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A MODEL PROBLEM FOR BOUNDARY LAYERS OF THIN ELASTIC SHELLS

PHILIPPE KARAMIAN1, JACQUELINE SANCHEZ-HUBERT1 '2

AND ÉVARISITE SANCHEZ P A L E N C I A 2

Abstract. We consider a model problem (with constant coefficients and simplified geometry) for the
boundary layer phenomena which appear in thin shell theory as the relative thickness e of the shell
tends to zero. For e — 0 our problem is parabolic, then it is a model of developpable surfaces. Boundary
layers along and across the characteristic have very different structure. It also appears internai layers
associated with propagations of singularities along the characteristics. The special structure of the limit
problem often implies solutions which exhibit distributional singularities along the characteristics. The
corresponding layers for small e have a very large intensity. Layers along the characteristics have a
special structure involving subspaces; the corresponding Lagrange multipliers are exhibited. Numerical
experiments show the advantage of adaptive meshes in these problems.

Résumé. Nous considérons un problème modèle (avec coefficients constants et géométrie simpli-
fiée) pour l'étude des couches limites qui apparaissent en théorie des coques élastiques minces lorsque
l'épaisseur relative e tend vers zéro. Pour e = 0, notre problème est parabolique, c'est donc un pro-
blème modèle pour les surfaces développables. Les couches limites le long et transversalement aux
caractéristiques ont des structures très différentes. Il apparaît aussi des couches internes associées à
la propagation des singularités le long des caractéristiques. Dans certains cas, à cause de sa structure
particulière, le problème limite a des solutions qui présentent des singularités faisant intervenir des
distributions le long des caractéristiques. Pour e petit, les couches correspondantes sont de très grande
intensité. Les couches le long des caractéristiques ont une structure particulière incluant des sous-
espaces ; les multiplicateurs de Lagrange correspondants sont mis en évidence. Les calculs numériques
montrent l'avantage de l'utilisation de maillages adaptés dans ce type de problèmes.
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1. INTRODUCTION

This paper is devoted to a model problem for the boundary and internai layers in shells so we first recall some
features of thin shell theory. For generalities on shells the reader may refer to [1,4,7,18]. Roughly speaking, a
shell is described by a thin body, of thickness 2e, close to a surface 5 the boundary of which is submitted to
some kinematic conditions. The mechanical behavior is described by two bilinear forms a(u^v) and e2b(uiv),
associated with the déformations of the intrinsic metrics and the variations of curvature, which are called the
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membrane form and the flexion form respectively. Note that the second one involves a factor e2, accounting for
the small rigidity of a thin body to flexion. This f act ent ails very spécifie asymptotic properties for small e, a
part of them will be described hereafter, we refer mainly to [5,7,19] for more details.

In the sequel, we only consider the so called "inhibited shells", i.e. such that the surface S along wit h the
kinematic boundary conditions is geometrically rigid. The corresponding System is of the form A + £2B, where
B is elliptic but A is of the same type as the points of the surface 5, i.e. elliptic, parabolic or hyperbolic at
elliptic, parabolic or hyperbolic points of the surface. In addition the order of dérivation in B is higher than
in A so that as e tends to zero there is a singular perturbation phenomenon. In the sequel, we shall focus on
the case when A is uniformly parabolic which corresponds to developpable surfaces. The limit process e \ 0 is
very singular, as it goes from a higher order elliptic system to a parabolic System. For e > 0, the energy space
V is chosen so that a + e2b be continuous and coercive on it, whereas the limit problem involves a new energy
space Va such that the form a is continuous and coercive on it. In fact, Va is the completion of V with the norm
\/a(-, •) (note that, it is a norm as a conséquence of the hypothesis of inhibition).

Obviously, the space Va contains functions which are less smooth than the functions of V. Consequently, the
solutions ue belong to V but the limit as € tends to zero is a less smooth fonction. As a conséquence, ue for
small e exhibits "boundary layers" i.e. narrow régions where the gradient grows very quickly. In fact, there
is another, even more important reason for the présence of boundary layers. Of course, as V c Va% the dual
spaces verify Va' C V1 so that the admissible forces which are in V' for e > 0 may not be admissible for the
limit problem. In this case, the energy of u£ tends to infinity, as we prove in Section 2.1. The corresponding
solution of the limit problem is out of Va and exhibits distributional singularities so that ue involves boundary
layers of large intensity (see also [11] in this context). It is to be mentioned that this situation is very common
in shell theory where the space Va, which dépends on the geometry, is often very large and consequently V£ is
a very small space. The most typical example of such a situation is given by the so called "sensitive shells" for
which the space V^ is so small that is does not contain the space V of test functions of distributions [12,13].
Obviously, for sensitive shells almost any loading ƒ is out of V£ but, even for non-sensitive shells "very usual"
loadings may be out of V£. For instance, in ruled surfaces with a free boundary along a generator, any loading
not vanishing on that generator is out of Vtt' (see [18], Sects. VII.2.4 and VII.4.2 as well as Sect. 2.2 of this paper
for the model problem).

It should be emphasized that the non-smoothness of solutions of the limit problem has important conséquences
on the finit e element computations of u£ for small e. It is nut hard to prove (see [6] for instance) that when ƒ ^ \rl

a

the convergence of the finite element approximations u% to uE cannot be uniform with respect to e € (0,£o)
with values in Va (and then also in any "smaller" space!). In other words, the smaller e is the smaller h must be
chosen in order to get a good approximation. We may refer to [8,10] for these features. As a resuit, the situation
in the present case, of inhibited shells, is analogous to that of non-inhibited ones where the non-uniformity of
the convergence is a conséquence of the phenomenon of locking which appears for any conformai approximation
with piecewise polynomial finite éléments [3].

Up to our knowledge, very little is known about boundary layers of shells. They are called "edge effects"
in [7,14] which are mainly concerned with layers transversal to the characteristics. Spécifie solutions may
perhaps be found in the impressive catalogue of analytical solutions of Rutten [16] but their utilisation in
spécifie problems is not evident. So, in this paper, we consider a model problem for the above mentioned shell
problems in the case when the limit operator A is parabolic. The model has constant coefficients and involves
two unknowns u\ and u<z\ the first one plays the role of the two tangential components of the displacement
vector in shells and the second is analogous to the normal component.

