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INTERPOLATION OF NON-SMOOTH FUNCTIONS
ON ANISOTROPIC FINITE ELEMENT MESHES

THOMAS APEL!

Abstract. In this paper, several modifications of the quasi-interpolation operator of Scott and
Zhang [30] are discussed. The modified operators are defined for non-smooth functions and are suited
for application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability
and approximation error estimates. As an application, an example is considered where anisotropic
finite element meshes are appropriate, namely the Poisson problem in domains with edges.
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1. INTRODUCTION

The solution of elliptic boundary value problems may have anisotropic behaviour near certain manifolds
M c Q. That means that the solution varies significantly only perpendicularly to M. Examples include the
Poisson problem in domains with edges M and singularly perturbed convection diffusion reaction problems
where M is part of the boundary or an internal manifold. In such cases it is an obvious idea to reflect this
anisotropy in the discretization by using anisotropic meshes with a small mesh size in the direction of the rapid
variation of the solution and a larger mesh size in the perpendicular direction.

In order to describe the elements of anisotropic meshes mathematically, consider an elliptic boundary value
problem posed over a polyhedral domain Q C R¢, d = 2,3. We study the discretization error of the finite
element method on a family of meshes 7, = {e} with the usual admissibility conditions (see, for example,
Conditions (7,1-73,5) in Chapter 2 of [18]). Denote by h. the diameter of the finite element e, and by g, the
supremum of the diameters of all balls contained in e. Then it is assumed in the classical finite element theory
that h. < g, for the definition of < see Section 2. This assumption is no longer valid in the case of anisotropic
meshes. Conversely, anisotropic elements e are characterized by

he
e L
Qe

where the limit can be considered as h — 0 (see the application to the Poisson equation in [4,9] or Section 7) or

€ — 0 where ¢ is some (small perturbation) parameter of the problem (see the singularly perturbed problems
in [6,7]).
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FIGURE 1. Ilustration of the simplest anisotropic finite elements.

Local estimates of the interpolation error are basic ingredients for a priori estimates of the finite element error,
for proving the equivalence of error estimators and the exact error, and for investigating multi-level algorithms
for the solution of the system of algebraic equations which arise in the finite element method. For Lagrangian
finite elements, the simplest approximation is the nodal interpolant I, : C(2) — Vj, := span {ip;,i € I},

(Ihu)(@) == 3 u(X) pila), (L.1)

i€l

where X; are the nodes and ¢;(z) are the nodal basis functions, ¢;(X;) = §;; for all 4,5 € I. Because I is
defined locally on every element the interpolation error u —Iu can be estimated elementwise. Before we discuss
the drawback of the nodal interpolant we shall recall some anisotropic interpolation error estimates. We denote
error estimates as anisotropic if they are sharp enough to reflect the different element sizes and not only the
diameter.

For simplicity in this Introduction consider a triangle or a tetrahedron e C R with element sizes h1, ... , hq as
given in Figure 1. That means that the element e has d edges of length h; which are parallel to the corresponding
coordinate axes. Then for linear elements the following estimates hold [4,7]:

. £2=1and p € (d, ]
— - I P < o . TP ) ’
lu = Thu; LP(e)|| S \;zh | D%u; LP(e)||,  if { ¢ —2andpe[Loo] (1.2)
lu—Tyu; WhP(e)| S D A D%u; WhP(e)|, if d =2 or p € (2,00]. (1.3)
|e]=1

For the notation see Section 2. The necessity of the condition p > 2 in the three-dimensional case is discussed
at several places [4,22,31]. In the sequel, we will call an estimate to be of type (m,n) if certain mth derivatives
(left-hand side) are estimated against nth derivatives of the solution. In this sense estimate (1.3) is of type (1, 2).

For some applications, the nodal interpolant is not appropriate. First, the main drawback is that nodal
values of u have to be well-defined for the definition of Iu. For example, the solution of the Poisson equation
with mixed boundary conditions can be of such poor regularity in the neighbourhood of edges that u ¢ W*2(Q)
for any s > 3/2. This causes the interpolation theory with Ij to fail. Second, estimate (1.3) holds only for
p > 2 in the three-dimensional case. But p = 2 is the natural choice in the investigation of the finite element
approximation error. Using p > 2 and the Hoélder inequality leads to sub-optimal results, see the discussion in
Section 7. Third, there is no estimate of type (1,1) for the nodal interpolant. Such estimates are of advantage
for the investigation of multi-grid/multi-level methods for the solution of the system of algebraic equations
which arise in the finite element method.

As a remedy, other approximation operators Qp with Qnu € Vj, can be considered. They are sometimes
called quasi-interpolants and should preserve the following favourable properties of I,.
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1. Qnu shall be defined locally. This means, that (Qpu)(z) with = € e shall depend only on the values of u
in a small neighbourhood S, of e, where S, consists of a finite number (independent of h) of elements of
Th. (For the nodal interpolant I, we had in particular Se = e.)
2. If possible, Qp shall reproduce piecewise polynomials: Qpupn = up, for all up € Vj,.
For wsotropic meshes such operators have been studied in the literature. For an introduction, define by a
generalization of (1.1)

(Qhu) (CL’) = Z Qg Ps (ZE) (1‘4)

1€l

with real numbers a, still to be specified. Note that Qp = I if a, = u(X,) for all 2 € I.
In order to treat non-smooth functions the idea is to consider subdomains o, C € (their choice will be
discussed later), to define an L2?-projection operator

I, : L2(0'1) — Pr.ows (1.5)

and to choose

a, := (I, u)(Xo), (1.6)

for the notation see Section 2, for more details see (3.1-3.3). The numbers a, can be considered as averaged
values of u in X,. Different authors chose different o, resulting in different quasi-interpolation operators. We
will now introduce three of them. For unambiguous reference we distinguish them by different symbols, C,
Op, and Zj.

