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HOMOGENIZATION OF A MONOTONE PROBLEM
IN A DOMAIN WITH OSCILLATING BOUNDARY

DOMINIQUE BLANCHARD!, LUCIANO CARBONE? AND ANTONIO GAUDIELLO?

Abstract. We study the asymptotic behaviour of the following nonlinear problem:

~div(a(Duw)) + [un|P 2un = f in Qp,
a{Dup)-v=20 on 9,

in a domain Q of R™ whose boundary 992, contains an oscillating part with respect to A when h tends
to co. The oscillating boundary is defined by a set of cylinders with axis Oz, that are h™*-periodically
distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary
identifies with a diffusion operator with respect to =, coupled with an algebraic problem for the limit
fluxes.

Résumé. Nous étudions le comportement asymptotique du probléme non linéaire monotone

—div(a(Dun)) + |un|P"2ur = f  dans Q,
a(Dup) v =20 sur 9,

posé sur un ouvert €2, de R™ dont une partie de la frontiére oscille avec h lorsque A tend vers co. Cette
partie oscillante est constituée d’un ensemble de cylindres d’axe Oz, distribués avec la période h™1.
Nous démontrons que dans le domaine correspondant & la partie oscillante, le probléme limite couple
un probléme de diffusion en z, et un probléme algébrique pour les flux limites.
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INTRODUCTION

In this paper we study the asymptotic behaviour, as h (€ N) diverges, of a monotone problem defined in a
domain 2, of R™ (n > 2), whose boundary contains an oscillating part depending on h.

The domain €, is composed of two parts: a fixed part Q~, which is a parallelepiped with sides parallel to
the coordinate planes, and a part Q,‘: that varies with h.
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FIGURE 1.

The set QZ is defined as follows: let Cj, be a cylinder rescaled from a fixed one C by a h~l-homothety in the
first n — 1 variables. Then QI is the union of such cylinders distributed with A~*-periodicity in the first n —1
directions Z1,- -+ ,Zn_1. The lower bases of these cylinders lie on the upper side ¥ of 2~ (see Figs. 1 and 2
for the case n = 2 and n = 3 respectively). Observe that the volume of the material included in Q) does not
converge to zero as h tends to +o0.

We study the asymptotic behaviour of the solution up, as h diverges, of the following Neumann problem:

—div(a(Dup)) + lup/P"2up = f  in Qp, (0.1)
a(Dup) -v =20 on 9, '
where p is a given number in |1, +oo[, f a given function in L71(Q), a = (a1, - ,an) a monotone continuous

function from R” to R™ satisfying usual growth conditions (see (1.2, 1.3)) and v denotes the exterior unit normal
to Qh-
We denote by Q1 the smallest parallelepiped containing the sets Q;{ for every h and set Q = QT UQ UX

(see Fig. 3). Moreover, we denote by up and é;;;; /0z; the zero extension to {2 of uj and Oup, [Ox; respectively.
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In a nutshell, we prove the existence of a function u in LP(Q) N W1P(Q2~) with derivative with respect to z,,
in LP(Q*) and of n — 1 functions (dy,- - ,dp-1) in (LP(2F))"~! such that

up — |wlu weakly in LP(Q1),
dup, ,  Ou

TUh 1 2% Kly in LP(Q*
B, 1w|awn weakly in LP(QT),
up —u weakly in WP (27),

as h diverges,

i di dn-1 Ou) Ou
1 D D L p = nml\ 7T (2 ) P d
Jim [ (@(Dun)Dun + ) do = o /m (@ (le ) e ) de
+ / (a(Du)Du + |ul?) dz
a-
and (u,d1,--- ,dn—1) is a weak solution of the following problem:
dl d’n~1 ou _ .
—%an (m: ’W’£> +|u|p 2U=f n Q+a
n
—div(a(Du)) + |[ulP2u= f inQ-,
; X d1 dn—l 6u+ -
T =y N —_— e —_— = an D - E,
U u o, I“‘)|an <1LU|, ) |(U| aawn a ( u ) on
an, ﬂ, e fdn—d, ?i =0 on the upper boundary of €2,
ol wl * Oz
a(Du)-v=0 on 0N~ — %,
o (& .. a1 0w inQF, Vicl,.,n—1,
|w] w| * Ozn
where u~ (resp. u*) denotes the restriction of u to Q= (resp. Q%) and |w| denotes the (n — 1)-dimensional
Lebesgue-measure of the section {(z1, -+ ,z,) € C : z, = 0} of the reference cylinder C (see Th. 1.2 and
Cor. 1.3).

