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CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION
OF THE NAVIER-STOKES EQUATIONS
IN VORTICITY AND STREAM FUNCTION FORMULATION

MOHAMED AMARA! AND CHRISTINE BERNARDI?

Abstract. The standard discretization of the Stokes and Navier—Stokes equations in vorticity and
stream function formulation by affine finite elements is known for its bad convergence. We present here

a modified discretization, we prove that the convergence is improved and we establish a priori error
estimates.

Résumé. Il est bien connu que la discrétisation usuelle des équations de Stokes et de Navier—Stokes
en formulation tourbillon et fonction courant par éléments finis affines converge mal. Nous présentons

ici une discrétisation modifiée dont nous prouvons la meilleure convergence et nous établissons des
majorations d’erreur a priori.
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1. INTRODUCTION

When set in a two-dimensional bounded domain, the Stokes and Navier—Stokes equations admit an equivalent
variational formulation where the unknowns are the stream function and vorticity. The main interest of this
formulation is that only two scalar unknowns are involved instead of three, so that it could lead to very cheap
discretizations. However, even in the simplest case of the linear Stokes problem, the less expensive finite element
method, which relies on this formulation and the approximation by piecewise affine functions, presents poor
convergence properties. From a theoretical point of view, non optimal convergence results are proven with some
rather restrictive assumptions on the geometry and the mesh: they only hold in the case of a convex domain
provided with a uniformly regular family of triangulations. Moreover these properties are too weak to treat the
nonlinear Navier—Stokes equations. Numerical experiments confirm this lack of accuracy. A first improvement
of this technique is proposed by Amara and El Dabaghi 2], however it seems unsufficient for the extension to
the Navier—Stokes equations.

The aim of this paper is to present and analyze a modified version of the usual discretization by affine finite
elements, which improves its convergence properties. The key idea relies on the decomposition of the vorticity as
the sum of a harmonic part and another term which satisfies homogeneous Dirichlet boundary conditions. Such
a decomposition is involved in the well-known Glowinski and Pironneau algorithm [13] for solving the linear
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system which results from the discretization. And the modification consists in adding a further stabilization
term in the discrete problem, which, in contrast to [2], only concerns the harmonic part of the vorticity.
Working with this improvement, we are in a position to prove, for the Stokes problem, some quasi-optimal
error estimates, with much weaker restrictions than for the standard technique. The resulting convergence
property turns out to be sufficient to handle the convection term in the Navier—-Stokes equations thanks to
the theorem of Brezzi, Rappaz and Raviart [8]: we prove the same estimates for these equations without any
further limitation on the geometry. Finally, we extend the new discretization to the case of the mortar element
technique, with similar results, and we present analogous modifications of higher order discretizations that also
improve the error estimates.
An outline of the paper is as follows:
e In Section 2, we recall the stream function and vorticity formulation of the Stokes problem, we describe the
corresponding discrete problem and we check its well-posedness.
e In Section 3, we prove the convergence of the solution of the discrete problem towards the exact one,
together with a priori error estimates.
e In Section 4, we describe the analogous discrete problem for the nonlinear Navier—Stokes equations and we
prove that all the previous results still hold in this case.
e Section 5 is devoted to some further extensions: mortar element discretization, higher order discretizations.

2. THE STOKES CONTINUOUS AND DISCRETE PROBLEMS

Let 2 be a bounded two-dimensional domain with a Lipschitz-continuous boundary. For simplicity, we assume
that Q is simply-connected. In this section, we consider the Stokes problem:

—Au+gradp=f in §,
div u = 0 in Q, (2.1)
u=0 on 09,

where the unknowns are the velocity w and the pressure p. The data are a density of body forces f and, only
for simplicity, we take homogeneous boundary conditions on the velocity.

To write the vorticity and stream function formulation of this problem, we firstly observe that the divergence-
free constraint in (2.1) is equivalent to the existence of a (scalar) stream function % such that u = curl .
Also the nullity conditions on u on the boundary can be translated as nullity conditions on % and its normal
derivative Op%. Finally we introduce the vorticity w such that w = curl u. This leads to the system:

—Aw =curl f in £,
—-AY =w in Q, (2.2)
Y=0,v=0 on ON.

2.1. The continuous problem

Throughout this paper, we use the standard Sobolev spaces H*(0), s € R, on any two-dimensional domain
O with a Lipschitz boundary, and the analogous spaces on any part of its boundary 0. We also use the
non-Hilbertian Sobolev spaces W™ P(O) of integral order m, provided with their usual norms and seminorms.
We introduce the space that is needed for problem (2.2) (see [5]):

X ={0eL*Q); A0 H ()}, (2.3)

it is provided with the natural norm

1
10llx = (161220 + 12615 -10)) *,
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and we set: M = HLQ).
Now it is readily checked that, for any f in L?(2)?2, problem (2.2) admits the following equivalent variational
formulation: find a pair (w,v) in X x M such that
Vo e X, a(w,0)+b(0,¢)=0,

(2.4)
Voe M, blw,p)= —/ f.curl pdz,
Q

where the bilinear forms a(.,.) and b(.,.) are defined respectively on X x X and X x M by

a(w,@)z/ﬂazeda}, b(0, ) = (A, p),

the brackets (-,-) denoting the duality pairing between H () and H}(Q).

Problem (2.4) is of saddle-point type, so its numerical analysis relies on the following arguments (Section 1
of Chapter III in [12]): '
e the form a(.,.) is continuous on L?(2) x L?(€2) and elliptic on the kernel

V={0ecX; Ve M,b0p)=0}={0ecX; A0=0inQ};
e the form b(.,.) is continuous on X x M and satisfies the inf-sup condition, for a positive constant 3:

Vo e M, sup b(8, ¢) > Jo(curl ¢)?dz
oex [0llx el 22 ()

> Bl (a)-

So, for any data f in L?(2)2, it admits a unique solution which is the solution of problem (2.2).