The paper is organized as follows: the model problem P (e) is presented hereafter at the end of this intro-
duction (see (1.1)—(1.5)). The limit problem P (0) is addressed in Section 2 which includes properties of the
asymptotic process e \ 0 (see Sect. 2.1) and a criterion for ƒ G Va' which is an adaptation of a criterion of
sensitivity [13] (see Sect. 2.2). The scaling for the layers, either along or across the characteristics is obtained
in Section 3 by a method based on asymptotic trends of exponential solutions. We point out that this method
was used in another context in [15]. Boundary layer along a clamped characteristic is considered in Section 4.
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The spécifie équations and boundary conditions are obtained by formai asymptotic expansions direct ly from the
variational formulation. The analogous problem for a free boundary is handled in Section 5, two cases appear
according to the loading vanishes or not on the boundary. In the second case, the intensity of the layer is very
much larger because ƒ ^ Vf

a. Section 6 is devoted to the case of internai layers along the characteristics, the limit
of which is the phenomenon of propagation of singularities. The structure of the characteristic layers involves
a special structure involving subspaces. The corresponding Lagrange multiplier is considered in Section 7. The
more classical case of layers transversal to the characteristics is addressed in Section 8. In Section 9, we prove
that the limit as e \ 0 of the internai layers are the solutions in the distributions sense of the limit problem
which were given in Section 2.4 for ƒ ^ V^. Section 10 contains numerical experiments with finite element
approximations, mainly for e = 10~3. The advantage of using meshes adapted to the spécifie features of the
layers is shown. The principal results, thicknesses and intensities of the layers in different cases are summed up
in a table in Section 11.

The model problem P (e) is defined as follows. Let us consider the domain fi = (O,TT) X (O,TT) of the plane
x = (#1, X2). The boundary dfi is composed of two parts Fo and Fi which are respectively the "clamped " part
and the "free" part, they will be precisely defined later. Several choices will be done but, in any case, Fo is
made of whole sides and always contains two adjacent sides.

The configuration space V is a space of éléments v = (vx,v2) satisfying the boundary conditions:

vi = v2 = dnv2 = 0 on Fo (1.1)

where dn dénotes the normal dérivâtive to the boundary, more precisely

V = {v e H^fl) x H2{ty;v satisfies (1.1)} • (1.2)

We consider the two bilinear forms

a{u,v)= f {(d1u1)(d1vl) + {d2u1-U2)(d2V1-V2)]dx (1.3)
Ja

dau2dav2dx = (^2,^2)2 • (1.4)b(u,v) =

Let us dénote by ƒ a given element of Vf (the dual of V), the problem P(e) writes:

Find u£ such that W G V
v),v.a(u*,v)+e*b(u*,v) = (f9v)v,

From the previous hypotheses, it immédiately follows that the problem P(e) with fixed e > 0 is continuous and
coercive on V, so that the existence and uniqueness of the solution is ensured by the Lax Milgram theorem.
Clearly the coerciveness constant is of order e2 so that it vanishes as e \ 0.

This problem is somewhat classical. It is equivalent to the System of équations

with the principal boundary conditions (1.1) on Fo and the natural boundary conditions on

dnu\ -
e2 [dnu% - ÔnAu£

2 - dt (dntu
£
2)\ = F2 (1.7)

e2dnnu\ = C
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where n (resp. t) is the unit outer normal (resp. the unit tangent) to Fi and where

(f,v)v,v= J fiVidx + J (Flvl+F2v2+C^\ds (1-8)

in the sequel, we always take F\ = Fi — C = 0 unless the opposite is explicitly said.
Moreover,

v G V, a(v,t;) = 0 =>• t; = 0 (1.9)

so that

N v o = «« ,« ) )* (1.10)

is a norm on V. We dénote by Va the completion of V with this norm. We note that (1.9) is analogous to the
hypothesis of inhibition in shell theory.

Also we define the limit problem P(0) in variational form:

Find u° G Va such that \/v eVa

a{v?, v) = (ƒ, i;)Vû/ya for a given ƒ G Va'
 ( L 1 1 )

which is obviously continuous and coercive on Va. It should be noticed that the hypothesis ƒ G V£ is somewhat
restrictive as we shall see later. When this hypothesis is satisfied the existence and uniqueness of u° in Va are
ensured.

2. T H E P R O B L E M P(0)

2.1. First considérations on the converge process

In order to write down the équations and boundary conditions associât ed with classic al intégrations by parts,
the space L2(Çl) is identified with its dual; this will be used in the explicit description of dual spaces.

As foilows from the completion process, V is densely contained in Va so that

Va C V'. (2.1)

Classical theory (Theorem 2.1) of convergence only holds for ƒ G V*a. In the case when ƒ G Vf but ƒ ^ Vf
a

gênerai resuit s of convergence are not available. The solution u° of the limit problem may or not exist but likely
not in the finite energy space Va* We recall that the energy of the solutions is defined by

E{us) = \ [a(ue,u*) + e2b(u£,uE)] (2.2)

E(u°) = \a(u°y). (2.3)

The classical resuit is:

Theorem 2.1. Let ƒ G V^ be fixed independently of e. Let u£ and u° be the solutions of (1.5) and (LU)
respectively. Then

ue -+u° inV strongly (2.4)

and there exists a constant C such that

E(u£) <C. (2.5)
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The proof is classical, see for instance Section VI. 1.3 in [18]. Let us recall that (2.5) follows from (1.5) with
v = u£, Moreover, we have:

Theorem 2.2. Let ƒ G V' be fixed independently of e. Let ue the solution of (1.5), then

1. The necessary and sufficient condition for E (u£) to remain bounded for e \ 0 is that ƒ G V^.
2. If ƒ ^ V^ then E (u€) tends to infinity as e \ 0.

Proof. In order to prove the fîrst assertion, from Theorem 2.1, it is sufficient to prove that (2.5) implies ƒ G V^.
To this end, (2.5) implies that for a subsequence

b(u£
yu

£)<~ (2.6)

and

u£ —> u* weakly in Va

for some u* G Va- Let us fix v G V in (1.5), then

a(u£ ,u) —> a (u*,v)

e2b(u£,v) <e2b{u£,u£)ib(v,v)^ < eC -> 0

so that

a{u*,v) = (f,v) \/veV (2.7)

The left-hand side is a functional of the variable v defined on V', continuons on Vai so that the right-hand side
is also, and this implies that ƒ G V '̂.

To prove the second assertion, let us suppose that it is false. Then for a subsequence we should have (2.5)
and in this case the proof of the fîrst assertion shows that ƒ G Vf

a what is a contradiction: Theorem 2.2 is
proved. D

Remark 1. We shall see that the space Va is somewhat "large" so that Va' is "small" and ƒ G V'a implies
strong restrictions which are not satisfied by "usual" loadings ƒ. Consequently, we are often in the situation
of the second assertion of Theorem 2.2. This situation is in some sensé "pathological". As we noted above,
when ƒ ^ VI the limit problem P(0) may or not have a solution u° but if it does, it is not in the finite energy
space Va. This is the reason why we shall consider in the sequel solutions of the limit problem which are not
variational solutions in Va. An example of this situation is shown in [11] where it is seen that the energy confîned
in boundary and internai layers is not bounded (for e \ 0) whereas the energy in outer régions does. Later
on we shall search for the asymptotic behavior of u€ using the method of matched asymptotic expansions [20]
which shall exhibit such kind of layers. •

2.2. A criterion for ƒ G V}
a and examples

In this section, we shall consider functionals ƒ defined in (1.8) by functions fi (on Cl) with Fi = C = 0. The
form a defined in (1.3) is associated with the two quantities

71 S"! " T1 (2-8)
72 (u) =à2ui -u2.
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Let us define the injective application 7 by (2.8)

V 2* (L2)2

this application may be continued by continuity to Va to an isomorphism from Va onto its range X which is
clearly a closed subspace of (L2) .

