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OPTIMAL ERROR ESTIMATES FOR FEM APPROXIMATIONS
OF DYNAMIC NONLINEAR SHALLOW SHELLS *

IRENA LASIECKA1 AND RICH MARCHAND2

Abstract. Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in
considered. It is shown that the algorithm leads to global, optimal rates of convergence. The resuit
present ed in the paper improves upon the existing literature where the rates of convergence were derived
for small initial data only [19].
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1. INTRODUCTION

The main goal of this paper is to dérive optimal rates of convergence, Le. reconstructing the best ap-
proximation properties of the underlying finite dimensional subspaces, for semidiscrete finite element (FEM)
approximations of a nonlinear dynamic shallow shell model. In contrast with the literature [19], our results do
not require any assumptions on the "smallness" of the initial data.

1.1. The model

The model to be considered is a nonlinear model for a thin shallow dynamic shell [1,7,13,19]. We begin
by describing the notation to be used. Throughout this paper, the summation convention will be used with
Greek letters belonging to the set {1,2} and Latin letters belonging to the set {1,2,3}. The middle surface S
of the shell is defined to be the image of a connected bounded open set O C £2 with boundary F under the
mapping \I> : (£\£2) G U —> S3 where \& G [C3(H)]3 and £n is the n-dimensional Euclidean Space. Then for
any point on the surface of the shell, it is assumed that the two tangent vectors given by a a = d^/d£a are
linearly independent. Moreover, these two vectors along with the normal vector, as = ai x a2/|ai x a2| define
a covariant basis for a local référence frame on the surface of the shell. Hereafter, the notation <3>ja = d<$>/d£a

for any point ( ^ ^ 2 ) G f î will be used.
The contravariant basis for the tangent plane at any point on the surface of the shell is given by the two

vectors aP defined by the relation aa • af3 = 0%. The contravariant and covariant vectors are associated by
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64 I. LASIECKA AND R. MARCHAND

the well-known relationships

a a = aa/?a/3
) aa=aai3apJ a^ = aa * a^ = a$a, and aa@ = aa • afi = a^a,

where the matrix (aap) represents the first fundamental form of the surface with its inverse given by the matrix

The second fundamental form, denoted by (6a/g), measures the normal curvatures of the middle surface of
the shell. It is deflned by

bap — bpat — —aŒ • a3;^ = a3 • a.a>p-

The Christoffel symbols given by T^x = aa • a^A give rise to the following covariant dérivâtives for the displace-
ment vector of the middle surface u(£x, £2) = u^ in a fixed référence frame:

For a more complete description of the geometrical considérations and deflning char act eristics of thin shallow
shells, see [5,13]. For more information on tensor analysis, see [8,12].

We represent the vector function for all three displacements by u = (1*1,^2,^3), while in-surface displacements
are given by ~ït = (ui,u2) and the transverse displacement is denoted by u3. In addition, the iinear strain tensor
is denoted by ea^(l?) = ~ (ua\p~^up\a)' Then from Koiter's development of nonlinear shallow shell theory in [13],
the middle surface strain tensor 7a^ and the change of curvature tensor pa@ are given respectively by

7ajs(u) = eap(lt) - bapu3 + -us,au3ip and pap(u) = w3|a/3-

These strain measures, along with an appropriate constitutive law, are used to dérive corresponding stress
measures. The exact form of the stress measures dépends on the shell material. Thus, we assume the simplest
possible scenario as done in [2] which is based on the assumptions that the shell consists of an elastic, homo-
geneous, and isotropic material and the strains are small everywhere. Additionally, we assume that all nonzero
stress components are imposed on surfaces which are parallel to the middle surface of the shell. Then the stress
résultants and moments respectively take on the forms

nal3(u) = e£Q^7A^(u) and m<*(u) = ^

where e represents the thickness of the shell, and the tensor of elastic moduli is given by

1 - 1 /

Here, E is Young's modulus and v is Poisson's ratio for the material. See [4] for a proof of the positivity of the
tensor of elastic moduli. Let ~$ € [Li((0,T) x SI)]2, ç € Li((0,T); E~Y{ÇÙj) dénote the prescribed body forces
and p > 0 dénotes mass density. Additionally, we let ù represent differentiation with respect to time and make
use of the following notation

(u,v) = / uv^dÇid&i \u\Stçi = \u\H*(n), \u\SiP = |^|LP(O,T;H
S(Q)) for 1 < p < 00 (1.1)

where a = det(aa/g) > 0.
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The model to be considered is given in the following variâtional form in which we look for solutions u =
(uuu2,u3) = (lï,u3) e [H^(Ü)}2 nH$(n) such that

0(u)}ex^(!?)) = (pM?) (1-2)

(peü3iv3) + 7(peü3la,V3,a) + \^E^x»u3W^v3]Xf\ + (eEaPx»laP(u),u3iXv3^ - bXfXv3) = (g, v3), (1.3)

for ail v — (^1,^2,^3) = (~v*,vs) € [iïo(£î)] n ^o(^)* The static version of this model is given in [5]. Our
model takes into account additional considérations which include the dynamics of the shell (see [3,19,22]. The
constant 7 is proportional to the square of the thickness of the shell and is therefore assumed to be small. Some
models (e.g [19]) consider 7 = 0. Physically, the term 7 Ü3\^ represents rotational forces.