Clément [19] uses @, := {55 x, € The resulting operator Ch,

(Chu)(@) == 3 (o, u)(X,) - u(a),

1€l

is even defined for u € L}(Q2) and allows estimates of type (m,£) for all 0 < m < £ < k+1, k > 1 is defined
in Section 2. However, the operator Cp, in this original form does not satisfy Property 2 above, but this can be
corrected by defining

I, : Lz(cr,) - Wilo,- (1.7)

A modification of the Clément operator is discussed by Oswald [28]. For defining o, he fixes just one (arbitrary)
element e =: o, with X, € € The resulting operator O allows the same estimates as Cp, but we have
Vilo, = Pk,o,- Some more details on Cp, and Oy, are given at the end of Section 3 when more notation has been
introduced and more ideas have been developed.

The disadvantage of both C;, and Oy is that they do not preserve Dirichlet boundary conditions. For this
reason, Scott and Zhang [30] modified again the choice of ¢, and used not only d-dimensional subdomains o,
but also (d — 1)-dimensional ones. In particular, they chose o, C 9Q if X, € 0Q. Because we exploit this idea
in this paper we will introduce the resulting operator Z; in more detail in Section 3. In particular, we derive
some anisotropic estimates of type (0,£), 1 < £ < k + 1, and show that the operator Z;, has to be modified for
error estimates of type (1, 7).

The aim of the paper is to define and to investigate quasi-interpolation operators which do not have the
disadvantages of the Lagrange interpolation operator (see above) and which allow for proving anisotropic esti-
mates of type (m,£), with m > 0, for anisotropic meshes. Using the idea of lower-dimensional subdomains o,
we define in Sections 4-6 three operators of that type, Si, L, and Ep. There are differences in the applicability
of these operators concerning the types of elements and the ability to preserve Dirichlet boundary conditions.
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We will summarize this in Section 8. Before, in Section 7, we shall apply the operators S, and Ej and derive
finite element error estimates for the Poisson problem in certain domains with edges. The result can not be
obtained using the nodal interpolation operator I;, or the original quasi-interpolation operators Cp, Op, and Zj,.
This underlines the importance of this study.

Nevertheless, some questions need further research. First, the investigation in this paper is limited to domains
of tensor product type. It is not straightforward to drop this assumption. Second, estimates of type (1, 1) are
derived only for Lj. This means, such an estimate is not available for three-dimensional “needle elements”
(h1 ~ hg < hs).

2. NOTATION AND AUXILIARY RESULTS

The notation a < b and a ~ b means the existence of positive constants C; and Cy (which are independent
of T;, and of the function under consideration) such that a < Cyb and C1b < a < Cab, respectively.

Let d be the space dimension and z = (x1,...,zq) the global Cartesian coordinate system. We use a
multi-index notation with a := (a4, ..., ®q), @, non-negative integers,

d
|| := E oy, %=z xg?, and DY 1= —— - 5=
=1

WeP(e) (£ € No, p € [1,00]) are the Sobolev spaces with

[ WP = 3> [ 107, wwerep= Y [ poop

Jaj<e¥ € ja)=¢

for p < oo and the usual modification for p = co.

Finite elements e C R? are defined #a (a finite number of) reference element(s) é C R%. In the cases of
triangies (é := {(21,%2) € R?: 0 < #; < 1,0 < &3 < 1 — 21}), rectangles (& := {(21,%2) € R? : 0 < £1,%2 < 1}),
pentahedra (& := {(&1,%2,%43) € R3: 0 < 21,83 < 1,0 < 22 < 1 — £1}), and hexahedra (& := {(%1,%2,%3) €
R3:0 < &1,%9,23 < 1}) it is sufficient to consider one unique é. Only for tetrahedra we consider two reference
elements: & := {(£1,22,23) €ER3:0< %1 < 1,0 <22 <1—21,0 <23 <1—2; — 22} for elements with a face
parallel to the z1,z2-plane and & := {(£1,%2,23) € R®: 0 < ;1 < 1,0 < 29 < 1— 21,21 < £3 < 1 — &2} for
elements without such a face.

In this paper, we treat mainly meshes of tensor product type and tensor product meshes. The elements of
these meshes are defined as follows.

Definition 1. An affine finite element is called element of tensor product type, when the transformation of a
reference element é to the element e has (block) diagonal form,

i3] _ :thl,e 0 i‘l -

( I ) = ( 0 th.. ) ( P ) +b. ford=2, (2.1)
Z1 B.i 0 .
xp = TS0 . &2 | +be  ford=S3, (2.2)
z3 0 *hye Z3

where b, € R% and B, € R2*? with
|det Be| ~ h3 ., [IBell ~ hie, [IB7M ~ b1, (2.3)

In this way the element sizes hi, ... , hq are implicitly defined. Note that (2.3) yields hye ~ hg for three-
dimensional elements. Up to now we did not assume a relation between hy . and hge. But in Sections 4 and 6
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FIGURE 2. Illustration of a mesh of tensor product type in two dimensions and of the patch S..

we will consider the case hy ¢ < hqg. (interesting is hi e = 0(hqg,)) and in Section 5 we will examine hge S Ay .
Note further that under these assumptions the triangles/tetrahedra can be grouped into pairs/triples which
form a rectangle/pentahedron of tensor product type. We will use this property in Section 4.

Definition 2. An affine finite element e C R? is called tensor product element, when transformation (2.2) is
reduced to

X; = hl,;’eii‘z + bq;,e, 1= 1, N ,d‘ (24)

In two dimensions there is no difference between tensor product elements and elements of tensor product
type. But in three dimensions we admit independent mesh sizes hj ¢, hae, and hse, so that a tensor product
element is not necessarily a special case of an element of tensor product type.