The standard discretization of problem (2.2) is constructed by the Galerkin method applied to formula-
tion (2.4), see [11] and Section 2 of Chapter III in [12], however a well-known algorithm for solving the corre-
sponding discrete problem, due to Glowinski and Pironneau [13], relies on a decomposition of the vorticity w as
the sum of a harmonic part w* and a function w® with homogeneous boundary conditions. Since our discretiza-
tion also relies on this decomposition, we present the corresponding problem, which reads:

~Aw® = curl £ in Q,
vl O oy (25)
Yp=08,=0 and w®=0  on O0.
It admits the following uncoupled variational formulation: find a function w® in M such that
Vne M, bwn) =- /Q f.curl ndez, (2.6)
next: find a pair (w*,v) in X x M such that
Vo e X, a(w*,8)+b(8,%) = —a(w’, ), @7

Yo e M, bw*, ¢)=0.

Of course, by setting: w = w® +w*, we observe that problem (2.4) is completely equivalent to the system (2.6)—
(2.7). So, for any data f in L?(2)?, this system has a unique solution. This solution satisfies

lwllx + [¥la @) < cllfllzz@):- : (2.8)
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Moreover, since the function % is the solution of a biharmonic equation with homogeneous boundary data, it
follows from the standard regularity results (Theorem 7.3.2.1 of [14]) that it also satisfies

[Ylwray < cllFlize)e- (2.9)

Remark. In view of the discretization, it must be observed that for all functions 6 and n in H(f2), the form
b(-,-) can be written equivalently

b(6,n) = —/Qgrade - grad ndz,

so that problem (2.6) is a standard Dirichlet problem with homogeneous boundary conditions.
2.2. The discrete problem
To discretize problem (2.4) or (2.6)—(2.7), we now assume that  is a polygon and we introduce a regular

family (7x)s of triangulations of €2, in the sense that:

e each 7j, is the set of a finite number of triangles such that = Uger;, K, the intersection of two different
triangles being either empty or a corner or an edge of both triangles;

e for all triangles K in all 7}, the ratio of the diameter Ax of K to the diameter of the inscribed circle in K is
smaller than a positive constant ¢ independent of A.

We also denote by & the set of all edges of triangles in 7}, that are not contained in 052 and by h. the length
of each edge e in &,. As usual, h is the largest of the diameters hgx of triangles K in 7, and, in all that follows,
¢, ¢, ¢’ stand for generic constants which are independent of h.

Next we define the discrete spaces:

Xp = {0h € €°(0); VK € Th, Ok € P1(K)}, My, = X, N HF(Q), (2.10)

where P1 (K') denotes the space of affine functions on K. The space X}, is spanned by the Lagrange polynomials
associated with the corners of all triangles K in 7j,.
Qur modified discretization requires the introduction of new bilinear forms: for all functions wy, and 8, in X,

an(Wh,Or) = a(wn, 0n) + ap Ap(wn, ), with Ap(wp, ) = Z he / nwh) [OnOr] dT

ey

where [0),] denotes the jump of the normal derivative through the edge. Here, a, stands for a positive constant
which can depend on the triangulation 7y, its choice is made precise later on. Thus, for any data f in L2(Q2)?,
the discrete problem consists in three steps:

o firstly, find a function w9 in M} such that

Vnn € My, b(wl,nn) = —/ f.curl o, de, (2.11)
Q
e secondly, find a pair (W, ¥n) in Xn x My, such that

Vo, € X, ah(w,’;ﬁh) + b(eh,’l/)h) = —a(wg,eh),

- (2.12)
V‘Ph € Mp, b(wha<ph) =0,

e thirdly, set

wh = wh + w}. (2.13)
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Remark. Problem (2.11)—(2.13) coincides with the standard discretization when ay, is zero.

Remark. Another improved discretization was firstly proposed by Amara and El Dabaghi [2], where the
stabilization term concerns the full vorticity wp: it is built via the Galerkin method applied to formulation (2.4),
with a further term Ajp(wp,0r). We show later the advantages of the new formulation.

Problem (2.11) is the standard finite element discretization of problem (2.6), hence it is well-posed. Further-
more, since all norms on the finite-dimensional discrete space X} are equivalent, the form ap(-,-) is continuous
on Xp X Xy and, since Ap(6n,65) is nonnegative for all 8y, in X, it is elliptic on X},. Similarly, the continuity
of the form b(+,-) on X x M implies its continuity on X} X M} and the following inf-sup condition is easily
derived for a positive constant 8 independent of h (by taking 85, equal to ¢p):

b(6r,
Yo € My, sup M >3 |(Ph|H1(Q)‘ (2.14)
onexn  10nllx
This leads to the following result.

Theorem 2.1. For any nonnegative constant oy, and for all functions f in L?(Q)?%, problem (2.11)—(2.13) has
a unique solution (wp,¥p) i Xp X My,

Note as a conclusion that the modification we propose is not at all expensive: the decomposition (2.13) is
most often used for solving the linear system resulting from the discrete problem. Moreover, when applied to
piecewise affine functions, the form Ap(:,) is rather simple:

Ah(wh,eh) = Z h?z [anwhhe [3n9h]|e. (2.15)
ech

3. ERROR ESTIMATES

The aim of this section is to prove the convergence of (wp, %) towards (w, %) in L2(Q2) x W4(Q) with weak
assumptions. To obtain this result, we derive some more general a priori estimates for the error between these
solutions.