We also introducé the "energy" functional corresponding to the System in (1.2, 1.3) as

where

Ep(t) = \

represent the kinetic and potential énergies respectively. By formai computations, one can verify that the energy
of the System is bounded in terms of the initial data, i.e., E1{t) < C[Ej(0) + |(l?,<?)|2]; 0 < t < T. It is known
that the potential energy, Ep(t) is topologically equivalent to the norms in [^T1(ü)] x H2(fl), so there is an
a priori bound in this space. Moreover, since the nonlinear terms (cubic nonlinearities) are weakly continuous
with respect to H2(£l) topology, standard Faedo-Galerkin method [17] yields the existence of weak (finite energy)
solutions. A much more difficult task is to obtain uniqueness of weak solutions and additional regularity of
solutions corresponding to more regular data. Indeed, the mathematical difficulty is due to dynamic nature of
the problem and the fact that the nonlinear terms in the System (1.2, 1.3), are not locally Lipschitz, with respect
to the norm induced by the energy. This makes the analysis difficult, and standard arguments used for showing
well-posedness of solutions are no longer applicable as acknowledged on p. 204 of [1]. This is particularly true
with respect to the uniqueness of weak (finite energy) solutions which has been an outstanding open problem
even in the case of plate theory [14,17]. In fact, the full well-posedness/regularity theory for the model given
in (1.2, 1.3) has been developed only very recently, and the theorem given below summarizes the main results.

Theorem 1.1. With référence to the systern in (1.2, 1.3) with 7 > 0,
1. ( Weak solutions). Let ft be convex or V sufficiently smooth (C1). Then for any initial data

«3(0,0

and the body forces

there exists a unique solution

u

1

[L

C

'(0,0 e

?(o,0 e

i((O,T);

([O,T];

L2

[Bi

OW]2

2 (^)] 2

("))]2

Cl ([0,T]; [L2(fi)]
2) ,

u3 G C (\0,T\;H$(Q)) H C1 ([0,T];H*(
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2. (Regular solutions). Let F be sufficiently smooth (C2). Then for any initial data and body forces such that

l f (O, •) G [H^{ü)}2 n [H2{Ü)}2 , u3(O, •) G F 2 (ü) n #3(ft),

1? G [JT1((0>T);L2(fi))]
2

) q€Hl({OtT);H-\

£frere exists a unique solution

u3 G C([0,r];if3(fi)) n C 1 ([0,T];JÏ0
2(ft)).

As already mentioned, the existence of weak solutions is standard and follows from a classical Galerkin-Faedo
argument applicable to von Karman types of problems, see [17], The more subtle issue is the uniqueness of weak
solutions, stated in part (1) of the Theorem, and the regularity of solutions, stated in part (2) of the Theorem.

Indeed, the second part of Theorem 1.1 (Regular solutions) was proved in [20] (see also [16]) and relies
critically on strong a priori estimâtes obtained for higher (than the energy) norms of solutions. The most
difficult part is the uniqueness of weak solutions, which has been recently proven in [15] (see also [16] where
intermediate regularity of solutions has been studied) by adapting the method used in [24].

If the rotational forces are neglected, i.e. 7 = 0, then the result of Theorem 1.1 is still valid, see [24], with
the following différences: in part (1) the velocity component of U3 is in L2(^) and q e Li((0, T); I/2(fï)), and in
part (2) the displacement u3 is in H4(£l) and q G H1((Q,T);L2(SÏ)).

Remark 1.1. By iterating the same technique as used for the proof of part 2 of Theorem 1.1, one can show
that by assuming more regularity on the initial data more regular solutions are obtained.

1.2. Semidiscre te a p p r o x i m a t i o n

Let Vh C [i?o(fî)] and Wh C HQ(Q) be finite element approximations (say piecewise linear fonctions in
Vh and B-splines or HET éléments in Wh) defined on a quasi-uniform mesh, satisfying the following standard
requirements (as in [6,25]):

inf h \ l t - JÊ^ n < Chs-l\^\S]Q, for 0 < s < 5, s > l and 0 < l < 1

inf |u3 - Uz\h Q < Chr~l\us\riQ, for 0 < r < R, r>l and 0 < Z < 2

where S and R are the orders of the approximations. Typically, we have 5 = k -f 1 (resp. R = t + 1), where k
(resp. t) stands for the order of the approximating polynomials (see Theorem 3.1.5 in [6]).