We demand that there is no abrupt change in the element sizes, that means, the relation

hi,e ~ hi,e' for all 6' with éﬂ? 7é 0 (25)
holds for ¢ = 1,... ,d. In view of (2.5) and because most considerations in this paper are local, we will often
omit the second subscript.

The set of shape functions Py,
Pre D PL:= Z aez®; T=(21,...,%d), aa ER 3, (2.6)
|a|<k

is defined as usual, that means, Px . = Pg for the simplicial elements, and

Pr,e := Q‘,ﬁ = E aex%, aq €ER }, Pre = E aaz%, aq €ER
0<a, 2,03k 0<o)+ag<k
0<a3z<k

for quadrilateral/hexahedral elements and for pentahedral elements, respectively. Moreover, for a simple nota-
tion later on we define P2, := {0}.

Let Vi = {vp € WH2(Q) : vp)|e € Pie foralle € T} be the finite element space, a space of piecewise
polynomial functions on the family of meshes under consideration.
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Finally, denote by
=int| J{¢': ¢’ € Tn, e’ NE # 0} (2.7)

the patch of elements around e, see also the illustration for a general mesh in Figure 2. Moreover, we denote
uniformly in the whole paper by

X; the nodes of the mesh, i € I,

@i  the nodal shape functions, ¢;(X,) = &5,

o;  asubdomain related to X; (different for Cp, Op, Zn, Sk, Lp, and Ep),
k the degree of the shape functions in the sense of (2.6),

II,, the projection operator L%(o;) — Pk q,,

In the nodal interpolation operator,

Qr  a general quasi-interpolation operator,

Cp  the Clément operator,

O, the quasi-interpolation operator introduced by Oswald,

Zp ~ the original Scott-Zhang operator,

Sr the modified Scott-Zhang operator using small edges(2D)/faces(3D),
Ly  the modified Scott-Zhang operator using large edges(2D)/faces(3D),
E;  the modified Scott-Zhang operator using long edges (3D).

We will prove now a lemma which is useful in several proofs of this paper. The lemma has similarities to the
Bramble-Hilbert theory which was developed in [16,17] for isotropic elements and extended in [4] to anisotropic
elements. Here, the difference is that (in general) S. can not be transformed by an affine mapping to a reference
configuration S. The isotropic version of Lemma 1 is proved in [30] using results from [21] and can easily be
generalized to our case.

Lemma 1. For any u € W¥P(S,) there ezists a polynomial w € P{_, such that

> DY (u—w)WTP(S) S Y. R DA W™P(S,),

lo|<l—m |a|=t—m

forallm=0,... L.

Proof. By the change of variables z; = Z;h; we transform S, to S.. According to (2 5) and the tensor product
character of our mesh we realize that S, has a diameter of order one. Moreover, S, is star-shaped with respect
to a ball B; with diam B; ~ 1, or S, is at least the union of a finite collection of (overlapping) domains S, ; j
that are star-shaped with respect to a balls B; with diam B; ~ 1. Let B C S, be any ball with diam B ~ 1,
choose a function ¢ € C§°(B) with integral one, and define

- > [ oraw- T a ert,

Ja|<e—1

Z=(Z1,... %), = (J1,-.- ,¥a), @ = o1!---ag!. We can now apply Theorem 4.2 of [21] with A = {o € N¢ :
|| = £}, and obtain for all 8 with |3] = m, 0 <m<{l-1,

1D (@ — @); W VP ()| S 1D7% WE™P(S.)].
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By transforming this estimate to S. and summing up over all 5 we conclude

Yo D u—wh PGS S Y AIDTHu LP(S)I,

je}<t—m—1 |a|=€—m
> RD*u—whWTP(S,)| S D h*|Du WTMP(S,)|.
|a|<l—m-—1 |aj=t—m
Because D"w = 0 for |y| = £ the sum on the left-hand side can be extended to |a| < ¢ — m. O

Corollary 2. Let my +ma =m < {. For any u € W“’(S’e) there exists a polynomial w € P;in_l such that

Z Z ha+g|Da+[3(u N w); Wml,p(Se)l < z z hoz+,@|Da+ﬂu; Wml,P(Se)|.

|a|<mz |B|<E—m |a|l=m2 |B|<L—m

Proof. We reformulate the left-hand side and split it in two terms.

Yo D REPDu—wh WS~ Y hD (u = w); WP (S,)|

= Y KID(u—w) W™PS) + Y RD(u—w); WmP(S,)).

[6]<ma ma<|6]<l—my

In view of mg = m—my, the first term can be estimated via Lemma 1. The second term contains only derivatives
of order higher than m, that means that w plays no role. Consequently, w can be chosen such that

Z Z ha+ﬂ|Da+B(u _ ’LU); Wml,P(Se)l

|a|<mg |B|<E—m

S D0 WIDwW™R(S) + > R Diu WP(S,)|

|6|=m2 m2<|6|§£—m1
< Z h®|D%u; W™P(S,)| + Z Z ha+B|Da+Bu; W™P(S,)],
la]=m2 Ja|=m2 1<|8|<E—m
and the corollary is proved. a

3. THE ORIGINAL SCOTT-ZHANG OPERATOR Zj

In this section we will recall the operator Zj, defined by Scott and Zhang [30] and examine to what extent
anisotropic error estimates can be derived by simply carrying out the transformations more carefully. We will
see that estimates of type (0,¢) are valid, but modifications of the operator are necessary for estimates of
derivatives of the approximation error.

