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A SINGULAR PERTURBATION PROBLEM IN A SYSTEM OF NONLINEAR
SCHRODINGER EQUATION OCCURRING IN LANGMUIR TURBULENCE

CEDRIC GALUSINSKI!

Abstract. The aim of this work is to establish, from a mathematical point of view, the limit & — +o0
in the system

i0.E +V(V.E) - o’V xV x E =—|E|*E,
where E : R® - C5. This corresponds to an approximation which is made in the context of Langmuir
turbulence in plasma Physics. The L?-subcritical o (that is o < 2/3) and the H'-subcritical o (that
is o < 2) are studied. In the physical case o = 1, the limit is then studied for the H*(R®) norm.
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1. SETTING OF THE PROBLEM AND MAIN RESULTS

We are interested in the first Schrodinger system that describes the coupled motion of intermingled electrons
and ion fluids that compose the plasma without any magnetic field. The system satisfied by the electric field
envelope E is

_ _ _ 51—
2wy E — 303, V(V.E) + 2V x V x E + wpesz —0, (1.1)
0

where wp, is the electron plasma frequency, vre the average thermal velocity of the electrons, ¢ the velocity of
light, no the mean density of electrons and dn. is the low frequency variation of electron density. A justification
for the time-envelope approximation can be found in [1].

Writing % in terms of E in (1.1), we obtain

2
EQWpe

_ 3 2 _
. 4 5,2 B <
'l,wpeat + 2UTeV(V ) 9 VXV xE+ 8nokpTe

|E|*E =0, (1.2)
where ¢ is the dielectric permittivity of free space, kp the Boltzmann’s constant, and kg7, is the electron
thermal energy.
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The term %V x V x E is usually neglected in physics, the equation (1.2) becomes (see [3], p. 138),

2
EoWpe

_ 3 _
; E+ =02 E
wpeOr F + 2'vTeV(V ) + SnoknT.

|EI’E = 0. (1.3)

Equations that have the general form of (1.3) widely occur in physics and are generically known as the nonlinear
Schrédinger equation. The reader can refer to [3] for more details on the physical problem.

The goal of this paper is to verify, from a mathematical point of view, if the term %V x V x E can be simply
neglected in (1.2) or not. Since v2, < ¢?, the following model is considered

iE; + VV.E —a?V x V x E = ¢|E|*°E,

(1.4)
Eyi—o = Eo,

with @ > 1 and we investigate the case a — oo.
The parameter € takes the value 1 or —1. The complex variable E depends on t € R and = € R3.

Rather than studying this problem for z € R3, we generalize this work to the case z € RY for N > 2. We
then replace (1.4) by

1Byt + VV.Ey + 0?(A — VV.)E, = €|E4|* E, in D' (RY),

(1.5)
EQ]t:O = EO.
The following splitting will be useful in the sequel,
iB), + AEy =Py (|E) + ELI*(Ey + Ev)) in D'(R"), w6
Bjj,eo = P1 B0 € L*RY), ‘
iEi++a* AE, =eP, (|IEy+ EL|*(Ey + E.)) in D'(RY), A
(L.7)

E_J_|t:0 =P,Ey € Lz(RN),

where P, denotes the Hodge projection from L?(R™M) to the subspace of divergence free vector fields, Py =
I-P,, E" = P||Ea and £, =P FE,.

The results about existence and uniqueness of a solution for (1.5) are similar to the ones concerning nonlinear
Schrodinger equations [2,4,5]. The first step is the study of the linear problem in order to obtain uniform (with
respect to a) estimates on Ej and E| , defined in (1.6), (1.7). The term E, being small in some sense for large
value of «, the limit of the solution of (1.5) can be evaluated.

The limit obtained here reads:

iEy + AE = eP|(|E|* E)

1.8
Eji=o = Eo| 49

and E = P| E. Remark that here, AE = VV.E.
Remark also that the equation (1.8) is quite different of (1.3) which corresponds to

iE; + VV.E = ¢|E|*’E.

In what follows, we establish the convergence of solutions of (1.5) to the ones of {1.8) for adequate norms.
Let us recall from [2] some results on (1.8).
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Theorem 1.1. Let Ey € L*(RY) and o < Z; there ezists an unique solution E € C(R*; L2 (RN ))NLE ([0, +oof;
L*>7+2(RN)) to (1.8), where 2 = § — 1.

Let Eg € H'(RVY) and 0 < 725, there ezist T* > 0 and a unique mazimal solution E € C(R*T; H}(RY)).
There exist some initial data Eg € HY(RN) (when e = —1 and o > %) for which T* is finite.

—_

The main results consist of the next Theorems whose proofs are developed in Section 4.

Theorem 1.2. Assume o < Z. Let Eq € L?(RY), there ezists a unigue global solution E, € C(R*; L2(RN))N
L,o([0, +00f; L2 *2(RN)) (where 2 = § — 5145) to (1.5).
Moreover,

20 +2
Eo(t) — e ARy B in L0, T[; L3(RN)) VT < +oo,
where E is the solution to (1.8) introduced in Theorem 1.1.