In all that follows, we need the semi-norm defined on X}, by

16nll+ = (AR (O, 0r)) 2. (3.1)
Indeed, we introduce the discrete kernel
Vi, = {6n € Xn; Voon € Mh, b(8n, on) = 0}, (3.2)

and we observe from the following lemma that this semi-norm can be used to construct a discrete analogue of
the norm of X on Vj. Another consequence is that the form an(-,-) is elliptic on V}, for the norm of X, with
ellipticity constant inf{1, a/c?}, for the constant c of this lemma.

Lemma 3.1. The following estimate holds for all functions 8y in Vj,
1Ak r-1() < c[|Oal]x- (3.3)
Proof. We observe from (3.2) that, for all 8, in V4,

Jograd 6y, - grad pdx

Aeh -1{Qy = sup
| I D PEHL() |80|H1(Q)
~ swp nf Jogradéy, - grad (¢ — ¢p) dz '

peHA(Q) PhEMn [l m ey
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Integrating by parts implies

HAHhHH“l(Q) = sup inf % ZeEgh fe [angh} ((P - 99}1) dr

peH}(Q) PrE€M, ol () ’

whence

> 8,0 _
|AOnl|gr-10y < sup  inf 2eCc 110n6nlllz2e) e — prllzee)
<PEH3(Q) PrREMpy ISD'Hl(Q)

So, choosing ¢p equal to the image of ¢ by a regularization operator with values in M}y, see for instance
equation (4.10) in [4], and using a Cauchy—Schwarz inequality lead to the desired result.

The error estimates are established in several steps. The first one deals with the discretization (2.11) of the
Laplace equation (2.6) for w° and is completely standard, see Theorem 13.1 in [9] for instance.

Proposition 3.2. The following estimate holds
0o_,0 _ 0_ ) .
|w® — whl a1 (@) nhlg&h |w” — | () _‘ (3.4)

Next, we work with the saddle-point problem (2.12) and we once more need the discrete kernel V;, introduced
in (3.2).

Proposition 3.3. The following estimate holds

leo* = willzoey + van il < e (I = whllzam + inf {Ilw* = Onllzaca) + vk 16all.}

. b(Th, Y — pn
+ sup inf ( ¥~ ¢h) )
meVy oneMr || !L2(Q) + /|l

Proof. Let 8, be any function in V3. Thus, the function 7, = w}, — 65, belongs to V;, and satisfies
Il 220y + an Il = /Q(wi —w*) Th dx + ap Ap(wh, Th) + /Q(W* — 0n) Thdz — an Ar(On, Th)-
Using now problems (2.7) and (2.12) together with the definition (3.2) of V4, ‘givev)s, for any ¢p, in My,
”Th,”%?(n) + ap ||76|2 = b(Th, % — on) + /Q(w* — 0n) Thdx — ap, Ap (O, Th) + /Q(wo —w)) 1 dex.

This yields

|b(7h, ¥ — @n)|
ImnllL2(e) + van [|7all«

+ Jlow® — wg”Lz(Q))~

i = Bnll 2@y + v/am wh, = Onlls < ( ol = Onliza) + van 18l

The desired result follows by using two triangular inequalities.
As standard in the numerical analysis of this discretization ((A.25) of Chapter III in [12]), we now introduce
the projection operator Py, with values in X}, defined for all functions g in W11(Q) by

VO, € Xy, /grad (p— Ppp) - gradfpde =0 and /Phuda: = / pdx. (3.6)
A Q Q Q
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Proposition 3.4. The following estimate holds

lu — Prpll L2
= Unlwrace) < o([§ = Publwssq + o — wnllzamy  sup D

pewd i
(3.7)

. P,
vonlwille  sup ATl

o e =l + bl ).
pewh i) Hlwd (o)

Proof. We have

. d . d
¥ — Ynlwray = sup Jog - grad (¥ — ¥n) T

geL ()2 ”9“1,%(9)2

So, let g be any function in L3 (2)2. Then, div g belongs to W~13(Q) and we observe from Theorem 7.3.2.1
of [14] that the solution x of the problem

A%y =div g in 0,
(3.8)
X=0,x=0 on 012,
belongs to W33 () and satisfies

Then, the function u = —Ax belongs to Wl’g'(Q) and satisfies: —Ap = div g. So, integrating twice by parts,
we have

/g - grad (¢ — ¢p)de = —/ grad u - grad (v — o) de.
Q Q

By using problems (2.7) and (2.12) and the definition (3.6) of Py, we obtain

/ g - grad (¢ — ¢y )dz = / grad (Pnu — p) - grad (¢ — ¥p)da — / grad Py - grad (v — i) de
Q Q Q
= /Qgrad (Pop— ) - grad (v — Ppyp) de — a(w — wh, Prp) + an An(wh, Pru)

= - / grad i - grad (¢ — Pyy)de + a{w — wp, u — Prp)
Q

+ ap An(wh, Pop) + b(w — wh, X)-
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So, it remains to bound each of the four terms in the right-hand side. The first three ones are easy:

| /Q grad - grad (4 — Pt dal < [ul,y 0 g o 16 — Pl ey

< el = Padplwaaco) gl g 20

la(w — wh, b — Pop)| < cllw — wrll2(e) gl .4 2

] IWI,%(Q)

| Prupa]i»

[ An(wh, Pap)l < [lwhlle [Paplle < eliwplls g |
w3 ()

Il 4 gy
Concerning the fourth one, we have for all x; in Mj,

b(w — wh, x) = bw — wh, x — xa) = (AW° = wp), x — xu) — (Aw;, X — X4,

whence
[b(w — wn, x)| < (lwo - w2|H1(Q) + ||AWZ||H—1(Q)) Ix — Xh|H1(Q)-

So, noting that w33 (Q) is included in H2(Q) and taking x» equal to the standard Lagrange interpolate of x,
we derive from (3.9) that

[bw = wh, )| < eh (0 = wRlm @) + [Awilla-1@) gl g .-
Finally, applying Lemma 3.1 to w;, gives

Ib(w = wh, )| < ch (10 = wlims oy + lwils) gl g 0

And combining all these estimates leads to the desired result.

