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OPTIMAL ERROR ESTIMATES FOR FEM APPROXIMATIONS
OF DYNAMIC NONLINEAR SHALLOW SHELLS*

IRENA LASIECKA! AND RICH M ARCHAND?

Abstract. Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in
considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result
presented in the paper improves upon the existing literature where the rates of convergence were derived
for small initial data only [19].
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1. INTRODUCTION

The main goal of this paper is to derive optimal rates of convergence, i.e. reconstructing the best ap-
proximation properties of the underlying finite dimensional subspaces, for semidiscrete finite element (FEM)
approximations of a nonlinear dynamic shallow shell model. In contrast with the literature [19], our results do
not require any assumptions on the “smallness” of the initial data.

1.1. The model

The model to be considered is a nonlinear model for a thin shallow dynamic shell [1,7,13,19]. We begin
by describing the notation to be used. Throughout this paper, the summation convention will be used with
Greek letters belonging to the set {1,2} and Latin letters belonging to the set {1,2,3}. The middle surface S
of the shell is defined to be the image of a connected bounded open set Q C £2 with boundary I' under the
mapping ¥ : (£2,£%) € Q — €2 where ¥ € [C*(Q)]® and £ is the n-dimensional Euclidean Space. Then for
any point on the surface of the shell, it is assumed that the two tangent vectors given by a, = 0¥ /0&* are
linearly independent. Moreover, these two vectors along with the normal vector, ag = a; x ag/|a; X ag| define
a covariant basis for a local reference frame on the surface of the shell. Hereafter, the notation ®,, = 09/9¢%
for any point (£1,£2) € Q0 will be used.

The contravariant basis for the tangent plane at any point on the surface of the shell is given by the two
vectors a® defined by the relation a, - a® = §5. The contravariant and covariant vectors are associated by
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64 I. LASIECKA AND R. MARCHAND
the well-known relationships

a, = aaigag, a% = ao"@alg, Qo = Ao - A = QBa, and a®? = a® . af = P

2

where the matrix (aqg) represents the first fundamental form of the surface with its inverse given by the matrix
(a®P).

The second fundamental form, denoted by (b,s), measures the normal curvatures of the middle surface of
the shell. It is defined by

bap = bpa = —aa - 83,5 = 83 - A0, 3-

The Christoffel symbols given by I'Gy = a® - ag,x give rise to the following covariant derivatives for the displace-
ment vector of the middle surface u(£!, £2) = u;a’ in a fixed reference frame:

'U'a]ﬂ = Ua, — Fgﬂu)\ and U,3|a5 = U3,08 — I‘gﬁug’,\.

For a more complete description of the geometrical considerations and defining characteristics of thin shallow
shells, see [5,13]. For more information on tensor analysis, see [8,12].

We represent the vector function for all three displacements by u = (u1, us, us), while in-surface displacements
are given by W = (uy,u2) and the transverse displacement is denoted by us. In addition, the linear strain tensor
is denoted by eo3(@) = %(ual p+Uug|a). Then from Koiter’s development of nonlinear shallow shell theory in {13],
the middle surface strain tensor v.p and the change of curvature tensor p,g are given respectively by

1
Yap (1) = €ap(T) = bapus + 5us,aus,p and paps(u) = Usjap-

These strain measures, along with an appropriate constitutive law, are used to derive corresponding stress
measures. The exact form of the stress measures depends on the shell material. Thus, we assume the simplest
possible scenario as done in [2] which is based on the assumptions that the shell cousists of an elastic, homo-
geneous, and isotropic material and the strains are small everywhere. Additionally, we assume that all nonzero
stress components are imposed on surfaces which are parallel to the middle surface of the shell. Then the stress
resultants and moments respectively take on the forms

e

3
12 Eam#"*u (),

where e represents the thickness of the shell, and the tensor of elastic moduli is given by

n®f(u) = eE*PM, (1) and m®P (u) =

Eaﬂ/\u _

—E a®aP* 4 a®HaP + v a®Pore| .
2(1+v) 1-v

Here, E is Young’s modulus and v is Poisson’s ratio for the material. See [4] for a proof of the positivity of the
tensor of elastic moduli. Let P € [L1((0,T) x Q)]?,q € L1((0,T); H~1(£2)) denote the prescribed body forces

and p > 0 denotes mass density. Additionally, we let % represent differentiation with respect to time and make
use of the following notation

(u,v) = /qu\/a dé1dés; ulsa = |ulge), |ulsp = ulr, om0 @) for 1 <p< oo (L1)

where a = det(aqg) > 0.

T
(7))l = /0 (P los + a1 aldt.
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The model to be considered is given in the following variational form in which we look for solutions u =
(w1, u2,ug) = (@, us) € [HE(Q)]* N HZ(Q) such that

(pea*Piig, va) + (B yap(0),ex, (7)) = (7, T)  (1.2)

3
.. .. €
(peUSa U3) + A/(peuii,aa US,Q) + (EEaﬁ)‘#US]aﬁv UBI/\/») + (eEal”\p"Yaﬂ(u)a U3 NV3,u — b)\”’Ug) - (Q) 'U3): (13)

for all v = (vy,v2,v3) = (7", v3) € [H(}(Q)]2 N HZ(2). The static version of this model is given in [5]. Our
model takes into account additional considerations which include the dynamics of the shell (see [3,19,22]. The
constant -y is proportional to the square of the thickness of the shell and is therefore assumed to be small. Some
models (e.g [19]) consider v = 0. Physically, the term « 3|5, represents rotational forces.

We also introduce the “energy” functional corresponding to the system in (1.2, 1.3) as

E,(t) = Ep(t) + E{ (1),

where
1 .. .. . .
El(t) = 3 {(peaaﬁuﬁ,ua) + (pets, u3) + y(peus,a, U3,a) }

1 el
Ey(t) = 5 {(eEaﬁx\u,yaﬁ(u),'yM(u)) + <ﬁEaﬁ/\#u3|a5,U3|)\”)}

represent the kinetic and potential energies respectively. By formal computations, one can verify that the energy
of the system is bounded in terms of the initial data, i.e., E,(t) < C[E,(0)+|(7,¢)|°]; 0 <t < T. It is known

that the potential energy, E,(t) is topologically equivalent to the norms in [H 1(Q)]2 x H?(f2), so there is an
a priori bound in this space. Moreover, since the nonlinear terms (cubic nonlinearities) are weakly continuous
with respect to H2(Q) topology, standard Faedo-Galerkin method [17] yields the ezistence of weak (finite energy)
solutions. A much more difficult task is to obtain uniqueness of weak solutions and additional regularity of
solutions corresponding to more regular data. Indeed, the mathematical difficulty is due to dynamic nature of
the problem and the fact that the nonlinear terms in the system (1.2, 1.3), are not locally Lipschitz, with respect
to the norm induced by the energy. This makes the analysis difficult, and standard arguments used for showing
well-posedness of solutions are no longer applicable as acknowledged on p. 204 of [1]. This is particularly true
with respect to the uniqueness of weak (finite energy) solutions which has been an outstanding open problem
even in the case of plate theory [14,17]. In fact, the full well-posedness/regularity theory for the model given
in (1.2, 1.3) has been developed only very recently, and the theorem given below summarizes the main results.
Theorem 1.1. With reference to the system in (1.2, 1.8) with v > 0,