N
E, — E in L9([0,T[; L****(R")) strongly (g_ =5~ N ) .

Theorem 1.3. Assume o < ﬁ Let Eg € HY(RN). Then there exist T, > 0 and a unique mazimal solution
Eqy € C([0,To[; HY(RYN)) to (1.5). Moreover liminf T, > T* where T* is the existence time of the solution E

a—+o00
to (1.8) introduced in theorem 1.1 (ife =1 or ife = —1 and 0 < % then T, = T* = +o0). If PLEg — 0 in
HY(RY) when o goes to infinity, then,

2 N N
. R 1,q . 7204+2/N —_= — =
Eo — E in WH9([0, T[; L****(R™)) strongly (q 2 20+ 2) ’

Eu(t) — E in C([0,T[; H*(RN)) VT < T*.

Remark on notation. Throughout this article, the same letter C' (or sometimes c) shall denote constants
which may change from line to line.

The classical space LP(R") is sometimes noted L? for conciseness. Some notations will be introduced in the
Preliminaries.
2. PRELIMINARIES
2.1. The linear group
In this section, we study the following linear groups, S)(t) associated to
iE"t + VV.E" =0

= E()” (S LZ(RN), (21)

Ey |t=0

and S (t) associated to

iE ;+a*(A-VV.)EL =0

(2.2)
Elj—o=Eo. € L*(RY).

Simple computations with Fourier transform lead to
B (1) = e 1" M Eqy,

EL(t)=e ¥ LBy,
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where M and L denote the following matrices (in the three dimensional case),
1 & &é& L& L [ 8+8 —a& &8s
M = e &y & &3 G &by G+E& —&& | =1-M
b€ &bz & 613 —babs 1+
Remark 1. For E € L2(R) satisfying V.E = 0 then ME = 0 and LE = E. That is
FYME)="PE F *(LE)="P.E.
So, we have
Sy(#)Eoy = FH(M) * F (e 41 x (Bo)) = F~H(e M%) x (B,
S (t)Boy = F (L) » FHe @ Nt w (By 1) = FH (e 160 x (B ).
We then remark that the group S)(t) is associated to
iE”t + AE” =0
N (2.3)
Ejiuo = Eoy € L*(RY),

and S (t) is associated to

B +a?AE; =0

(2.4)
Ellt:o =Fy, € Lz(RN).

We return to the expression of S)(¢) and S, (£) in the Fourier space. It is well known that

—1/_—ic?|e)?ty _ 1 i;l%';—t
(e )= (Amin2t) % ‘ .
It then follows
1 ii¢°’U|2
SII (t)EOH = W - e 4 Eon(y)dy,
1 z—y
S)(t)Eo, = (@it ¥ /N e H Eo (y)dy.
mia’t) 2 JRr

From these last expressions and as the () and S, (t) are unitary groups on L?(R"), we have

o
ISy (t)Eoyl2@~y = |Bojle2@ny, |S)(t)Eoylreomny < @) ¥ |Eoj |z Ny
and c
[SL(B)Eo, |z2@myy = |EoL L2y, ISLE)Eoy|peemry < WIEMILI(RNy

By interpolation, we get for p > 2,

C
1S (&) EoylLemry < WIEOHILP ®Y) (2:5)



A SINGULAR PERTURBATION PROBLEM

and

C

|SJ-(t)E0L|LP(]RN) < (47ra2t)N(%_%) |EOJ_|LP'(RN)7

113

(2.6)

with % + z% = 1. This last estimate is fundamental since the right-hand side goes to zero when « goes to infinity

(p>2).
2.2. Estimates with a right-hand side
Using the same splitting as the one used for (1.5), the solution of
iBy + VV.E 4+ o*(A —VV.)E = f,
Ei—0 = Eo,

where f depends on ¢t € R and z € R3, can be splitted in two equations,
iEy, + AEy =P f in D'(RY),
B0 =PjEo € L*RY),

iEi . +a* ANE, =eP) fin D'(RN),
EJ_|t=0 =P.Ey € LQ(RN).

We then have,

E” (t) = S” (t)E()“ - Z/(; S”(t - S)P” (f(s))ds,
Ei(t) = Sy (t)Eoy — z'/ot S1(t — s)Py(f(s))ds.

The following result will be often used in the sequel:

Lemma 2.1. (see for example [6], p. 109). The operators Py, P are continuous on LP(RYN) for all
1 <p<oo.

We also introduce the

Lemma 2.2. (see [6], p. 119). We denote

) = || e Fd,

|z —

for0<a<dandl <p<q< oo, where % = = — %. Then, there exists a constant Ay such that,

1

P
a()lLawey < Apgl florme)-

Proposition 2.1. Let (g,7) two real numbers such that,

2N

<r<

N =
=
|
V]

and let (¢’,7") be the conjugate exponents of {q,r).