As introduced in Section 1 we define Zpu vie numbers a; = (II,, u)(X;), where II,, is a projection operator
with respect to a certain subdomain o;, ¢ € I. The subdomains o; are chosen by the following rules (see also
Fig. 3 for the case of triangles).

e If the node X; is an interior point of an element e C 7}, then o; :=e.
o Otherwise X; is a boundary point of one or more elements e C 7T, and o; is chosen as some (d — 1)-
dimensional edge/face ¢ of one of these elements:
— If there is an edge/face ¢ so that X is an interior point of ¢, then o; is uniquely determined by o; := .
— If not, then o; is taken as one of the edges/faces with X; € . However, we restrict this choice in the
case X; € 002 by demanding o; C 99 then.
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L J
® ~
(a) X, is an interior point of an element. (b) X, is an interior pownt of an edge.
y
(c) X, is a vertex within the domain (d) X, is a vertex at the boundary
(here: 6 possibilities for o,). (2 possibilities for a,).

FIGURE 3. Choice of ¢, in dependence on X, for the definition of Zj.

The L?(o,)-projection I, u € V}|,, is defined by

I — Mo, w; L) = Loun llw —v; L*(a0)| 3.1)

An explicit representation of (II,,u)(X,) can be given by introducing the (unique) function v, € V3|, with

f Yup, =6,, foralljel. 3.2)

Then one finds easily that
(Mo.0)(X) = [ . (3.3)

To see this recall that a projection operator P : X — Y C X can be defined via Pu = 3 (u,¥;)x ¢; where
{¢,} is a basis in Y and {9, } is the corresponding biorthogonal basis with respect to the scalar product (.,.)x
in X. As already mentioned in Section 1, see (1.4) and (1.6), the Scott-Zhang operator Zj, is now defined as

2= 3o )(X) 0= 3 ( A w.) o (3.4

Though I1,, is defined by (3.1) for u € L?(s,), this approach can be extended to functions u € L'(c,) because
the polynomial function %, is from L*°(0,) so the integral in (3.3) is finite. That means that the approximation
operator Zj : W4P(Q) — Vj, can be defined for

1
£>1 forp=1, 2> s otherwise. (3.5)

The restrictions to ¢ and p in (3.5) follow from a trace theorem and guarantee that u|,, € L!(c,) also for
(d — 1)-dimensional o,. In this paper, we consider only integer ¢, therefore (3.5) is equivalent to

£>1, pell,o0].



INTERPOLATION OF NON-SMOOTH FUNCTIONS ON ANISOTROPIC FINITE ELEMENT MESHES 1157

Note further that the approximation operator Z; does not only preserve homogeneous Dirichlet boundary
conditions but also inhomogeneous conditions u = g on 9 (at least in the sense of L1(9R)) if g € Vi|sq-

For isotropic simplicial elements e (h; ~ ... ~ hg) Scott and Zhang proved the following stability and
approximation result [30]: If 1 <2 < k+1 and p € [1, 00] then the estimates

¥4

Zhu; W™(e)] < (mease) /91PN " BT u; WIP(S,))| (3.6)
j=0

lu—Znu; WTP(e)] S A ™ uy WEP(Se)] (3.7)

hold for 0 < m < £. Recall that k& corresponds to the degree of the polynomials, see (2.6). Recall also the
definition of S, from (2.7) and note that o; C S, for all 7 with X; € .
The anisotropic estimate corresponding to (3.7) would be

lu—Znu; W™P(e)| S Y. R¥Du; W™P(S,)|. (3.8)

laj=f—m

We prove now that this estimate is valid for m = 0. This result is restricted here to meshes of tensor product
type but it is not restricted to simplicial elements.

Theorem 3. On anisotropic meshes of tensor product type the Scott-Zhang approximation operator Zp, satisfies
the following stability and approzimation error estimates of type (0,£):

IZru; Le)l| < (mease) /91PN~ h%|| D LP(S.)], (3.9)
: o<t

llw — Znu; LI(e)|| < (mease)/971/P Z h*||D%u; LP(Se)|l, (3.10)
|e}=¢

£=1,...,k+1, provided that u € WP(S,). For (3.10) the numbers p,q € [1,00] and £ € N must be such that
WP(e) — Li(e).

Proof. We start by concluding from fa, wit; =1 and |l@,; L™(0y)|| =1 that
ll4i; L (03) || ~ (meas o) ™. (3.11)

Using the definition of Zpu we find with (3.11) that

IZru; L@ < 3

©; /6 ,, uipy; L(e)

i€l,
< (mease)l/qz / u;
i€l 7o
< (mease)'/? Z(meas o3) " Hlu; L (o3)]),

i€l

where I, is the set of nodes contained in €. If o; has the same dimension as e (that means X; is an inner node
of e and o; = €) then we use the Holder inequality and find

llus L (@) (meas €)' /7 |lu; LP (o) |

<
< measo; (mease) " P|lu; LP(S,)|l. (3.12)
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O; X

FIGURE 4. Illustration of the counterexample.

If o; has lower dimension we use the trace theorem WP(S,) — W¥4P(¢') < L!(g;) (¢’ C S. is an element with
o; C €’) in the form

l|lu; L (03)]| < meas o;(mease) /P Z h®||D%u; LP(S,)|| (3.13)

lal<e

which holds for ¢ > 1. Combining the last three estimates we obtain the stability estimate (3.9). From this we
derive for any w € Pg_, C P¢

lu=Znu; L) < [lu—w; LI(e)ll + [|1Zn(u — w); LU ()|l
< (mease)/a/p 3 A DA u — ) L7(S0)|
le<e
where we used the embedding W%P(e) < L9(e). With Lemma 1 we conclude (3.10). O

By the following example we show that estimate (3.8) does not hold for m > 1 in the general setting of o; as
introduced above.

Example 1. In this example we will show that (3.8) does in general not hold in the case m = k = 1 and the
whole range of ¢, namely £ = 1,2. Consider the situation as illustrated in Figure 4, and let v = u(z;) be any
function which is independent of the variable 5. This leads to a; # a;, where a; and a; are independent of hg,
that means

8Zhu
31‘2

= h3" f(u,z1,h1)

€

with a certain function f. In view of du/0z2 = 0 we obtain

lu — Zpu; WHP(e)| > H%Z;z“,m(e) = hy"TYPE(u, hy),
ol o 1,p £—1 al’u‘ P 1/p
> hDeu WIP(S,)| = RS 30 LS| = ha G(u, hy).
1

|aj=£—-1
Consequently, for f(u,z1,h1) # 0 (which is the case in general) and he = h§ with sufficiently large s (depending
on u) estimate (3.8) can not be satisfied.