Let us now consider the functional

defined on V. Then we have:

hiv)= f {fivi+hv2)dx (2.9)
Jn

Theorem 2.3. The functional defined by (2.9) may be extended by continuity to Va (that is equivalent to f e V'a)

if, and only if, there exists T = (T1,!12) G (L2) such that

f (hvi+f2V2)dx = ( T \ 7 i (v))L2 + (T2,72(t;))L2 \/v € V. (2.10)
Jn

Proof. Let us suppose that there exists T € (L2) which satisfies to (2.10), then the right-hand side in (2.10)
is continuous on V for the topology of Va and consequently the left hand side also does: this proves that the
condition is sufficient. If (2.9) may be extended by continuity to Va) then let us dénote by

(Lv)Viva (2-11)

the functional so extended. Let F be its image by the isomorphism 7, it is continuous on X and defined by

(2.12)

a functional F (£) continuous on
and, by the Riesz theorem, it may be expressed as the scalar product
Prom the Hahn-Banach theorem, we know that it may be extended to a functional F (£) continuous on (L2)

^ ( 0 = <T\0(L»)' V£e(L2)2 (2.13)

where T is some element of (L2) . In particular (2.13) holds for any f e l and even for any £ of the form
£ — l(v) w u^ n v G V (not necessarily to Va). Then, from (2.13), we get

( ƒ , v)= f f2v2) dx = (T, 7(v)

the necessity of the condition is then proved. D

Example 2.1. Let us consider the case when the whole boundary is clamped and let ƒ1, ƒ2 be smooth functions.
We shall see that ƒ £ V£. Indeed, (2.10) explicitly writes

/ (fivi + f2V2) dx= f [TtdiV! + T2 (d2vi - v2)] dx \/v G V. (2.14)
Jvt Jn
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Taking v G [T>{tï)]2 we obtain

h = -diTi - d2T2 (2.15)

As the two components f\ and f2 are smooth it is possible to construct smooth T1 and T2, in particular
)2G (L2)2 , satisfying (2.15). Then we have

+ f2v2) dx= [ [(-ôiTi - 92T2) ux + (-T2) v2] dx W G V.
Jn

(2.16)

In the considered case of a clamped boundary we have V = HQ X HQ SO that an obvious intégration by parts
in (2.16) gives (2.14). It then follows from Theorem 2.3 that

• /eV; ' . (2.17)

Consequently, from Theorem 2.2 we see that the solution u£ of (2.12) is such that the energy E (u£) of u£

remains bounded as e \ 0.

Example 2.2. We consider again a totaly clamped boundary but fi are no more smooth functions. We shall
take

_ ƒ 0 if x2 < TT/2
\ if x2 > vr/2

(2.18)

the given forces defined on the domain Q. We emphasize that the discontinuity of ƒ is along a curve x2 = const.
We shall see later that these curves are the char act eristics of the problem P(0). Let us prove that ƒ ^ V'a.

Indeed, we are showing that T\^T2 G L2 and satisfying (2.14) cannot exist. If this was the case then taking
v € [D (Çl)] we should have (2.15). In addition, as ƒ1, ƒ2 are piecewise smooth the corresponding traces of
T\U\ + T2n2 make sensé, allowing classical intégration by parts. Then, from (2.14) with arbitrary v we get

7T

2
(2.19)

where the brackets dénote the jump across the discontinuity. We then see that (2.19) with (2.15) and (2.18)
are not compatible. So that T\,T2 cannot exist. According to Theorem 2.3 the given force ƒ does not belong to
V^ Consequently, from Theorem 2.2 we see that the solution u£ of (2.12) is such that the energy E(ue) tends
to infinity as e \ 0.

Example 2.3. Now we consider a smooth given force ƒ but the boundary is constituted of two parts Fo and
Fi. We recall that Fo is clamped while Fi is free. We shall take as Fx the part x2 = 0 of the boundary. We
emphasize that, as in the previous example, this free boundary is along a characteristic of the problem P(0).
The space V is then defined as

V = {Vl € H' (îî) ; < o = 0 } x <L e H2 (fî) ; v}ro = ^ = 0' (2.20)
r0
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Exactly as in the previous example if Ti, T2 exist, then they satisfy

( {T2=);d2T2

y T2 = 0 on Ti.
(2.21)

It is clear that (2.21)2 and (2.21)3 are compatible if and only if ƒ2 Ir̂  = 0- Oppositely, when this condition
is satisfied we may construct smooth functions Ti,T2 satisfying (2.21) and classical intégration by parts show
that Ti,T2 satisfy (2.10). Then f2 = 0 on I \ is the necessary and sufficient condition for ƒ G V^. Obviously it
is also the necessary and sufficient condition for E (u£) to remain bounded as e \ 0.

2.3. Equa t ions and b o u n d a r y condit ions of P (0)

The variational formulation (1.11) of the limit problem is somewhat abstract as Va was only defined by
completion. We have not a précise description of Va which dépends on the disposition of F o and Fi. But in any
case it follows from (1.10) and (1.3) that v E Va => diV\ G L2(Cl). Moreover, from the fact that Fo contains
at least one of the vertical segments of the boundary and Poincaré inequality for X2 ~ const., it follows that
Vi G L2 (Cl). Consequently, the principal boundary condition ^i = 0 is inherited by Va on the parts of F o which
are tranversal to X2 = const.

As for V2, if v G Va, it follows from (1.10) and (1.3) that t>2 is the sum of an element of L2 (Q) and c^ i so that
the principal boundary conditions of v\ on X2 = const. and of V2 everywhere are lost in the completion process.
This allows us to write down the équations and boundary conditions of P(ö) (without a précise description of
VB):

+ d2u2 = h (r> 99\
+u2=h l ]

ƒ -

= 0 on the parts of FQ transversal to X2 = const.ƒ , ,
\ diUi = 0 on the parts of Fi transversal to X2 = const. '

obviously, the first of these boundary conditions is a principal one on Va as we said above, whereas the second
one is a natural condition coming from intégration by parts.

