v a(ul vl) -f b(vlph) = ( ƒ, vl) \fv2
heN2

h. (47)

The resulting discrete problem (31), (47), (33) has a solution which converges to the solution of (3) with the
same rate as the solution of (31)-(33) (cf. [16]). If the triangulation Th consists of rectangles, the équation (47)
can be written as fa(ii^,t>2) = r ^ u ^ p h , v^) with

ç,v) = (ƒ,v) — b(v,q) + v ^ / v-Awdx.
TcT, JTTerh

A solution of (3) with u G H2{0)2 satisfi.es rh(u,p, v) = 0 for any v € HQ(£l)2 and hence u\ = it, ph = p solves
the new discrete problem (31), (47), (33). In this sensé, the new discrete problem is consistent. If the éléments
of Th are not rectangular, the discretization is not consistent any more, but if they are neariy rectanguiar, we
can hope that the consistency error is small.

Similarly as at the beginning of this section, we can eliminate u\ from the discretization (31), (47), (33) and
obtain a stabilized Qi/Qi-discretization of the Stokes équations. This discretization now reads:

Find u\ e V\ and ph € Q^ satisfying

h) = (f,v\) V«U
b{u\, qh) - ch(ph, qh) = lh(qh) V qh E

where Ch(ph,Qh) is defined by (36) and

1 (n \ V* ^lh{qh) h ^
The particular formulas for lh(qh) corresponding to (43) or (44) can be introduced in a straight for war d way.
We only dérive a formula for lh(qh) in case of the functions (pip.

Let Th consists of parallelograms and let

ƒ G {v G L2(Q)2; voFT£ Q^ff V T G Th} .
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Denoting fT = fo FT, qT = qn ° FT for any T GTh, we infer using (13) and (20) that

= - ^ /

Applying (45), (46) and (20), we obtain

and hence, if the triangulation Th consists of rectangles, the stabilized continuity équation reads

This stabilization is identical with the Petrov-Galerkin formulation of the Stokes équations introduced in [15].
Increasing the number of the bubble functions, we can dérive this équation also for ƒ being generated by higher
degree polynomials defined on the référence element. That will be also seen in the next section.

9. RECOVERING OF THE SUPG METHOD

The aim of this section is to show that, eliminating a sufriciently rich space V^ from a modified reduced
discretization of the Navier-Stokes équations, we can obtain the streamline upwind/Petrov-Galerkin (SUPG)
method of [12] analyzed for arbitrary combinations of approximation spaces for the velocity and pressure in [21].
This équivalence will be established without linearizing the convective term, unlike other papers investigating
the relationship between Galerkin methods with bubble functions and the SUPG method.

We confine ourselves to triangulations consisting of rectangles and, similarly as in Section 5, we again start
with a reduced discretization of the Navier-Stokes équations. In contrast with (37)-(39), we now drop only the
terms va(u\,vl

h), z/a(u^,u^), nfa^u^v^) and n(u\,Uh)Vh)* Then we replace the term n(u^,iA^,v^) by the
term — n(u\,v\,u\). The last modification is motivated by the fact that

n(«, «;, v) = —n(ïz,-u, w) — ƒ (v-w)divudx V u,v,w G HQ

Ja

Thus, we consider the following modified discretization of the Navier-Stokes équations:

Find u\ e V£, u\ e V^ and ph G Qh satisfying

i/a(ul,vl) -\-n(ul
h,u

l
h,v

1
h) - n(u\, v\,u2

h) + b(v\,ph) = {f,vl
h) , (49)

= <ƒ,«*>, (50)
= 0 (51)

for any v\ € V^, v\ G V | and qh € Qh> Using the techniques of [16], it is possible to prove the same convergence
results for (49)-(51) as we have for the standard Galerkin finite element discretization of the Navier-Stokes
équations. Since A(u\\T) = 0 for any T G Th and u\ can be considered as a stabilization device only, the
above discrete problem for v}h, Ph is consistent (cf. the previous section). The term — n(u\, v\> u^) introduces
an influence of the space V^ into the momentum balance (49). We shall see that this influence corresponds to
a stabilization of the convective term n(tt^,t*^, v\) analogous to the SUPG effect.

In view of the présence of the convective terms in (49) and (50), we shall need a more accurate intégration
formula than (45) and (46). Therefore, we have to increase the number of the points A% and hence of the bubble
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FIGURE 3. Supports of the functions

functions ^ \ We introducé 16 points A* G T, i = 1, . . . , 16, depicted in Figure 3 whose coordinates are ail
possible combinations of the values | (1 + £), | (1 — £), | (1 + rç), | (1 — 77), where

Then

16

(52)

where Qs(T) is the space of polynomials of degrees less than or equal to 5 in each variable. To define the
functions (p1 corresponding to the points Az, we first prove the following lemma.