The limit behaviour of problem (0.1) with a(§) = ¢ is studied by Brizzi and Chalot in [5, 6] and, with a
non-homogeneous Neumann boundary condition, by Gaudiello in [16]

J
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The limit behaviour of problem (0.1) with a(£) = [£|P72¢, pin (2, +oc], is also obtained, using a few arguments
of I'-convergence, by Corbo Esposito, Donato, Gaudiello and Picard in [8].

In the context of the asymptotic behaviour of thin plates or cylinders, similar limit problems are obtained
in [19, 20].

The goal of the present paper is to achieve the limit process in (0.1) through usual monotonicity methods.

For general references about homogenization, we refer to [2-4, 11, 24]. For the homogenization of quasilinear
operators in other periodic frameworks, we refer to [10, 15] for the case of a fixed domain, to [1, 9, 14] for
the case of periodically perforated domains and to [7] for reinforcement problems by a layer with oscillating
thickness. ,

If the Neumann boundary condition in Problem (0.1) is replaced by the homogeneous Dirichlet condition
up = 0 on AN, performing the limit process, as h diverges, becomes an easier task that is left to the reader
(see e.g. [5, 13, 18, 21-23] for similar problems). In this case the limit problem reads as

u € WyP(9),
u=20 in Qt,
~div(a(Du)) + |u|P2u = f in Q.

As far as this Dirichlet problem is concerned, the lower order term |uy|P~2u;, may be removed in the whole
analysis. By contrast, this term is in general necessary for the Neumann problem in order to derive an estimate
on ||unllzr(q,) (p > 1) independent of h, unless one has a Poincaré -Wirtinger inequality with a constant
independent of h in WP(Q},). This is still an open problem.

1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let 21, z2 bein |0, +00[, w an open smooth subset of R®~! such that w CC]0,1[*"* (n > 2). Let us introduce
the following domains in R":
[ =]0,1[®
Q= =]0,1[* " x] — 2,0[, QF =]0,1[*1x]0, 2],
z :]0> 1[n—1 X{0}7

Qp =07 U (UkeJh (%w + %k> X [0,zz[> h €N, (1.1)

Jh={k=(ki,  kn-1) €EN""! : 0<k;<h-1,i=1,--- ,n—1}
QF=0tNQ, heN

The generic point of R™ will be denoted by z = (21, - , Tn-1,Zn)-

Let p be a given number in |1, +oo[, f a given function in L#71(Q) and @ = (a1, - ,a,) a monotone
continuous function from R™ to R” satisfying the following conditions:

da €]0, +o0[: ¢ < a(£)¢ V¢ € R™, (1.2)
38,7 €]0, +o0[: [a(§)| < B+AEPH VEER™ (1.3)
Let us consider the following Neumann problem:

—div(a(Dun)) + [unP~?un = f  in Qu, (1.4)
a(Dup) v =0 on OS2y, )
where v denotes the exterior unit normal to Q5. It is well known (see [17]) that problem (1.4) admits a unique

weak solution uy in W1hP(Qy).
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Our aim is to study the asymptotic behaviour of uy, as h diverges.

We recall that a function of LP(Q") with derivative with respect to z, in LP(Q*1) admits a trace on .

Consequently, we introduce the space

ov

VP(Q) = {v € LP() : ve WHP(Q7), 3o € LP(Q7), v~ =v~ on E}, (1.5)

where v~ (resp. v") denotes the restriction of v to Q= (resp. %), provided with the norm:

(Y

0
Ozn,

lollvay = Iollwangs + ol s, + H
1 Lp(Q+)

We refer to Proposition 4.1 of (8] for the following properties of V?(Q):

v e VP(Q).

Proposition 1.1. V?(Q) is a Banach space and W'P(Q) is dense in VP(Q) with continuous injection.