1. (Weak solutions). Let 2 be convez or T sufficiently smooth (C'). Then for any initial data
(0, € [H@], us(0,) € H(Q),
_'l:t)(07 ) € [Lz(Q)]z > '["3(0v ) € Hé(ﬂ),
and the body forces )
7 € [La((0,T); La())*, g € La((0,T); H™H(Q)),
there exists a unique solution
7 € C (10,7 [H(@)]°) nC* (0, T [Z2())?)
ug € C ([0, T); H3(2) n C* ([0,T); H3 () .
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2. (Regular solutions). Let T be sufficiently smooth (C?). Then for any initial data and body forces such that

2(0,-) € [HHD)]* n [H2(Q)]?, us(0,-) € H3(Q) N H3(),
w(0,) € [HE(Q)®, 4s(0,-) € HA(®),
P € [H'((0,T); Lo(V))?, g€ HY((0,T); H (),

there exists a unique solution

7 eC ([O,T]; [HZ(Q)]z) nct ([O,T]; [Hg(mf) ,
us € C ([0, T); H*(Q)) N C* ([0, T]; H3()) -

As already mentioned, the existence of weak solutions is standard and follows from a classical Galerkin-Faedo
argument applicable to von Karman types of problems, see [17]. The more subtle issue is the uniqueness of weak
solutions, stated in part (1) of the Theorem, and the regularity of solutions, stated in part (2) of the Theorem.

Indeed, the second part of Theorem 1.1 (Regular solutions) was proved in [20] (see also [16]) and relies
critically on strong a priori estimates obtained for higher (than the energy) norms of solutions. The most
difficult part is the uniqueness of weak solutions, which has been recently proven in [15] (see also [16] where
intermediate regularity of solutions has been studied) by adapting the method used in [24].

If the rotational forces are neglected, i.e. ¥ = 0, then the result of Theorem 1.1 is still valid, see [24], with
the following differences: in part (1) the velocity component of us is in L2(2) and ¢ € L1 ((0,T); L2(2)), and in
part (2) the displacement uz is in H*(§2) and g € H((0,T); L2(Q)).

Remark 1.1. By iterating the same technique as used for the proof of part 2 of Theorem 1.1, one can show
that by assuming more regularity on the initial data more regular solutions are obtained.

1.2. Semidiscrete approximation

Let VP c [H3(Q)]” and W C HZ(R) be finite element approximations (say piecewise linear functions in
Vy, and B-splines or IIET elements in W),) defined on a quasi-uniform mesh, satisfying the following standard

requirements (as in [6,25]):
inf ] U — u’h|lQ < C’hs_l] Tls,0, for0<s< S, s>land0<1<1
whevh ’

inf |uz—uf|,, <Ch Yuslrg, for 0OSr <R, r>land0<1<2
uheWh ’

(1.4)

where S and R are the orders of the approximations. Typically, we have S = k + 1 (resp. R =t + 1), where k
(resp. t) stands for the order of the approximating polynomials (see Theorem 3.1.5 in [6]).

We consider the following semidiscrete approximation of the original model. Find u”(t) € V* x W" such
that

(peaiiy, ut) + (cBFMraa(u), 2, (7)) = (7, 7") (15)
" " e’ o
(peuga vl};) + (peug,ou vg,a) + (ﬁEaﬁ)\#uglaﬁv v:};l/\[l.) + (CE /3)‘”7045 (uh), ug,)\vg,p, - b,\,ﬂ)g) = (‘L U:I;L) (16)

for all vk € Vh x W" and u?(0) = u} € VP x Wh.
Since the semidiscrete problem, (1.5, 1.6) is a system of nonlinear ODE’s with locally Lipschitz (polynomial)
nonlinearities, we obtain local (in time) existence and uniqueness of the solution u* € W1((0,Tp); V* x Wh).
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If the body forces 7', q are more regular in time, say H*(0,T), then the corresponding solutions u” display
more time regularity, say H**2(0,T). The existence of global solution follows from the a priori bound for the
discrete energy function, which is stated in the next section. In fact, this argument is the same as the one used
for proving the existence of weak solutions by means of Faedo-Galerkin method.

1.3. Main results

The main goal of this paper is to establish the rates of convergence for the semidiscrete approximation
introduced above. In comparison with the literature, we note that most of the results available provide numerical
analysis for the static model, see [1] and references therein. The dynamic model is much more involved due
to the “hyperbolicity” of associated dynamics and, in particular, due to the unboundedness of the nonlinear
terms in the energy norm (this is not the case for the static model). The paper which deals with the dynamic
case (v = 0) is [19] in which the rates of convergence are derived (see Th. 1.2) for initial data assumed to be
sufficiently small. The primary aims of this work are: (i) to remove the above mentioned smallness assumption,
(ii) to provide the explicit convergence estimates for the fully hyperbolic model acounting for rotational forces
(v > 0) which are uniform with respect to the value of the parameter y. This way we also obtain the estimates
for the critical case 7 = 0. In these regards, the main result of our paper is given in the following theorem.

Theorem 1.2. Let u be a sufficiently regular solution to (1.2, 1.8) and u® be a solution to (1.5, 1.6) with
v > 0. The required regularity of u is dictated by the norms appearing on the right-hand side of the estimate
below. Assume that ul is an approzimation of the initial data ug complying with the approzimation properties
in (1.4). Then the following error estimate holds for 0 <t <T and2<r< R; 1<s< S5, and all e > 0:

|(ua — ug)(®)]; o + |(ta — g) )|y o + [(us — ud)(B)]5 o + (@3 — a§)(B)]g o + v |(aa — 45)(B)], g

< (h(s—l) + h(rﬁz)) CT.e (E’Y(O), |(—I—))7Q)|, |7.1'3|1+s,oo» 17:La|e,oo) [luals,2 + |’[1'a|s,2 + |'ufa|s—1,‘2

+luslr2 + |Ualr2 + is|r—2,.2 + V|i3]r-1,2]

where the function Cr is continuous in its arguments, independent of h > 0 and independent of 0 < v < M.

Recall that we are making use of the notation |uls, = |u|L,(0,7;#4(n))- In the special case when v = 0, we
obtain the following corollary.

Corollary 1.1. Case: v =0.