We consider the following semidiscrete approximation of the original model. Find nh(t) e Vh x Wh such
that

ü% vh
a) + (eE^laf3(u

h), eXfl(if
h)) = (7?, ̂ h) (1.5)

(peut Vs) + 7 {peül^ < a) + (j^E^u^ v h ^ + ( e ^ A ^ ( u h ) , < A ^ M - bx,v
h,) = (g,^) (1-6)

for all vh e Vh x Wh and uh(0) - uft G Vh x Wh.
Since the semidiscrete problem, (1.5, 1.6) is a System of nonlinear ODE's with locally Lipschitz (polynomial)

nonlinearities, we obtain local (in time) existence and uniqueness of the solution nh G V^2il((0,Xb); Vh x Wh).
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If the body forces ~]?,q are more regular in time, say #fc(0,T), then the corresponding solutions uh display
more time regularity, say iiffc+2(0,T). The existence of global solution follows from the a priori bound for the
discrete energy function, which is stated in the next section. In f act, this argument is the same as the one used
for proving the existence of weak solutions by means of Faedo-Galerkin met ho d.

1.3. Main results

The main goal of this paper is to establish the rates of convergence for the semidiscrete approximation
introduced above. In comparison with the literature, we note that most of the results available provide numerical
analysis for the static model, see [1] and références therein. The dynamic model is much more involved due
to the "hyperbolicity" of associated dynamics and, in particular, due to the unboundedness of the nonlinear
terras in the energy norm (this is not the case for the static model). The paper which deals with the dynamic
case (7 — 0) is [19] in which the rates of convergence are derived (see Th. 1.2) for initial data assumed to be
sufficiently small The primary aims of this work are: (i) to remove the above mentioned smallness assumption,
(ii) to provide the explicit convergence estimâtes for the fully hyperbolic model acounting for rotational forces
(7 > 0) which are uniform with respect to the value of the parameter 7. This way we also obtain the estimâtes
for the critical case 7 = 0. In these regards, the main resuit of our paper is given in the following theorem.

Theorem 1.2. Let u be a sufficiently regular solution to (1.2, 1.3) and uh be a solution to (1.5, 1.6) with
7 > 0. The required regularity of u is dictated by the norms appearing on the right-hand side of the estimate
below. Assume that UQ is an approximation of the initial data UQ complying with the approximation properties
in (1-4)- Then the following error estimate holds for 0 < t <T and 2 < r < R\ 1 < s < S, and all e > 0:

| K - uh
a)(t)\1Q + \{üa - ùh

a)(t)\0Q + |(«3 - «§)(*)|2|n + K«3 - <#)(*)|Oln + 7](*3 - *â ) ( t ) | l f n

CT.e CE7(0), \Ç?,q)l |ü3|i+e,oo, |Üakoo) [K|s,2 + \Üa\s92 + IÜaU-1,2

+ |^3|r,2 + |Ù3|r,2 + 1^3^-2,2+7^3^-1,2]

where the function Cr,€ is continuous in its arguments, independent of h > 0 and independent of 0 < 7 < M.

Recall that we are making use of the notation \u\8tP = |^|LP(O,T;H'S(S7))- I n the special case when 7 = 0, we
obtain the following corollary.

Corollary 1.1. Case: 7 = 0.
Let u be a sufficiently regular solution to (1.2, 1.3) and uh be a solution to (1.5, 1.6) with 7 = 0, then the
following error estimate holds:

{ûa - ù*)\0^ | |2 ,n | |0,n

2)^ Üa|e,oo) [\ua\s>2 + \ùa\3i2 + |^a | S - l ) 2 (1.8)

(1-9)—2,2]

Remark 1.2. In the special case of linear splines used to approximate T?a, and B-splines, used to approximate
the vertical displacement u3 (so 5 = 2, R — 3), the decay rates given in Theorem 1.2 provide the estimate

\{ua - uh
a)(t)\1Q + \(üa - ûh

a)(t)\0^ + |(«3 - «â)(t)|2in + |(«3 - iâ)(*)lo,n + 7

+ 1̂ 313,2 + |Û3|3)2 + |Ü3|l,2

where the function CT^ is continuous in its arguments, independent of h > 0 and independent of 0 < 7 < M.
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The error estimâtes obtained are optimal, in the sense that they reconstruct the best approximation properties
of the underlying finite dimensional subspaces, and global^ in the sense that there is no need to restrict the size
of the initial data. We repeat that the main mathematical novelty and difficulty of the problem is due to the
unbounded nature of the nonlinear terms with respect to the topology induced by the energy function. This was
the reason for the "smallness" assumption in [19], where the result of Corollary 1.1 was established under the
assumption that the energy norms of the initial data are sumciently small. In our case, we are able to dispense
with the above restriction by applying tools of nonlinear interpolation theory.