Clearly (2.22) is equivalent to

-dim - h - d2h (2.24)

(2.25)

Under this form it is obvious that the limit problem is essentially equivalent to (2.24) for u\. This équation is
an elliptic one with respect to x\ with parameter x2- In Cl it is parabolic with double characteristics x2 = const.
As X2 appears as a parameter, ƒ1 and ƒ2 may be chosen to be distributions of X2 with values in an appropriated
space for the variable x\. Consequently, when ƒ2 is not sufnciently smooth with respect to £2, the équations
(2.22) and the boundary conditions (2.23) keep a sense in a more gênerai framework which is not that of the
variational problem (1.11).

Let us define the operator A by

Au - -a?ui (2.26)

for functions depending on the variable x\ and the evident boundary conditions coming from (2.23). We note
that according to the hypothesis that FQ and Fi are made of whole sides of the boundary of Cl, this operator is
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independent of x2 so that it commutes with differentiations with respect this parameter. Obviously, the solution
of (2.24), (2.25) then writes

\ u 2 ( . , x2) = / 2 ( . , x2) + A'1 [d2fi (•, x2) - d\h (•, x2)] .

2.4. Solutions in the sensé of distributions

According to the previous considérations, we now consider the System (2.22) or (2.24) and (2.25) as well
as the solution (2.27) in the sensé of distributions of x2 with values in a space (for instance L2 (0,7r)) of the
variable x\. In order to exhibit the singular terms, we consider the case when / i = 0 and f2 is a piecewise
smooth fonction of the variable x2 with values in L2 (0, TT) with a discontinuity at a point 7 of (0,7r). Let (p and
^ ç L 2 (0,7r) be the jumps of the fonction and the first derivative at x2 = 7. The solution (2.27) takes the form

1 ( • , x 2 ) = - A " 1 ( d i f 2 ) - ( A - V ( • ) ) 5 7

2 ( - , x 2 ) = /2 ( . , z 2 ) - A - 1 (dPf ( ) ) ( A ' p ( ) ) 5 ( i " V W ) ô'

where d2 dénotes the derivative in the sense of fonctions. To fix ideas, let us take

) for x2 < 7 (2.29)

in this case the solution is

f wi (•, x2) = - (A- V (•)) &Y f /2 3QN

We shall see later that these solutions of problem P (0) are the limits of the corresponding solutions of problem
P (e) as e \ 0. Clearly this implies that the solutions of P (e) involve boundary (in fact internai) layers terms
which converge to the singular terms of (2.30).

2.5. Localization of the boundary and internai layers

As a conséquence of Section 2.4 it appears that the problem P(e) exhibits internai layers terms along the
segments x2 = const. where ƒ is not smooth as fonction of x2 with values in L2 (0, ir) for instance. The structure
of the internai layer dépends highly on the degree of non-smoothness of ƒ. We emphazise that x2 = const. are
the characteristics of the limit problem (2.24).

The explicit solution (2.30) exhibits an example of propagation of singularities along the characteristics. As
the operator A~l of the variable x\ is non-local, we may have tp with compact support in (0,7r) whereas the
solution u is singular along the whole segment of characteristic x2 = const., X\ G (0, TT).

Oppositely, let us consider the case when ƒi = 0 and f2 is piecewise constant with a discontinuity along a
curve C which is transversal to the characteristics. The method of solution with parameter x2 shows that u is
smooth unless on C where the fonction u2 and the first derivative of u\ have jumps. Clearly, in this case, ue

exhibits an internai layer along the curve C. In addition, if one of the extremities of C is a point interior to fi,
the solution is singular at this point and propagates from it along x2 = const.

On the other hand, as x2 is a parameter, the limit problem P(ö) has no boundary condition on x2 = 0 and
x2 = 1 so that ue exhibits boundary layers along these (characteristic) boundaries.

Also boundary layers appear along the parts of Po transversal to the characteristics (vertical parts of Fo) as
the boundary conditions (1.1) involving u2 disappear in the limit (compare with (2.23)). We shall call them
non-characteristic boundary layers.
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3. SCALING IN THE LAYERS. METHOD OF EXPONENTIAL SOLUTIONS

Classically [20], in order to describe the structure of a layer we must perform a change of variables including a
dilatation of the variable normal to the layer. Moreover, in order to obtain a consistent System, a rescaling of the
unknowns is usually needed. The déduction by a classical procedure of the appropriât e scalings is possible but
we use hère a method issued from the analysis of the structure of the exponential solutions of the homogeneous
System [15]. It should be pointed out that this method présents analogies with the study of asymptotic solutions
of Systems using the eikonal équation ([18], Sect. III.4).

3.1. Characteristic layers

We first consider the case of the layers along x2 — const. As the characteristics of the limit problem are
normal to the vector (0,1) there exist solutions of the form

u(xux2) = ve%

with £i =0,^2 T̂  0. Let us search, for e > 0, solutions of the form

ue(xux2)=v£el^^X2 (3.1)

with \fi\ —> +oo (Le. such that (£i (real) ,£2 = — i/x) tends to be proportional to (0,1)). The solutions (3.1) are
sinusoidal in X\ with wave length of order O (1) and very fast variations in x2. By substitution of (3.1) in the
homogeneous System associâted with (1.6) we obtain

- M2) «ï + A«S = 0
2 ) ' (tf 2 ) ] = 0.

The vanishing of the determinant of System (3.2) gives

& + 1 2 (£1 - A*2) (£i - M2) + £? " M2 + 1 = O

which for finit e £1 and // —• +00 gives the behavior of ji:

/i^e^fje-*. (3.3)

Then, from the first équation (3.2) we see that

Hf = O ( , - » ) . (3.4)

It then appears that the just obtained solutions with £1 = Ö (1), fi — ö f e~$ ) have a characteristic length of

variation in the x2 direction of order O fes j ; this corresponds to a layer of thickness 0(rç),

rj = ei. (3.5)

Moreover, the corresponding scaling of u is

~ = O (r)-1) . (3.6)
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3.2. Non-characteristic layers

Analogously, in the case of layers parallel to x± = const. we search solutions of the form

u£(xux2) =vee^
+it2X2

from which it follows that

M-(-l)ie-i (3.7)

so that the thickness of the layer is of order

7] = e*. (3.8)

and the scaling of u is

| 1 ( i ) (3.9)

4. BOUNDARY LAYER ALONG A CHARACTERISTIC PART OF TO

As announced at the end of Section 2.5, there exists a boundary layers along the boundaries x2 = 0 and
X2 = TT. Their structure is different according to the boundary belongs to Fo or to IV In this section we are
concerned by the first case and we suppose that the boundary is xi = 0. We also suppose, to fix ideas that FQ
contains the vertical segments X\ = 0 and x\ ~ n. According to Section 3.1, the appropriate scaling is then
(3.5) and (3.6) so we define the dilatation by

