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ON THE DERIVATION OF HOMOGENEOUS
HYDROSTATIC EQUATIONS

EMMANUEL GRENIER1

Abstract. In this paper we study the dérivation of homogeneous hydrostatic équations starting from
2D Euler équations, following for instance [2,9]. We give a convergence resuit for convex profiles and
a divergence resuit for a particular inflexion profile.
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1. INTRODUCTION

We will consider the following classical homogeneous hydrostatic model

dtui 4- uidxux -h u2dyu1 + dxp = 0, (1)

dxux -h dyu2 = 0, (2)

dyp = -gp, (3)

u2 = 0 on ôfi (4)

where n is the outer normal of £î = T x [0,1]. We moreover assume that g and p are given constants, independent
on t and x, such that up to a slight change in the définition of the pressure, (3) can be replaced by

dyP = 0. . (5)

The word "homogeneous" refers to the fact that p is a constant in the domain. The case fi = Mx[0, l ] is similar
and can be treated using the same methods. This System has been investigated in [2] where local existence of
solutions under a convexity assumption is in particular proved. Namely

Theorem 1.1 ([2]). Let s > 5, and let (u^u®) G Hs(ft) be a given divergence free vector field, tangent to dftj
with JQU±=0 (which can always been assumed up to a change of variables). Let us assume moreover that
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for some &o > 0, and that there exists a constant k such that

dyV%(xy0) = k and dyu\{x, 1) = fc + 1 Vx. (7)

Then there exists T > 0 and a solution (ui(tJxJy)7u2(tyxJy)) of (1, 2, 4, 5) on [0,T[, with initial data (u^u^),
such that, for every V < T, (uuu2) G L°°([0,T%Hs{tt)).

As in [2,3], and following [9] we consider System (1, 2, 4, 5) as a "geometrical limit" of the incompressible
Euler équations in a thin domain. More precisely we consider

dtu\ + u\dxu\ H- u£
2dyul + dxp

£ = 0, (8)

dtu% + u\dxu% + u\dvu\ + dyp
£ = 0, (9)

dxu\ + dyu
£

2 = 0, (10)

u\ = 0 on an (ii)

in Çle = T x [0,e]. The usual change of vélo city ü\{t,x,y) = u\(t,x,ey), û^it^x^y) ~ e~1u£
](tiX,ey) leads to

(after dropping the tildes)

u\dxul + u|öyuf + ö^p£ = 0, (12)

e2 (dtu
£
2 + u\dxu% + w|ôyu|) + dyp

£ = 0, (13)

ö^uf + dyu
£
2 = 0, (14)

u£
2 - 0 on an (15)

in fi = T x [0,1]. Formally as e > 0 goes to 0, Systems (12-15) goes to (1, 2, 4, 5). However to prove that
solutions of (12-15) converge to solutions of (1, 2, 4, 5) is not straightforward and appears to be false in some
cases. This problem is deeply iinked to stability properties of time independent shear layers fiows. It is wcli
known since Lord Rayleigh [10] that the stability of such flows dépends on the présence of inflexion points in
the tangential velocity profile. Roughly speaking, shear layers (u(y),0) are stable if u is convex and may be
instable if u has an inflexion point. Stability has rigorously been proved by Arnold [1] for gênerai 2D time
independent flow using Lyapounov and Hamiltonian techniques and more recently investigated in the time
dependent case in [6,7], using a direct energy approach. In this paper we use energy methods derived from [6,7]
(see in particular [7] for the link with the work of Arnold) to prove the following convergence resuit

Theorem 1.2. Under the assumptions of Theorem 1.1, for every e > 0, there exists T£ > 0 and a solution
(ul(t,x,y),u£

2(t,x,y)) of (12-15) on[0,T£[, with initial data (u^u^). Moreover for every V <T,T£ > T' for e
small enough, and (uf ,tx|) are uniformly bounded in Loo([0,T/], Hs'(SI)) with respect to e (for e small enough),
for some sf < s. Last, for every Tf <T, as e -> 0,

(ulu£
2) ^ (uuu2) in L~([0,T'[,fTa'(fi)). (16)

This theorem justifies in particular completely the formai limit, under the convexity assumption (6).
When there is an inflexion point in the velocity profile, the convergence may not hold. For the sake of

completeness we recall the following Theorem, proved in [8] using techniques of [6].

Theorem 1.3. For every s and N arbitrarily large, there exists a time independent smooth solution (u(y),0)
of (1, 2, 4> 5), a constant ao > 0, a séquence of Urnes T£ with lim£_^o T£ = 0, and smooth solutions
(ul(tix,y)iU2(t,x,y)) of (12-15) such that

,y)) - (u(y)70)\\HaÇ£x[Qil]) < eN (17)
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and

\\{u\(T^x,y),ue
2{T£,x,y)) - (u(y), 0)||Loo(Tx[0îl]) > aQ (18)

and

0 ) 1 ] ) > <r0. (19)

Such séquences of solutions of (12-15) does not converge to the formai limit system (1,2,4,5) in sup-norm, even
for short time. An example of such a profile u(y) is given in [6]. It has of course an inflexion point in it. The
theorem is in f act, up to time and space rescalings, a nonlinear instability theorem. We refer to [4,5] for another
approach.