Remark 1.3. By taking advantage of special "elliptic/static projections" (see [1]: p.190) one could obtain
superconvergence of the estimâtes in Theorem 1.2 by considering the error expressed in terms of uh(t) and
these projections. In f act, in this case we can obtain the error ö(hs -f- hr~l).

Remark 1.4. The same results as those stated in Theorem 1.2 can be applied to the shell model where the
dynamic terms are modeled by the form (see [3]: p. 258, formula (1.2))

ü, v) = J pe { [1 + j(b\b2
2 - b\b\)} [aa0üav0 + ü3v3] + 7

a/3 [(üü3|

where 7 = e2/12. However, since the arguments are conceptually the same (due to the boundedness and
coercivity, with respect to energy norm, of the bilinear form &(ü, v)), we opted for a simpler form of the model.

Remark 1.5. Note that the algorithm considered in this paper accounts for the approximation of displace-
ments/velocities only. In particular, it does not account for approximations of the geometry or intégration.
However, by using the results/methods of [1] this can be integrated with the analysis presented in this paper.
Also, the analysis presented here could be extended to other FEM approximations such as Mixed Methods
which are very popular and efficient for plates/shells problems, see [1,9-11].

The remainder of this paper is devoted to the proof of the Theorem 1.2.

2. S T A B I L Ï T Y AND ERROR EQUATION

The following symmetries will be used frequently.

<x(3UoLU{3 > 0 (2.1)
ap _ jjjapi

In addition, the next four inequalities are taken from [1]:

2

of,/3=l

for any tensor iap, uniformly in O, and the following estimâtes which result from the "shallowness" hypothesis,

I M + I W I < <5 (2-3)

where ö is a sumciently small constant,

^ (2.4)
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referred to as Korn's inequality for shells, see p. 39 of [1], and

69

(2.5)

In order to dérive our stability estimâtes, we introducé the discrete energy function, E^(t) which replaces
in Section 1.1.

where

Eh
p{t) EE \

As mentioned earlier, the existence and uniqueness of solutions to the semidiscrete problem (1.5, 1.6) follows
from a standard argument. Indeed, local (in time) existence and uniqueness follows from a fixed point argument
(note that in the semidiscrete case the nonlinear terms are locally Lipschitz). The global (in time) existence
follows from the a priori bound obtained by replacing vh(t) = nh(t) in (1.5, 1.6) and integrating by parts in
time to obtain the following stability estimate.

L e m m a 2 . 1 . Let uh(t) be a local solution to (1.5, 1.6). Then forO <t<T

, q)\2} < C T , q)\) •

This lemma will be used extensively in the development of the error estimate and leads naturally to the a priori
bound stated in the following lemma.

Lemma 2.2. Let uh be a solution to (1.5, 1.6) with 7 > 0. Assume that u(> is an approximation of the initial
data u0 complying with the approximation properties in (1.4) &nd " ^ ^ G L2((0,T); [L2(ü)]2 x H~1(Q)). Then
the following bound applies for 0 < t < T.

G

Proof. The proof exploits the shallowness assumption and a Korn's type of inequality recalled above. Since

l7ap(uh(t))|2,n + |u£(*)ll,n < CÊ$(t), (2.6)

the shallowness hypothesis and Korn's inequality in (2.4), can be used to obtain

l«alï,n < C\ea0(lt
h)\o,a < C\eaf)(u

h) - b^u^ + C|«J|g,n

(u'l)|gin + C|u5lVi.«(n)
(uh)lo,n + CKtë,n. (2.7)
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By combining (2.6) and (2.7) we obtain

The remainder of the proof is straightforward. D
Our next step is to dérive a convenient form of an error équation which will be suitable for further analysis.

To this end, we will use the following notation

7a/? = 7ap(uh), lap = 7a/? (u) and 7 ^ = jap{nh)

where üh is a suitable approximation of the solution u satisfying the requirements in (1.4). Therefore, the time
regularity of ü^ is the same as that of u. In addition, we define the following "error" expressions

£{t) E E ( p e a ^ é * , é j § ) + ( p e é ^ é § ) + 7 ( , £ ^%^^)

(2.8)

Now subtracting the variational forms of the équations for u and uh and adding and subtracting appropriate
terms leads to the expressions

% vh
a) + (e£7^A"(75p - 7 ^ ) , ^ ( ^ ) ) = i i (u , ü\ vft) (2.9)