Let u be a sufficiently regular solution to (1.2, 1.3) and u® be a solution to (1.5, 1.6) with v = 0, then the
following error estimate holds:

| (e = uB) B, g + [ (e = W2) @) 0 + | (3 — ) (B)] 5 0 + (i3 — 25)(B)] o (17)
< (h(s_l) + h(r_z)) CT,e (E(O), |(_Z7)>Q)]7 |7l3|1+e,0<>> |ua 6,00) “UQIS,2 + mais,Z + |'ua|s—1,2 (1'8)
r2 + |U3lr—2,2] (1.9)

+|uglr2 + |Us

Remark 1.2. In the special case of linear splines used to approximate @, and B-splines, used to approximate
the vertical displacement uz (so S = 2, R = 3), the decay rates given in Theorem 1.2 provide the estimate

(o = uB)(B)] ¢ + [ (o = GE))] g + (s = W) (B)] 5  + | (i3 — ) ()] + 7 | (s — 0)(2)
ShCT,e (E'y(o)a |(?, Q)|a |u3|1+e,oo, luals,oo) [Iua|2,2 + I'da|2,2 + |ﬂa|1,2
+Huslz2 + |uslz2 + |ia]1,2 + v|i3)2,2]

1,2

where the function Cr . is continuous in its arguments, independent of A > 0 and independent of 0 < v < M.
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The error estimates obtained are optimal, in the sense that they reconstruct the best approximation properties
of the underlying finite dimensional subspaces, and global, in the sense that there is no need to restrict the size
of the initial data. We repeat that the main mathematical novelty and difficulty of the problem is due to the
unbounded nature of the nonlinear terms with respect to the topology induced by the energy function. This was
the reason for the “smallness” assumption in [19], where the result of Corollary 1.1 was established under the
assumption that the energy norms of the initial data are sufficiently small. In our case, we are able to dispense
with the above restriction by applying tools of nonlinear interpolation theory.

Remark 1.3. By taking advantage of special “elliptic/static projections” (see [1]: p.190) one could obtain
superconvergence of the estimates in Theorem 1.2 by considering the error expressed in terms of u”(t) and
these projections. In fact, in this case we can obtain the error O(h® + A" 1).

Remark 1.4. The same results as those stated in Theorem 1.2 can be applied to the shell model where the
dynamic terms are modeled by the form (see [3]: p. 258, formula (1.2))

b(i, v) = /Q pe {[1+ (6363 — 426})] [a°Piiaug + iigua] +7° | (iigja + Viin) (Va1 + b0s)
+ (iiavajp + iigjavs + 20%irvg) )] | vadelde?,

where 7 = ¢2/12. However, since the arguments are conceptually the same (due to the boundedness and
coercivity, with respect to energy norm, of the bilinear form b(i1, v)), we opted for a simpler form of the model.

Remark 1.5. Note that the algorithm considered in this paper accounts for the approximation of displace-
ments/velocities only. In particular, it does not account for approximations of the geometry or integration.
However, by using the results/methods of [1] this can be integrated with the analysis presented in this paper.
Also, the analysis presented here could be extended to other FEM approximations such as Mixed Methods
which are very popular and efficient for plates/shells problems, see [1,9-11].

The remainder of this paper is devoted to the proof of the Theorem 1.2.

The following symmetries will be used frequently.

bog = bga
AaB = ABos AaBUaUg > 0 (2-1)
Eaﬁ)\p. — E)\,u,aﬂ — Eaﬁuk.

In addition, the next four inequalities are taken from [1]:

2

B y0pau > C Y apl® (2.2)
a,ﬁ:l

for any tensor 7y,g, uniformly in Q, and the following estimates which result from the “shallowness” hypothesis,
bag| + [bag,r| < 0 (2.3)
where ¢ is a sufficiently small constant,

leag(®)o,0 > C1| W10, W € Hy(Q) (2.4)
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referred to as Korn’s inequality for shells, see p. 39 of [1], and
(usjap, Usjep) > clusld g, us € H3 (). (2.5)

In order to derive our stability estimates, we introduce the discrete energy function, E;‘ (t) which replaces E,(t)
in Section 1.1.

EMt) = Bl t) + EP7 (1)
where

Ep7(t)

It
N

[(peao‘ﬂdg, ug) + (peﬂg, ué‘) +y (peﬂg’a, u?a)]

1 o el
E}t) = 3 (eE*Pryap(a™), vau(u)) + (ﬁEaﬁA”“;aﬁaufiw)] :

As mentioned earlier, the existence and uniqueness of solutions to the semidiscrete problem (1.5, 1.6) follows
from a standard argument. Indeed, local (in time) existence and uniqueness follows from a fixed point argument
(note that in the semidiscrete case the nonlinear terms are locally Lipschitz). The global (in time) existence
follows from the a priori bound obtained by replacing v*(t) = u"(t) in (1.5, 1.6) and integrating by parts in
time to obtain the following stability estimate.

Lemma 2.1. Let u"(t) be a local solution to (1.5, 1.6). Then for 0 <t <T

E5(t) < CIEY(0) + (7, 9)I?) < C (Ex(0), (7", 9)]) -

This lemma will be used extensively in the development of the error estimate and leads naturally to the a prior:
bound stated in the following lemma.

Lemma 2.2. Let u® be a solution to (1.5, 1.6) with v > 0. Assume that ul is an approzimation of the initial
data ug complying with the approzimation properties in (1.4) and D ,q € L2((0,T); [L2(2)]? x H™Y(Q)). Then
the following bound applies for 0 <t < T.

0,0 + i (£)lo,0 + YIuh ()1,

[ub(®)] 0 + [ (B)] 0 + [32()
< O (Jub a0 [ ag 18, Lo 1o o7 ¥ ()1

< C (Juouly 0 l0ala,0 5 li0alo.0 5 0s o+ [ 1 0 1P, @) ) -

Proof. The proof exploits the shallowness assumption and a Korn’s type of inequality recalled above. Since
as(@" ()30 + [u3(B)50 < CEL (1), (2.6)
the shallowness hypothesis and Korn’s inequality in (2.4), can be used to obtain
w0 < Cleap(W™)o,0 < Cleap(u*) = bapusli o + Cluzli o

< Clyap(uM)3 o + C|U§l%v1,4(9)
< Clap(u™)ff o + Clugls o (2.7
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By combining (2.6) and (2.7) we obtain
lua(®)i o < CIE, () + (Bp ()°].

The remainder of the proof is straightforward. O
Our next step is to derive a convenient form of an error equation which will be suitable for further analysis.
To this end, we will use the following notation

Yap = Vep(u"), Yap = Yap(u) and Tap = vap(@")

where @" is a suitable approximation of the solution u satisfying the requirements in (1.4). Therefore, the time

regularity of @” is the same as that of u. In addition, we define the following “error” expressions
h _~h ,h _ ~h
o — Ua,uz — Ug).