(2.7)
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If f € LY([0, T[; L (RY)) then
[ Si6= P10 € C(0, 71, L2®Y) 0 £(0, 71 £ ®Y))

and
/ Su(t - sYPL(f(s))ds € (0, T, L*(R)) N L9(0, T L (RM)).
0

Furthermore, there ezists a real constant C depending only on q and r such that,

l/o S)(t = )Py (f(s))ds

< Clflre (o,rpL @y,
C([0,THL2 RN )NLI((0,TEL” (M)

]0 SL(t— sYPL(f(s))ds

At last, if Ey € L*>(RY), then

_ _2
< Co MO £l L o.rp L @Yy
C([0,THLA (RN )NL([0,T LT (RN))

1Sy ()P (Eo)lLa(o,rp®~)) < CIPy(Eo)|L2mw)

and
[S1(t)EoLlLago,rirr@N)) < CQ—N(1_§)|EOL|L2(IRN)~
Proof. According to (2.5), one has

t t
/ Sy(t — )P (f(s))ds <c / 1t~ 51" Py £ ()] ey 5, (2.10)

0 L™ (RN) 0

since % =44
In the same way, from (2.6), we have
t oo [t .
‘/ Si(t—s)PL(f(s))ds < Ca~NO=3) / [t = s|"a|PLf(s)| L~ (mvyds. (2.11)
0 L7 (RN) 0

It follows from Lemma 2.2 the first estimate of the proposition 2.1, (with d = 1, % =1-athen ; = 7o
sop=¢),

S CIPyflLe qo,rpoe @vy)-
La([0,T(L™(RV))

/o SH(t — S)PH (f(s))ds

We now compute

2

t t t
/ St — )Py (f(s))ds / / (St — s)Py(f(s)), Syt = " )YPy(f(s")))dsds’
0 0 0

L2(RN) N
- / (Py(F(s)), / Sy(s — )Py (f(s))ds')ds,
0 0

where the brackets (.,.) denotes the classical inner product on L2(R"). We can show as previously that

1
/0 Si(s = "YPy(f(s)ds' | Laqo,r;r@vy) < CIPIf I o,rpLr mvy)»
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then,

2
<C|fl3a ' RN
L

’/Ot St —s)Py(f(s))ds

To show the estimate
1S)(®)Eoy| La(po,rLr®n)) < ClEoy)|2@n)y,
we proceed by duality,

2

T T T
/ Sy(=t)Py (f(£)dt - / / (Py1(8), Sy (¢ — YP(F(t')))dtdr
0 0 0

L2(RN)
2
< Clf1pe qo,rpL mivy)-

Then,

. |
/0 (S)(6)(Py Eo), Py (£ (£)))dt

_ |<Eo,|, [ sicopicren

2

T
< [Py Eol @) / Sy (—t)Py (f(1))dt

L2(RN)
< CIPyEolr2@m)| Py flLe o, riLr ®vy)-
We then have proved,
1S (&) (Eoy)|Laqo,rizr@ny) < ClEoy|L2mm).
Due to the similarities between (2.11) and (2.10), the same estimates for the group S, (t) can be obtained by

replacing C with Ca™V (1-2), In the same way, P is replaced with P, .
We then have proved the estimates involving S, (t) of Proposition 2.1. O

3. TuE CAUCHY PROBLEM

Let us recall the problem under studies,

iE; + VV.E 4+ o?(A — VV.)E = ¢|E|*’ E in D'(RY),

(3.1)
Eji—o = Ey € L*(R").
This system is splitted as follows,
iE), + AE) = Py (|By + EL|* (B + E1)) in D'(RY),
Ej,_o =PiEo € L*R"), (32)
and
iEL,+ o> AEL =€PyL (|E| + EL|*(Ey + EL)) in D'(RY), 33)

Ellt:O =P.Ey € Lz(RN).
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3.1. Global existence in L%(RY)

Theorem 3.1. Assume that ¢ < % and Eg 6 LZ(RN) then there ezists a unique solution E of (3.1) in

C(RT; L2(RN)) N LY (R*; L2**2(RN)), where 2 = §

loc P 20’*2
Also, E depends continuously on Ey in the sense if E} — Ep in L2(RY) then E™, the solution of (3.1) with
the initial data EF converge to E in

Cloe(RT; L2(RN)) N LY

loc

(R+;L20+2(RN)).
At last, E verifies

- No_
[PLE|Laqo,r;020+2@N)) < Ca” e+ By | r2@ny + C(T)a™ o7 lEliﬂrfé T, L20+2(RN))" (3.4)

Proof. We first establish the local existence of a solution by a fixed point theorem.
Let us introduce the space

X(T) = L*=((0, T[; L*(R™)) N LI([0, T[; L****(R™Y)).
We note 7 the application

X(T) x X(T) — X(T) x X(T)

T (B.EL) — (T.(By, Bv), Ta(Ey, Ev))

where
T
T(E),EL) = Sy(T)Eo — iE/O Sy(T = s)(Py(|1Ey + EL[* (B + EL)))ds,
T
'TQ(E”,E_L) = SJ_(T)EO_L — i€/ S (T - S)(PJ_(IE” + EL|2G(E“ + E})))ds.
0
It follows from Proposition 2.1 that
|TL(Ey, EL)|x(ry < ClEoy|L2@y) + ClE) + EL* (B + EL)| Lo (0,7 2o+’ ®y)

and

|T2(Ey, E)lxmy < (1+ Ca °+1)lEO.L|L2(RN)