For this example the following points were essential:
1. Long edges are chosen for o;.
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2. X, and X, have the same z;-coordinate but the projections of o, and ¢, on the z-axis are different.

Since we have some freedom in the choice of o, we will investigate in the next two sections the operator in the
cases where one of these points is avoided. In Section 4 we will use short edges (2D) or small faces (3D) as o,.
Large sides with identical projection are chosen in Section 5. The resulting operators will be denoted by Sj
(small sides) and Ly (large sides).

Having now an idea which choice of o, could work, we want to point out that the desired error estimate
cannot be obtained with the original proof of {30]. We can see this from the following two examples.

Example 2. The proof of Theorem 3 followed essentially the steps of the proof in [30]. Let us see which
result we obtain for a derivative. Consider an element e C R? of a mesh of tensor product type, a function
u € W4P(S,), £ € {1,2}, the polynomial degree k = 1 and a multi-index v with |y| = 1. Let all o, be defined
as short edges. Then we get by following the proof of Theorem 3

/m w,

ID"Shu; Li(e)| < D [1D7wu; LA(e)]

el
< h77(mease)/?) " (measa,) ! |u; L (o))
1€le
< h‘”(mease)l/qZ(mease)_l/” Z he|| D®u; LP(S.) ||
2€1e || <2
~ h77(mease)'/a-1/P Z || D%u; LP(Se)||-

laj<e

For estimating the error D7 (u — Spu) we apply this estimate to u — w instead of u, with w € PZ_,. By applying
Lemma 1 we get

D7 (u — Shu); L(e)|| S b~ (mease) /27 S b Dou; LP(S.)||- (3.14)
|a|=2£

Let h1 < ha, v = (1,0), then one term at the right-hand side is k] h§| D(®?u; L?(S,)|| which may become
arbitrary large. Therefore we do not obtain estimate (3.8) with the original proof, but only a sub-optimal
right-hand side as in (3.14).

Example 3. Let us perform a backward analysis. Assume that (3.8) is the appropriate estimate for an element e
of a mesh of tensor product type with an arbitrary h; < hy. For m = 1, £ = 2, we have in particular

IDOO(w = Spu); L2l S Y A% Dw; Wh(SL))|
|a]=1

~ Y RIDOF Oy LP(S,)|| + ho|| DO u; LP(S)]|. (3.15)

|a]=1

Change the variables wa z, = Z,h,, © = 1,2, to obtain an estimate for an element é with diamé ~ gz ~ 1. The
estimate (3.15) transforms to

RTDEOO (@ —Spa) LP@)| < Y hyHID*T0q; LP(S,) || + hy M| DO P LP(S,)|),
je]=1
ID® (@ —Spa), LPE)| < Y 1D*F 0% LP(S,)|| + hy *hy | DO LP(S)) .

lal=1
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For this estimate to be satisfied for arbitrary hy = o(hy) we have to show

ID7(@—Spa); LP@)) S 1D & WP(Se)l,
IDY(w = Spu); LP(e)| S D h%ID u; LP(Se)ll,
jaj=1
at least for v = (1,0). Otherwise the estimate is not invariant with respect to scaling. If we want to derive the

error estimate by using the stability estimate as in the proof of Theorem 3, we must prove

| DYShu; L9(e)|| < (mease)t/a~1/P Z h%| D%u; WIThP(8,)).

|al<e—|v|

We have seen in the examples that choosing appropriate o; is not enough. We need also a refined proof for
obtaining anisotropic estimates for derivatives of the interpolation error. We will develop such refined proofs
for general k, £, m, in the next sections. However, we need in all cases that all 0;, i € I, are parallel. Therefore
we are restricted to meshes of tensor product type (introduced in Def. 1 and investigated in Sects. 4 and 5) or
to tensor product meshes (introduced in Def. 2 and investigated in Sect. 6). The proof for more general meshes
is still open.

In the remaining part of this section we will discuss to what extent the previous results carry over to the
operators Cp, and Oy, which were considered by Clément [19] and Oswald [28] for isotropic meshes. Recall from
the Introduction that the difference between Zj, Cp, and Oy, is only in the definition of the subdomains o;. In
particular, o; is d-dimensional for Cp, and Oj, and for all i € I.

For Oy, one can verify easily that all results in this section remain true, except that Dirichlet boundary
conditions are not satisfied. Moreover, Condition (3.5) can even be omitted; the operator is defined for all
u € L*(§2). Therefore estimates (3.6, 3.7, 3.9, 3.10) hold for £ = 0 as well. Example 1 can be modified in the
obvious way. (Zp has to be substituted by O, in all relations.)

For the Clément operator Cp, one has to decide whether I1,, should be defined as in (1.5) or (1.7). In both
cases the same estimates as for O can be proved. Note that we used in the proof only Cpw = w for w € Pg
which is satisfied. As discussed already in the Introduction, Cpv, = v, is in general not satisfied for vy, € V.

Siebert [32] and Kunert [24] derived also some results for the operator Cj, for anisotropic meshes. However,
they considered only the case k = 1, p = 2, and only subsets H}(Q) C WH2(Q) of so-called mesh adapted
functions. This allows them to prove global results of the form

Z@EIIIU—CW,LQ(C)H <l whAQ),

Chv)), L*(e)

A

o, WH(Q)], i=1,... .4,

th c0:t

where g, ~ minj—i,. 4hj. Using these estimates they prove asymptotic properties of a posteriori error
estimators. For v they insert the (exact) finite element error u—wuy. Unfortunately, the condition u—up € H:(Q)
can not be proved/tested in general.