E(t) = (peaPel, éh) + (peéh, é8) + v (peéh o, €5 ) + (eB*P (ks — 300), 4%, — 7%,)

e .
+ (EE ﬁ*#eg|aﬁ,egw) . (2.8)

e = (eg,ef) = (u

Now subtracting the variational forms of the equations for u and u” and adding and subtracting appropriate
terms leads to the expressions

.
(peaPely, vh) + (eB*P¥(yhs — Fhg), exa(vF)) = La(u, &*,v") (2.9)

3
. ~h € h
(peeg‘, 'Ug) +y (peeB,cv 'Ug,a) + (ﬁEaﬁ)\#eSIa,@a UI’;P\M)
+ (eBEPM (g — Alg), ub avE , — bauvh) + (B F2gel 5,05 ) = Lo(u, @, v")  (2.10)
where

.
Ly, @, v*) = (pea®él, o) + (eB*(yap — 725, exu(v"))

and

3
~ ~h ~ . . €
La(u, 0", v") = — (eE* (5515 » — YapUs,n), v5,,) + (peé5, v3) +7 (pees o, v5q) + (EE“‘““e’:haﬁ, ”glxu)

— (eE*P M (yag — A5), bruvh) .

Note that both terms, L; and Ly depend linearly on the test function v*. Taking advantage of the symmetric
properties of E**# we obtain the relation

R

d o = x o x j >
3 (¢B Pyl — AR s), Yh, — %) = (eE Byl g — 38 5) ean (@) — exn(@) — bmefi)

N | =

- ~ +h .
+ (eE PM (gl — Fkg), €h silis , + Ug,xeg,u) . (2.11)
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In order to take advantage of this result, we add the expression (eE“‘ﬁ Me(yh g — ﬂ/a[,) el Al u) to both sides of
(2.10) to obtain

. . +h
(peeg,vg) +7 (peeg"a,vg’a) + (12Ea[3/\#e3|aﬁ,v3|/\u> (eEaﬂAu( s — 'yaﬁ) ug,)\vg’“ — bVl + e?v\u&#)
afBiu +h
=X+ L+ |eE (2 —Fk5), e3 A3, ) (2.12)
where
—X(vh) = (eE"B)‘“ﬁZﬁeg’A,vg#).

Now we set v/ = a* — &i" = e” in (2.9) and (2.12) and add the two equations. After accounting for (2.11) and

performing several calculations, we obtain

~h - . ~h ~ < h
555( ) = Li(u,d",é&") + X (") + La(u, ", e") + (eEaﬁ)‘”('yZﬁ — 325, egj)\u&u) . (2.13)

Integrating (2.13) from 0 to ¢ gives the following error equation:

t t t
E(t) = £(0) +2 /0 (L1(u, @, &") + Lo(u, &",")dr + 2 /O X (eh)dr +2 /0 (eBP (vt = 32g), € als., ) dt.
(2.14)

We will proceed by developing estimates for the terms on the right-hand side of (2.14). As suggested by the
notation, the contribution of L; and Lo will be expressed in terms of the error in the approximation. The
contribution of the last term in (2.14) will be controlled by exploiting the coercivity properties of the error
function £(t). The most critical part is the analysis of X, which involves the higher order nonlinear terms
combined with time derivatives é* of the error. While it is reasonably straightforward to derive the error
estimates for the term, X which blow up with v — 0, the main task of this paper is to obtain these estimates
independent on the parameter 7, including the critical case v = 0. This forces upon additional technical
difficulties which will be dealt with next.

3. THE ESTIMATES

Our main effort is directed toward error estimates obtained for each integral term in equation (2.14). The
proof is divided into several Lemmas and Propositions, which provide partial results. The most important is
Lemma 3.2 which gives the error estimates for the solutions in terms of the error estimates for the interpolants
of the original continuous solution. The estimates for the interpolants are provided in Lemma 3.3. Combining
the results of Lemma 3.2 with Lemma 3.3 gives the final result stated in the main Theorem 1.2.

We begin by stating the following lemma which will be used later in this exposition.

Lemma 3.1. Let f be a given function with the regularity f € C([0,T]; H2(Q)) N H*((0,T); L2(R)). For all
€>0 and T > 0, there ezists a constant Cr ¢ such that for allt < T

[f )y < elf(E )lzn+CTe/ | = F(7)[§ ad7 + Cl £ (0)[§ 00
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Proof of Lemma 3.1. By Sobolev embedding, H?(2) C L4(€2) which implies that
£ ®)lwrsey < ClF D30 (3.1)
Using the interpolation inequality, e.g. Theorem 9.6 of [18]
[fls,0 < |f|slﬂ|f| 02,0 Where s = (1 —0)s1 +0s9; 0 <6 <1, (3.2)

with § = 1/4, s; =2, and sy = 0, then

FOl0 < CUFORalf B0
Now apply Young’s inequality given in [23] with p =4 and g = 4/3 to obtain
F(B)l3.0 < Clf@lo + el f Bz,
where € > 0 is arbitrary and C, = O(%) Coupling this result with (3.1) shows that
lf@®)lwra) < Celf(t)lo,0 + €lf)2,0-

We square both sides of this inequality and rescale epsilon to obtain (see also [22])

|y < Celf®),0 + el f(B)I30- (33)

By Sobolev embedding H(0,7;X) C C([0,T); X) VT > 0 and the Fundamental Theorem of Calculus

2

td ¢ d
$0a=| [ Gf@0r+ 10| <0r [ 5 Oadr 15Ok (3.4)

Combining (3.4,3.3) gives the result of the lemma. O

3.1. First estimate
The main goal of this subsection is to prove the following error estimate

Lemma 3.2. For all g and T > 0, there exists Cr,, > 0 such that the following estimate is valid

et @lpn + 13O a +71e3®)Fa + 15O a +lea®)la < Cre (B4(0), (7, ), [islite) Y{E)  (3.5)
where we have made the following definitions

Y(t) =Yu(t) + Yo

with

t t
. ~h =h . =h . wh -
Yu(t) = </0 Yas — 7aﬁ10,9d7> + /0 [|Ua - al(2),SZ + |iig — Uz I(Q),Q + iz — U3I%,Q + [Yap — ’Yc}xlﬁlg,n] dr

t h t 2
+ (/ |ig — ﬁ3|2,gdr + (/ dr)
0 0 -1,

dr ’Yaﬁua,\ '7&,8'“3,/\)



ERROR ESTIMATES FOR FEM OF DYNAMIC NONLINEAR SHELLS 73

and

Yo = Oiugt !‘/Zﬁ(T)?g,nieg(O)lg,Q +£(0) + IWZ[;TL&,\(O) — ’)/aﬁu;;,)\(())lz_lyg + €2 (0)1.0/7as(0) — ’725(0”0,9

+le3(0)l2,0]us(0) — 5(0) 2,0- (3.6)

Proof of Lemma 8.2. The proof proceeds through several steps. The basic idea is to obtain the estimates for
each term in the error equation (2.14). We begin with a straightforward estimate involving the fourth term on
the right-hand side in (2.14).