0 M rt^v^) = L2(u,ü\vh) (2.10)

where

and

Note that both terms, Li and L2 depend linearly on the test function vh . Taking advantage of the symmetrie
properties of Eaf3XfJl we obtain the relation

( )

(^^ ^ t< 4^) (2.11)
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In order to take advantage of this resuit, we add the expression (eEa0XfJl(j^p - 7^ ) , ^xüs^J to both sides of

(2.10) to obtain

/ e 3 \ /

= X + L2 + (eET^tâp - 7^), el^) (2.12)

where

Now we set vh = ùh — ü = e^ in (2.9) and (2.12) and add the two équations. After accounting for (2.11) and
performing several calculations, we obtain

~S{t) = Li(u!ü
h,è'1) + X(èh)

Integrating (2.13) from 0 to t gives the following error équation:

£(t)=£{0) + 2 f (L1(u,ûh,èh) + L2(u,ûh,èh)dT + 2 f X(èh)dr + 2 f (eEa^{'y^0-

(2.14)

We will proceed by developing estimâtes for the terms on the right-hand side of (2.14). As suggested by the
notation, the contribution of L\ and L2 will be expressed in terms of the error in the approximation. The
contribution of the last term in (2.14) will be controlled by exploiting the coercivity properties of the error
function £(t). The most critical part is the analysis of X, which involves the higher order nonlinear terms
combined with time derivatives èh of the error. While it is reasonably straightforward to dérive the error
estimâtes for the term, X which blow up with 7—^0, the main task of this paper is to obtain these estimâtes
independent on the parameter 7, including the critical case 7 = 0. This forces upon additional technical
difficultés which will be dealt with next.

3. THE ESTIMÂTES

Our main effort is directed toward error estimâtes obtained for each intégral term in équation (2.14). The
proof is divided into several Lemmas and Propositions, which provide partial results. The most important is
Lemma 3.2 which gives the error estimâtes for the solutions in terms of the error estimâtes for the interpolants
of the original continuous solution. The estimâtes for the interpolants are provided in Lemma 3.3. Combining
the results of Lemma 3.2 with Lemma 3.3 gives the final resuit stated in the main Theorem 1.2.

We begin by stat ing the following lemma which will be used later in this exposition.

Lemma 3.1. Let f be a given function with the regularity ƒ G C([0,T];iï2(fi)) Pi Jf1((0îT);L2(fî)). For ail
e > 0 andT > 0, there exists a constant Cx,e such that for ail t < T

f(r)\ladT+ Ce\f (0)\o,a-
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Proof of Lemma 3.1. By Sobolev embedding, H^(ft) C L±{Q) which implies that

\f(t)\wi,HQ) <C\f(t)\ha.

Using the interpolation inequality, e.g. Theorem 9.6 of [18]

1/|a,n < 1/\l;en\ f fS2in where s = (1 - 6)Sl -f Ös2; 0 < 0 < 1,

with 6 — 1/4, si = 2, and S2 — 0, then

I/Wlf ,n < CI/WlJ.nl/WlL-

Now apply Young's inequality given in [23] with p = 4 and g = 4/3 to obtain

(3.1)

(3.2)

where e > 0 is arbitrary and C€ = ö(^). Coupling this result with (3.1) shows that

\f(t)\wiA{a) < Ce\ffl\o,n + e\f(t)\2,a-

We square both sides of this inequality and rescale epsilon to obtain (see also [22] )

By Sobolev embedding ^ ( 0 , T; PC) C C([0, T)\ PC) V T > 0 and the Fundamental Theorem of Calculus

2

Combining (3.4,3.3) gives the result of the lemma.

3.1. First estimate

The main goal of this subsection is to prove the following error estimate

Lemma 3.2. For all €Q and T > 0, there exists Cr,e0 > 0 such that the following estimate is valid

(3.3)

(3.4)

D

(3.5)

where we have made the following définitions

Y(t)=Yu(t)

with

=(Cv -^

+ ( C\us-üh\2.\Jo 3 3 2'

/ ^l ^l

( dr
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and

Yo = sup \iUr)\ln\e^(0)\lu+£(0) + |7^«£,A(0) - 7a^3,A(0)|2_1,n + \eh
a(O)U,nhap(O) - 7^(0)|o,n

0<T<t

(3.6)

Proof of Lemma 3.2. The proof proceeds through several steps. The basic idea is to obtain the estimâtes for
each term in the error équation (2.14). We begin with a straightforward estimate involving the fourth term on
the right-hand side in (2.14).

Proposition 3.1. For any e > 0,

f ( e£^(7^ - 7^), e ^ O àr < Ce sup |üj(t)\w^(çi f

Proo/. The Cauchy-Schwarz and Holder's inequalities guarantee that

Jo ^ J Jo
|à

where l/p+ 1/p = 1. Applying the Sobolev embedding H2(Q,) C Wli2p(Çl) for p > 1/2 and the arithmetic-
geometric mean inequality to this resuit provides the inequality

which implies the conclusion in Proposition 3.1. •

3.1.1. Estimate for X

Now we are prepared to dérive an estimate for X(èh)) as stated in the following proposition.