To satisfy Dirichlet boundary conditions all the authors [19,24,32] considered a modification of Cp near the
boundary which is small enough to keep the approximation order.

4. THE OPERATOR S;: A MODIFICATION OF Z;, BY CHOOSING SMALL SIDES

4.1. Stability and approximation in classical Sobolev spaces

In this section we will investigate the operator Sp which was first introduced in Section 3, after Example 1.
Throughout the section we assume that e is an element of tensor product type, see Definition 1 in Section 2.
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Zo T2
/ |

x1 Z1
(a) Points where o; is uniquely determined. (b) Points where o; can be chosen
(here one choice).

FIGURE 5. Choice of o; in dependence of X; in the case of operator Sy, k = 3.

Since the definition of the o; is different from that of Z; in Section 3 we will clarify this here: o; is (not
necessarily uniquely) determined according to the following three properties, compare Figure 5.

(P1) oy is parallel to the zi-axis/z1, z2-plane.

(P2) X, €q,.

(P3) There exists an edge/face ¢ of some element e such that the projection of ¢ on the z;-axis/x1, Zo-plane is
identical with the projection of o;.

In connection with (P3) we have to note that o; is not necessary an edge/face of one element, see also
Figure 5. Nevertheless, 0; together with 73,‘:'1 or Qi"l is a Lagrangian finite element of dimension d — 1, which
follows from the tensor-product character of the elements e. For simplicity, we will use the terminology “o; is an
edge/face”. We remark in particular that in the case of simplicial elements and k& > 2 there is no d-dimensional
finite element €’ C S, such that o; C e/. This implies that Pk, # Vals, and in general I, ,vp # vpls, for
vy, € V. That means that we lose Property 2 in Section 1. However, we need in the proofs only Il,, w = w for
w € Pk, which is of course satisfied.

Because o; is said to be a small edge/face this implies

hj<hg inS, (j=1,...,d). (4.1)

Note that in three dimensions and according to (2.2, 2.3), only elements with h; ~ ha S hs can be treated. But
this is sufficient to handle edge singularities, see Section 7.

We will see that for the operator S, anisotropic estimates of type (m,£), m < £ < k+ 1, can be derived.
The main difficulty is to prove the stability estimate. The approximation property follows then easily using
Lemma 1 from Section 2. To elucidate the different techniques for derivatives in z;- and z4-direction we first
formulate and prove two lemmata. Then we establish the main theorem of this section. Finally, we give an
example which shows that estimates of type (m,m), 1 < m < k + 1, are impossible.

Lemma 4. Consider an element e of a mesh of tensor product type and assume that (4.1) is valid. Then the

derivative of Spu in xq-direction satisfies an (1,1)-estimate. The relation

” —ai—Shu; L9(e)|| < (mease)' /9= 1P ju; WLP(S,))
d

holds for uw € WY1P(S,) and all p,q € [1,00].
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Proof. Using the definition of the operator S;, (in analogy to (3.4)), the Hélder inequality, estimate (3.11), and
the trace Theorem (3.13), we obtain for all w € P¢

0 Op;

d
— S, L9 — -3 —w): LY < -1 _ i
s = [agse-wize| < T|zaime||[ -
S hy'(mease)/Ty " flu—w; LY(0i)]| llvhs; L3
icl,
< h;'(mease /g meas o, )(meas e) /P h*|| D%(u — w); LP(S,)||(meas o)t
d
2€1, la|<1
< h;l(mease)l/q_l/‘D Z h%|| D*(u — w); LP(Se) |-
[e|<1
Using Lemma 1 with m = 0, £ = 1, and relying on (4.1) we obtain the assertion. O

Lemma 5. Consider an element e of a mesh of tensor product type and assume that (4.1) is valid. Then the
derivative of Spu in xy-direction satisfies an (1,2)-estimate. The relation

< (mease)'/a1/P Z h®| D%u; WhP(S,)|

laj<1

H a%lshu; L9(e)

holds for w € W%P(S,) and all p,q € [1,0c0].

Proof. Let w = w(zq4) € P;. Then we get in analogy to the proof of Lemma 4

5}
9 .ra
” o Sru; LY(e)

l < hi'(mease)'/? ) " (measo;) 7 ||u — w; L (03)]).
| icl,

Denote by o the smallest of the domains o3, ¢ € I.. Introduce now k+ 1 (simply connected) (d — 1)-dimensional
domains ¢, C Se such that for all o; (i € I.) there exists a {; D 0,. Note that, due to (2.5), {; (j =0,... ,k) is
isotropic with a diameter of order h;, and therefore measo; ~ meas(; ~ measo for all ¢ and j. Consequently,
we obtain

k
< hy'(mease)'/%(measo) ™t D |lu—w; LN(G,)|
7=0

8 - T4
”8_1:18hu’L (8)

IA

k
hi*(mease)'/9(measo) ™1 > Y~ h¥||D(u - w); L'(G)]-

§=0 lal<1
ag=0

Observe now that w = w; = const. on {;. On the other hand, because the ¢; have different z4-coordinate, we

can define w from given w; (j =0, ... ,k). So we can use Lemma 1 for dimension d — 1 to choose w; € P!
such that ; :

> BID*(u—w)i LN S Y heIDus LH(G)
=0 ko
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and to conclude with the trace Theorem (3.13) (applied for each ¢;)

F) k
Ha—shu; Lie)|| S (mease)'/9(measo)™ D > ||Du; LY(G)l| (4.2)
! =0
S (mease)'/7V/P Y 7 % 7 B2 D LP(S)). (4.3)
lal=1 |8]<1
ag=0
Thus the proposition is proved. O

By analogy we can treat the derivative with respect to zs in the three-dimensional case.