V2 = f (4-1)

and we search for asymptotic expansions of the form

Tentatively, we took the component u\ of order ö (1) in order to match it with the outer expansion (we recall
that only the ratio u2/u\ was defrned by (3.6)). In the sequel, we shall dénote by D2 the derivative with respect
to 2/2 :

D2 = r]d2. (4.3)

According to the boundary layer theory [20], the expansions (4.2) holds true in the domain D defined by
x\ G (O,TT) , y2 £ (0,+co). The solution U11 must satisfy the boundary conditions

U? (xu0) - uq {xu0) = D2UZ (xu0) = 0
E/?(0,tf2) = ^ ( 7 r , y 2 ) = 0

and the matching conditions for y2 —> +cx> which shall consider later.
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The variational formulation of (1.5) must hold true in the domain D at least for test functions with bounded
support in y2i we shall take them depending on rj in a form analogous to (4.2). Consequently we have

J { W W + ^ (D2U? - E/J) (D2V1
r) - V%) + ~ \B\Uln\V% + • • • ] | dxldy2 (4.5)

{lfi(xu0) + ---)V1
r} + -[f2(xu0)

D L V

where ƒ is supposed to be regular and was represented by its Taylor expansion in the vicinity of x2 = 0. We
note that, according to (3.5), e2/rf = 1 in formula (4.5). Taking VJ0 = 0 and F2° e V (D), the leading term (of
order TJ~2) gives

AïEtf - t/2° - 0 (4.6)

which implies a constraint for the unknown U°. In the sequel, we shall take test functions satisfying this
constraint, thus the test functions will satisfy

Vf = D2V?. (4.7)

Consequently, the term of order l/r? in (4.5) vanishes, indeed it is

= 0

7t / +CXD

J f2(xuQ)V?{x1,y2)dx1dy2 = J f2(x1:0) ƒ D2V1°(xliy2)dy2

o V o

as V]0 vanishes for y2 = 0 and y2 sufficiently large.
Presently the leading term of (4.5) is of order 0(1) and must vanish so that we have

/ [d1U?d1V1°^D2U^D2V^]dx1dy2 = f [fr (xu0) V? + y2d2f2 (xu0) V£] dxxdy2.
JD JD

Taking account of (4.6) and (4.7), the problem reduces to another one for the only unknown C/f (with the only
test function V^0) which, aft er an intégration by parts in the right-hand side, writes

f f
I [diU^diV?+ D%U¥DlVf*] dxxdy2 = / [f± (xu0) - d2f2 (xu0)] V?dxidy2 (4.8)

JD L J JD

from which, taking V® G V (ÎÎ), we obtain the équation satisfied by f/f:

-dfU* - DlU* - h (2:1,0) - d2f2 (xi, 0). (4.9)

According to (4.4) and taking account of (4.6), the component f/f must satisfy the boundary conditions

f/f (si,0) - L>2kT (zi,Q) = D2U?{xu0) - 0 (4.10)

and
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The solution of (4.9) may be written under the form

U?(xuV2) = tfftxi) + U?(xuy2) (4.12)

where C7f(a;i,O) is the solution of

-Û°"(xx) = h (*i,0) ~ d2f2 (xi,0) = F(Xl) (4.13)

with the boundary conditions

Ö?(O) = C/?(7r)=O. (4.14)

Le. of équation (2.24) and the boundary conditions (2.23) so that t/? is nothing but ui(xi,0) in Section 2.3.
As for the new unknown E/f (#1,2/2) it is solution of the homogeneous équation

= 0. (4.15)

Let us search a solution of (4.15) under the form

+oo
fVO/ \ X A / \ - /A i p\

71 = 1

we have

+ OO

71=1

Now, let us write the Fourier expansion of F(x\) under the form

+ OO

F(xi) = VJ Fn sinruc
71=1

then, from the conditions (4.10), the coefficients an must satisfy

a^(0) = a£(0) = 0 (4.18)

and, from (4.15),

d6

n2an(y2) - -j-âdn(y2) — 0. (4.19)

The bounded solution of (4.19) is of the form

an(y2) ^^2bkexp l ri* exp f ̂ -~- J y2 > (4-20)
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where the coefficients are uniquely determined on account of (4.17) and (4.18). Moreover, as y2 —» +oo,
Ui (x±) y2) tends to U®{x\) solution of the limit problem P(0) that insures the matching with the solution of
the limit problem P (0) of Section 2.3.

As for the component U^, as we saw it is given by

U2°(x1,y2) = D2U1°(x1,y2) = D2Ü°{xuy2)

and is such that

U2°(x1,y2) —>0

yi—>+oo

that constitutes the matching condition as u2 is of order e~$ in the layer and ö (1) out of it.

5. BOUNDARY LAYER ALONG A CHARACTERISTIC PART OF T1

In this section we consider the case when Fi contains the boundary x2 — 0 and FQ contains x\ = 0 and
x1 — 7T. We consider the layer along x2 — 0. As in the previous section., the scaling of the X2 is defined by (4.1)
but the asymptotic expansions are searched under the form

where 6 (77) is to be determined later. Indeed, the method introduced in Section 3 only gives the ratio
^•(c./. (3.6)) that is satisfied by (5.1); we shall see later that different functions 0 (17) should be chosen ac-
cording to the behavior of ƒ2 on the free boundary. We shall again dénote by D2 the deriva.tive with respect to
7/2 which, of course, satisfies (4.3).

As before, the variational formulation (1.5) must hold true in the domain D for test functions with compact
support in 2/2 &nd we shall choose them depending on 77 in a form anaiogous to (5.1) then, we have

f {diUÏ&V? + \ (D2U? - U2) {D2V? - V?) + [DlU^DlV? + •••}}dx1dy2 =
JD L V )

( 0 ) + ]Vv + [ f ( 0 )f llfi(xu0) + ---]V1
v + -[f2(x1,0) + r]y2d2f2(xu0) + ---}vAdx1dy2 (5.2)

JD l V J

Taking V^ ~ 0 and arbitrary T/2°, the leading term in the left-hand side is

y& [ (D2U?-U°)V2°dXldy2

V JD

and in the right-hand side is

- /
V JD

consequently, it immediately appears, taking account of the matching condition, that we have only two possibil-
ities: 6 (77) >> 1 or 0 (77) = 1. Then, as we shall see Sections 5.1 and 5.2, in order to obtain problems consistent
with the data, the function 6 (rj) must be chosen as follows, according to the value of the component f2 at
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the boundary x2 = 0

/2(Xi,0)#0

/2(zi,0) = 0

0 (jj) = r/ x

(5.3)

with in any case D2U? - U§ = 0 Le. (4.6).