Moreover, we recall that

Xof = lw| in L>®(Q1) weak *,

(1.6)

where |w| denotes the (n — 1)-dimensional Lebesgue measure of w and x4 denotes the characteristic function of

a set A.

In the sequel, ¥ or [v]” denotes the zero-extension to Q of any (vector) function v defined on a subset of €.

The main result of this paper is given in the following theorem:

Theorem 1.2. Let up, h in N, be the weak solution of problem (1.4) and VP(Q) the space defined in (1.5).

Then, there exists u in VP(Q) such that

up — |wlu weakly in LP(Q7),
Oup, ou

el NP S klv in LP(Q+
B, lwlamn weakly in LP(Q7),
up = U weakly in WhP(Q7);

an increasing sequence of positive integer numbers, still denoted by {h}ren, and (dy, - - -

depending possibly on the selected subsequence, such that

(1.7)

ydn—1) in (LP(QFT))n—1,

?,;;h —d; weakly in LP(QY), Vie {l,---,n—1}, (1.8)
k3
as h diverges, where (u,dy,-- ,dn—1) is a weak solution of the following problem:
0 d1 dn~_1 Ou p—2, _ . +
8xnan <|w|) ) |w| ) 8$n + IUII u = f m Q )
—div(a(Duw)) + |[ulP2u = f in Q~,
+
ut=u", |wlan <ﬂ, e ,M, al) = an(Du") on X,
a ﬂ dn_—l_@_ — ]0 1[n—1x{ } .
n |(4.)|’ ) lwl 3 63)7—,, - on ) 221,
a(Du)-v =10 on 0N~ — %,
a; ﬂ,...,M,% -0 inQ+*, Viel, - ,n—1
lw| lw| " Ozn
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and the function u in VP(Q) satisfying problem (1.9) is unique.
Moreover, the energies converge in the sense that:

lim (a(Dup)Dup, + |up|P) dz

h—+4o0 Jo,
— | dnoa Ou ) Ou P / P
- |w|/ﬂ+(an (lw’ e ,&Cn) 5o+ UM dz [ (a(Du)Du+fup) ds
= [ (o +xa-) fuda.
(1.10)

If a is monotone, there is a unique function « in V?(Q) satisfying problem (1.9) (see Step 10 of Sect. 2). Moreover,
if a is strictly monotone, problem (1.9) admits a unique solution (u,ds, -+ ,dp—1) in VP(£2) x (LP(Q7))" ! (see
Step 11 of Sect. 2). Consequently, convergence (1.8) holds for the whole sequence {up}, .y and Theorem 1.2
yields the following result:

Corollary 1.3. Let up, h in N, be the weak solution of problem (1.4) with a strictly monotone and VP(2) the
space defined in (1.5). Then,

( |wlu weakly in LP(QF),
our, ou
_— —_— i P +
amn le axn Weakly in L (Q )1
3? ~d weakly in LP(Q*), Vie{l,---,n—1},
un — u weakly in W1P(Q™),

as h diverges, where (u,d1,- -+ ,d,—1) is the unique weak solution in VP(Q) x (LP(QF))"~1 of the problem (1.9).
Moreover, the convergence of the energies (1.10) holds.

Remark 1.4. In the case a(§) = £, Corollary 1.3 is proved in [5, 6] by making use of a method introduced by
Tartar in [25] (method of oscillating test functions).

The limit behaviour of problem (1.4) with a(§) = £ and with a non-homogeneous Neumann boundary
condition is studied in [16]. In this case, an additional term may appear in the limit equation.

