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AN OPTIMAL ERROR BOUND FOR A FINITE ELEMENT APPROXIMATION
OF A MODEL FOR PHASE SEPARATION OF A MULTI-COMPONENT ALLOY
WITH NON-SMOOTH FREE ENERGY

JOHN W. BARRETT! AND JAMES F. BLOWEY?

Abstract. Using the approach in [5] for analysing time discretization error and assuming more reg-
ularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise
linear finite element approximation with a backward Euler time discretization of a model for phase
separation of a multi-component alloy with non-smooth free energy.
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1. INTRODUCTION

In [2], we proved an error bound for a fully practical finite element approximation of the following “deep
quench” Cahn-Hilliard model:

(P) Find {u(-t),w(,t),£(,t)} € K x Y x L?(Q) such that u(-,0) = u°(-) and for a.e. t € (0,T)

ou

(Gpm + (LVw,Vn) = 0 Vne H(Q), (1.1a)
Y(Vu,Vin—u)) = (I -1X)Au,n-u) 2 (w+El,n—u) Vnek (1.1b)

where
Y ={necH'(®Q):En(x)=0 forae xcQ}, (1.2a)
K:={ncH'(Q) :nx)>0 for a.e. z € Q}- (1.2b)

Here ) is a bounded domain in R? (d < 3) with a Lipschitz boundary 0.
In the above {u}, is the fractional concentration of the n** component of the alloy, and so the following
assumptions are made on the initial data

(a) u’(z)>0 and (b) N3 ul(z)=1 Ve (1.3)
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In (1.1a,b) v is a positive constant and A and L are symmetric constant N X /N matrices. It is further assumed
that

L has a one dimensional kernel such that L1 = 0 and (1.4a)

L is positive semi-definite. (1.4b)

From physical considerations A must have at least one positive eigenvalue, and the analysis simplifies if this
were not the case. Let Aamax be the largest positive eigenvalue of A.

We define 1 € RY by {1}, :=1 for n = 1 — N. Here and throughout we write {, for the n*" component of
¢ € RY and set

1 N
ZC :N;Cn

For later purposes, we introduce for any p € R

M(p):={£eRY  N¥XE=p}- (1.5)

Finally, we introduce

. 1 )
f"’)1=@/977($)d33 Vne L ().

The system (P) models the isothermal phase separation of a multi-component ideal mixture with N > 2
components in the deep quench limit, see [2] and the references cited therein. The well-posedness of (P), see
Theorem 2.2 in [2], is proved under the following assumptions on the initial data u°:

(D1) u® € H'(Q) such that (1.3) holds and f w® > §1 for some ¢ € (0,1/N).

We note that the integral constraint above only excludes the degenerate case when one or more components
of u are not present, in which case the system can be modelled with a smaller value of V.
The finite element approximation of (P) was studied in [2] under the following assumptions:

(A1) Let © be convex polyhedral and 7" be a regular partitioning of  into disjoint open simplices £ with
h. = diam(k) and h := max cys hy, so that Q = UgcrnR.

In this paper we strengthen these assumptions to
(A2) In addition to (A1) let 7" be a quasi-uniform partitioning of €.

Associated with 7" is the continuous piecewise linear finite element space
Sh={xeC(Q): x|, islinear V 7 € T"} c H'(Q).

We extend these definitions to vector functions, i.e. x € 8" = xn € S",n=1-+ N.

Let 7" : C(Q) — S™ be the interpolation operator such that 7*n(z,,) = n(xm) (m = 1 — M), where
{Zm}M_, is the set of nodes of 7". Throughout (-,-) denotes the standard L? inner product over 2, naturally
extended to vector and matrix functions, e.g. for I x J matrices C(z) and D(zx), with entries in L%(Q2)

J I J
€,D):=3 3 (Cy, D) =33 /Q Ci; (@) Dij () da. (1.6)

I
=1 j=1 =1 j=1
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Also (-,-) denotes the duality pairing between (H(Q2))' and H'(Q2), which is extended to vector functions in
the standard way. We now introduce the corresponding approximations of (1.2a,b):

Y* = {x€8": Tx(zm) =0, m=1- M}, (1.7a)
K" .= {x € 8" : x(xm) > 0, m=1- M} (1.7b)

A discrete semi-inner product on C(Q) is then defined by

M
(1, m0)* = /Q 71 (@) ma(@) Az = S B 1 (@) 72 () (1.8)

m=1

where 3, > 0. Once again, this is naturally extended to vector and matrix functions as in (1.6).