2. PROOF OF THE CONVERGENCE THEOREM

Notice that usual energy estimâtes on (12-15) lead to control ƒ |nf |2 +e 2 ƒ |w||2 which appears to be unsufn-
cient in the limit e —• 0 since we lose any control on ƒ |u||2. The main difficulty is therefore to obtain estimâtes
on the linearized version of (12=15) which are uniform in e. Once we get such estimâtes, it is routine work to
prove a convergence theorem like Theorem 1.2. Therefore we will focus on the construction of such a norm in
Section 2.2, on higher order derivatives in Section 2.3 and only sketch the end of the proof of Theorem 1.2.

2.1. Preliminaries

Let u£ = (^i,u|) and u = (u,v). Let us introducé the vorticity LÜ£ and the stream function \£e of u\ and u\
after rescaling. System (12-15) is equivalent to (20-23)

ötu;£ + (u£.V)u;£ = 0, (20)

u£ = V - 1 ^ , (21)

e2d2
xx^+d2

yy^ = u^ (22)

^ = 0 for y = 0,1. (23)

Notice that a priori we only get that 1$f£ is constant on y — 0 and y = 1 and equals some time dependent
constants Co and C\. However, up to the addition of a constant to ty£ we can assume Co = 0, and up to a
Galilean change of variables we can assume

f
JTx[0

ul=0, (24)

which leads then to C\ — 0. Hence as (24) is an assumption of Theorem 1.2 we can assume (23).
We also remark that the limit system (1,2,4,5) can be rewritten (under the same assumption (24))

dttJ + (u.V)u; = 0, (25)

u = V x ^ , (26)

for y = 0 ,1 . (28)
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2.2. Weigh ted e s t imâ te s

Let us first prove uniform estimâtes on the linearized version of (20-23) in (v£, #e), where ve = (vf, vÇ):

dt0
£ + (ue.V)<9£ + (v £ .VK = 0, (29)

v£ = V- 1 ^ , (30)

$ e = 0 for y = 0,1. (32)

Following the strategy of [6,7] we introducé

(7V£)2(v, 0) = ƒ \Vl\
2 + e2!^!2 + <f|0|2, (33)

where g£ will be chosen carefully. Notice that this energy is deeply linked to Arnold's approach of stability for
stationary flows.

Lemma 2.1. Let us assume that there exists g£ and a constant ü such that

(Hl1) |ö t3
£| + |V5

£ .Vx*£ |<C5
e ,

(ff2') \gedxA£*
s - dx*

s\ + e" V d i A t f * - dy*
s - ü\ < Cy/g

for some constant C independent on e, then there exists a constant Co independent on e such that every solution
(v£,<$>£) of (29-32) satisfies

dtN
£ < C0N

e. (34)

Proof, Let us drop all the e indices. We have

2Q ) ,

where q is some linearized pressure and

dtA£$ + (VJ-*.V)A£$ + (VJ-$.V)A£^ = 0.

First

-\dtJg\O\2 = ƒ^A^(V±*.

= J i+7 2 +/3 .

The first right-hand side term equals

which is bounded by CN2 using (Hl'). Similarly, |/3| < CN2 by (Hl'). On the other side,

-\dt f \vi\2 + e2\v2\
2 = f V^(VJ-*.V)V^$ + V ^ ( V ± $ . V ) V ^ = h
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We have

h = ƒ ( V ^ . V ) ^ ^ = o

since V±^ is divergence free. Next

9&e$vidxA£y + / gA£<$>v2dyA€y

f Ae$Vx$Vtf + f A£$vi(gdxA£ty - dx^) + f A£^v2(gdyA£^ - 0y# - û) + f

since
/ = 0.I'

The last two terms are bounded by CN2 using (H2') and the first intégral equals

which cancels with /5 , which ends the proof. •

It is then easy to check the following lemma

Lemma 2.2. Let us assume that \te and dt^
£ are bounded séquences of Loo([0,T] ïiJ

s) with s > 5. Let us
assume that there exists two constants ü and C± > 0 such that

Ci < dy^£ 4- ü, Cf1 < -*-—~~- < Ci

for every x,y, 0 <t <T and every 0 < e < 1. T/ien

satisfies (Hl7) and (H2').

2.3. Higher order estimâtes

Let us define for s > 1,

with the convention NQ = N£.

Lemma 2.3. Let us assume that there exists constants CŒip such that

||d^ue||Loo(n) < Ca,p (35)

for 0 < e < 1. T/ien i/iere exists a constant Cs independent on e such that every solution (v£, 3>e) o/ (29-32)
satisfies



970 E. GRENIER

Proof. Notice, using the divergence free condition, that \\d^d^vi\\L2 < CNa+^^±. However we only get
fa < Ce-lNotjr^1. We have for a + j3 > 1,

where

n - -
a'<atP'</3tl<at'+0'<a+/3

Notice that ƒ d^d^0(u.V)d^d^0 vanishes. Moreover by a crude bound,

which ends the proof of the lemma.

2.4. End of the proof

We will only sketch the end of the proof since the following arguments have been developed and written down
with full details in nearby contexts elsewhere [6,7].

The next step is to prove a lemma like Lemma 2.3 for the following nonlinear équation

dt0
£ + (ue.V)0e + (ve.V)w£ + (v£.V)6>£ - 1¥ (36)

where 1Z£ is a given source term, which is a straightforward adaptation of the former proof.
We then construct an approximate solution of (12,13,14,15) starthig froni a solution of the limit System,

which is easy but lengthly. The last step of the proof is to use the bounds on the nonlinear équation (36) on
the différence between the true solution and the approximate one.

The author would like to thank Y. Brenier for many interesting discussions.
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