The next step consists in evaluating the unusual terms that appear in the right-hand side of estimate (3.7),
namely

1 —P i P .
sup e = Prplleoy o sup U Prpll

pewr @ Hlurt wew 3@ Pl
‘We need some further notation for that.

Notation. We denote by Api, the smallest of the diameters hg, K € T,. Let a;, 1 < ¢ < N, be the
nonconvex corners of €2, 7.e. the corners in which the aperture of the angle is larger than #. We introduce a
fixed neighbourhood U; of each corner a;, and we assume that

U,NnU; =0, 1<i<j<N.

In what follows, h; stands for the largest of the diameters hx of triangles K of 7; that intersect U;.

Lemma 3.5. There exist real numbers oy, 1 <1 < N, satisfying: 1/2 < a; < 1 and such that:

—_ P 1 N
up M=l -t 3R, (3.10)
pewt (@) |H|W1,§-(Q) i=1
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Proof. Let p be any function in W3 (Q). Evaluating the L2(€2) norm of z — Py u relies on a duality argument.
So, we consider the solution ¢ in H'(Q2) with null integral of the Neumann problem

—Aﬁzﬂ_PhH inﬂ,
(3.11)
=0 on 99Q.
Note that the function ¢ belongs to W14(Q2). We have
Il = Papell 7o) = / grad{ - grad (u — Pyp)de = /Qgrad (§ — Pnf) - grad pdez,
Q
S 1€ = Prélwra) 16l g g
so that
- P — P ,
|t — Prpll 2 < € — Prélwra) (3.12)
Il ) 1AL 2o
Next, for any &, in X}, from the local inverse inequality
_1
1€ = Puélwracry < 1€ — Enlwrag) + chy® (1€ — Puélm k) + 1€ — &nlm ()
we derive by Jensen’s inequality
_1 ,
1€ = Pullwra) < |€ = &rlwre) + chyd, (1€ — Pollmi) + 1€ — &lm@),
whence, from the definition of Py,
. 1
€ — Prélwraqq) < € — Enlwra) + chply 1€ — &nlm (@) (3.13)

To evaluate the terms in the right-hand side, we recall from Chapter 4 of [14] that the solution £ of (3.11) can
be written as the sum of a regular part &, in H2(2) and of a linear combination Zfil Ai Si, where the \; are
real constants and the S; are singular functions with support in U;. Moreover, the following estimate holds:

N
Iz + D Al < cllAEl| L2 (o),

i=1

and the S; belong to H!+2i(U;) for real numbers «; satisfying the conditions of the lemma (more precisely, each
a; is smaller than 7 divided by the aperture of the angle in a;). So, we now choose &, equal to the Lagrange
interpolate of £, we observe that it can be written as the sum &, + Zf;l i Sin, where £, and S;, are the
Lagrange interpolates of §; and the S; respectively. Since the support of each S;; is contained in the union of
triangles K of T, that intersect U;, we have the estimates

|&r — &rnlmr) S chlléellaz@ and  [Si — Sinlmr ) < ch |Sill gri+es ),
and also, due to the embeddings of H2(Q) and H* () into W 2-4(Q) and W 2+:4(Q) respectively,

|&r — &rnlwra) < ch? €2y and  |S; — Sinlwra) < chi' 2 ||Sill e qy-

We conclude by combining all these estimates and noting that A > Anin and h; > hyin.
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Lemma 3.6. The following estimate holds

| Prpsll « <en}. (3.14)

Sup min

pewd @) Hlwr s

Proof. Let p be any function in W35 (). We introduce the function ® in H}(£2) such that its restriction to each
K in T is a polynomial of degree < 2, which vanishes at all corners of all K in 7; and is equal to %he [BnPhuhe
at the midpoint of each edge e in &,. Equivalently, if ¢, denotes the Lagrange polynomial associated with the
midpoint of e (which vanishes in all endpoints and midpoints of all edges # e of elements of T), the function ®
is given by

3
&= > he [8nPaplje Pe-
ec&y
We observe that, for all 8, in X},
An(Pup,0n) = Y [ @(7)[0n0h] d7 = b(6n, ®),
ec&p V€

from which we deduce

2 _
| Prally = b(Prps, @) < |Pr®|wra(q) lp"Wl,é(Q)‘

Using an inverse inequality together with Jensen’s inequality gives

-1 -1
P z

[ ] y [ v N =
”’Hh/*‘l‘“* S cn’min “JhQ|H1(Q) |:u’|W1.§-(Q) S cn’min 'QlHl(Q) |iu’IW1—§-(Q)

So it remains to estimate |®

(o). We note that |¢.|;1(q) is bounded independently of h and that the support
of . is made of the two triangles which share the edge e, so that it is orthogonal to all other functions ¢, but
at most four. Due to (2.15), we obtain

3 1
1@y <c (D (She [OnPhplie)?)® < ¢ || Page]l-
e€&y,

This ends the proof.