Given K, a positive integer, let At := T/K denote the time step and #; := kAt, k = 1 — K; Barrett and
Blowey [2] considered the following fully practical piecewise linear finite element approximation, based on a
backward Euler time discretization, of (P):

(P™4%) For k = 1 — K find {U*, W* 2%} € K" x Y" x §" such that

h
k_ prk—1
(UA—?,X) + (vak,vx) =0 Vxesh (1.92)
: |
'y<VUk,V(x—U’°)) ~(I-12)aU* + Wr+ B 1,x-U*) >0 ¥xeK" (1.9b)

where U® = Q" u® for i = 1 or 2. Here

(i) Q% : L*(Q) — 8" is such that {Q"n}, = Q'n, and Q% : L?(Q) — S™ is defined by
@) =(mx) Vxesh (1.10)
(ii) Q5 : H*(Q) — S" is such that {Q%n}, = Qbn, and QF : H'(Q) — S* is defined by
Y(VI = Q3)n, V) + (I - @3)mx) =0  Vxesh (1.11)

Let the assumptions (D1) and (A1) hold. Let U° = Q"u°. Then for all h > 0 and all At < 4v/(A\2___||L|),

Amax

Barrett and Blowey [2] proved the well-posedness of (P?4%) on assuming that |U°||; < C. Moreover, they
proved that

N ) h?
Here we have adopted the notation: for & > 1
. t—tp—1 , & k=t ko
UG,8) = o U + Bt UR() v e, (113a)
and
O(,8) =U*)  te (bt (1.13b)
In the above and throughout the paper, || - || operating on matrices is that induced by the Euclidean vector

norm, i.e. the spectral radius for symmetric matrices. We note that the assumption |U°]|; < C holds under
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the stronger mesh assumptions (A2). It follows immediately from (1.12) with the choice of At = Cjh? <
47/ (NamaxlI L) that

flu— ﬁifzf,z(o,T;Hl(Q)) +llu— U“zLoo(o,T;(Hl(Q))f) < Ch?. (1.14)

It is the purpose of this paper to improve on the error bound (1.12) using the approach developed by Rulla [5]
for proving an optimal time discretization error for the backward Euler method applied to “subgradient flows”
without requiring bounds on the second order time derivatives, which do not exist for the variational inequality
system (P). This approach does require the following stronger assumptions on the initial data:

(D2) u® € H*(Q) such that (1.3b) holds, du®/dv = 0 on JQ, where v is normal to 89, and u®(z) > 61,V z €
Q for some ¢ € (0,1/N].

With (D1, A1) replaced by (D2, A2), U° = Q2u® and the restriction i < ho; we prove in this paper that
the term “At + h*/At” on the right-hand side of (1.12) can be replaced by “(At)?”, yielding an optimal error
bound. Hence the bound (1.14) can be achieved by choosing larger time steps; At = Coh < 4dv/ (A% x|l L) -

Remark 1.1. In the case N = 2, assuming that A11 = Ass, L1n = Loz = 1/2, defining v := up — uq,
w:=wy — wy and 0. = A3 — A2 we obtain that {u,w} satisfies the system

%’% — Aw = 0, w & ——’)’A’LL — 0CU + BI[wl,l] (U) (115)

where OIj_11)() is the subdifferential of the indicator function of the set [—1,1]. This is the Cahn-Hilliard
equation with an obstacle free energy. The corresponding finite element approximation of this problem has
been studied by Blowey and Elliott [4]. Obviously the results in this paper are easily adapted to improve on
the error bound derived there in an analogous way.

Notation and auxiliary results

We adopt the standard notation for Sobolev spaces, denoting the norm of W™?(Q) (m € N, p € [1,x)])
by || - {lm,p and the semi-norm by |- |, ;. We extend these norms and semi-norms in the natural way to the
corresponding spaces of vector functions W™P(Q) := {W™P(Q)}V. For p = 2, W™2(Q) will be denoted by
H™(Q), with the associated norm and semi-norm written as, respectively, ||-||m and |-|,,. Furthermore, we define
L*(Qr) := L*(0,T; L*(R)). For n € H*(Q), V7 denotes the N x d matrix with entries {Vn},; := 0n;/0z; and
then 8n/dv := (Vn)v.

Below we recall some well-known results concerning S”* under the assumptions (A2): The inverse inequality
for 1I<p1<pe<ovcandm=0or1

d(p1—p3)

IXlmps < Ch 272 |Xlmp v x € S (1.16)
Form=0orlandp>2

Ixlo < Ixln == [06x)"]? < (d+2)%x)o v x € Sh, (1.17)
l(x1, x2) — (s x2)™| < CRY ™ Ixallmllxells ¥ X1, x2 € S™, (1.18)
(I — 7" lmp < CRE™=4E"Dnl, vy e HA(Q), (1.19)
(I = Q1)1 < CR*™|nl, ¥ ne H*(Q), (1.20)
(T = Q8)lmp < CRZ™™ 4Dy Ve HA(Q) (1.21)

where the last result follows immediately from (1.16, 1.19, 1.20).