In the case a(¢) = |£|P~2¢, with p in [2, +oo[, Corollary 1.3 is also proved in [8] by following a method

introduced by De Giorgi and Franzoni in [12] (I'-convergence). In this case it results
d=-=dy-1=0 ae inQ"

and limit problem (1.9) assumes the following formulation:

( p—2
0 ou ou )
" 9z < Ere %) + [uff~?u = f in QF,
n n n

—div(|Du|P~2Du) + |u[P~2u = f in Q7

: ut|P7? dut Au~

o — —|p—2-___
u u”,  |wl | 8xn! . |Du~| . on %,

Ou
6—167; =0 on ]0, 1["71X{22},
|Du|P~2Du v =0 on 90~ — . O
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The proof of Theorem 1.2 is performed in Section 2 with 12 steps. First, we give a priori norm-estimates for up,
|un|P~2up, and a(Duy). Then, by virtue of the partlcular shape of ;, and by making use of the method of the

oscillating test functions, we identify the limit of Duh in Q7 Quy / Oz, in O and [al(Duh)] s [an—1(Dup)]”
in Q*. Moreover, by a monotonicity argument, we 1dent1fy the limit of |un|P~2up in Q, [an(Duh)]” in QF,
a(Duy) in ©~ and obtain the last equation in (1.9). Finally, we pass to the limit in (1.4) and we conclude with
some results about the uniqueness of the solution of problem (1.9).

2. PROOF OF THE RESULTS
The pfoof of Theorem 1.2 will be performed in 12 steps.
Proof of Theorem 1.2. The variational formulation of problem (1.4) is given by
/ a(Dup)Dv + |up|P2upv dz = / fvdz Yve WhHP(Qy,),

Qpn Qp (2'1)
Up € Wl’p(Qh).

In the sequel, ¢ will denote any positive constant independent of A.

Step 1. A priori norm-estimate for up, |un|P~%un and a(Duy)

By choosing v = up, as test function in (2.1) and by making use of (1.2), it easily results

lunllwrr@,) <c VheN. (2.2)
From (2.2) it follows that
p—2
Hunl"*unll 2y g, S ¢ VR EN. (2.3)
Moreover, (1.3) and (2.2) provide that
Du »n<c VYhelN 2.4
oDl )" < (2.4)

By virtue of (2.2-2.4), there exists an increasing ‘sequence of positive integer numbers, still denoted by {h}ren,

win LP(Q), d = (d1, -+ ,dn) in (LP(Q))™, z in L5°1(Q) and p = (n1,-- , M) in (LP 1(9)) satisfying the
following convergences: :

up = |wluxa+ +uxaq-  weakly in LP(Q), (2.5)

Duy, —d weakly in (LP(Q))", (2.6)

|un (P~ 2up, — 2 weakly in L#°1 (£2), (2.7)
[a(Dup)]"—n weakly in (LF%T (Q))n , (2.8)

as h diverges. A priori u, d, z and 1 could depend on the selected subsequence.
In the sequel, {h},en will denote the previous selected subsequence of N.
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Step 2. Identification of d on Q™ and d, on QF
Convergences (2.5, 2.6) provide that

d=Du ae. inQ". (2.9)

Moreover, by following arguments identical to those used in Proposition 2.2 and Corollary 2.3 of [8], it is easy
to prove that

_ Ju . +
d, = \wiga; a.e. in (2.10)
and
u € VP(Q). (2.11)

Step 3. Identification of 1, -+ ,Mn_1 on QF
This step is devoted to the proof of

ni=0 ae inQY, Vie{l,---,n-1}. | (2.12)

For every i in {1,--- ,n — 1}, let {wﬁl} hen D€ @ sequence in WL (Q1) satisfying the following conditions:
wh — z;  strongly in L%°(Q") as h — +o0, (2.13)
Dwi, =0 ae inQ), VheNl. (2.14)

The existence of such sequences is proved in [8] Lemma 4.3.
By choosing v = pw}, and v = ¢z;, with ¢ in C§°(27), as test functions in (2.1), by virtue of (2.14) we
obtain

| (aDun) | Dgu, + @i *Trpui)do = [ (xap foui)da Vo € O2(@7), (2.15)
Q+ Q
[ (a(Dun D) + @i Tiped do = [ (xayfewdds VpeGE@),  (219)
J O+ a+
for any A in N and every 7 in {1,--- ,n — 1}.

By passing to the limit, as h diverges, in (2.15, 2.16), convergences (1.6, 2.7, 2.8, 2.13) provide that

/ (nDyx; + zpx;)dz = / lw|fozidz Vo e CR(QT), (2.17)
Q+ ot
/ (nD(¢z;) + zpz;) da = / lw|fezidz Vo € CP(OQT), (2.18)
Q+ a+
for every ¢ in {1,--- ,n —1}.