Proposition 3.1. For any ¢ > 0,

i

t
~ ~h ~h .
/0 (eEaﬂ/\“(’)’Zﬁ - ’YZﬁ)a eg,xus,y) dr < Ce Oiulit |’“3 (t)|W1’2+5(Q) [/0 [l’YZﬂ - "Ygﬁ%,a + |€:’31|3,9] dT] .
_T_

Proof. The Cauchy-Schwarz and Holder’s inequalities guarantee that

t t
-~ ~h - ~h
/ (BEQB'\“(W% - 'Ygﬁ)’ eg,x“:s,u) dr < C/; I’YLLB - WLL[JIO,QI@?IWWP(Q)IU:;|W1x2ﬁ(n)d‘r
0

where 1/p + 1/p = 1. Applying the Sobolev embedding H?(Q) ¢ WhH?P(Q) for p > 1/2 and the arithmetic-

geometric mean inequality to this result provides the inequality

t t
~ ~h ~h -h
/ (eEam“(ﬁ’Zﬁ - 725)763,\“3,“) dr < CE/O (Vas — Aksls o + le§13.0] s lwr2re@dr
o

which implies the conclusion in Proposition 3.1. O

3.1.1. Estimate for X

Now we are prepared to derive an estimate for X (é")) as stated in the following proposition.
Proposition 3.2. Let € > 0 and e > 0 be arbitrary (small) and let 0 < t < T. Then the following estimate
holds:

i t
| 1x@ar < bR o+ Cne s ialon [1130) - BOBa + [ E20)Eaar
0 0<t<T 0

t
+h
+Cup sup Fs(®)l1rs @) / |k (1)[2 adr.
0<t<T 0

Proof. Exploiting the symmetry of E®#** we obtain

t i
3 . oiran d
[} cmetuchaed, ar= [7 (e85, G ehach] ) dr
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Thus, by integrating by parts we have

1
- . 1 -
[ B 88, dr = & (BP0, a(0,00)

1 —~
— 5 (eB*P505(0), €55 (0)€} ,(0))
1t ek
- 5/0 (eE ﬁku%,g(r),eg‘,\(f)eg,ﬂ(ﬂ) dr. (3.7)

Since E*#* is bounded pointwise, (3.7), Holder’s inequality and Sobolev embedding justify the estimate
t
| 1X@1ar < C [0l 0) ~ T Osaiey + s Olanleh O]

t
+h
+C [ g liaioleb ) @rdn (3.8)

where p can be taken to be arbitrarily large with 1/p+ 1/p = 1.
We now apply Lemma 3.1 with f replaced by the error function e?(t). This yields: For all € > 0 and T > 0,
there exists a constant Cpr . such that forallt < T

1
€5 s < eles(®)I3q + CT,e/O |€5(T)I3,0d7 + Celez (0)[§ - (3.9)

Applying the result of inequality (3.9) to the second term on the right-hand side of (3.8) and recalling Sobolev’s
embedding, W1?(Q2) D H?() for any p > 1 and taking p = 1 + g with €y > 0,we can conclude from (3.8) that

-

+ r t
/ IX(&M|dr < C sup |75(t)lose [e|e§:(t)|§,n+cu / |é§(r)|3,adr+ce|eé:(o>|§,9}
0 0<t<T 0
N ot
h
+Cep sup_ e g)]esey @) / ek ()3 odr (3.10)
0<t<T 0

where eg,e are arbitrary. Finally, rescaling € ~eC sup |'7L‘ﬁ(t)|o,g leads to the desired estimate in
0<t<T

Proposition 3.2. O

3.1.2. Estimates for L1 and Lo

Our next step is to estimate terms described by L; and Ly. This is done in the following two propositions.

Proposition 3.3. For any € > 0 there exist a constant C. such that for allt < T:

0<r<t

+ Clul(0) — @ (0)]1,017ap(0) — 725(0)]0,0-

t t 2 t
~h . +h R . »h
[t g dhar < e sup Ieh )+ Co ([ an ~Higlondr) +C [ [hBa+ tia — E)Ra] ar
0 0 0

Proof. Recall that

~h - N - Lho b
Ly (u, uh,eh) = (peaaﬂ(ua — ua),eg) + (eEaﬁ)‘”(’)’aﬂ - fygﬂ),e)\#(ﬂ’ -7 ) .
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The estimate for the first term in L, is straightforward. Indeed,
t -h t - h ¢
/ (peaaﬁ(ﬁ,ﬂ ~ i), é{;) dr<cC / liig — uglg odT + C / k|3 adT. (3.11)
0 0 0
In order to estimate the second term, we integrate by parts to obtain
' afBAu ~h N =k afBrp _, -,
A ek (Yap = Vaphr (W — @ ) |dr= (€E (Yap(t) = Fas(®)), xu (W (1) — @ (t)))
— t 2 h —
— (B (a(0) — 7:5(0)), e (TH(0) ~ TH(0))) — / (eB*(ap — Fag) xa(T = Th)) dr
0
2
< sup it(r) 2+ Zaa(®) =B+ < ([ o~ Feslosar )
+ Clug(0) — a5 (0)|1,21745(0) — Fas(0)lo,

2
< GOSSEI;tIUZ(T) a (T} o+ = (/ [Yap — 7aﬁ|0 er) + Clul (0) — 42(0)[1,0]7a8(0) — 25(0)l0,0

(3.12)

The inequality in (3.12) follows from the embedding W1 (0, T) C C(0,T). Combining (3.11, 3.12) provides the
result stated in the Proposition. O
For the term Ly we have the following Proposition.