Ca ¢ (3.5)
+Ca” 7| By + EL[* (B + B 1o (0,1 L@+ @nY)-

Adding these two last inequalities for a > 1 for example, we have,
[TL(E), EL)ix(ry + [ T2(Ey, EL) x (1) <

c (|E0|{|L2(RN) + | BoLlra@ny + || By + BL (B + EL)qu'([O,T[;Laaw)’(RN))) - (36)
Remark that (20 + 2)' = (20 + 2)2—0143’ then,

1By + ELI*(By + EL)| Lo 0,1 Loy @y = | Bl + ELlT5

(RN)) La (2a+1)([0’T[;L20+2(RN))‘

Aso < %, after straightforward computations, we can verify that

d(20+1) <
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Then, there exists 8 > 0 such that, by virtue of Holder inequality
By + BLlpwaornorprzesa@ny < T°1By + BLlpao,rirze+2@vy < T°1B) + Bilxe-

Returning to (3.6), we obtain

ITL (B, EL)|x (1) + | 2(E), EL)lx(my) < C (|E0|||L2(]RN) +|EoL|r2@my + TP (B E + |E¢|§Z(J}l)) .
(3.7)

Lemma 3.1. If T is small enough, then T operates from the ball B(0, R) of X(T) x X(T) into itself as soon
as

R< 4C|E0|L2(RN)-
Proof. With R introduced in Lemma 3.1, inequality (3.7) becomes

R (o)
[T(Ey, EL)|x(1yxx (1) < 7+ 20TV (B, EL) | x(Tyx x(T)-

So, for T small enough, the Lemma 3.1 is proved. O
Lemma 3.2. If T is small enough, then T is a contraction on Bg.
Proof. Let (Ey,,E1:) and (E),, E1 ) belonging to X (T') x X(T),

|T2(E), Elr) — TW(Ey,, Eva)lx(r) + | T2(E),, E1y) — T2(E),, EL2)|x (1)
2 20 h
<C “Eﬁl + Ey 4| U(Enl +E;,)— |E§|2 + E 5] (E||2 + E_L2)|Lq’([O,T[;L(2a+2)'(RN))'
As,
ul*w = [o*?v| < (20 + 1) (Jul* + [v[**)[u - 2],
we have,

IT1(Ey,, E11) — Ta(Byy, ELo)lx () + 1 T2(Ey,, E11) — T2(E),, E12)|x (1)

< C(|E1|* + |E2*)(|Ey, — Ejyl + |ELy — ELs (3-8)

)qu’ ([0,T[;L(2e+2)" (RN))

From Holder inequality, we obtain,
[T1(Ey,, Er1) — Ti(Byy, Ero)|x ) + | T2(Ey, Brr) — T2(Eyy, E1s)|x (1)

<C “Ellza + |E2|20|Lq1([o,T[;Lw) (|EII1 - EIIglL‘?Z([O,T[;LB) + |EL1 - EJ.2|L42([0,T[;L5));

wplyel_— 1 _ 1,1 _1
with ;+§ ~ @o+2Y ' o + @ 7
We choose v = 2Z£2 then 3 = 20 + 2 and we take ¢1 = 5.
Then, as 0 < 7v2” we can verify that
/
q4
=———<q.
a2 7-20q q
Then, there exists 8 > 0 such that

ITi(Ey,, E1q) — Ti(Byy, ELlo)lxry + | R2(E);, Err) — T2(E),, EL2)|x (1)
S CT9 (|E"1 + Elll%g(T) + |E”2 + EJ—QI%?(T)) (lE"l —_ E||2|X(T) + IE—Ll —_ EJ—ZlX(T))'

This last estimate with T small enough ensures the Lemma 3.2. 4
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The existence of a solution in X (T") follows from the Banach fixed point theorem. Furthermore T depends
only on |Ep|r2®ny (o fixed).

In fact T = +oo because the L2(RV)-norm of E(t) = E(t) + EL(t) is constant for all ¢t. This is obtained,
formally, by inner product of (3.1) with E.

At this step, we know that 72(E), EL) = E., then the estimates (3.5) shows (3.4). This ends the proof of
Theorem 3.1. O

3.2. Local or global existence in H!(R")

This section is devoted to the existence of solution for (3.1) in H(RM).

Theorem 3.2. Assume that 0 < %5 and Eo € HY(RY); then there exist T, > 0 and a unique mazimal

solution of (8.1) in C([0,Tu[; H*(RN)) N LY ([0, T,[; WH29+2(RYN)), where % = % — %% Furthermore, if
Ta < 00, then

t—Ts

Also, E depends continuously on Ey in the sense: if E} — FEqy in H'(RN) then E™, the solution of (3.1) with
the initial data ET converge to E in

c([o, T[; H*@RM)) n ([0, T[; WY 2 (RN)) V T < T,.
At last the following estimate holds

IVPLE|La(o, 7120 +2®Ny) < Ca” 75T |VEq | | 2@y + C(T)a_‘%lElffig), (3.9)

with
Y(T) ={F such that E € X(T), VE € X(T))}.