FINITE ELEMENT APPROXIMATION OF MULTI-COMPONENT PHASE SEPARATION 975

Below we recall the following “inverse Laplacian” operators introduced in {1}:
(a) G : F — V is such that

(ng, Vﬂ) = <’U, 77> Vne HI(Q)a (1‘22)

where F := {v € (H'(Q)) : (v,1) =0} and V := {v € H*(Q) : (v,1) = 0}.
(b) G:F — V is defined by {Gv}, := Gu,, where ‘

]-'::{v:vnef,n-—«l—)N, andZ'u:O} (1'23)
and
Vi={v:v,€V,n=1—- N, and > v =0}- (1.24)

c) Noting (1.4a, 1.5), it follows that L) = L | a0y is invertible. Hence we can define Gy, : F — V by
(0) (0)
gL = LXI}(O)Q; that is

(LVGLv,Vn) = (v,m) ¥ ne H Q). (1.25)
(d) Gh: F — VP .= {vh € §*: (v",1) = 0} is such that
(VG"h,Vx) = (v,x) V xeSh (1.26)
(e) G": F - V" is defined by {G"v},, := G vy, where
Vi={ov": vt eV n=1= N, and Sov"=0}C V. (1.27)
(f) Gh : F — V" is such that g% = LE(O)Q"; that is,
(LVG" v, Vx) = (v,x) V xeSh (1.28)
(g) G": F¢ — V" is defined by
(VG"0,Vx) = (v, )" V x e s, (1.29)

where 7¢ := {v € C(Q) : (v,1)* = 0}.
(h) " : F° — V" is defined by {G"v},, := G"v,, where
Fo={v:v, €F,n=1-N, and Sv=0}>V" (1.30)
(i) Gk : F° — V" is defined by G = L/_\/}(O)Qh; that is,
(LVGhv,Vx) = (v,x)" V x e S". (1.31)

On noting the Poincaré inequality

Inlo < C(nly +1(n,1)]) VneH(D), (1.32)
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the well-posedness of G, G, G", G" follows. In addition, on noting (1.17) we deduce the well-posedness of Gh
and G". Finally, as L M(0) = L | pmo) is invertible, or equivalently noting that

Aminv]? < (LV0,Vv) VYwveV (1.33)

where Apmin is the smallest positive eigenvalue of L; yields the well-posedness of G, g’g and Q’} .
Noting (1.25) one can then define a norm on F by

o1 = |LY2G o] = [(LVGLv, VGLv)]Y? = [(v,GLv)]Y? Vwve F. (1.34)
It follows from (1.33, 1.34) that
ALmin|Grvl} < 0|2, VwveF. (1.35)

In addition it follows from (1.25, 1.34, 1.35) that

Apminl|vll2y < [Go[f < (L] [v)2,  VwveF. (1.36)
Hence || - ||—1 is equivalent to the standard (H*(f2)) norm on F. Similarly, one can define norms on F and
F° by
1/2 1/2
loll-n = L/2G}0ly = [(LVGEv,vGE0) | = [(v,hw) | vweF (1.37)
and

}1/2

N . . . 1/2
|ol|_pp = [LM2Ghw|; = [(LVQ%'U,VQ%U) [(v,g’iv)h} VveF°, (1.38)

respectively. It follows from (1.28, 1.31, 1.37, 1.38) that for all " € V" and for all a > 0

PR = LMIVGLON LUV < ot + S (1.39)

whE = (LV2VGhoh, LV2Veh) < %thnih,h + %HLH woh|2. (1.39b)
It is well-known that

1(G — G"nlo < CRE™G™ plm, Y ne (H™Q)) NF, m=0orl. (1.40)

Hence, it follows from (1.25, 1.28, 1.36, 1.40) that
Gz ~ G1)mlo < Afminl (6 — 6")mlo < CR*7™(G™ 0l < CR? ™[] -m
| ' Ve (H™Q)NF, m=0orl (1.41)
It is easily deduced from (1.18), e.g. see [4], that
(G" = G"Wwh |y < CR* W™l Vol eVh (1.42)
Hence it follows from (1.28, 1.31, 1.42) that

IGL — G1)v"h < Azminll(€" — ™" < CR* "1, Vo' e V™ (1.43)
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Next we note that
C1R% o™y < Cahlvl o < ||v™||—n < 021 < Ca|lv®||_n Vo e VR (1.44)

The first inequality on the left is just an inverse inequality, recalling that the partitioning is quasi-uniform. The
second follows from the first and (1.39a). The third follows from noting that |L'/2G%v"|, < |L'/2Gv"|;. The
final inequality follows from noting (1.41) with m = 0 and the second inequality above. Finally, we have an
analogue of (1.44)

R "y < Crh|v" | < Col|lv"||—pn < Cs||lv"||n < Cal|v"||pn V" € V™ (1.45)
The first inequality on the left is just an inverse inequality on noting (1.17). The second follows from the first

and (1.39b). The third and fourth follow from (1.43) and noting the first two inequalities in (1.44) and (1.45),
respectively.