5.1. Case when f2 (zi,0) / 0

In this case, taking test functions such that V2 =
term is

"the variational formulation (5.2), its leading

1 Z1

which, aft er evident intégrations by parts, becomes

ƒ \-d?U? - DoU?} Vi0da;idy2 + /
JD Jd

= / /2(zi,0)Vi07i

Then, taking V® e V (D), we obtain the équation

[ -
D V

(5.4)

?V?] n2} ds (5.5)

° = 0 (5.6)

and, from the intégrais along the boundary (as D2V^, D2Vi and Vf are arbitrary on the part x2 = 0 of dD),
we have

(5.7)
/1°(x1 ,0)- /2(x1 ,0) .

As in Section 4, we now search for a solution of the form

+ OO

Ui(xi,y2) = y^anfapsinnx;
n=l

then the coefficients an (y2) are the bounded solution of the équation

Le. of the form

(5.8)

(5.9)

an (y2) = 2 ^ c * e x P \nZ e x P ( ~Y ) V2\ (5.10)
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where the coefficients c& are determined by the boundary conditions

where Fn is the coefficient of sinnxi in the Fourier expansion of f2(#i, 0).
Of course, U2 (x\,y2) is then given by (4.6).

5.2. Case w h e n f2 (#i,0) = 0

This case, for which 9 (77) = 1, is worked out exactly as the previous one the only modifications concern the
équation which becomes

-dlUÏ - D^U° = h (si, 0) (5.12)

and the last boundary condition in (5.7) which is now

£45)t/°(zi,O)=O. (5.13)

Consequently, the analogous of the coefficients an (2/2) are solutions of

~ 4 6 ) (WO + n2an (y2) = fx (an, 0) (5.14)

with the boundary conditions

a£>(0) = (#>(<)) = a<?>(0)=0. (5.15)

It should be easily seen that the solution is unique and satisfy the matching conditions.

6. INTERNAL CHARACTERISTIC LAYERS

Let us consider the data (2.29) of Section 2.4. To fix ideas we shall suppose that F o contains the boundaries
xi — 0 and x\ =• ir. It appears, according to (2.30), that the solution of the limit probiem exhibits a discontinuity
along X2 = 7. Moreover, we saw in example 2.2 that ƒ ^ V .̂

By comparison with example 2.3 the probiem addressed in the present section is thus analogous to that of
the Section 5.1 but in a layer near X2 — 7. Instead of (4.1), the inner variable is now

y, = ^ • (6.1)

The domain D is presently D = (0, TT) X (—00, +00), consequently we shall have two matchings for y2 —> ±00.
As in Section 5.1, the inner expansion is (5.1) with 6 {rj) = rç"1. The analogue of équation (5.4) is

/ {dïUÏVl
0 + Ds

2UÏDlVl°}dx1dy2= f iP(x1)D2V1°dx1dy2
JD JD+

where D+ = (0,?r) x (0, +00) (analogously D~ = (0,7r) X (-00,0)).
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In each région L>+ and D~ we again obtain équation (5.6) and the boundary conditions (taking on
the quantities V^0, D2V® and D2V® are continuous) become the interface conditions

where [|«|] dénotes the jump across the interface. Obviously, we shall also prescribe

[K|] = [|Wi°|] = [|
Moreover, the function U® satisfies the boundary conditions

and the matching conditions

y2->±oo

17

2 = 7

(6.2)

(6.3)

(6.4)

(6.5)

As in Section 5.1, we search in each région D+ and D a solution of the form (5.8) with coefficients a+ and an

respectively which satisfy

= 0 (6.6)

and are bounded in their corresponding domain of définition, so that

< (îtt) = E c+ exp [ni exp {*%•) y2]
k=2 L Jk=2

«n (2/2) = E cl exp \ni exp
fc=O L

(6.7)

Moreover, they satisfy the interface conditions

Ki]=[Ki]=-=rK4)ii=o
(6.8)

where <£>n is the coefficient of sinnxi in the Fourier expansion of the function (p (xi).

7. THE CHARACTERISTIC BOUNDARY LAYER REVISITED. LAGRANGE MULTIPLIER
AND BOUNDARY CONDITIONS

We saw in Sections 4, 5 and 6 that the leading terms of the solutions in the layers satisfy the constraint
(4.6), and accordingly the corresponding équations must involve a Lagrange multiplier. This was avoided in the
previous study by taking test functions satisfying themselves the constraint (4.6) so that, taking int o account
this constraint, we obtained the équation satisfied by Ui(xi,y2) and the corresponding boundary conditions.
Clearly this amounts to eliminate {ƒ£(#1,2/2) and the Lagrange multiplier. In order to exhibit the rôle of the
multiplier in the équations and the boundary conditions we now consider again the case of Section 5.1 which is
a characteristic layer along the free boundary x% — 0. So that we consider expansions (5.1)

f 01^ f T*-i T VJ Ct-ĵ  ^ t * / l j **J4 (7.1)
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which gives the new form of (5.2):

/ \d1U^d1V1
r} + 4 (D2U? - U2) (D2V? - V*) + D\V%D\V2 + - • • } dxxdy2

JD K V )

= f [f2(xu0) + ---]V?dx1dy2. (7.2)
JD

Taking as test functions V± = 0, V2 independent of r\ and by identifying to zero the terms of order r\~2 and rf~x

we obtain

Z)2^i° - U2° = 0 (7.3)

D2U11 -U21 = 0 . (7.4)

In the sequel, it will prove useful to define the new unknown p(#i,2/2) by

D2Ul - Ui = p. (7.5)

Now, taking Vi V2 arbitrary and independent of rj in (7.2), on account of (7.3) and (7.4) at the leading order
we have

f
JD

/ { }
D JD

Taking V± and V2 vanishing in neighbourhoods of x\ = 0 and x\ = TT, intégration by parts give

[ { M L Ci " D2p) Vx + (DiU% -p)V2} dxxdy2
JD

+ I {-pV1+DlU$V2-D*U$D2V2}(xi,Q)dxi= f h(xu0)V2dx1dy2
Jrx JD

from which we obtain the System of équations

f -d*U°-D2p
\ D*U°-P =

and, as Vi, V2 and D2V2 are arbitrary on Fi, we have the natural boundary conditions

-p(xi,0)=0
) = 0 (7.7)

,0) = 0.

Moreover, U° satisfies the principal boundary conditions

t^(0,»2) = J7Î(7r,tf2) = 0 (7.8)
and the matching conditions

0.
Î.+OO
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Problem (7.5)-(7.9) détermines the unknowns £/°, U2 and p, it constitutes the boundary layer problem with
Lagrange multiplier. We should immediately verify that by eliminating p and U® we obtain the équation (5.6)
and the boundary conditions (5.7).