Theorem 6. Assume that (4.1) is valid. Then the modified Scott-Zhang operator Sy, satisfies on anisotropic
meshes of tensor-product type the following estimates of type (m, £):

[Shu; W™9(e)] < (mease)t/a-1/P Z h*| D%u; W™P(S,)|, (4.4)
lal<t—m

|u — Spu; W™9(e)] < (mease)t/971/P Z h*| D%u; W™P(S,)|, (4.5)
|a|=—m

0 <m < ¢-1 <k, provided that u € W%P(S,). For (4.5) the numbers p,q € [1,00] must be such that
W4P(e) — W™4(e). For m > 2 we ezclude triangular and tetrahedral elements.

Proof. Consider first the stability estimate (4.4). For m = 0, (4.4) can be proved as (3.9). For m = 1, (4.4)
is proved in Lemmata 4 and 5. Let m > 2. Consider a multi-index v with |y| = m and define mg := 4,
my = m—mgy. For arbitrary wi = wy,1(21,... ,24-1)w1,2(z4), w11 € Pf,ll_lil, w12 € PL, (that is why we exclude
simplicial elements) and ws € P _; we obtain in analogy to the proof of Lemma 5

1D7Spu; L)l = [[DSh((u — w2) —w1); LI(e)||
< h77(mease)/(measa) ™t Y [lu— wy —wi; L' (o)
icl,

k
h~7(mease)/(meas o) ~? Z Z R | D% (u — wa — w1); LH(E)|-

J=0 la|<m,
ag=0

N

Then we determine w; € Pl (j=0,...,k) such that

’ITL1—1

Y RID*(w —wz —wy i LG S D RID™(w — wa); LM (G)])-
ja|<mq |ee]=my
ag=0 ag=0

Note that the w; depend on (u — ws) and ws is still to be chosen. The polynomial w; is now determined by the
w; (j =0,...,k) such that the estimate can be continued by

k
ID7Shu; L9(e)|| < hy™ (mease) /I (measo) S 37 D% (u — wa); L (G)- (4.6)

7=0 jal=m,
ag=0
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Thus the factor h;™* is eliminated. We proceed now as in the proof of Lemma 4. Using the trace Theorem (3.13)
for all j, & and with £ —m; > £ —m > 1 instead of £ we conclude

ID7Shu; L) S hy™(mease)VTVP 3T ST RAIDAT (u— wp); LP(SL)]

lal=my |Bi<l—ma

ag=0

< h;™(mease)l/aY/P Z Z RPFO DPH8 (4 — wy); W™ (S,)].
[8i<e—m |B|<m2

Using Corollary 2 (Section 2) we obtain

ID7Shu; Lo(e)| S hy™(mease)/a71/P N~ N pAO DTy wmr(S,))|
[8|<e—m |Bl=m2
S (mease) /97PN RO DOu; WR(S,)).

[6/<t—m

Here we used h® < hl'? for |3| = my which follows from (4.1). Thus (4.4) is proved.
For proving estimate (4.5) we need (4.4) and the assumptions on p and g. Since these parameters were chosen
such that WP (e) — W™4(e), we have also W ~"™P(e) < L(e), this means

lv; LU(e)|| < (mease)/a1/7 3 7 h| D; LP(e)

la]<t—m

for all v € W¥~™P(e). Applying this estimate for all derivatives D with ja| = m and summing up the resulting
inequalities, we obtain for v € WP (e)

[v; W™4(e)| < (meas e)/9-1/P Z h* D%, W™P(e)|. (4.7)

la|<é—m
Together with (4.4) we conclude that for all w € P¢_; the following estimate holds,

lu — Spu; W™9(e)| ju — w; W™4(e)| + |Sp{u — w); W™9(e)|

<
< (mease)/971/P Z h*|D%(u — w); W™P(S,)].

la|<t—m
With Lemma 1 the proposition is proved. O
Finally, we want to give an example which shows that
IShu; Wh2(e)| S Jlus WHA(Se)| (4.8)

does not hold for general u € Wh2(S,).

Example 4. Consider k£ = 1 and a triangle with the vertices X; = (0,0), X2 = (h,0), and X3 = (0,1), and let
o1 = (—h,0) x {0}, o2 = (0,h) x {0}, compare Figure 6. For u = r¢sin(#/2) (r,0 are here polar coordinates)
we obtain

oy =l = ()= [ 2 (<254 2) i,

h?  h
Ule, =0 = ([yu)(Xe)=0.
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T2

—
—h 0 h 1
FIGURE 6. THustration of Example 4.

Consequently,

3Shu
81131

for h — 0, e < 1/2. But

1 pm 2 1
lus Wh2(Se)? S / / (7‘5"1 sin g) rdfdr ~ / r2EDH 4 < 0
o Jo

0

heTL, IShu; Wh2(e)| = h (mease)'/?2 = h~1/2 &

for € > 0. Thus (4.8) does not hold.

4.2. Stability in weighted Sobolev spaces

We have seen in Example 4 that S,u does not satisfy an estimate of type (1,1). However, S;, can be applied
in some situations where u ¢ W?P(S,) for some p we are interested in.

We restrict ourselves to the three-dimensional case, consider an arbitrary bounded domain G C R3 with
zero distance to the zs-axis (the z3-axis may intersect G but this is not typical), and introduce cylindrical
coordinates via z1 = 7 cosf, x2 = rsinf. Define for £ € Ny, p € [1,00], 8 € R, the weighted Sobolev space

ViP(G) = {veD(G):|v; VPG < oo}, (4.9)
llv; VEP(Q)|)P = |pB—ttlel pogp, (4.10)

Such spaces are relevant in the treatment of singular functions of the type v = 7*sinAg or v = 7> cos \f,
A € (0,1). Notice that

v € W*2(G) = s<1+ A,

veVyHG) Vs20 < B>s—1-A
For our application in Section 7 we need the stability of the modified Scott-Zhang operator in these weighted
spaces.