Proposition 3.2. Let e > 0 and e0 > 0 be arbitrary (small) and let 0 < t < T. Then the following estimate
holds:

/ t | X ( è h ) | d < | ï ( t ) l l + C | e sup |75
0 < T

sup | ^

2 f1 2 1

3 2,n y^ 3 o,n j

€° Jo

Proof. Exploiting the symmetry of Ea^x^ we obtain
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Thus, by integrating by parts we have

la0X^h
ap(T), < A ( T ) 4 ) M ( T ) ) dr. (3.7)

Since E**13^ is bounded pointwise, (3.7), Holder's inequality and Sobolev embedding justify the estimate

f\X{èh)\dr<C
Jo

+ C ri4^(r)|Mn)|e^(r)|2wl,P(n)dr (3.8)
J 0

where p can be taken to be arbitrarily large with 1/p-h l/p = 1.
We now apply Lemma 3.1 with ƒ replaced by the error fonction e§(t). This yields: For all e > 0 and T > 0,

there exists a constant Cr,e such that for alH < T

i,n + CT,e f
Jo

(3.9)

Applying the result of inequality (3.9) to the second term on the right-hand side of (3.8) and recalling Sobolev's
embedding, W1)P(fi) D H2(Q) for any p > 1 and taking p = 1 + e0 with eo > 0,we can conclude from (3.8) that

pt

/ \X(èh)\dr < C sup p
JO 0<t<T

ft

+ Ceo sup |7a,/3(*)Ui+eo(n) / le3(T)l2,ndr (3-10)
0<t<T Jo

where eo,e are arbitrary. Finally, rescaling e ~ eC sup 17^(^)10,0 leads to the desired estimate in
0<t<T

Proposition 3.2. D
3.1.2. Estimâtes for Li and L2

Our next step is to estimate terms described by L\ and L2- This is done in the following two propositions.

Proposition 3.3. For any e > 0 there exist a constant Ce such that for all t < T:

pt / ft \ 2 ft
\ L1(uJü

h,èhdr < e sup |e£(r) |? n + C€ ( / \<yap - 7 a « | 0 , nd r ) + C / | é^ |g n + \üa - ü j | g n d r
JO 0<r<< ' \Jo J Jo L ' ' -I

+ C|I£(O)-Ü2

Proof. Recall that

Ly(u,üh,èh) =
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The estimate for the first term in Li is straightforward. Indeed,

f (pea^(üp - üj), èh
a) dr < C f \üp - u^dr + C f |é£|^dr.

Jo v y Jo Jo

In order to estimate the second term, we intégrât e by parts to obtain

75

(3.11)

< e sup

< e sup
o<r<t

dr =

i£(T)|?ïfl + - |
e

+ C\uh
a(0) - fiS(

( f

dr

otn- (3-12)

The inequality in (3.12) follows from the embedding Whl(0,T) C C(0,T). Combining (3.11, 3.12) provides the
result stated in the Proposition. D

For the term L2 we have the following Proposition.

Proposition 3.4. For any e > 0 and t > 0,

f L2(u,üh,èh)dT<e sup \e$(T)\la + cJ f |ü3 - ^.ndr) +C f [|éj|gin
JO 0<r<t \Jo / JO

dr

dr

f1 \ h h l
Cl |Ü3 - û3lo,n + 71^3 - û3lî,n + ba/? - lapHnl d r

Jo L J

Proof.
Step 1. Time derivatives:

Recall

La(u, ü\é f c) = - (pe(ü3 - Ü3), é

By applying the Cauchy-Schwarz and arithmetic-geometric mean inequalities to the terms which are second
order in time, the following estimate results.

ƒ [(«3 - fij, è 7 dr < J [|éâ|g,n cJ|î,n + l«s - «Îlo,n + 7l«3 - ö5|?,n] dr.
(3.13)
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Step 2. Biharmonic terms:
Next, the biharmonic terms are integrated by parts to get

dr = - ƒ (gi dr

Using this result and analogous arguments to those in the previous lemma including the embedding W1*1 (0, T) C
C(0, T) applied to the last term, we have

dr \ü3 -

C\(u3 - « (3.14)

Step 3. Nonlinear terms:
Integrating the nonlinear terms by parts, using duality pairings and the inclusions H1(ü) C Lp(Q)\p < oo

and Wl^(ü,T) c C(0,T) yields

/ '
Jo

dr = - /* (eE^^aA -
Jo \ u i •

< e sup ( dr

(3.15)

Step 4. The last term in L2:
Through direct application of the Cauchy-Schwarz and arithmetic-geometric mean inequalities, the remaining

term in L2 is be estimated as follows.

f
Jo

àr<C
Jo

dr. (3.16)

Combining the estimâtes in Steps 1-4 provides the result stated in the proposition.
Notice that the constants in Propositions 3.1-3.4 are generic and do not depend on h or 7.