Proof. We keep the same notations as in the proof of Theorem 3.1. As before, we assume that o > 1. We prove
this theorem by a fixed point method on the space Y (T') x Y(T'). We saw that

T (B, EL)|x @) + | T2(B), EL)|x (1) <
C (|E()”|L2(RN) + IEOJ_IL2(RN) + HE” + E_lea(Ell + E.L)|Lq'([O,T[;L(za-ez)'(RN))) , (3.10)

i -1_ _2 1
and we remark that, since (20 +2)'7" = 325 + 5,5

B (B)| L 0,0 1.covar vy < ’IE@M(M)‘ 1Bz (o, rsL2o+2@my)-

L>=(0,T)

As H(RV) imbeds in L2 +2(RV), as soon as 0 < w25, we have
[T (E), EL)|x () + | T2(E), EL) | x(1) <

¢ (IEOIHLZ(R”) +|Eoi 2@y + 1B + BL|7%o,rp6 @y By + EJ—]L‘?'([O,T[;L%‘P?(RN))) :
Then, from Hoélder’s inequality, we obtain,

T (Ey, EL)x (1) + | T2(B), EL)|x(1) <
i_1
C (1E0]I|L2(]RN) + |EOJ_|L2(]RN) + |E“ + EL{%O(;O([O,T[;HI(RN))T‘;’ ‘1|E|| + E.L]X(T)) . (3.11)
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As,
IV(E) + EL|*(E) + EL)| < (20 + 1)|Ey + EL[*°|V(E) + EL)],
an estimate on V71(E), E.) and VT3 (Ey, E1) with X(T)-norm leads, in the same way as (3.11), to

IVT(E), E)|x () + IVR(E|, EL)|x(1)
i _1
<C (|VE0H|L2(RN) +|VEo | 2@~y + B2 ooy @ny T |VE|X(T)) - (3.12)

Estimates (3.11) and (3.12) establish the

Lemma 3.3. Let R' = 4C(|Eojj| g1 wn) + |EoL|ar®ny), of T is small enough, the application T operates from
the ball B(0,R') of (Y(T) x Y(T)) into itself.

Lemma 3.4. If T is small enough, T is a contraction on Br/(Y(T) x Y(T)).
Proof. Let (E),, E11) and (Ej,, E1 ) belonging to Y (T') x Y/(T'). Starting from (3.8) and using the same idea

as for the proof of Lemma 3.3, we have

|T(E),, ELy) — Ti(Ey,, ELo)lxry +12(B) En) — Ta(Ey,, ELg)|x (1)

2
< C(Z 1By, + ELil e qorpm@y) T (Bl = Biylx@) + 1ELr — ELalxm)-

=1

At this step, we have shown that, for T small enough, 7 is a contraction on Bgr/(Y(T) x Y(T')) for the
X(T) x X(T) topology. The Theorem 3.2 is thus proved by fixed point method on X(T) x X(T). In fact, we
can estimate 71(Ey,, E11) — T1(E),, E12) with the Y(T') x Y/(T')-norm,

IV(T:(E),; E11) = Ti(Ejjy, EL2))x (1) + |IV(T2(E),, E11) — T2(E),, E12))|x (1)

(3.13)
S CIVF(E), + E11) = VI(Ey, + ELd)lpe (o1 Lo+ ®YY)
with f(u) = |u|?*?u.
Remark that
()] < (20 + D)ul*,
[f"(w)] < 20(20 + D)|ul> L. (3.14)

Let us write u = Ey, + E;; and v = E), + E1,,

Vi) = Vf@©) = f(@)Vu+ f'(0)Vo = f(u)(Vu - Vo) (f'(u) - f'(v)) Vo

= f'(u)(Vu — Vo) + /0 f"(u+6(v —u)(v —u)ddVv.

: 20 1 _ 1 20—1 1 1 _ 1
So, since 5755 + 555 = @oray M4 o T o T W = @i

IV£u) = V£ o rzcesry S C1F @)l 0

" - o - oo . [20 q’ [20+42)-
+00:1(101,>1)|f (u+0(v u))|Lw([O’T[;L2#_'_§)|” Ul Lo 0,720 +2) VU] Lo (0,0 L2 4+2)

%}ﬁ)lvf(u) - vf(v)qu'([O,T[;L2°+2)
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Using this result in (3.13), we obtain, by virtue of (3.14),

IVTL(E), EL1) = VI(E),, ELo)lxr) + V2B, EL1) — VT2(E),, ELo)|xr)