2. THE CONTINUOUS PROBLEM

It is easily established, see [2] for details, that (P) can be rewritten as:
Find {u(-,t),A(),£(, 1)} € Km x M(0) x L*(Q) such that u(-,0) = u°(-) and for a.e. t € (0,T)

| 'y(Vu,V(n~u))+(gL?9—1:—(I—lE)Au—A—{l,n—u)20 Vne K (2.1)

where
K:= {neK and N¥n(z)=1 for a.e. z € Q}, (2.2a)
Km:= {n€Kand fn=m:=fu} (2.2b)

In the above we have eliminated w € Y by noting from (1.1a, 1.25, 1.33, 1.32) that

0
= —gL—a—ItL + A, (2.3)

where A(t) € M(0) can be viewed as an unknown Lagrange multiplier.

Theorem 2.1. Let the assumptions (D2) hold. Let Q be conver polyhedral or OQ € CY1. Then there exists a
unique solution {u(-,t),A(t),£(,t)} (= {u(-,t),w(-,t),&(-,1)}) to (P) such that the following stability bounds
hold: _

lleeliwr.o0 0,750 ())) + N0l 0,112 () + 1wl Loo 0,722 (02)) + 1A Lo 0,1y
+ llwllpeo o, m ()) + 1wllz20,1m2(0)) + 1€l Leo 0,120y < C- (2.4)
In addition we have for a.e. t,, tp with 0 < t, <ty < T that

| 2 2

+C(ty — ta). (2.5)

-1

|| Ou | Ou
’E{('atb) - (

< |22t
N A

Proof. Existence, uniqueness and the bounds (2.4) are proved in Theorem 2.1 of [3] for a concentration dependent

mobility matrix L. We note that the bounds (2.4) hold for any 7" > 0 for the present case of a constant mobility
matrix L.
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For a.e. t € (6t,T) and for all ¢t > 0, on choosing 1 = u(-,t — §t) € Koy in (2.1) and n = u(-,t) € Ky,
in (2.1) at “t =t — 6t”, adding, using (1.25), a Young’s inequality and (1.34) it follows that
| 2 1 d 2
8 Lu("t) - ( 5t)l H’lL( ) u('vt - 61;)”—1 < (A(u(:t) - ’LL(~,'[: - 6t)>=u('at) - ’U,(',t - 5t))
< Jlul,t) —ult - s

+C(’Y’ )\AmaX) ”u(’ t) - u(” t— 5t)[{2—1 (2'6)

Integrating (2.6) over (t4,tp) C (6t,T), dividing through by (§t)?, taking the limit as d¢ \, 0 and noting (2.4)
yields that

to | P |2 ou 2 ] to il Hu ||
7/ — | dt+ H (- t) < H (s ta)] %AAmax/ vl | I
ta | Oty ot " -1 i ) ta I1O]_4
ou
< ”—( a) +C(tb —tg). (2.7)
Hence the desired result (2.5). O
For later purposes, we note that J : H*(Q) — R defined by

J(n) : Inl1 -3 (An n) VneHY(Q) (2.8)

is a Lyapunov functional for (P). To see this, we fix §&¢ > 0 then it follows for a.e. t € (6t,T"), on choosing
n=u(-t—t) € Ky in (2.1), that

wl,t) —ml,t
ot

/ . f
7(Vu(~,t),V(u(-,t) _u("t— 6t))) +3t KgLé;_;('at)v (W)) - (Au(‘,t),u(‘,t) _u('>t_5t)) <0

(2.9)
Noting the identity
—2(a—-bb=b*-a*+(a—b)? VabeR, (2.10)

it follows from (2.9) and (2.8) that for a.e. t € (6¢,T) and for all ¢ > 0

_-u. —_— 2 u- -—u« —_— 2
T, 0) = Tut - o) + ot (G o), 20 O, [ubO bt =)
(2.11)

Dividing (2.11) by 6t, integrating from ¢t = 6t to i, taking the limit §¢ \, 0 and noting (2.4), (1.34) and (D2)
yields for k =1 — K that

o
N
N
=
S
=
N
Q

(2.12)

J(u(.,tk))—}—/otk |2 .2

gt_("t)

-1
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3. FINITE ELEMENT APPROXIMATION