Proposition 3.4. For any e >0 and t > 0,

t
/LQ(uu é )dT<eOsup |63(T)|29+C (f |u3—u3|29d7) +C/ |e3|09+’y|e3|19]
0

2
t d _ _
+ C. / — (’ygﬁugv\ — YaBU3,2) dr
o |dt . -1,

i
. =h . =h ~
+C [ [lin = 50+ 2l — 50 + e — gl o
0

+ C|(u3 - u3)(0)|2 at+Ce I’Yaﬁus A(0) - '70:[3“3,)\(0)[2—1,0'

Proof.
Step 1. Time derivatives:
Recall
~ - o4 ~ ~ - .o :h . v :h .
Lo, 8, 6) = = (B30~ g €,) + (petia = 590 8) + v pelin = o))
3
e ~ ' i .
+ (ﬁEaﬁ)\l‘(Uﬁlaﬁ - ugmg),egp\#) - (eEaﬁ)\#(,yaﬁ _ ’YZB), b/\#eg) )

By applying the Cauchy-Schwarz and arithmetic-geometric mean inequalities to the terms which are second
order in time, the following estimate results.

t
h . wh
/ [ “37‘33) +7 (US @ 'u,3 ar €3 a)] dr < / [|63|0 0 +'y|e3|1 o+ iz — u3|g,n + 7|tz — uaﬁ,ﬂ] dr.
(3.13)
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Step 2. Biharmonic terms:
Next, the biharmonic terms are integrated by parts to get

AN ~h h Y€ paprug i h
/0 (EE H(uzjap — usjag),em)\u) dr = — /0 (EE “(U3jap — U3!aﬁ)’e3[/\#> dr
63 B ~h h t
+ (EE" “(usjap — “3!043)’63])\#)
0

Using this result and analogous arguments to those in the previous lemma including the embedding W11(0,T) C
C(0,T) applied to the last term, we have

t 3 t 2
€ ~ . . h
/ (—12Eam”(u3|aﬁ - Uglag),egw> dr < e sup |e§(m)3q +Ce (/ |3 —U3|2,QdT>
0 0<r<t 0

+ C|(us — @5)(0)|2,0l€5(0)2,0- (3.14)

Step 3. Nonlinear terms:

Integrating the nonlinear terms by parts, using duality pairings and the inclusions H*(Q) C L,(Q);p < o0
and Wh1(0,7) € C(0,T) yields

i t
d
~h ~h R “h o~
/ (eEaﬁAu(fYZﬂuﬂ;A - ’)’aB’LLg‘)\), eg,y,) dr = — / (eEaﬁ)\”TZ(’YZﬁug,)\ - 7015“’3,)\); Bg‘“\
Jo Jo \ ue /

o t
+ (BEQBA”(’YZﬁUg,A - ’Yaﬁ“fi,)\)’ 6}31,#) lo

2
C ld .
ce o a2 ([ i
0<T<T € 0 -1,0

T (F250% » — Yapts,n)
+ CelTaptia 0) 0)2 (3.15)
el Vo U3, Yepu3 A0)|Z1 0 .

Step 4. The last term in Lo:

Through direct application of the Cauchy-Schwarz and arithmetic-geometric mean inequalities, the remaining
term in Ly is be estimated as follows.

t t
/0 (eEaﬁ'\”(’Yaﬁ - '72ﬁ)7 b/\uég) dr < C/o [|é§|?),ﬂ + Vap — ’725%,9] dr. (3.16)

Combining the estimates in Steps 1-4 provides the result stated in the proposition. a
Notice that the constants in Propositions 3.1-3.4 are generic and do not depend on h or .
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3.1.3. Completion of the Proof of the Lemma 3.2

We are now in a position to compute the final estimates of the error. Applying Propositions 3.1-3.4, and the
coercivity property of the tensor of elastic modulus, E*?** | to the error equation (2.14), leads to the inequality

lea®)lE o + e300+ o + 3 1)3 o + 1(Vas — Tap) o0

t
<e sup [eh()q+C / (M) 2adr + ¢ sup [eb(D)Eq
0<7<t 0 0<r<t

t t
~ . . ~h
+ f Cr.e sup [ap(n)lsa [1€3(7)I5.0 +e3(T)T o] AT+ Ceo 5P Fap(T)|Lyyw @) / le3(7)]3,0dT
0 0<r<t 0<7r<t 0

t t
~h ~
+0. swp [iflwnaveoy | [ 180G adr + [ 08 - ) Badr] + Cry@. (17
0<T<t 0 0
Additionally, we make use of the fact that

1
R ~h h h R h “h _h
Yo = Yap = €apl(€”) — bages + 5 (es,aug,ﬂ + u3,ae3,,3)

and take advantage of Korn’s inequality (2.4) for shells to obtain a coercivity property for the error term given by
lealt.o < C [Iag — Fasltn +lesl2,0] [1+ Coluslwra|aslwa@) - (3.18)
Thus, combining (3.18) with (3.17) yields
lea(®)lo. + 165050 +71E5@)1F 0+ le3 ()30 + (Va5 — Fap) Do + lea(®)i o

<C {1+Co sup |U§(7)IW1,4(0)|ﬂ’31(7)|W1,4(9)] {6 sup [lef(T)
0<r<t 0<r<t

%,9 + |e§(7)|3,9]

~ ~h ~h
+0re swp [[lpmfEa+ Hap(lig@ + s (lws2ee(o]
_,T_ N

t
x /O le3 (N30 + €L (N30 + 715N o + [(vas — Tas) (T)3.0] dT + CT,eY(t)} :
This estimate is further simplified by taking € to be suitably small and applying Gronwall’s inequality to obtain

lEa(®)E o +1E5@)IE 0 + 11510 + 3 ()3 o + lea®) o

~ - +h ~h
< Cr swp [lb(lwsolB(n)w s (Vas(r)B .o+ Wag(Dlnssp@ + s (lwrsse ) [ Y (@), (319)

where Cp is independent of v > 0.
Recalling the stability result of Lemma 2.2 and using Sobolev embeddings, we obtain

Wb () fyra(y < CIESO) + (7, 9)°] < C(Ey(0), (P, q)]) for all ¢. (3.20)

Moreover, recalling the embedding W4(Q) > H2(Q) and stability properties of interpolants in higher norms
(see (1.4)) imply
@3 (t)[f1.00) < [utz ()30 < Clus(®)l3 0 < C(Ey(0),]7,4]) (3.21)
~h h, .\ . ,
g () [wr2+e @) < [t (t)1+,5 0 < Clua(t)1+e,0 (3.22)

Fas e < C llaa®)i o +185@)l50] < C [lua®)io + lus(®)l3a] < C(EL(0),17,4), (3.23)
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where we have used Hz’z_ie(Q) C WhH2T€(Q). The results stated in (3.20-3.23) applied to equation (3.19)
provide the estimate stated in the Lemma 3.2. O

3.2. The error for the interpolants

It remains is to provide estimates for the “Y™ term, which represents the error resulting from approximations
of the original solution. This will be done, as usual, by using the approximation error of the associated Sobolev
spaces.

Lemma 3.3. Forallt<T

t
Y (t) < O, (B4(0), 17, )| [thalc,o0, [3]1+6,00) ( / (W07 (lialZa + ol o) +172 (jisl2a + lusl?a) dr)
0

t t
+C / R2=Dlyg2 odr + C / [h2(3—1>|ua|§_1,Q + R =Digg)2_, o+ yh2<r—2>|u3|3_179] dr. (3.24)
0 0

Proof of Lemma 3.3. The following inequality, following from Sobolev’s embeddings and Cauchy-Shwarz in-
equality, will be used frequently.

|fglo2 < Clfl1,0lglea Ve>0. (3.25)

Recall Y (t) = Y, (t) + Yy where
_ ¢ . +h : ¢ .. =h o .. =h o . :h o ~h 12
Yul) =( [ oo = aslodr ) + | [liia ~Ba +lits — 3 +lis ~ Gl a + hes ~ FagBa | dr

t 2 t
. ~h ~h ~
X (/0 |és — u3!2,nd7) + (/0 la (Th6T5 x — Yasua,n)

Proposition stated below provides the estimate for Y,, term.