< ClEy, + BT (o rpzerv2@my | V(B — Ejy) + V(ELy = ELa)lpe (o, rpr2o+2@vy)
2

+C Y By, + ELili% o rprresa @y VBl + EL2)l 1o o, rpraor2@m))
=1

x (|EII1 B Ell2|L°°([0,T[;L2‘7+2(RN)) +|EL — ELQ|L°°([0,T[;L2"+2(IRN)))-
As H'(RY) imbeds in L2°T2(R¥), and from Hélder inequality, we obtain

V(B , ELy) — VTU(E),, E1g)|x(T) + |V72(E||1,EL1) — VT (Ey,, ELo)|x(T)

sC (lEh + EUIL""([O TiEY) T Z lElz + Elzlizc(lo [0,7(; Hl)lv(Ellz + EJ-2)|LG([0,T[;L2U+2))
=1

i 1
x T@ "4 (|By, — Ej,lyry + |BL1 — Eialy(n) -

This ensures that, for 7" small enough, 7 is a contraction on Bg/ (Y (T) x Y (T")) for the Y(T') x Y(T') topology.
Then, the Banach fixed point theorem shows that E depends continuously on the initial data Fq for the Y (T')
topology.

The estimate (3.9) follows from Proposition 2.1, as the estimate (3.12). The Theorem 3.2 is then proved.
Theorem 3.3.

e Ife =1 and ¢ < 25 then the solutzon of (8.1) with Ey € HY(RY) belongs to C([0,00[; HX(RN)) N
([0, co[; Wh2e+2(RN)), where 2= _

loc 2a+2

elfe=-lando < 3, then the solution of (3.1) with Ey € H*(RY) belongs to C([0,00; H*(RN)) N
L{,.([0, 00 WH2e+2(RY)), where % =5- 20112.'

Proof. These results follows from the energy conservation,

5
IVE (&) 2@ny + @ IVELE @y + 555 BI®) + BL@)75 @y =
IV Eo)|22@ny + @2 VEoL|72@w +2 295 +2|E0|| + E'uli‘ljfz(w)- (3.15)

This last is obtained, formally, by taking the real part of the inner product of (3.2) with ﬁlt,
d 2 20 T 2 T
‘_d—t[VE”ILz(RN) :E/]];N PH(IEI E)E"t 35\/];1\] |El EE“t’
by taking the real part of the inner product of (3.3) with E_,,
— E_ 2 — 20 _ 20 o
dt RN RN

Then, adding and integrating these two estimates, we obtain (3.15). e The first part of the theorem (¢ = 1) is
then obvious, since the solution, bounded in H'(RY) c L??*+2(R%), can not blow up.
e Assume that e = —1, we have

IVEH (t)|L2(]RN) t+o |VEJ.(t)|L2(RN) c + |E|I ) +EL(t) %gjfz(mhry (3.16)
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We recall the Gagliardo-Nirenberg inequality,
Lemma 3.5. Let u be in H'(RY),

o 2((2—N)o+2
lul355 2@y < el Vul g lul Sy T

Assume that o < %, then, since the L?(R")-norm of E is conserved,

o —N)o
!EII (t) + E_L(t) izjfzmlv) < C!V(Ell (t) + E_L(t)) Zz(RN)lEO‘zL(z((QRN)) +2)»

with p < 2. Finally, if o > 1, the estimate (3.16) leads to
IVE[Z2@ny < IVE|(t)[Z2mny + PIVEL() 2@y < | VEl] gny + Cla).
Then, assume that E blows up in H*(R"), this is clearly impossible by virtue of the following inequality,

Cla)

2
VE|* <d+ =4
L2(RN) WEVEz(RN)

Then, the second part of Theorem 3.3 is proved. O

4. THE CONVERGENCE WHEN a GOES TO INFINITY

The estimates (3.4) and (3.9) are the main point to study the convergence of the solution when o goes to
infinity.

4.1. Convergence in L?(RY)

Theorem 4.1. Assume o < % Let us denote E,, the solution of (3.1), passing to the limit, we have

2 N N
E in L9 . T2042 RN =
Eq — E in LI([0, T[; L*T*(R™)) strong g 2 20+2)°

Eo—Si()(EoL) — E in L>®([0, T[; L2(RM)) VT < 400,

where E verifies

\E, + AE = Py(|[E|*E
iEy + I(IEI* E) @1)
Ejt—o = Ep)-

Proof. Remark that E, the solution of (4.1) can be estimated as for the solution of (3.1), that is to say, E
belongs to L4([0,T[; L2 +2(RN)) N L°([0, T[; L*(RY)) for all T > 0.

Let us modify the notations of the previous sections. The solutions of (3.1), (3.2) and (3.3) are indexed by o
(Ea, Eq) and E, | respectively):

iBay + VV.Eq + 02(A = VV.)Ey = €|Eq|** E, in D'(RY),

o (4.2)
Eajmo = Eo € L*(RY).



122 C. GALUSINSKI
This system is splitted as follows,

iEa, + OEq) = €Py (|Bay + Eai |’ (Ea| + Eal)) in D'(RY),

(4.3)
Eaj,—o = P1Eo € L*(RY),

iBq s+ 0> A Eoy =Py (|[Eaj+ Eai|* (Ea + Eol)) in D'(RY),

(4.4)
Eoyi=o = PLEo € L*(RY).