Firstly, we note the following results concerning Q. Tt follows immediately from (1.10, 1.11) and the
assumptions (D1, A2) that for : =1 and 2

£ QMul = f O, NYQMO(x)=1, VzeqQ, (3.1a)
and  [|Qfu’[1 < Cllu’|1 < C. (3.1b)
Under the same assumptions it follows that
u® — Q'ul|—1 < Chlullo <Ch and QFul(z)>0 VzeQ, (3.2)
see [1] for details. Under the assumptions (D2, A2) it follows from (1.20, 1.32, 1.34, 1.35) that
lu® - Q3u’l|2; < Clu’® - Q3u’l] < Ch*|u®f3 < Ch* (3.3a)
and in addition from (1.21) with m = 0 and p = oo that for A < hg
Qul(x)>0 Vael. (3.3b)

We now consider the finite element approximation (P™4%); see (1.9a, b), to (P). Let

~_h

= {xe K"and N¥Yx(zm)=1, m=1-— M}, (3.4a)
K" .= {xef{h and £ x = m:= f u’}- | (3.4Db)

Similarly to (2.1), on noting (3.1a), it is easily established, see [2] for details, that (P™4t) can be rewritten as:
For k=1 — K, find {U* A* 2F} € K", x M(0) x §" such that

h
k k—1
- - U h
5 (VU’“,V(X - U’“)) . (g;ﬁ lU—At—_] — (I -1¥)AU*, x - U’“) > (Ak + 21, x — U’“) Vx € K",
(3.5)
where U® = Q"u®, i = 1 or 2. In the above, similarly to (2.3), we have eliminated W* € Y" by noting from

(1.9a, 1.31-1.33) that

k prk—1
b= _gh lg_U_ L AR E=15 K. (3.6)

At

Theorem 3.1. Let the assumptions (D2) and (A2) hold. Let U° = Q5u®. Then for all h < ho and for all
At < 4y/(Nmax L), there exists a solution {U*, AF,ZF}YE | (= {U*, WF ZF}E ) to (PMAt). Moreover
{U* K, is unique and the following stabzlzty bounds hold
NU | Lo 0,755 22y + WU 520,508 ())) + (AE) U s 0,712 ()

+ W ey + 1Al 220y + 1E 20,1522 ) < C5 (3.7)

where U and U are defined as in (1.13a, b) with W, A and = being similarly defined. Furthermore we have
that

1U g1 075082 0y + 11U wooo 0,121 (20))) + 1A oo 0,7y < C- (3.8)
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Proof. Existence, uniqueness and the bounds (3.7) are proved in Theorem 3.1 of [2] with the assumption (D2)
replaced by (D1) and the projection QQ replaced by fo under no constraint on h. It is a simple matter to
adapt these proofs to the projection Q;‘ with the mesh constraint on noting (3.1a, b) and (3.3a, b).

Therefore we need only prove (3.8). For the purposes of the analysis, it is convenient to introduce U~ ! such
that U° —U! € V" and

0 0 h Ah v'-ut " h
’Y(VU7VX)'—(AU,X) + gL T » X =0 VXEV‘ (39)

For m > 1, it follows from adding (3.5) with &k = m and x = U™ " to (3.5) with k =m —1 and x = U™ [(3.9)
if m =1 with x = U® — U] that

VIV - U - (AU U™, U U
h

. U™ — Um—l Um—l _ Um—2
h _ m m—1 <0. 1
+ <gL[ At A7 L, U U > <0. (3.10)
Summing (3.10) for m = 1 — k, noting (1.38, 1.39b, 2.10) yields for £ = 1 — K that
k m m—1,2 k k—1 |2 0 —12
— 1 ||U” - 1 -U
VD YA uint R LA R ol
= At . 2 At . 2 At _hh
k m m—1 m m—1y P
um-u um-uU
+ALY (A[ ~ ) ~ >
m=1
UOkU—l 2 k U'm_Um—l 2
<= romary ||
Il At —h,h | At [l—h,n
3.11)

Choosing x = U® — U™ in (3.9) and noting (1.11, 1.25, 1.34, 1.38), assumption (D2), (1.31, 1.44, 1.45, 3.1b)
yields that

2

U’ -U! o (U —U" o U —U\"
e I i e A Gy
U’ -Ut vt —u\"
- (raw @, 2T ¢ (0n P
< ClE <. (3.12)

Hence combining (3.11, 3.12) and noting (1.32, 1.44, 1.45, 3.7) yields the first two bounds in (3.8).
The final bound in (3.8) follows from the second and recalling from (3.28-3.29) of (2] that

Uk: _ Uk-—l

JAk) < c“ .