Statement (2.12) is obtained by subtracting (2.17) from (2.18).
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Step 4. Convergence of the energies

This step is devoted to the proof of

lim / (a(Duh)Duh—i—!uhP)dx:/ nn%dm—{—/ nDudz+/ zudz. (2.19)
h—-+o00 Qp Q+ 8$n - Q

By passing to the limit, as A diverges, in (2.1) with v in WP(2), by virtue of (1.6, 2.7, 2.8, 2.12) we obtain

/ nn—%dw+/ andzc-i—/zvdx:/ (lwlxa+ + xo-) fvdz Yo € WHP(Q). (2.20)
o+ Ozn - Q )

Since W1P(Q) is dense in VP(Q) (see Prop. 1.1), v = u can be chosen as test function in (2.20). Consequently

/ nnaa—udw—l—/ nDudm+/zud:r=/ (lwlxa+ + xo-) fudz. (2.21)
Qt - Q Q

Tn
On the other hand, by choosing v = uy, as test function in (2.1), by virtue of (2.5) we obtain
lim. a(Dup)Dup, + |[up|P dz = lim / fupdx = / [ (Jwluxa+ + uxa-) dz. (2.22)
h—+oo Qp h—+o00 Q Q
Convergence (2.19) is obtained by comparing (2.21) with (2.22).

Step 5. Monotone relation
This step is devoted to the proof of

.o (aa— - ) ~a(n@d=lw)de+ [ (-a@)Du=r)ds+ [ (2 lwlol ) (u-v)da

o+
+/ (z = wIP?v) (u—v)dz >0 Vre (LP(Q)", VveLP(Q), (2.23)
which will enable us to identify 1, z and to derive the equation satisfied by w in Q7.

Let 7 be in (LP(Q))" and v in LP($).
Since the functions a(¢) and |t[P~2t are monotone, we obtain

(a(Dun) — a(r)) (Dun — 7) + (JunlP%un — v[P7%0) (up —v) >0 ae. in Qn, VhEN,

from which it follows that

/ ({a(Duh)}'"m/h - [a(Dup)] T — a(T)m + a(T)Tx0,)dz
Q
+ / (@il — [P ~2ar0 — [o|P=2vir + [olPxe, ) de > 0 VAEN. (2.24)
Q

By passing to the limit, as h diverges, in (2.24) and by making use of (1.3, 1.6, 2.5-2.9, 2.12, 2.19), we obtain

P _

/ Mo dm+/ nDudm—/ NnTn da:—f anm—/ a(T)ddw—/ a(r)Dudz +/ |wla(r)T dz
o+ On - at Q- o+ Ja- aQ+

+/ a(r)rdm+/ zudm—/ z'udm—/ Iw||v|p'2vudw—/ lvip_QUUd$+/ [w||v|pdx+/ [v[P dz >0
Ja- Q Q at Q- af Q-
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and inequality (2.23) is proved.

Step 6. Identification of z in
This step is devoted to the proof of

z = |w||luP %y ae. in QF (2.25)
and
z=|uf%u ae. inQ". (2.26)
Let us remark that a typical nonlinear phenomenon occurs here: (2.7, 2.25) show that the LT)Z_I(Q'*') - weak
limit of |up|P~2up, is lw||u|P~2u and not, as expected, |w|P~ ! |u|P~2u.

By choosing 7 = I%IdX(ﬁ- + Duxqo- and v = (u — tp)xa+ + uxo-, with ¢t in (0,4+00) and ¢ in C§(Q"),
in (2.23) and by recalling (2.10), we obtain

/ (z — lw||lu — tolP~?(u — tp)) tpdz > 0 V¢ € (0,+00), Vo€ CP(QT). (2.27)
Q+

By dividing (2.27) by t and by passing to the limit as ¢ tends to zero, by virtue of the Lebesgue Theorem it
follows that

/ (z — Jw||[u|P~?u) pdz > 0 Ve € C§°(QT),

o+

which implies (2.25). Statement (2.26) can be proved in the same way, by choosing 7 = ﬁ—]dxg4. + Duxgq- and
v = uxo+ + (v — tw)xa-, with ¢ in (0, +00) and ¢ in C§*(27), in (2.23).