Remark. Using exactly the same arguments yields that, for all functions 65, in X},
1Onl+ < c[|AOk ]| zr-1(0)- (3.15)

Indeed, choosing ® equal to

3
¢ = D he [0nBh]je Pe,

ec&y

we have

0112 = (6, ®) < || Al -2y || (0) and  |®|z1q) < c|Ohl]s-
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So, combining this result with Lemma 3.1, we derive that the norm

(a(0h, 0n) + An (61, 0n))

is equivalent to the norm of X on V;, with equivalence constants independent of A. As a consequence, the
discrete problem (2.12) satisfies the properties of uniform ellipticity and uniform 1nf—sup condition when ay, is
a constant independent of h, and this leads to the simpler estimate

lw* —willx + ¥ — Ynlm@) <c (9h12)fcn lw™ = Onllx + (Phigg[h W — enlma) + W — whllza@)-

This is sufficient to prove the convergence of wj towards w* in X but not the convergence of ¢, towards 1 in
Wl 4(9)

We are now in a position to bound the right-hand s1des of (3.4), (3.5) and (3.7). Firstly, we observe from
(3.4) that, if the data f belong to L?(2)?, the solution w? converges towards the solution w® of problem (2.6)
in H*(2). Moreover applying the duality argument of Aubin-Nitsche leads to the estimate

N

w® —wll2y < c(h+ D k) [w® — whlm (ey- (3.16)
=1

Concerning estimate (3.5), we observe that the solution (w*,%) of problem (2.7) belongs to W13 () x H2().
By noting that Prw* belongs to V},, applying Lemmas 3.5 and 3.6 to w™* yields

N
o™ = Pas L2y + VR [1Paw*lle < chihy (Bt DB+ v/an) 07l a4 (3.17)

i=1
Finally, we use Lemma 3.1 to derive that, for all 7, in V},,
in b(Th, % — on) i HATR -1 ()% — wrla @)
en€Mn ||IThllz2(e) + Vor ITalle T eneMn  ||ThilL2(q) + Vor I 7alls
<

1
inf - ,
o et Y — onlE1 (@)

and we can take yp equal to the Lagrange interpolate of ¥ to conclude. So we have estimated all the terms
of (3.5). Next, in estimate (3.7), we bound the first term in the right-hand side thanks to (3.13) and we make

use of Lemmas 3.5 and 3.6 once more. Finally, the quantity \/ap, |A(w — ws)l|g-1(a) is bounded by the sum of

Vo | AW’ — wg)“H—l(Q) and of /o, |A(w* —w}) | m-1(0) = van || Aw} || -1 (q), this last term being estimated
thanks to Lemma 3.1.

Theorem 3.7. The following error estimate holds between the solution (w,) of problem (2.4) and the solution
(wh,¥r) of problem (2.11)—(2.13): -

llw — wallz2(o) + vVan |Alw — wi)llg-1 @) + 1% — Yrlwra@) < cEpn sup{Ex, 1} || fllz2(0)2, (3.18)

where E), denotes the quantity

E,= hmfn (h+ Zh"“ + /o) + (3.19)

_F
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If the following assumption holds:

hi < chmin, 1<i<N, (3.20)
and if oy, is chosen such that
lim A} = lim h2a; ! = 21
Lim i an 0 and hl_%h a,” =0, (3.21)
the following convergence property holds:
}ILI_I’}I%) Hw - Wh?ILZ(Q) + /oy ‘|A(w - wh)”H—l(Q) + I’(/) - 1/}h|W1,4(Q) =0. (3.22)

Note that, in the general case of a nonconvex geometry and for the standard discretization (ap = 0), the
convergence of w—wp, in L?(£2) is not proven and seems not to hold from numerical experiments. This convergence
is proven for the modified discretization proposed in [2], however the convergence of ¥ — ¥, in WH4(Q) is
established neither for the standard discretization nor for the modified one of [2].

Remark. Assumption (3.20) only concerns the triangulation 74, note that it is much less restrictive than
the uniform regularity: using triangles of minimal size in a neighbourhood of the nonconvex corners seems
reasonable. Assumption (3.21) also implies the condition limp 0 i, h2 = 0, however the inequality Amin >

h2~¢ for a positive real number ¢ is satisfied in most practical situations.

Remark. When the domain Q is convex (N = 0) and the family of triangulations (7)s is uniformly regular
(Rmin > ch), the following estimate is known in the case a, = 0 of the standard discretization

[ — Ynlwiaggy < ch? || Fllaye. (3.23)

Its proof relics on an argument due to Scholz [15], see for instance Theorem 3.1 of Chapter IT in [12]. And this

b

estimate is still valid for our modified discretization with ap = h, it can be derived by replacing (3.17) by an
improved estimate relying on the fact that w* belongs to H*(f).
We conclude with a stability result which is needed for the extension to the Navier—Stokes equations.

Corollary 3.8. Assume that conditions (3.20) and (3.21) are satisfied. For all functions f in L3(Q)?, prob-
lem (2.11)-(2.13) has a unique solution (wp,¥r) in Xp X My. Moreover, this solution satisfies

lwnllz2(@) + [Yrlwragy <c ||f||L§—(Q)2- (3.24)
Proof. The arguments are very similar to the previous ones. The existence for f in Lg(Q)2 comes from the

continuity of the right-hand side, since M}, is included in W14(Q). Next, choosing 7, equal to wf in (2.11)
yields, thanks to an inverse inequality in the right-hand side,

lwf @) < P 171 8
Taking 0}, equal to wy, in the first line of (2.12) and combining it with the second line yield
lwnllZa(y + an lwill2 = ~blwn, Yn) — an An(Wh, oR) = —b(w], ¥r) — an An(wh, wh)-
Using a Cauchy—Schwarz inequality in the last term leads to

Qp * Qp
lwllZ2(ay + 5> [will¥ < —b(wp, ¥r) + 5 Ap(wh, wh)-
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Combining the inverse inequality on each edge e of a triangle K
0 =300
1OnwhllL2(e) < che ® lwhllm (k)

with the previous estimate on w?, we deduce from (2.11) that

Qp, * - )
oty + G il2 < [ £ - curl g de +ehidn 1513

As in the proof of Proposition 3.4, problem

A%y = curl f in §,
(3.25)