\ 2
a7 . (3.2(})
-1,9 /

Proposition 3.5.

t
Valt) < O (B0 1(F 0l ol ishreze) ([ [12670 (ol + fual20)
t
+h2(r=2) (|U3|3§2 + |u3|39)} d'r) + CE/ hz(r_z)msﬁ,nd"r
0

t
+C [ [ Dlialy g+ WD if2 g + 90 Diaf2yg] dr. (3:27)
0

Proof. The most involved parts to estimate will be the first and last terms on the right-hand side of (3.26).
Step 1.
We begin by using the definition of the middle surface strain tensor, v,g, and note the relationship
. +h - —h . +h 1. . 1 .n ~h h
Yo = Vap = €ap(W — U ) — bap(iz — Ug) + 5(“3,au3,ﬁ + u3,aU3,8) — §(us,aus,ﬁ + ug,auS,ﬁ)
. h

. — . +h 1 . <ho L
= (@ = T ) = baplita — i) + 5 | (U0 — t13) 4 5

. ~ . *h - . ~
+ U3,0(us,p — U5 g) + (Us,p — g 5)U5 o + U3,8(Us,0 — Ug,a)] . (3.28)
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The estimates for the linear terms are straightforward. We shall concentrate on the nonlinear terms. In
particular, using (3.25), (1.4) and stability estimates for interpolants we note that

. +h - . <h . TN ~
(3,0 — Uz o )U5 glo,0 < Clitg — tig|2,0|5 gle,o < CA"~2|Us|r0|Uf 140
< Ch 7 2|ug|raluslisen < C(EL(0), |7, ql)h"2|us|r - (3.29)

Similarly,

|i3,6(us,s — @3 g)lo,a < Celua,s — @5 gh.0liz,alca < Celus — @5 |20lushren < Ch”?|us|ralis|iten. (3.30)

Thus, from (3.28), the estimates in (3.29, 3.30) imply

. +h s—11- =11 r—21 r— .
[Yap — 'VaBIO,Q < C(By(0),1(7,9))) [h 1|ucx|8,9 +h 1|u3lr—1,9 +h 2|u3|r,§2 +h 2|“3|T,Qlu3|1+5,9]
< Ce (By(0), (P, q); lusli4e) [A° ials,o + A" 2|uslr0] - (3.31)

Step 2.
Since
YaB — '3’213 = eap(W — ﬁh) — bap(us — iig) + % [(uS,a - 'ag,a)agﬁ +uz,alus,p — ﬂgﬁ)] (3-32)
and (3.25, 1.4) imply that
[(us,a — U4 o) 85 glo,e < Clug,a — @4 41,018 glen < Clus — @h]2.0l@5]14e0 (3.33)

< Ch™2Juglrglusiten < C(E,(0), | P, al)h" 2 |us|r0-

and
lus g — it} o < Ch™ uslrq, (3.34)
we obtain
Yag — Thplogn < C(Ey(0), |7, 4l) [P Huals,a + b Huslre + b2 (uslra + b7 |uslrg]
< C(By(0),17,al) [2*Huals.o + B |uslra] - (3.35)
Step 3.

In order to estimate the last term in (3.26), we will need the following estimate for negative norms.

Proposition 3.6. Under the regularity assumptions associated with the approzimations specified in (1.4), we
have

d ;. . . s—1|-
a (’Ygﬁug’,)\ - 'Yaﬁu?),/\) 1o < Ce (E—Y(O), |77_)7Q|a |u3|1+€,9a ‘uale,Q) [h 1|u6¥

s, + R [luslre + |uslrel] -

Proof. First, we observe

d ., . +h . - . - . h +h .
a (’Yz,@UI:;,A - 7&&“3)\) = Yop — 'Yaﬁ)ug,A + ’Yaﬁ(“isl,x —u3n) + (’Ygﬁ — YaB)lg  + Yap (U3 x — U3 ). (3.36)
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Then, using the definition of the negative norm and the Cauchy-Schwarz and Holder’s inequalities, we have the

estimate
dx | ,
fgl 1o = sup 1/@ 199 |flo.219|Lsn )] Lap ()
T semi@)  dhe T |10

1 1
Wlth—+::1
p p

This result can be simplified by applying the Sobolev embeddings

HY(Q) C Lyp(R) for any p < 0o

and taking p = 2 : a and 2p = 2 + €, and
1
. €
H®(Q) C La4e, () with €0 = o +1€1
to obtain
|flo,lgl L) Pz, @
P( ) P( ) _<_ CGOIf‘O’QIQIEO’Q.
|#]1,0
Hence,
[fg9l-1,0 < Celflo,algle,a for any eg > 0. (3.37)

Similarly, Green’s formula can be used to show

leap(f)gl-1.0 < Celflo.alglite- (3.38)

Another estimate we need is determined by using interpolation theory of Besov spaces [21] which provides us
with

Ifglea < Clfl1-co.0lglereon ¥V € €0 > 0 and €+ € < 1.
From here, it follows, by Holder’s inequality and duality,
|fgl-1,0 < Celfl-14e0l9l1-e/2.0 V € > 0. (3.39)

The remainder of the proof relies on applying (3.37-3.39) to appropriate terms involving the right-hand side
of (3.386).

First, we decompose 772 5 — Yap in a similar manner as in (3.28) to obtain the estimate for the first term on
the right-hand side of (3.36). The details are provided below.
First notice that by applying (3.39) and (1.4), we obtain

-,k . - h . -h
leap(T — @)k 51,0 < Cleap(T  ~ @) —14e0lil 10 < Clig — talealihlzo
< Ch*™%|ials,aluslz.e < C (E4(0), (T, 9)l) h°Hials,0- (3.40)

Similarly, (1.4, 3.36, 3.37, 3.39) can be used to show

~h C o\~ ~h . - =11
bap(iis — ts)is \|-1,0 < Clig — Uslo.alih sle.0 < CA™ Hislr—1,0/us]14e.9
< C(By(0),1(7, 9)) A" Hisslr—1,0, (3.41)
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~h . . ~ +h . . - 1 . - .
(3,6 — U3,0) 05 g5 A|-1,0 < Clug o = 3,0l 0l@s 585 Alo,0 < CH ' alrald} sl ,0l@s slen