Step 7. Equation satisfied by d in Q™
This step is devoted to the proof of

( d1 dn. -1 0u
Qj

m,... ’W’aT) =0 ae inQ"Y, Vie{l, - ,n-—- 1}- (2.28)

By choosing 7 = (71, -+ , Th—1,0u/0zyn) X+ + Duxo- and v = u, with 7, , 7,1 in LP(Q*), in (2.23) and
by recalling (2.10), we obtain

. Z (s (o rnon ) - i) de> 0 V(n o) € (@)L @29)

Let ¢ be fixed in {1,--- ,n — 1}. By choosing

. _di—tp

T
‘ d; , .
Tj ZWJI VJE{I,,’)’L—I}*{Z},

with ¢ in (0, +oc0) and ¢ in C§°(Q71), in (2.29), we obtain

dy d; —ty dn—1 8u> :
i | Ty )t y 77— | tpdx >0 Vt € (0,+0), Vo e CP(QM). 2.30
/m <Iw| Jwl | 8z, ) ¥ ( ), V€ Cge(at) (2.30)
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By dividing (2.30) by ¢t and by passing to the limit as ¢ tends to zero, by virtue of the assumption on a and the
Lebesgue Theorem it follows that

dl dz' dn—l 0u>
Qi | =, e L 2 Y ode >0 Vg e C°(QT),
/m (w o] jwl 8z, ) ¢ e

which implies (2.28).

Step 8. Identification of n, in Q1 and n in QO
This step is devoted to the proof of

d1 dnﬁ]_ 8u . +
n = n P ) e y 2.31
N |wla <|w| ol 6xn> a.e. in Q (2.31)
and
n=a(Du) ae. inQ". (2.32)

d dnoy dy —tcp) xa+ + Duxq- and v = u, with ¢ in (0,+00) and ¢ in C§*(27),

ol Tl 2 Tw]

in (2.23) and by recalling (2.10), we obtain

By choosing 7 = (
/ NMn — G, ﬂ, ,iu,ﬁu——tcp |w| } tpdz >0 Vt € (0,+00), Ve e Ce(QT). (2.33)
o+ |w] |w| 7 Ozn

By dividing (2.33) by ¢ and by passing to the limit as ¢ tends to zero, by virtue of the assumption on @ and the
Lebesgue Theorem it follows that

dl dn—l au
mn — Un \ T o dz >0 v Cy° Q‘+)
.. (” @ <|w| ] amn>‘°"‘)“" 220 Veelean

which implies (2.31).
On the other hand, by choosing 7 = rj}‘ldXQ-{» + (Du — to)xq- and v = u, with ¢ in (0,40c0) and ¢ in
(Cg"(Q—))", in (2.23) and by recalling (2.10), it yields
/Q»_ (n—a(Du—tp))tpdz >0  Vte (0,4+00), VYpe (C&COQ))". (2.34)

By dividing (2.34) by t and by passing to the limit as ¢ tends to zero, by virtue of the assumption on a and the
Lebesgue Theorem it follows that

[ n-aDu)eds=0 vpe (cr@),

which implies (2.32).
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Step 9. Equation satisfied by u and d

By passing to the limit, as h diverges, in (2.1) with v in W1P(Q) and by making use of (1.6, 2.7, 2.8, 2.11,
2.12, 2.25, 2.26, 2.31, 2.32), it follows that

d dp—1 Ou) 0
/ |w|an (—1, e, _u) v dm+/ a(Du)Dvdx +/ |w!|u|P~?uv dz +/ lu[P~?yv dz
Q+ lw| lw| " 0zn ) Oz Q- o+ Q-

- / (lwlxas + xo-) fodz Yo € WY(Q), (u,dr,--- ,dn_1) € VP(R) x (LP(QF))"". (2.35)
Q