Lemma 7. Consider an element e of a mesh of tensor product type and assume that (4.1) is valid. Let m be
an integer and B,p,q be real numbers with 0 < m <k, $ <2—-2/p, B <1, p,q € [1,00], and assume that the
x3-azis proceeds through Se. Then for u € W™P(S.) N V" thP(S,) the stability estimate

IShu; W™9(e)| < (mease) /T VPR ? 3" 37 BH|DH; VER(S,))| (4.11)

jal=m—1|t|=1
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holds. For m > 2 we exclude tetrahedral elements.

Proof. We start with estimate (4.6) which was obtained in the proof of Theorem 6. Let -y be a multi-index with
lv] = m, m1 = m — 73, and wa € PZ,_,. Then there holds

k
1DShu; L9(e)| S by ™ (mease)/1(measo) ™ >" 37 D w—wa)i LG (412)

7=0 lai=m—v3
ag=0

Let 3 > 0, then we can continue, similar to the proof of Theorem 6, with the trace theorem because we assumed
u € W™P(S,).

ID"Shu; L(e)|| S hy ™ (mease) /9717 3" " A3 D (u — wy); LP(S)|-

llZmas 161<s
Using Corollary 2 we obtain

ID7Swu; L) S h3™(mease)/a /P N7 N7 R D*Hus LP(S.)|

laj=m—2. =
et 1o]="s

< (mease)t/a"Y/P Z | D%u; LP(Se)||. (4.13)

loaf=m

We estimate the right-hand side via the trivial embeddings Vﬁ1 P(Se) — Vﬂo‘_l(Se) — LP(S,.), B < 1, which leads
with (4.1) to

DORD DN i A ERT!

la|l=m lal=m-1 |t|=1

AP ST N T IrfiDe u LP(S )|

jal=m—1 [t|=1

S h7 YD Y RID T VRS, (4.14)

|o]=m—1|t|=1

™
<
:53
g
3
@
2

N

which is the desired result.
For 3 = 0 we use (4.12) with wy = 0 and estimate the L'((;)-norms against weighted norms via the Holder
inequality:

llvs L (¢ < [1r25 L ()11 - [IrPo; LP(G5)| (4.15)

with p’ from 1/p+1/p' = 1. The L (¢j)-norm of r~* is finite if and only if p’3 < 2 which is equivalent to
B < 2 —2/p. Using measo ~ meas(; ~ h? for all j, and r < hy we get

=25 27 ()| S AT~ (measa) PR P, (4.16)
The application of WP(S,.) < LP((;) to rPv implies the trace theorem Vﬂl P(Se) — V; "P(¢;) which leads to

I78v; LP(¢;)]| < (meas o) /P (mease) ™/ 3 hi~Flps )P =1+ Doy 1P (8.
[s|<1
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Combining these estimates we obtain

llv; L' (G5)]] < measo (mease)~/Phi? 3~ hy~ s rf =14 Doy L2 (S, ) |

[si<1

and thus with (4.12)

k
|IDYSpu; Li(e)]| < (mease)l/q(measa)ulz Z | D%u; LMG) |

7=0 |a|]=m

(mease) /= VPhTA N N7 gy lpe||rf-ttis patey, 12(8,)). (4.17)

laj=m |s|<1

A

The last step to derive (4.11) is done by a rearrangement of the terms at the right-hand side, namely

SN m PRt Dty (S = S0 ST RSP D u LP(Se) | + Y ha|lrP T Dl LP(SL)|

Jt/=1 |s|<1 Jt/=1 Js|=1 Jtl=1
SO0 D R D LR (S| + D B2 Do LP(Se) |
[tl=1s{=1 fsl=1
~ > B Do VP (Se)]-
Isi=1
Together with (4.17) we conclude (4.11) in the case v3 = 0. O

5. THE OPERATOR Lj: A MODIFICATION OF Z; BY CHOOSING LARGE SIDES
WITH A PROJECTION PROPERTY

In contrast to Section 4 we will now employ large edges/faces and investigate the resulting operator L. We
still assume that e is an element of tensor product type, see Definition 1 in Section 2. The notation is used as
follows: We keep Properties (P1, P2, P3) from Section 4 and simply turn the relation (4.1):

hy>hg inSe (j=1,...,d). (5.1)

But due to the conclusions of Example 1 in Section 3, we do not have so much freedom for the choice of the o;
as in the case of S;,. We must assume the following projection property (P4), compare also Figure 7.

(P4) If the projections of any two points X; and X; on the z;-axis/z;,z2-plane coincide then so do the
projections of o; and o,.

We can prove the results of Theorem 6 for this case as well. Moreover, these results extend to the case m = £.
But in contrast to the needle elements of Section 4 the three-dimensional elements are now flat, h; ~ ha 2 hs.
The idea for this choice of o; was found in Chapter 5 of [15] where the special case of rectangular and brick
elements was considered for £k = 1, p = ¢ = 2. We extend this theory to more element types and to general
k €N, p,q € [1,00]. Our proof differs from that in [15].

We start as in Section 4 with the separate consideration of the stability of first derivatives of Lpu. This time
the derivative in x;-direction is the simpler one.
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Z2 ° —
T
(a) Points where o; is uniquely determined.
Z2
1
9 —e— -—
* 1
L]
T

(b) Two choices for o; for points on vertical mesh lines.

F1GURE 7. Choice of ¢; in dependence of X; in the case of operator Ly,.

Lemma 8. Consider an element e of a mesh of tensor product type and assume that (5.1) is valid. Then the
estimate of type (1,1)

”8—(z—Lhu;Lq(e) < (mease)/9 VPl WHP(S,)], n=1,...,d (5.2)

holds for uw € WHP(S,) and all p,q € [1, o0].

Proof. For n = 1,...,d 