+11, k=1—- K. (3.13)
—hh

a

In Theorem 3.3 below we adapt the technique in Rulla {5] to improve on the temporal discretization error bound
in [2] for the scheme (P™4%). In the next lemma we bound a key term required in the proof of this theorem.
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Lemma 3.2. Let the assumptions of Theorem 3.1 hold. Then for k =1 — K, we have that

2

173
—/ %—l{ dt < JHU*) — J"(Q4u’) + C [ At + h?], (3.14)
0 -1
where J* : 8* — R is defined by
1
T = 3 Il - 5 (A0t Vxe st (3.15)

Proof. Choosing x = U™ in (3.5) with k =m — 1 if m>2 and x = U* — U° in (3.9), noting (2.10, 3.15) yields
for m =1 — K that

Jh(Um—l) _ Jh(Um) + %lUm _ Um—l|%

R Um—‘l . Um*2 U’ITL _ Um—l h 1 —
<At (G’z[ A ] N ) + S A amax| U™ — U™ (3.16)

It follows from (1.39b, 1.44, 1.45, 3.8, 3.16) that for m =1 — K

h

R Um—l _ Um—2 U™ — Um—l
h m~1y _ yh my h 2
JHU™ ) — JMU™) < At (gL{ e ] N ) + C(AL)2. (3.17)
Noting (1.38, 2.10, 3.17) we have for m = 1 — K that
Um _ Um—l 2
_ At‘ = - + .]h(Um_l) _ Jh(Um)
At —h,h
m—1 _ yrm—212 m _ yrm—1 2
<ol [T T | re@er e
2 _ At —hh At —hh

Summing (3.18) and noting (3.12), then yields for ¥ = 1 — K that

2 2

tr 0 _ -1
—/ ou dt — J"U*) + JHQhu®) < a2V +CAt < CAt (3.19)
o |10t _pn 2 At “hh
The desired result (3.14) then follows from (3.19) on noting (1.18, 1.32, 1.34, 1.38, 1.41, 1.43, 3.8). O

Theorem 3.3. Let the assumptions (D2, A2) hold. Let U° = Q3u®. Then for all h < ho and for all At <
4v/(N2 o IL|) we have that

llw = OlLa0, 200 ) + 18 = Ul oo myan @y + At 1w = Ulldn oz @y < C [R2 +(A0°]. (3.20)

Proof. Using the notation (1.13a,b), (3.5) can be restated as:
Find U € HY(0,T; K",) such that U(-,0) = Q4u°(-) and for a.e. t € (0,T)

h
2 (YO, V(x— O + (gg"’a—‘j AT A, x— 0) 50 vVxek" (3.21)
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Weset e :==u—U, &:=u—U, e? := u— nwlu, e := 7hu — U and &" := n"u — U. Note that f e =
fettfet=0Ffée=Ffer+fe&"=0and et =3Fe"=3%&"=0. Forae. tec(0,T)we have that
&2 < (Ve,vel) + |e|; |le?]:. (3.22)
Introducing
At _ tk —t . q _
u2t(t) = AL t e (tk~1,tk1, k=1-K (3.23)
we have that
) pe U
e(,t) —e(,t) = Atp~'(t) — 5 (-, 1), t € (th—-1,k), k=1-—K. (3.24)

Tt follows from (2.10, 3.24) that

e .\ _ 1d, ., At de U
(gL 8t’e) = galels —Atu (gL at Bt
_1d LA L, ou -
= e e L SR e
Next we note that
~ wah Oe ~h ou ~h 5, OU "
v(Ve,Ver)+(Gr,&) = |v(Vu,Ve")+ (G-, &) | — |7(VU,Veé") + | G} -, &
ot ot ot
R ouU ouU ip OU G \" (4, 80U
h _ bl ~h _ il A h_ ~h L h__ ~h
+<(91 Gr) 6t’e> <gL 51 € )-l— (Q'L 8t’e) G t,e)jl. (3.26)

From (2.1), with 7 = U, and (2.4) it follows that

v(Vu,Vé")Jr(gL%%,é) < (Aut+Ae") - [v(Vu,Vet) - (Au+ A, e?)]

= (Au+Xe") —[(—yAu— Au— A et)]. (3.27)

Choosing x = mu in (3.21) yields that

h
fy(vr‘J,Véh)Jr(g’ga;t] *h> > (AU + A, &M (3.28)
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Combining (3.22, 3.25-3.28) and noting (1.32, 1.34, 1.35, 1.41, 1.43), a Young’s inequality, (1.18, 3.24) and that
(A—A,é) =0 yields