X=0x=0 on 012,
has a unique solution x in W33 (), so that the function p = —Ayx belongs to W3 (). This gives
[ £+ curl ynde = b, r) = ~b(Pan, ).
Q

Using once more (2.12) leads to

/Qf - curl Y dz = an(w},, Pap) + a(wh, Prp),
whence
lwonllza(y + Van Wil < ¢ (I Papllza) + van | Paplle + 4/ hogin an 1F1 5 )
So, we deduce from Lemmas 3.5 and 3.6 that

-1

lwnllzze) + van lwhlls < e ((1+ En) 11l .4 g TV hmin @n 1F1 13 g)2)-

Thanks to assumption (3.21), this yields the first estimate. To establish the second one, we write

I’l/jthl YQ) = sup ng : grad’l/)h dx .

QEL-%(Q)Z ”g”L%(Q)Z

So, with any g in L3 ()2, we associate the solution x of problem (3.8), so that the function u = —Ay belongs
to W% () and satisfies: —Ap = div g. This leads to

A g - grad gy dz = b(y, ¥n) = b(Pups, ¥n),

and using (2.12) gives

/Qg - grad ¢p dz < (lwn 2) + Vo llwp ) ([ Papl L2@) + vVan [|Prpll+)-

We conclude as previously.
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4. EXTENSION TO THE NAVIER-STOKES EQUATIONS

We wish to extend the previous discretization to the Navier-Stokes equations. When the nonlinear convection
term (u - V)u is translated in terms of vorticity and stream function, they can be expressed as

—Aw + L curl (wgrad ¢) = curl f in Q,
—AYy =w in Q, (4.1)
Y =0 =0 on 89,

where the viscosity v is a positive constant. Moreover, by using the previous decomposition w = w® 4+ w*, this
problem can equivalently be written

—Aw® + L curl (wgrad ) = curl f in £,

~Aw* =0 in ,
—AY=w A in , (4.2)
P=0,y=0 and w®=0 on 9Q.

So, in contrast to the linear problem, the equations for w® and w* are now coupled by the function 1 and the
full vorticity w in the equation for w°. Choosing to put the nonlinear term in the first equation relies on the
idea that the main advantage of w* is to be harmonic.

We firstly write the variational formulation of this new system and we recall its properties. Next we describe
the corresponding discretization. We conclude by a priori error estimates when a nonsingular solution of the
continuous problem is considered.

4.1. The continuous problem

In order to handle the nonlinear term, we introduce the mapping G defined from L?(Q) x W14(Q) into
w-15(Q) by

1
Ve €W, (G w)p) = [ werad b - curl pda,

where (-,-) now denotes the duality pairing between W13 () and W(}"*(Q2). Note that this mapping is also
continuous from L*(Q) x WH4(Q) into H=1(Q). So, problem (4.2) admits the following equivalent variational

formulation: find a triple (w°,w*,v) in ngg(Q) x X X W&A(Q) such that, with w = w9 + w*,

Vi € Wit@), bw®,n)+ (Glo,w)m) = - [ f.curl nda,
Q
Ve X, a(w*,0)+b(0,v) =—a(w,0), (4.3)
Vo € Wt (Q), bw*, @) = 0.

The properties of problem (4.3) are well-known, see Section 2 of Chapter IV in [12] for instance: for any data
f in L?(92)2, this problem has a solution and this solution is unique when the following condition holds:

|
{1 flln2(0)2 <

3 K, (4.4)

where the constant x only depends on the domain .
However, in order to avoid the too restrictive assumption (4.4), we give another formulation of problem (4.3).
For this, we introduce a generalized Stokes operator S which associates with any data f in L3 (£2)2, the solution
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. .. 1,4
(w° + w*, ), where (w°,w*,9) is the solution in Wy’ () x X x Wy*(Q) of

Vn e W t(Q), b(wln) = —/ f - curl nde,
Vo e X, a(w*,6)—+ b(O,S:/)) = —a(w®,0), (4.5)
Yo € Wyt (), b(w*, @) =0.
Indeed, we derive from the ellipticity of a(-, ) on V, the inf-sup condition on b(-, -) and some additional regularity
of the function % that this operator is well defined. Moreover, from (2.8) and (2.9), it satisfies for any data f
in L2(Q)?,
ISFllL2@xwra@) < el Fllz2()2s
however, a further argument [10] yields the modified estimate
ISFlza@xwre) < clfll 3 g0 (4.6)
Next, we observe that problem (4.3) can equivalently be written:

(w, ) + S F(w,y) =0, (4.7)

where the mapping F is defined from L?(Q) x W4(Q) into L3 (€2)? by

F(,4) =~ wgrad § - f.

And we are in a position to state the key assumption on the solution.
Hypothesis 4.1. The operator Id + S DF(w, ) is an isomorphism from L%(Q) x W14(Q) into itself.

From now on, we work with a solution (w% w*,%) of problem (4.3) which satisfies Hypothesis 4.1, hence is
locally unique.

4.2. The discrete problem
The discrete problem is nearly obvious now, it reads: find a triple (w9, wr,¥n) in My, x Xp, x My, such that,
with wp, = wg + wy,
Vi € Ma, (Wi, mh) + (G(wh, ¥n),mh) = — /Q f . curl n, dz,
VOh € Xn, a(wp,0h) +b(0h,¥n) = —a(wp, 0n), (4.8)
Yon € My, b(wy,en) =0.