Lemma 4. Let A £ T and 4> £ H%(T) \ {0} with ïp>0onfbe given. Then there exists p £ Q2{f) such that
the function (p = p%/> satisfies (p e HQ(T) \ L%(T) and

f
Jf

(pdx (53)

Proof. Let us dénote ((u,v)) = jf ifjuvdx and M = {qe Q2(T) ; q(A) = 0} . Then ((•, •)) is an inner product

on Qi{T) and M is a linear subspace of Q2<D with dim M = d i m Q 2 ( r ) — 1. Thus, the orthogonal complement

M1- of M in Q2{T) wi th respect to ((•, •)) is a one-dimensional space and hence there exists p € M x \ {0} such

t h a t ((p,g)) = 0 V q G M. T h a t means t ha t the function <p = pift satisfies Jf q(pdx = 0 V g G M . Since

q~q(Â) E M for any q e Q2(T), (53) holds. Let us assume that (p G L%{f). Then Jf q(pàx = 0 \f q e Q2(f)J

z.e., ((p, q)) = 0 V ̂ G Q2{T), which is in contradiction with p ^ 0. •
For each point A2, i = 1 , . . . , 16, we define a square with a side length 0.1 and a barycentre in A1 (cf. Fig. 3).

Transforming the function (p from Lemma 4 (for A = (1/2,1/2) and some fixed function I/J) onto the squares
around the points A\ we obtain functions fi1 G HQ(T), i = 1, . . . , 16, satisfying

/ q 0- dx =
Jf i VqeQ2(T)}
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Further, we dénote ^+ 1 6 = £ \ Al+l6 = A\t = (1, 0) and £*+16 = (0,1), i = 1, . . . , 16. Finally, we again set
for any T e Th and i G {1 , . . . , 32}

= 0, i 4

(Note that J^ = const. for each T e Th-) Since TH consists of rectangles, we have

f qiPirdx = q(Air) [ tpirdx V g e Q2(T), T € Th, Î 6 {1, . . .,32} . (54)
JT JT

The space V£ = span{^ t ^ } T G T h i = 1 ) 32 guarantees the validity of the Babuska-Brezzi condition (27) for the
spaces V^ © V^ and Q^ with 7^ > C > 0. Of course, much less bubble functions would be enough to get a
stable element (it would be sufficient to have three functions (p%

T in each element T) but the supplementary
space V^ = spa1n{(p'lTt'lT}Terhi=l^2 enables us to show a relationship to the SUPG method.

Now, let us eliminate the function

32

Terh i=i

from the discrete problem (49)—(51). Since the basis functions of V^ are orthogonal with respect to the bilinear
form a(-, •), the élimination of u\ is again easy. We shall assume that

fe{ve L2(Q)2; v\T € Q2(T)2 MTeTh}

and we shall employ that the spaces V^ and Q^ now consist of piecewise bilinear functions and that tl
T-t!j!'16 = 0

for any T € %, and i e {1 , . . . , 16}. Applying (54) and the fact that

(ƒ - (Vui)«i - Vph)\T e Q2(T)2 VTeTh,

we obtain from (50)

<*T » IVrftn ^ *1T ' (/ " (Vti£K " Vph) (A^) J & dx .

Using (54) and the fact that each function y>%
T is only a shifted function ^ , we further infer that

Since the quadrature rule (52) is exact for polynomials from Q$(T), we finally get

where

16 | JQ (pip dx\2

7 T =
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is again bounded from below and from above by positive constants independent of h. Analogously we obtain

—

Thus, the discrete problem (49)-(51) can be equivalently written in the form:

Find u\ G V^ and pu £ Qh satisfying

v a(uh> vh) + n(uh> uh vh) + Kvh>Ph) ~ b(u\, qh)

= (/, vi) + J2 JL^L I (f - (V«i)«i - Vph) • {{Vvl)ul + Vqh) dx (55)

for any v\ e V^ and qh G Q^. This form of the discrete problem (49), (51) is identical with the SUPG
method of [12,21] in the diffusion-dominated case, i.en for small values of the element Reynolds number
Rex = lwhli,oo,T ^ T / ^ - The stabilized continuity équation now reads

TGTh

which is a generalization of (48) to the nonlinear case.
In the convection-dominated case, ie., for large values of Rer, the factor in front of the intégral in (55) is

usually chosen proportional to hT/\u\\1 M r . Thus, for large values of Re^, we should have 7^ ~ 1/Rex- That
can be always fulfilled since

where ift is the function from Lemma 4 and C is the same constant as in (12). For each element J\ we can
use another function ij; and obtain the correct value of 77* (the parameter set V introduced in Section 2 is then
generally infinité). However, if 7^ ~ 1/Rex, then the parameter 7^ from the Babuska-Brezzi condition (27)
behaves like

1

max
T€Th

which means that, for large values of Re^, the SUPG method is equivalent to the problem (49)-(51) with spaces
V\ = V^ ® V\ and Q^ satisfying the Babuska-Brezzi condition (27) with a small parameter 7^. Although this
dependency has been not focussed in [20], a careful inspection shows that also for the Pi jP\ -element enlarged by
residual-free bubbles the constant in the Babuska-Brezzi condition behaves in the convection-dominated case
like O(l/VRe). Therefore, it seems to be more convenient to stabilize the continuity équation and the convective
term separately with different parameters 7^. This discretization corresponds to a modified discretization of the
Navier-Stokes équations with a velocity space Y h = V^OV^SV^, where the supplement ary space V^ guarantees
the fulfilment of the Babuska-Brezzi condition and V^ gives additional stability in the convection-dominated
case (like in the SUPG approach).
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