Since W1P(Q) is dense in V?(Q) (see Prop. 1.1), (2.35) implies that

/ lw|an (ﬂ, ,(—ig, 8_u> Qv dz +/ a(Du)Dvdz +/ |w||ulP~?uv dz +/ |u|P~?uv dz

0+ |CU| ICU| 6.1:,, axn Q- O+ Q-

/ (lwixas +xa-) fodz Yo € VP(Q), (u,di, - ,dno1) € VP(Q) x (LP(Q1))" . (2.36)
Q

Moreover, as proved in (2.28),

d1 dn—l 8u . .
N LN ,— ) =0 ae inQF, Vie{l,---,n—1}- 2.37
a; (|w| o] Bzvn> a.e. in 1€ n—1} (2.37)
Step 10. Uniqueness of u

This step is devoted to prove that there exists a unique function u in V?(2) satisfying problem (2.36, 2.37).

Let (u,dy,- - ,dn_1) and (%, dy, - ,dn_1) two solutions in V() x (LP(2+))""" of problem (2.36, 2.37).

By subtracting the equation satisfied by (@, dy, - ,dn_1) from the equation satisfied by (u,dy,--- ,dn_1),
we obtain

dl dn—l ou d_l dn—l ou ov _
/m w| (an (W Wﬁ) o <W W@Z» 5w—ndx+/g_ (a(Du) — a(D%)) Dv dz

+ / w| (JulP2u — [P~ *u) vdz + / (julP2u— (@’ *w) vdz =0 Vo € VP(Q) (2.38)
o+ Ja-

and

a; (dl Gn-1 Ou ) —a; (dl dn-1 a“) =0 ae inQt, Vie{l,--,n—1}- (2.39)

m,..., o] ’—&nn E’...’—lwl Y.

Equation (2.39) imply that
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By adding (2.40) to (2.38) with v = u — 7, it follows that

fo (o () o (B )

((ﬂ,...,@,ﬁ> (dl (A1 au))]dx+ [ (a(Du) - a(Dw) (Du - DB) do

o Tl Bmn) T\l el B
=2y — [@P%%) (u—T ulP" 2y — [alP%a) (u — =0. .
ol (w7 = 0) - ot [ (P ) (0 9) de =0, (241

Since a(¢) and |t|P~2t are monotone functions, (2.41) gives that
e o) @ F)
o+ Wl ] B w7 fw] B
dy dn-1 Ou 31_ dn—_1 3'17))
et ko R et S ) dz =0
<<|w|’ ol ’axn> (le’ Tl 0w )) |

(2.42)

and
/ (1ui”“2u — Iﬂ\”_zﬁ) (u —u) dz = 0. (2.43)
Q

Since [t|P~2¢ is strictly monotone, from (2.43) it follows that

u=1u a.e. in .

Step 11. Uniqueness of the solution of problem (2.36, 2.37) with a strictly monotone

This step is devoted to a proof that problem (2.36, 2.37) admits a unique solution, if a is strictly monotone.

Let (u,dy, - ,dn_1) and (@,dy,- - ,dn—1) two solutions in VP(Q) x (LP(17))™ ™" of problem (2.36, 2.37).
Step 10 provides that

u=71u a.e. in .
Moreover, if a is strictly monotone, from (2.42) it follows that
di=di, - ,dn_1 =dp_1 ae. inQT.
Step 12. Conclusion: End of proof of Theorem 1.2 and Corollary 1.3

First, let us observe that the particular shape of € provides that (see [6, 8])

dup, _ Ouy,
—=_— ae inQF, VheN. 2.44
9%, — e, a.e. in Q7 € (2.44)
Then, convergences (1.7, 1.8) follow from (2.5, 2.6, 2.9-2.11, 2.44).
The limit problem (1.9) is given (in a weak formulation) by (2.36, 2.37) of Step 9.
The convergence of the energies (1.10) is obtained by passing to the limit, as h diverges, in (2.1) with v = u
as test function, by making use of convergence (2.5) and by choosing v = u as test function in (2.36).
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The uniqueness of u proved in Step 10 implies that convergences (1.7, 1.10) are true for all the sequence
{un}en- The proof of Theorem 1.2 is complete. g

If a is strictly monotone, the uniqueness of the solution of problem (1.9) proved in Step 11 implies that
convergence (1.8) also holds true for the whole sequence {un}, . Corollary 1.3 is established. ]
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