We intend to analyze this problem by using the discrete implicit function theorem of Brezzi, Rappaz and
Raviart [8], so we must write it in a different form. In analogy with the continuous problem, we introduce the
discrete Stokes operator: for any data f in L3(Q)2, S, f stands for the pair (wQ + w},s), where (wQ,w?, %)
is the solution in M}, x X x M}, of

Vnn € My, blw),mn) = —/ f - curl nyde,

Q
VOn € Xn, (Wi, 0n) + b(On, ¥n) = —a(wp, On), (4.9)
Yo € My, b(w,’;,<ph) =0.
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Then, problem (4.8) can equivalently be written
(why¥n) + Sk F(wh, ¥n) = 0. (4.10)

4.3. Existence of a solution and error estimates

Firstly, if assumptions (3.20) and (3.21) are satisfied, we recall from Corollary 3.8 the stability property

ISk fll 2@y xwra@) < cl|lfll (4.11)

Li@)?
The corresponding convergence result is stated in (3.22), also when assumptions (3.20) and (3.21) hold and for
any f in L23(Q)%:

lim [[(S = Sh) Fll2@)xwra(e) = 0. (4.12)

Now, let (w, %) be a solution of problem (4.3) satisfying Hypothesis 4.1. The following arguments are standard.
e By writing '

Id + Sy, DF(w,) = Id + S DF(w, %) — (S — Sh) DF(w, %),

and noting that any solution of problem (4.3) is slightly more regular than H3 (Q) x H? () so that DF(w, )
is compact, we derive from (4.12) that Id + Sy DF(w,) is an isomorphism from L?(Q2) x W14(Q) into itself,
with the norm of its inverse bounded independently of h.

e Due to the improved stability property (4.11) and the continuity of the mapping: (6, x) — 6 - grad x from
L2(0) x W4(Q) into L3 ()2, we check that Id + S, DF(-,-) is Lipschitz-continuous in a neighbourhood of
{w, ), with Lipschitz constant bounded independently of .

e We also observe that
(w,¥) + Sp F(w, ) = —(5 — Si) F(w, ).

Since it follows from the regularity of the solution (w,) that F(w,) belongs to L?(2)? for any data f in
L?(Q)?, we know from (4.13) that this last quantity tends to zero with h.

So applying the Brezzi-Rappaz—Raviart theorem [8] (see also Theorem 3.3 of Chapter IV in [12]) leads to
the desired result.

Theorem 4.2. Assume that conditions (3.20) and (3.21) are satisfied. Then, for any solution (w° ,w*,v¥) of
problem (4.3) satisfying Hypothesis 4.1 and for h small enough, there exists a unigue solution (w3,w},¥r) of
problem (4.8) in a fized neighbourhood of (w°,w*, ). Moreover, this solution satisfies

lw —whllz2(@) + 1% — Yrlwra) < cEp sup{Ex, 1} || fll2(0)2, (4.13)

for the quantity E} defined in (3.19) and a constant ¢ only depending on f, and the following convergence
property holds

}LILI}) |w = whilLZ(Q) + Y- ¢h|W1v4(Q) =0. (4.14)

The estimate is exactly of the same order as for the linear problem, and the convergence property also holds
with the same assumptions, that do not seem too restrictive.
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5. SOME EXTENSIONS

We present two extensions of the previous results. The first one also deals with affine finite elements, but on
a nonconforming decomposition of the domain: it relies on the mortar element technique of Bernardi, Maday
and Patera [7]. Note that this technique was firstly applied to the stream function and vorticity formulation of
the Stokes problem by Ben Younes [3]. The aim of the second extension is mainly to derive an improved error
estimate of type (3.18) when working with higher order finite elements.

5.1. The mortar finite element method

As previously, Q denotes a bounded domain in R? with a polygonal boundary. We now consider a fixed
decomposition of 2 into a finite number of polygonal domains ) without overlapping:

Q= ﬁk and QeNQp =0, 1<k< K < K. (5.1)

Cx=

k

1

We introduce the skeleton S of the decomposition:

K
S=J o\ o9,

k=1

and we assume that it is a disjoint union of a finite number of “mortars” vm,:

S= ™ and Y Nym =0, 1<m<m <M, (5.2)

T C =

1

where each v, is an edge or part of an edge of one of the polygons €, which we denote by Qi(m). Without
restriction on the geometry, we assume that the internal angles of all the corners of the 2 that do not belong
to OS2 are < .

On each €, we introduce a regular family of triangulations (7,7 ) n,> i the sense introduced in Section 2.2,
where hj denotes the maximal diameter of the triangles in 7;’1. So the global discretization parameter is a
K-tuple of hg, 1 < k < K, we still denote it by h. Indeed, the main interest of the mortar element method
is that completely independent meshes can be used on the different Q, which allows firstly for handling very
complex geometries, secondly for efficient mesh adaptivity (we refer to [6] for the first application of the mortar
method to adaptivity and to [1] for some error indicators in the stream function and vorticity formulation). For
simplicity, we make the following non restrictive assumption.

Hypothesis 5.1. For any k, 1 <k < K, the corners of the Qx, 1 < k' < K, that belong to 8Qk, are nodes of
the triangulation Tk for all hy.

Next, on each ), the discrete space Xf is the same as in (2.10):
Xg, = {0 c €°(); VK € Ty, 05\ € P1(K)} - (5.3)

With each edge I" of any Q, we also associate the space W}’fk (") of continuous functions which are affine on

each intersection K NT, K € 7]1’1, but constant on the two intersections K NT that contain the endpoints of T.
The mortar space X}, is now defined in a standard way [7]: it is the space of all functions 6}, such that:

e each 8y q,, 1 < k < K, belongs to X,’fk,
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o the mortar function ¢ being defined on each v, 1 <m < M, as the trace of 0, (my > thE following matching
condition holds on all edges I" of the §2:

v ¢ WE (), / (Wi — ©)(T)p(r) dr = 0. (5.4)

And we also introduce the subspace Mh of X » made of all functions which vanish on 9.