In the previous section, with (3.4), we have shown that
E,, — 0in LI([0, T[; L**2(RY)).

Also,
Esy — S1(.)Eoy — 0in L*®([0, T[; LA(RY)).
To establish the theorem, we just have to prove that

Eq) — E in LY([0, T[; L****(RY)) n L=([0, T[; L*(R"Y)).

Let Do = Eqo — E, D, verifies the partial differential system
iDo¢ + ADq = P|(|Eaj + Ea 1| (Ba) + Eay) — |E|* E)

Da|t=0 - 0.

This last is equivalent to

t
D, (t) = / Syt = )P (|Bay + Ea1|* (Eaj + Eay) — |E|*’ E)(s)ds.
0
Applying the proposition 2.1, we nave
|DaLa(o,7 220+ 2)nL(0,732@® ) < C ||Bay + Ea i [*° (Bay + Bay) — |E12°E|Lq'([O,T[;L(zow)') .
The right-hand side is estimated in the same way as in the previous section to establish the Lemma 3.2.

2
|1 Bay + Eai [ (Bay + Ba1) = |E*" B L (g pp;passar @y <

CHEa" + Eaﬂzc + IE‘26|L41([0,T[;L7) 1Da + EallL"z([O,T[;L‘S)’

4plael_ 1 1,1 _ 1
with ~ + BT (2012 o + @2~ ¢
We choose v = 2;:2 then 8 = 20 + 2 and we take ¢ = 5%.

2 .
Then, as 0 < # we can verify that

qq

2= aoq

<gq.
Then, there exists § = q—12 — % > 0 such that

|DalLa(jo, 7120 +2)nLe([0,T;2) <

CT (1Bal¥i o, ry a0y + B[ o rpz20+2) ) (1Dalnagorszzess) + | Balzaqozeses).
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That is, if T < T, < 00,

| DalLe(io,riL2o+2@~ pnze(o.1iL2@N)) < C(Tm)T? (1DalLaqo,riLoo+2@ny) + | Bad|Lagorir20+2@Ny)) -

So, if we choose 1" small enough,

1 1
| Dol Lajo,7;L20+2(®RN )L ([0, T[L2(RN)) < §|DaiLq([o,T[;L2«v+2(RN)) + EIEaJ_|Lq([0,T[;L20+2(RN))-

That is,
| Do La(o, 7220 +2®N YL (0,7 L2@®N)) < | Bad |La((o,7020+2(RNY)-
We then have shown that D, goes to zero when a goes to infinity on L4([0, T; L2 +2(RN))N L ([0, T[; L2(RY))

if T is small enough. In fact, we have the same results for all T' < co. Assume that there exists Tp, < 0o such
that

Dy — 01in L([0, T[; L>***2(RY)) n L*°([0, T[; L*(RY)) VT < T,

Dy - 0 in L([0, Ty + n[; L*t*(RY)) N L®((0, T, + nf; L*(RY)) Y > 0. (45)

As previously, we show that there exits § > 0 such that
|DalLa(ir, 746020 +2)nLeo(1,0+5122) < ClDa(T)|12 + |EBa 1| La(z,T48;020+2)- (4.6)
From the first part of (4.5), we know that:
Do(T) — 0in L3(RY), (T < T»n)
E,, — 0in LY([T, T + &[; L***2(RY)).
Then, let us choose T' = T;,, — % and the second relation of (4.5) is false. The Theorem 4.1 is so proved. O

4.2. Convergence in H!(R")

Let us now formulate a result on convergence of solution of (4.2) when a goes to infinity in H!(RY).

Theorem 4.2. Assume that o < %5, if PLEy — 0 in H'(RY) when o goes to infinity, then

2 N N
. 1,9 'L20+2 RN _- =
Eq — E in WH([0,T7; (R™)) strong (q 2 25+ 2) ’

E, — E in L=([0, T[; H*(RY)) VT < T*,
where E verifies (4.1) and T* is the existence time of the solution of (4.1) in
([0, Tl H'(R™)) n Wha([0, T[; L****(RY)),

see theorem 1.1, also lim +inf T, >T*.
a—+00

Ife=1orife=-1 anda<% then T* = +o00.

Proof. Remark that E, the solution of (4.1) is well defined in L ([0, T[; H'(RN)) n We([0, T[; L?>*+%(RY)),
for T (eventually) small enough. This can be shown as for E, |, see [2].
In the previous section, with (3.9), we have shown that

Eoy — 0in WH9([0, T[; L2 2(RY)) VT < T*.
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Also,

Eoi —S1(t)Eo; — 0in L®([0,T[; H*(RY)) VT < T*.
It remains to be shown that

Eo — Ein WH([0,T[; L**T*(RY)) n L°°([0, T[; H'(RN)) VT < T*.