At A,
2

%2

1d
vleft + 5 llel”, + o

2dt

"o + (A&, &™)
-1

1oU . [ . OU
<c lHUHz - ];—t| = w] oo + 1(9L S|
1 -1

+[(Af],éh)—(AU,é"')h]—(A—A,e )+ Ch? ;Q %—gi e,
| 1
At A, || 8wl aU ||? oA
+ 24 {— |5 | e
1, U R R
Sovef+C|llullz+ || 5| +IAI+[Ulo+ Al | le*]o
2 ot ||_,
A At
2 el [ [ | At
+ChHat 1+|}UII1} e+ 2w [ Hat, }
+ Clle|l®; + (At)? || == +|eA|§]. (3.29)
-1

Integrating (3.29), and noting that e(-,0) = (I—Q%)u°(-), U /dt is constant over (tx_1, ), (1.19, 2.4, 3.3a, 3.7)
yields that for k =1— K
dt
-1

ti
< 1T - @)%, +/0 {C”e“%—l + At

| Oe

tr
e(-, )2 + 2 4
.!e(>tk)|,¥1+/0 [ﬂel At pit B

a_uz
ot

-1
2

. ot

BIE

+ U1l L2070 ) } ™22 0,7, 1 (2))

ou
+ C [”eAH%z(O,T;Hl(Q)) + (At)? H

L2(0,T;(HY(Q)) )}
+ Ch?[

oU
ot

L2(0,T;H' ()
I oU

+ C [|i“HL2(0TH‘2(Q)) + 5

+ M 20y + 101 L2y
L2(0,T;(H*(2))")

+ ||A||L2(0,T)}||eA||L2(QT)

< /tk {C llel|2, + At

Setting @(-,t) := u(-,t + At/2) and defining & := @ — U, it follows in an analogous manner to (3.30) that for
k=1—-K

|
ot

@-2
ot

1
2

} } dt+C [h® + (A1)?].  (3.30)

-1 -1

oe |2

ail @ <0l +C 12 + (A1)

tr
+/ { Clal, + At [um
0

th
le( te)l12, + At / ot

-1

) (3.31)
] } dt. '
—1

ou|® 1)U
atl_, 21 ot
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Next we note for k =1 — K that

2 ti At ou 2
At _ = hbalr )
o [ 2)“615(’”_

1 At ||ou
_ Aty T2 7.
A & (t 9 ) H It ( ,t)

[ |G

2

dt,
-1

et 1 At || Ou
dt + / paHt = =) ”—(-,t)
. . 2 ||t

dt

(3.32)

where ¢, 1 = 1(tk +thy1), k=0 — K, and p24(t) := p2t(t + At) for t € (—At,0]. Noting for ¢ € [0, 7] that

1
B0 =) = 5 ¥ ),
S
(2.4, 2.5) we have that
i At |low, |
At t Att—— ou
/0 [u @ +u =) |56 _1dt
tr au 2 2k mzAt N 1 8u 5
N ot 2 () 5| |5 dt
[J | ot ._1dt+ﬁ;/ﬂm——;w [“ “ 2] H@t(’t) »
te || Hu ||? At F [ Ou, (m—1)At du  mAt
< 2b Ou, (m-1)At ., |ou
<[ FL e X 156 O - e )
tr 8'[1, 2
< = At.
/0 o), ¢+C

Furthermore as u®(t) > 1/2 for t € (tm_l,tm_%], m =1 — K, it follows that

2

dt.

-1

e tr de
= t < At At 2=
at| ¢ /0 B o

2
-1

k t
At m-3
m=1Ytm-1

Similarly to (3.35), on noting that U /3t is constant on (tm-1,tm), m = 1 — K, we have that

2 tr
-1 0

2 2

oe
Bt

Oe
ot

oe
ot

1 Gn [tm-d
a < 33
m=1

tm—l

1 &y [tm
3>/
m=1 tm—% —1 -1

dt.

(3.33)

+ CAt

(3.34)

(3.35)

(3.36)
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Combining (2.4, 3.3a, 3.30-3.32, 3.34-3.36) yields for £k = 1 — K that
b At ?
e )l + )1 + [ [vl et + 5 ]dt
-1
At : . b _
<2ul, ) —w, 0)12, + 217 - Q3)u(,0)12, + 0/0 (el + 12l ] at
e At 0w, | U 2
At(py 4 Aty 2 bttt — | ==( dt
e | [[u @ +ue- 500 |Geen| - |G|
t o1 2
+ At / “b ey B ”a—“(‘,t) dt + C[h2 + (At
b 2 ot
t e ||| ou| au ||I” ;
<C/ [llell>, + l&)|?, ] dt+At/ H— - “— dt + C [r% + (At)?] .
0 ) - 0 at 1 3t _
We now bound the second integral on the right-hand side of (3.37). Combining (2.12, 3.14) we have for
k=1— K that

NI

From (1.18, 1.20, 2.8, 3.15) and (D2) it follows that

de
ot

1 (3.37)