< O “laglralusle olusliven < C(Ey(0), (P ))) A7 " luslne,  (3.42)

and

03,0 (U5 5 — us,8)T5 \|-1,0 < Celiis 5 — us plealia,als yloo < CR™ " ¢|us|lif \l1,0lts,ale0

< Cehr_l_e!U3|r,Q|ﬂ§|2,9|iL3ll+e,ﬂ < Ceh™ ' C|uzlralusle.oltsli+en
< Ce (Ey(0), (7, )l lt3l14e,0) B™ 2 ualr 0 (3.43)

Thus, by combining (3.40-3.43) we have
+h . _ | . —1)- =1 r— .
|(Vap — Yap)5 2l-1,0 < Ce (Ex(0), (P, )l [Us|1+e0) [2° ialso + A" Hislr—1,0 + A2 (Juslra + [uslrq)]

< C(Ey(0),1(P, ), lusliten) [ Hials,n + B2 (Jus|rna + |uslna)] - (3.44)

Similarly,

~ < h = -h - +h
Gt — o) 1.0 < Ce [leap(T7 = Tlamlitg e + 18 - ualoli pleo

~ ~ ~h
+‘ug',a - uS,all,Qlug'ﬁu:;,)\l_1+€,Q]

< Ch¥ Huglsaltaliven + Ceh™ Hualralis|ice.a + Ceh”2|uslraluslz,olis]iten
< Ce (Ey(0),11(P, @), tslite,n) [A° uals,e + A" |uslrg] - (3.45)

For the last two terms in (3.36) we have

Wop (@ 5 — us2)|-1,0 < Cel¥apl-14¢.0l5 5y — uz a0 < Ceh” ?|us|ralYasl-1160

but
[Yapl-1+c0 < Ce [|€aﬂ(—i‘—))|—1+€,9 + |43l 1460 + |u3,au3,ﬁ|—1+e,ﬂ] < Ccltale,n + |u3lo,a + |U3]14e,0lusl2,0l
<Ce (E'y(o)» I(?: Q)D [|ua|€,ﬂ + |":1'3I1+€,Q .
Hence,
Fap (@5 5 — us,) 1,0 < Ce (By(0), (P, 9), [dalen [uahite) B2 usle (3.46)
and
~h . +h . N ~h .
[Yap(tzx — w3 2)|-1,2 < Celvaploltzy — usalen < Ce (Ey(0), (P, q)]) |14 — sli+en
< Ce (By(0), (7, @)) A"~ “Jiis|r 0 (3.47)

Collecting (3.44, 3.47) provides the result in the Proposition 3.6. O
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Step 4.

Now we are in a position to state the final estimate for Y,,. Indeed, by applying (3.31, 3.35), Proposition 3.6
and (1.4) to the definition of Y,, in (3.26) we have

t
Ya < Cre (B (0),1(7, ), ldaloos sl +e,00) ( / (P26 (jial2 @ + lual20) + h*~2 (i + lus2q)] dT)
0
t t
+Ce /0 222 odr + C /0 (B2 Diia 2, g + W2 Dliigf2_y o + yh2 Mgy | dr (3.48)

which is the desired estimate in Proposition 3.5. O

To complete the proof of Lemma it remains is to derive an estimate for Yy. This is done in the proposition
below.

Proposition 3.7.

Yo < C (B (0),1(7, )[R~V lua(0) 2.0 + h2=2us(0) 2]

< C(B4(0), (7, 0)1) [A2C7 [[ual2, + dal25] + A2 [Jusl?, + [ial2,] ] (3.49)

Proof. To this end, from (3.6) and Lemma 2.2 we have

Yo < C(E5(0),[(7,9)) [Ie3(0) 3.0 + £(0) + lea ()2 + 17a8(0) = Fap(0) 5.0 + [ua(0) — @5 (0) 3.0
+H7a(0) (us A (0) = 5.7(0)) 21,0 + | (Ta5(0) = 78(0)) us A (0)21 0] - (3.50)

However, recalling (3.37) we have
7ep(0) (3 A (0) = @51 (0)) 21,0 < [1a(0)[§ alus,a(0) — @5 5(0)Zq < Cc (Bx(0) B2 Iuz(0)2  (3.51)
and
| (7a5(0) = %05(0) us A (0)[21,0 < Clias(0) — Yas(0)[5 alus A ()20 < C (Ex(0)) 25(0) = Yap(0)3 - (3.52)
Thus,

Yo < C(E4(0),[(7,0)) [le3(0)I3,0 + £(0) + ea(0)3 o + [7ap(0) — Fap ()50 + [us(0) — 43(0)3 o
+Ch2Dug ()2 ] - (3.53)

Additionally, using the definition of £(¢) in (2.8), we get

£(0) < C [I(#h — Ga) OB 0 + (6} — #3)(0)Z o +7I(@ — &)(O)R o + (Va5 — 72s) O 0
+ [(ug — @5)(0)[3 0] - (3.54)
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We also make use of (3.25) and (1.4) to obtain

17a8(0) — Tas(0)5.0 < Cl(ua — 43) ()l + Cl(us,a — @5,4)(0)us,5(0)lo
+ Cli5,4,(0)(us,5 — @ 6)(0)lo, + Cl(us — @$)(0) o0
< Ch* Mua(0)ls,0 + Cl(us,a — 45,0)(0)1,0lus,6(0)|c0
+Cl(uz,p — 8 6)(0)l1,0l85 o (0)le,2 + CA"Huz(0)l-—1,0
< Ch*Hua(0)]s,0 + CR™?|uz(0)|rn [lus(0)|2. + [E3(0)|2.0] + Ch"~Hua(0)lr—1,0
< C(E5(0)) [1°Hua(0)ls,0 + h"?[uz(0)r,0] - (3.55)

Hence, by applying (3.54, 3.55) to (3.53) and recalling the definition e® = u® — @", we obtain
. ~h . ~h . -h ~
Yo < C(E4(0),1(7, ) [l(u’; — o (0)[3 0 + (@5 — u3)(0)[3 o + 7I(a§ — u3)(0)IF @ + |(uf — @5)(0)13
(Vs — 72050 + I(ul — @2)(0)F 0 + PPV ua(0)2 0 + hQ(T_Z)lua(O)Ig,Q] -
Moreover, taking u”(0) = @"*(0) we obtain

Yo < C(E,(0),1(7,@)l) [FC Vlua(0) 2.0 + W% Dlua(0)2g)

< C(By(0),1(P, @)D [h27 [lual2, + lial2 2] +h2 [fusl2 , + lial2]] (3.56)
which is the desired inequality in (3.49). O
The proof of Lemma 3.3 follows by combining the inequalities in Proposition 3.5 and 3.7. O

The combination of Lemma 3.2 and Lemma 3.3 provides the proof of Theorem 1.2.
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