We introduce again Dy = Eq ) — E,

t

Dy (t) = /0 Sy (t = 8)P)(|Ea) + Ea1|* (Ea + Eay) — |E|* E)(s)ds.
The proposition 2.1 ensures that
IDa|Lq([0;T[;L26+2(RN))ﬁL°°([0,T[;L2(RN)) <C HEaI%(Ea) - |E|20E1Lq’([O’T[;L(20+2)’(RN)) .
That is,
1Dalraorizz+2@)nr=(orpr2@vy < C[(1Bal* +1B*)|Dall Lo (o 71 ooy @y
<C (IEaﬁZo([o,T[;L%H(RN)) + |E|%<7>°([O,T[;L2"+2(RN))) |Ea — E|pa (0,71 120 +2(rN))-
As HY(RY) c L**2(RM) (0 < 7%5), and from Hélder inequality, we have
|DalLa (0,727 +2 (R¥ )L (0, T(L2(RN))
a1
< O (1Bali%qorpms + 1BIEeo.rm) T ¥1Da + Baliaqozyraess.  (47)

As previously, at this step, we can conclude that the left-hand side of (4.7) goes to zero. It remains to be shown
that

[ws)
=y
(il

VD, —
As,
t
VDa(t) = / S“ (t — S)V'P”(|Ea|| + EQ_L|2U(E0" + EaJ_) — IEIZGE)(S)C[S,
0
applying the proposition 2.1, we have
IV Da|La(o, 120 +2@N Lo (o.7i22@®Y)) < C |V(|Eo|* Eq — |E*E

) 2o ozzaesar @y -

The right-hand side is treated as in the previous section to establish the Lemma 3.4. We recail these estimates.
|V(IEa|** Eo — lEizaE)ILq’([O,T[;L(2G+2)') < ¢l Bali% (o 7120+2) |V (Ba = E)| Lo (0,1 L20+2)
+c (IEQE‘:(}O,T[;L%M) + |E|i§(}o,r[;wo+2)) IVE| L 0,r;120+2)|[Ba — ElLeo(fo,7[;L20+2)-
As HY(RN) c L?>?*2(R¥) (since 0 < 7%3), and from Hélder inequality, we obtain
|V Da|La(o,7L2 2@ ))nLee (o, TEL2 (®N)) <
c ('Ea@z([o,T[;Hl(RN)) + (1 Bali% o rpm @ny + |E |?,‘1§(}o,rg;m(mw)))IVEquao,T[;LZﬂ%RN)))

1 _1
X Td " a |Ea — ElLoo([O’T[;Hl(RN)). (48)
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As ¢’ < g, if we choose T small enough (4.7) and (4.8) ensure that

1
| Dalwaqo,rirze2@mynre(or;m1 @) < 51Da + Ba i |Le(o,7;L20+2@N )N Lo (0,7 H (RY))-

That is,

IDalwra(o,riL2o+2@Y )nLe(o,73m2 @) < |Ba L |La(o,rL27+2 @)L (0, T[H (BV)) -
We then have shown that D, goes to zero when « goes to infinity in

Wha((0, T, L*+2(RN)) n L([0, T[; H* (R™))

as soon as T is small enough. In fact, we have the same results for all T' < T™*. Assume that there exists
T < T™ such that

Dq — 0 in WH([0, T[; L2 F2(RN)) n L= ([0, T[; H*(RN)) VT < T,

4.9
D, 0 in WH9([0, Ty, + n[; L2 T2(RY)) N L%°([0, o + n; HX(RN)) V1 > 0. (4.9)

As previously, we show that there exits § > 0 (6§ < T™* — T},,) such that

| Dalwra (145,20 42 (RN )N Lo (1. T+5]:H (RV))
S C|Da(T) g1 mny + [Ba i | Lo, 748 H (RN ))NLa([T,T+8[L20+2 (RN)) -

By virtue of the first part of (4.9), we have
Do (T) — 0 in HY(RN), (T < Ty).

Also,
Eoy — 0in L=([T,T + 6[; H'(RY)) 0 LY([T, T + 6[; L** *(R™)).
Let us choose T = Ty, — %, then the second relation of (4.9) is false. The Theorem 4.2 is so proved. O

The author wish to thank the professors T. Colin and P. Fabrie, for their helpful remarks and their suggestions.

REFERENCES

[1] L. Bergé and T. Colin, A singular perturbation problem for an envelope equation in plasma physics. Physica D 84 (1995)
437-459.

[2] T. Colin, On the Cauchy problem for a nonlocal, nonlinear Schrédinger equation occurring in plasma Physics. Differential
and Integral Equations 6 (1993) 1431-1450.

{3] R.O. Dendy, Plasma dynamics. Oxford University Press, New York (1990).

[4] J. Ginibre and G. Velo, On a class of nonlinear Schrédinger equations. Parts I, II. J. Funct. Anal. 32 (1979) 1-32, 33-71;
Part III Ann. Inst. H. Poincaré A 28 (1978) 287-316.

[5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrédinger equation revisited. Ann. Inst. H. Poincaré
Anal Non Linéaire 2 (1985) 309-402.

[6] E.M. Stein, Singular Integrals and Differentiability properties of Functions. Princeton University Press, Princeton, New Jersey
(1970).