Remark 2. It should be easily seen that, on account of expansions (7.1), of (7.3) and (7.4) and of the définition
(7.5) of p, the équations (7.6) and the boundary conditions (7.7) are respectively the leading order terms of
(1.6) and (1.7) with F1=F2=C = 0. •

Remark 3. The solution (t/f, U2) was obtained using two different methods. In the first one, the test fonctions
were taken satisfying the constraint and the équation was obtained with Vi arbitrary (but not V2). On the other
hand, in the second method, we took V± and V2 arbitrary so that the corresponding problem involved a new
unknown p which is the Lagrange multiplier of the problem. Indeed, denoting by B the operator defined by

which defines the constraint (7.3), the corresponding adjoint B* is defined by

B*p=(-D2p,-p)t

which are precisely the terms in p in system (7.6). Then we have the classical structure of a constrained problem
with Lagrange multiplier [2]. Moreover, it is known that in penalty problems of the form (7.2) the Lagrange
multiplier p of the limit problem is

that agrées with our results (see (7.1), (7.3), (7.4) and (7.5)).

8. BOUNDARY LAYER ALONG A NON-CHARACTERISTIC PART OF r 0

We saw in Section 3.2 that the thickness of a non-characteristic layer is of order

?? = e* (8.1)

and the scaling of u6 is such that w|/wi = & (7?~1) = Ö f e~2 J. To fix ideas, let us consider the non-characteristic
layer along x\ = 0 which is supposed to belong to Fo. Then we tentatively search for asymptotic expansions of
the form

= r)\uƒ ui (xi,x2) — r]U?(yui
\ u% = U^{yux2) =V§

where

V\ = — ' (8.3)

In the sequel, we shall dénote by D\ the derivative with respect to y\:

Di =7)0!. (8.4)

The expansions (8.2) hold true in the domain D defined by yi € (0,+oo), x2 G (0,TT).
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The solution U"0 must satisfy the boundary conditions

l/f (0,s2) = t/J (0,x2) = Dit/J (0,x2) = 0 (8.5)

and the matching conditions for y\ —> +oo, which we shall consider later.
The variational formulation hold true in the domain D, at least for test functions with compact support in

yi, we shall take them depending on 77 in a form analogous to (8.2). Consequently, we have

• ] } (8.6)

= ƒ
where ƒ is supposed to be smooth and was represented by its Taylor expansion in the vicinity of x\ = 0. We
note that, according to (8.1), e2 jrf = 1 in (8.6).

Taking V? 6 V (D) and V? = 0 in (8.6), the leading term (of order 0(1)) gives

D\U% = 0 (8.7)

so that

Ui(yi,x2) = A{x2)yx + B{x2). (8.8)

Conditions (8.5) give B{x2) = 0 and the matching condition writes

diu1(0,x2) (8.9)

where u\{x\,X2) is the corresponding solution of the limit problem P(0).

On other hand, if we take V? = 0 and V2
V e V (D), then the leading term (of order 0(1)) gives

DiU^ + U° = f2(0,x2). (8.10)

The solution of (8.10) may be written under the form

*72° = C/2° + Û°{x2) (8.11)

where

Û%(x2) = f2(0,x2) (8.12)

then t/J is the bounded solution of

DÏÜ$ + Ü$=0 (8.13)

which is a differential équation in y\ with parameter X2, the bounded solution of which is

( j (8.14)
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It satisfies the conditions:

lim U2 (2/1, x2)
 = f2 (0, x2) (8.15)

which is the matching condition with the corresponding solution of the limit problem P(0) of Section 2.
Otherwise this solution must satisfy the boundary conditions (8.5) which gives

ƒ ci(x2) + C2(x2) = h(0,x2)
l Ci(x2)e 4 +c2(a:2)e 4 = 0

which détermine the functions Ck{x2).

9. THE DISTRIBUTIONAL SOLUTIONS OF P(0) AS LIMITS OF INTERNAL LAYERS

We saw in Section 2.4 that the solutions of the limit problem P(0) exhibit singular terms when the datum ƒ
is not smooth with respect to x2. In the particular case when ƒ is defined by (2.29) we considered in Section 6
the corresponding internai layer. We admit that F o contains the two vertical boundary layers. In this section
we are showing that the singular terms (containing 51 and 6^) in (2.30) are limits of the corresponding terms in
the layers. In the sequel, we only consider the component m as the study of u2 is analogous and even follows
from that of u±.

In order to write explicitly (2.30)i, let us consider the Fourier sinus expansion of tp:

+ OO

71=1

As in the present case A is the Laplace operator on (0, TT) with Dirichlet boundary conditions, we have

+ OO A

(A- V) (si) - - Y" ̂ r sinnx! (9.2)

so that (2.30)i takes the form

«i (si,**)» \-^-^smnx1j5(x2-i,). (9-3)

It follows from Section 6 that the inner expansion of u\ in the internai layer is

u\{x\,x2) = -C/"i f xi, ——- ) -\ (9.4)

The aim of this section is to prove that

(xux2) = lim if/? fœi) ̂ ^ ) . (9.5)

From elementary distribution theory it follows that the right-hand side of (9.5) is

' +OO
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where xi is a parameter. Consequently (9.5) amounts to prove that

+f° + o ° A
/ U?(xi,y2)dy2 = -y2-j8mnxi. (9.6)

•L
The function U® is the unique solution of (5.6) in each région £>+ and D~ with the boundary and transmission
conditions (6.3)-(6.5). It appears that [7° is even with respect to y2 as it coincides with the function obtained
by changing y2 into —y2. Consequently, we may only consider the solution in the région D+ where y2 > 0 which
satisfies (5.6) and the boundary conditions

(9-7)

and (6.4) as well as the matching conditions

Ui (xi^y2) > 0.

It follows from (6.7)i that U? writes

+oo 4

Ui \Xijy2) = 2_^ 2^f nk s m n : r i e xP \n e V2 • (9.8)
n=\k=2

The boundary conditions (9.7) give

7"4 = 0 A (9.9)

As Ui is even, the left-hand side of (9.6) is

+°° +00 4+00 4

2 / U® (xuy2)dy2 = 2^2^ exp

-{-00 4 1 +00

71 = 1

(where relation (9.9)3 was used) which proves (9.6).

10. NUMERICAL EXPERIMENTS

In this section we present numerical experiments concerning the problem P (e) in several cases of boundary
conditions and loading. The numerical computations are implemented with reduced Hermite finite éléments.
An exact numerical intégration of the rigidity matrices needs twelve Gauss points.
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FIGURE 1. Uniform mesh.
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FIGURE 2. Adapted mesh for characteristic boundary layers.