D
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3.1.3. Completzon o f the Proof of the Lemma 3.2

We are now in a position to compute the final estimâtes of the error. Applying Propositions 3.1-3.4, and the
coercivity property of the tensor of elastic modulus, Ea^XfJt, to the error équation (2.14), leads to the inequality

sup |
0<r<i

<e sup \eh
a{T)\\

0<T<t

sup

ft
/ sup |

0<T<t

sup |
0<r<t

Jo
CT,eY{t). (3.17)

Additionallyj we make use of the fact that

and take advantage of Korn's inequality (2.4) for shells to obtain a coercivity property for the error term given by

l«£li,n < C [|7^ - 7a^lo,n + \4\l&] t1 + C0\u%\wi,Hn)\ü%\w^{n)} . (3-18)

Thus, combining (3.18) with (3.17) yields

< C 1 + Co sup
L 0<r<t
T ,e SUp

0<r<t

0<r<t

l | (

This estimate is further simplified by taking e to be suitably small and applying Gronwall's inequality to obtain

sup
0<T<t

, (3-19)

where CT is independent of 7 > 0.
Recalling the stability result of Lemma 2.2 and using Sobolev embeddings, we obtain

W3(*)lwi.4(fi) <C[#7(0) + K^9) | 2 ] < C{E1{Q),\{~f,q)\) for all*. (3.20)

Moreover, recalling the embedding Wlï4(fi) D H2(Tt) and stability properties of interpolants in higher norms
(see (1.4)) imply

a < C(E7(0), \Tt,q\) (3.21)

(3-22)

(3.23)
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where we have used H2~ ̂  (fi) C Wia+€{Ü). The results stated in (3.20-3.23) applied to équation (3.19)
provide the estimate stated in the Lemma 3.2. D

3.2. The error for the interpolants

It remains is to provide estimâtes for the UY" term, which represent s the error resulting from approximations
of the original solution. This will be done, as usual, by using the approximation error of the associated Sobolev
spaces.

Lemma 3.3. For all t <T

Y(t) < |* a | e i O O ï |û3 | i+e ,oo)

C
Jo

f
Jo

(3.24)
' J

Proof of Lemma 3.3. The following inequality, following from Sobolev's embeddings and Cauchy-Shwarz in-
equality, will be used frequently.

Recall Y(t) = Yu(t) + YQ where

7 o,ndr ) + / | | ü a -WQ|o,n + 1^3-^3 lo.f
/ Jo l

- «3

+ Ij *v.
-i,n

Proposition stated below provides the estimate for Yu term.

Proposition 3.5.

Yu(t) < CT,e

,n)] dr)

(3.25)

dr

(3.26)

. (3.27)

Proof. The most involved parts to estimate will be the first and last terms on the right-hand side of (3.26).
Step 1.

We begin by using the définition of the middle surface strain tensor, 7ajg, and note the relationship

-(Óh ü'
2 ( - U 3 - Q U 3

rt^

~h

Û (3.28)
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The estimâtes for the linear terms are straightforward. We shall concentrate on the nonlinear terms. In
particular, using (3.25), (1.4) and stability estimâtes for interpolants we note that

|(Û3la - U3oL)Ü3p\0iQ < C\ÙS - Ü |

Similarly,

\Ù3,a(u3t0 - û3p)\0,n < Ce\u3^ - ûg^l i^l^alcn < C€\u3 - u3

Thus, from (3.28), the estimâtes in (3.29, 3.30) imply

(3.29)

(3.30)

Ce

Step 2.
Since

7

and (3.25, 1.4) imply that

~ «3 |

(3.31)

(3.32)

(3.33)

and

we obtain

r - 1 (3.34)

< C(£?7(0),|p>,g|) [ha-1|TiaUIn + fcr~2|«3|r,n] • (3-35)

Step 3.
In order to estimate the last term in (3.26), we will need the following estimate for négative norms.

Proposition 3.6. Under the regularity assumptions associated with the approximations specified in (l-4)> we

have

( hs~l\ùa\8tçi 4- hr~2

. First, we observe

(Û3,A-Û3,A). (3.36)
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Then, using the définition of the négative norm and the Cauchy-Schwarz and Holder's inequalities, we have the
estimate

Ja
fgcpdx

P P

This result can be simplified by applying the Sobolev embeddings

H1^) C L2p(ty for any p < oo

and taking p = and 2p = 2 + ei, and

ei(Q) with eo =

to obtain

<

Hence,

|/#|-i,n < C€o|/|o,a|^|eo,Q for any e0 > 0.