‘| ot dt < JMU*) = J(u(, te)) — J*(Qhu®) + J(u®) + C [At + h?]. (3.38)

-1

|J(u®) — JM(Qhu®)| < Ch. (3.39)

From (1.18, 1.19, 2.4, 2.8, 3.15) it follows for k =1 — K that

|J(u(,t)) — J* (7 (-, t))] < Ch. (3.40)
It follows from (1.17, 1.19, 1.25, 1.31, 1.44, 1.45, 2.4, 2.10, 3.5, 3.8, 3.15) and a Young’s inequality that for
k=1— K and for all @ > 0

THU) = Tl ) < = [7(TU, D)) = (AU*, ()" | + 5 Aamaxle®(,t0) 2

h
Uk Uk—l
< gL(T)+Ak:eh('atk)) +C|eh('7tk)|(2)

k_ prk—1
<c ”EZL (1T = £ YeAC ti)ll-1 + e, el ]

-1

At

C [IAFIeAC ta)lo + leC,te)lE + e (- )13 |
<a(At) el te)|*, + C [At + h?]. (3.41)
Combining (3.37-3.41) for « sufﬁciently small yields for k = 1 — K that

le(t)l2y + lIe(, te)i24 +/ [ e+ h
0

tr
] dt<C / [llell2; +llg]2,] dt + C [r? + (At)?] .
-1 0

(3.42)
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1r T T T — 1 i
Uy —
3 L by — | 3 L
4 u2 4
1 1
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1 1]
4 4
0 : L 0 1
1 1 3 1
0 1 2 1 10 2

FIGURE 1. u(-,t) for t =0 and 0.15.

Next we note for k = 1 — K that

tr k tm 2
[ leiae< > [ [ue el [ —dsn-l] at
0 m=1 tm~l tm. -1
¢ 2
Z/ (/ 1—ell_1ds> dt
tm—1 tm-1 s

k—1
<2At D el tm)]%, +2
=0

m: m=1
“ de
<28t Y leltm)ly +2(807 [T IZI (3.43)
m=0 0
The desired result (3.20) then follows from combining (3.42, 3.43) and a similar bound with e replaced by &,
applying a discrete Gronwall incquality and noting {1.32, 2.4, 3.8). O

4. NUMERICAL EXPERIMENT
We chose N = 3,

2/3 —1/3 —1/3 01 1
-1/3  2/3 -1/3] and A=-[1 0 1 (4.1)
-1/3 -1/3  2/3 110

We note that the eigenvalues of L and A are respectively 0, 1, 1 and —2, 1, 1.

As no exact time dependent solution to (P) is known with a free boundary, a comparison between the solutions
of (P™A%) on a coarse mesh, U, with that on a fine mesh, u, was made. The data used in the experiment on
the coarse meshes were Q = (0,1), v = 0.005, T = 0.15, At = 0.16h and h = 1/(M — 1) where M = 2P + 1
(p=5,6,7,8). The data were the same for the fine mesh except that M = 21! + 1.

AS Admax = 1 and ||L|| = 1 the condition in Theorem 3.3 on At is that At < 4y = 0.02. The initial data u® was
taken to be the clamped (complete) cubic spline with »{ taking the values {s, s, s, s/2,s/128,s/4,5/2,s/2,5/2}
at the equally spaced points /8, i = 0 — 8; ud(z) = ul(1 — z) and ul(z) = 1 — uf(z) — u3(z). In the above we
chose s = 1024/1779, so that f ul ~ 1/3, n = 1 — 3; see Figure 1, where we plot u(-,0) and u(-,0.15). Note
that u® € H*(Q)\ H*(Q), 0u®/dv = 0 and u° > §1 for § = 1.04 x 103, Hence u® satisfies the assumptions
(D2). This choice of initial data also ensured that there was a free boundary for U on all of the coarse meshes.
In addition for all choices of h, the discrete initial data Qhu® satisfied (3.3b).

We used the iterative method discussed in [2] to solve for U* at each time level in (P™%%) with the same
stopping criterion: maximum difference of the successive iterates was less than 1077,
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We computed the quantity

| X 1/2
Gui= | g 2 Imhun(, kAL ~ UROR: n=1,23
k=1

and obtained the following table of values to three significant figures:

M 33 65 129 257

2 224x107% 345x10™* 7.22x107° 1.70 x 107°
2 224x107% 345x107% 7.22x107° 1.70 x 107°
2 775x107% 227x107% 4.68x 1075 1.11x 1075
IClI? 5.26 x 1073 9.18 x 107% 1.91 x 10~* 4.51 x 1075.

We see that the ratio of consecutive ||¢||? is approximately 5.7, 4.8 and 4.2 which are around 4.0, the rate of
convergence proved in Theorem 3.3.
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