The meshes for the domain Ü = [O,TT] X [0,7r] are generated using the Modulef code. The mesh is obtained
by symmetry from the basic square [0, ?r/2] x [0, TT/2] , a first time around X\ = ?r/2 and then around #2 = TT/2.
This device allows us to perform easily the refinement of the mesh in the vicinity of the boundary layers. In
the sequel we shall compare the results obtained with an uniform mesh and a non uniform one refined in the
vicinity of the boundary layers. In the uniform mesh, the basic square is divided in N x M rectangles where
the parameters N and M correspond to the number of divisions along the axes x\ and X2 respectiveiy. Each
rectangle is then divided in four triangles. Figure 1, shows the uniform mesh generated in this way. The
non uniform mesh (see Fig. 2) is generated in the same way but using a function of distribution of the points
according to a geometrie progression with ratio q.
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FIGURE 3. Adapted mesh for internai layers.

In the case of internai layers we analogously get the mesh shown in Figure 3.

10.1. Totally clamped boundary

We consider the problem P (e) for e = 0.001 and ~f = (fu f2) = (0,œ2 - !)• W e shall focus our attention
on the charactcristic boundary layers along X2 ~ 0 and X2 = TT (see Sect. 4). These layers are more important
than the non characteristic ones along x\ — 0 and x\ = 7r, compare (4.2) with rj = e$ and (8.2) with rj = 52,

In the characteristic layers the order of the thickness is 77 = 0.1. Computations with the uniform mesh (Fig. 1)
give nearly good results with N — M ~ 11, i.e. with mesh step h = TT/21 in both directions; the values of n\
are shown in Figure 4. With the non uniform mesh (Fig. 2), we observe that the mesh may be coarse provided
that the layer région is sufficiently covered, we took N = 7, M = l l , g = 1.4so that the first four steps are
contained in the length 77; the values of u% are shown in Figure 5. The first and the second meshes contain 1600
and 960 triangular éléments respectively. In the present case the advantage of the adapted mesh is not very
significant.

10.2. Case of a characteristic free boundary with ƒ2 ̂  0

The problem P (e) is again considered with the previous data e and ƒ . The boundary £2 = 0 is free and
the rest of the boundary is clamped. We observe that ƒ2 does not vanish on the free boundary so that in this
case the corresponding boundary layer is (5.1) with 9 (rj) = rq~1 = e~* (see (5.3)). We observe that u% is of
order r\~2 — e~ 3 whereas in the previous case it was of order e~ 3 . The magnitude of the boundary layer in the
present case leads to a significant advantage of the adapted mesh.

Taking the uniform mesh, the mesh step must be chosen sufficiently small to get a satisfactory result. In fact
we must take at least N — M = 31 so that the mesh step is h = TT/61 which corresponds to 14400 triangular
éléments.

When using a non uniform mesh, satisfactory results are obtained with the same mesh as in the previous
subsection which correspond to 960 triangular éléments.

The numerical results for u\ in both cases are shown in Figures 6 and 7, they are obtained in 15 minutes
with the uniform mesh and only 2 minutes with the adapted mesh.
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FIGURE 4. Three dimensional plot of U2 (uniform mesh).

FIGURE 5. Three dimensional plot of \J2 (adapted mesh).

10.3. In ternai layers

We now consider the problem P (e) wit h the whole boundary clamped, e = 0.001 and

ƒ =

/i=0
1 for x2 > TT/2

0 for x2 < TT/2

(10.1)

so that the loading has a discontinuity along the characteristic x2 — § - According to the results of Section 6, the
scaling is the same as in the previous subsection. We present in Figure 8 the numerical results obtained with the
same uniform mesh as bef ore. Obviously, we observe the présence of an internai layer along the characteristic
x2 = 7r/2.
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FIGURE 6. Three dimensional plot of U2 (uniform mesh).

FIGURE 7. Three dimensional plot of U2 (adapted mesh).

In order to exhibit the propagation of the singularities along the characteristics evoked in Section 2.5 we
consider instead of (10.1) the loading

ƒ =

A = o
Ion [0 , f ]x [§,TT]

0 elsewhere.
(10.2)

The numerical results for u\ obtained with the non uniform mesh 7V = 7 ,M = l l , ç = 0.7 are shown in Figure 9.
We observe an internai layer along the whole char act er ist ie #2 = TT/2 whereas the discontinuity of the data are
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FIGURE 8. Three dimensional plot of U2 for uniform unit upper rectangle loading (uniform mesh).

FIGURE 9. Three dimensional plot of U2 for uniform unit square loading (adapted mesh).

confined in the interval 0 < X\ < TT/2. This f act is even more explicit in Figure 10 which represent s u% along
the section x\ = 3?r/4.

Another interesting example of propagation of the singularities is given Figure 11 where the loading is chosen
as follows

ƒ = : { l onA= {Xle [f, 2f], |
elsewhere.

-7r| <0.l} (10.3)
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FIGURE 10. Graph of f/2 along the cross section x — 3?r/4 for unif.

FIGURE 11. Three dimensional plot of U2 for internai layer with propagation (adapted mesh).

We observe the présence of internai layers along the characteristics x% — ?r/4 and X2 = 3?r/4 which correspond
to the extremities of the thin région A, the cross-section xi = 3?r/4 is represented in Figure 12.

The numerical results for u\ are obtained using the adapted mesh with parameters q = 1, N = 7 and M = 11
(which correspond to the mesh steps /iXl = ir/13 and /iX2 = TT/21 in the directions x\ and x2) respectively.
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TABLE 1

Layer
C haracter ist ic

thickness: r)(e) = e*

clamped

free
/2(xi,0) = 0

free

Non-characteristic
thickness: rj (e) = e^

Internai Characteristic
thickness: r}(e) = £3

with discontinuity of ƒ2
on x2 = 0

Behavior

/ vf^U°(Xl!y2)
\ v^r,-1Ul(xl,y2)

ƒ ï^ I )-
1[J1«(J : i,! /2)

\ t^^1J-2t^(xi,W2)

ƒ «f s 77(70^1 > 2/2)

f «f ^r ?-1C/1°(x l jy2)

Energy

£c = O(i)

Ec = O(ri)

EC = O (77-1)

S =0(7?)

11. CONCLUSIONS

The main resuits of this paper are summed up in Table 1 which gives the order of the thickness 77 and of the
two components of u. The energy in the layer is also reported in Table 1.
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It appears that the energy tends to infinity in two cases: free characteristic boundary with ƒ2 ^ 0 on it and
internai layer bearing a discontinuity of ƒ2 on a characteristic. The energy in the layer tends to infinity as e
tends to zero. Obviously, the energy in a région out of the layers is of order unity so that the above mentioned
resuit agrées with Theorem 2.2. But the asymptotic structure also shows that the energy is asymptotically
concentrated in the layers (but this is probably associated with the very définition of layers!). Finally, it should
be pointed out that layers cutting the characteristics X2 = const. at angle ^ TT/2 are analogous to the layers
along xi = const. considered above. This is the reason why all these layers are called "non characteristic".
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