Similarly, Green's formula can be used to show

(3.37)

(3.38)

Another estimate we need is determined by using interpolation theory of Besov spaces [21] which provides us
with

\fgU,n < C| ƒ |i-€o,fi|0|e+eO)fi V e, 60 > 0 and e + eo < 1.

From here, it follows, by Holder's inequality and duality,

I/$l-i,n < C€\ ƒ \-i+e,n\9\i-e/2,n V e > 0. (3.39)

The remainder of the proof relies on applying (3.37-3.39) to appropriate terms involving the right-hand side
of (3.36).

First, we décompose 7a/3 — 7a^ in a similar manner as in (3.28) to obtain the estimate for the first term on
the right-hand side of (3.36). The details are provided below.

First notice that by applying (3.39) and (1.4), we obtain

|Ü |

^\us\2tn < C(E7(0), KT (3-40)

Similarly, (1.4, 3.36, 3.37, 3.39) can be used to show

\üx\-itQ < C\ü3 — U3|o,n|ü3)A|€0ln <

(3-41)
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h

and

< C€ (£?7(0), I

Thus, by combining (3.40-3.43) we have

(

Similarly,

û |Ü

<Ceh
s~~ \ua\8içi\ùs\i+€jci -h Ceh

r~ \ €in + Ceh
r~ |

For the last two terms in (3.36) we have

but

-l+c,fî < Ce I |ca/3(l?)|_i+e)

< Ce (£7(0), |C

Hence,

and

i—2i

e,n < C€

Gollecting (3.44, 3.47) provides the resuit in the Proposition 3.6.

81

(3.42)

(3-43)

(3-44)

(3.45)

(3.46)

(3.47)

•



82 I. LASIECKA AND R. MARCHAND

Step 4.
Now we are in a position to state the final estimate for Yu. Indeed, by applying (3.31, 3.35), Proposition 3.6

and (1.4) to the définition of Yu in (3.26) we have

f
Jo

{\ùQ\2
s,a + l«a|2,n)

- i , n ldT (3.48)J

which is the desired estimate in Proposition 3.5. D

To complete the proof of Lemma it remains is to dérive an estimate for YQ. This is done in the proposition
below.

Proposition 3.7.

| ua | 2
3 + l«a|2,2] + ft2(r-2) [\us\2

r,2a|2>3
(3-49)

Proof, To this end, from (3.6) and Lemma 2.2 we have

Y0<C(£?7(0), |( 1?,

+l7a/ï(0) (U3,A(

However, recaüing (3.37) we have

|7«*(O) (U3,A(0) - fih,A(0)) \ \ n

and

I (7^(0) - 7^(0)) «3,A(0)|2.1,n <

Thus,

n + £(0) + |e£(0)|2,n

2_1>n + I (7*0(0) - 7 ^

,n + 5(0)

Additionally, using the définition of £(t) in (2.8), we get

£(0) < C [\{ûh
a - üh

a

U3,A(0)|2 1>n] • (3.50)

2,n < Ct (£?7(0)) A2 ( ' -1-e ) |«3(0)|2
 n (3.51)

- 7<*/?(0)|2,,n- (3-52)

(3.53)

(3.54)
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We also make use of (3.25) and (1.4) to obtain

|g,n < C\(ua - u£)(0)|i,n + C\{u3,a - «£. J(O)«3,/ï(O)|o,n

+ C\ûla(0){u3,p - ül0)(O)\o,n + C\(u3 - ü£

< C/is-1|«a(0)|8ln

+ C|(u3,/j - «3,/

< Ch-^u^efl + Chr-2\u3(0)\r,Q [|u3(0)|2,n + |«3(0)kn] + C/i'-1|u3(0)|P_i,n

< C(£7(0)) [hs~Va(0)|S)n + /r-2 |u3(0)| r ,n] • (3-55)

Hence, by applying (3.54, 3.55) to (3.53) and recalling the définition eh = uh — ûh, we obtain

Y0<C (£7(0), \(l?,q)\) [\(ùh
a - i£(0)|§ + |(ù§ C&Wl + 7 | ( ^ Ü )

Moreover, taking u^(0) = ü^(0) we obtain

Y0<C(E^0),\(T?,q)\) [ h ^ ' - 1 ) \ l , ]

[ * » [ l 2] 2 ( 2 ) [ ? 2 ] ] (3.56)

which is the desired inequality in (3.49). D
The proof of Lemma 3.3 follows by combining the inequalities in Proposition 3.5 and 3.7. •
The combination of Lemma 3.2 and Lemma 3.3 provides the proof of Theorem 1.2.
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