Remark. Clearly the method is in general nonconforming, since neither M}, is contained in H} () nor X is
contained in X except in some rather special situations (when all meshes are compatible and all corners of the
Qi belong to Q). So we are led to work with the following broken norms and seminorm

b=

K
1611 = (16132ay + D 18013-2(0,))”
k=1 (5.5)

[V

K 1
101 sy = (01320 + D 10033,y * 2nd lelﬁl(n):(zwml(nk))
k=1

The definition of the form a(-,-) remains unchanged. Now let S,Ifk, 1 < k < K, stand for the set of all edges
of the K in 7;L"k which are not contained in 9. We now work with a K—tuple of positive real numbers aﬁk,
1 < k < K, and we define a new bilinear form on X, x X by

K

an(wh, 0n) = a(wn,0n) + > _ of, AX, (wn,0n),
k=1

with

AR, (wn,0h) = > he / [Onwh] [0,6n) AT

e€Ef,

We also introduce the modified bilinear form on X, x My:

b(On, on) = Z/ grad @), - grad ¢} dz.
Qu

Of course, when extended to H}(Q) x H}(Q), this form coincides with b(-,-). The discrete problem now writes:

o firstly, find a function w9 in M, such that

Vin € B, B(wd,mn) = Z / £ . curl 7, da, (5.6)

e secondly, find a pair (W}, ¥n) in Xp x My such that

VO, € X, an(wp,0n) + b(0h, ¥n) = —a(w), ),

o (5.7)
Vipn € Mp, b(wh,r) = 0,
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e thirdly, set
wh = wY + wj. (5.8)

The form @(-,-) is still continuous and positive definite with respect to any norm on Xj. The form b(-,-) is
also continuous and satisfies a discrete inf-sup condition, see Appendix A in [7] or Proposition 2.1. in [6]. So,
for any data f in L?(2)?, problem (5.6)—(5.8) has a unique solution.

To derive error estimates, we must extend estimates (3.4), (3.5) and (3.7) to this new framework. The first
estimate is standard in the mortar element technique (equation (5.3) in [7]), indeed the further term represents
the consistency error.

Proposition 5.2. The following estimate holds

0,w° dr
[ — ey < If P = mnlgaey + sup S5 laldry (59)
nn€Mp wn €My ”Nh”Hl(Q)
Next, we need an analogue of Lemma 3.1, which now concerns the kernel
f/h = {0h € Xh; Vop, € Mh» E(eh,(Ph) = 0} : (5.10)
Since the new version only involves local terms (internal to each ), the proof is exactly the same.
Lemma 5.3. The following estimate holds for all functions 6y in Vi
1
A8kl -2,y < ¢ (AR, (Br,0))%, 1<k<K. (5.11)
The next idea consists in multiplying the third line in problem (2.5) by functions in X},. This yields
~ - 1
VO, € Xp, a(w*, 9h> + b(ah,lﬁ) = —a(wo,()h) ~3 /(8,-,}/)) [Gh] dr. ) (5.12)
S

We now derive the analogues of estimates (3.5) and (3.7) by the same arguments as in Section 3, when replacing
(2.7) by (5.12). Note that the second estimate involves the modified operator P, with values in X, defined by

V6, € Xn, b(p— Py, 0,) =0 and / Pypde = / wde, (5.13)
Q Q

and the broken seminorm (which now depends on the of )

W

K
10nl12 = (3 ok, Ak, (8, 6m)) " -
k=1

We also need other broken seminorms, for 1 < p < +o0,

o =

K
|9|W1,p(n) = (Z |0|€V1,P(Qk)) )
k=1

we denote by W'?(Q) the space of functions in LP(Q) such that this seminorm is < +oo.
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Proposition 5.4. The following estimates hold

[w* —willzz@@) + llwplls < c (Iiw° — wPllz2 ) + it {llw™ = OnllL2e) + 10alI7}
hEVh

+ sup inf b(rn, ¥ ‘ph)IN—i— sup ————————fs( V) brn] T),
THEV, PREMp ”ThHL2(Q) + a3 THhEVh HTh”L2(Q)
and
e = Punllzaqy

[ — Yrlwra < e([¥ = Patliago) + o —wrllz@)  sup
() () lul
pewti)  Hlwrd
+ ||u)}’;||~ sup ”Ph/JH*N + sup [s(an'd}) [Th] dr
pew® 3 () '“|W1’%(n) v Inllzae)

(5.15)

+ llw = wnllzz@ )-

Proof. The proof of estimate (5.14) is exactly the same as for (3.5), up to the consistency error term, so we skip
it over. To derive estimate (5.15), we start from

K
1
%~ Ynliray < sup Y /Q gi - grad (4 — ) da.
k

greLd ()2 k=1 ”gk“L%(Qk)2

So, with any function g in L% (2)? with norm 1, we associate the solution py in whs (Q4), with a null integral
on 2, of the problem

Vo € WhA(y), / grad u - grad pdzx =/ gr, - grad pdz.
Qk Qk

The existence of such a solution follows from a duality argument: the operator A is an isomorphism {10} from
WL4(2%)/R onto the orthogonal to R in (W13())’, hence from W13 (2)/R onto the orthogonal to R in
(W1*4(Qk))’. We define a function p by pjo, = pk, 1 < k < K. The end of the proof relies on the same
arguments as for Proposition 3.4, thanks to the new definition of the operator Py, when defining X|, as the
solution of the local Dirichlet problem on €.

It is readily checked that the analogues of Lemmas 3.5 and 3.6 still hold in our case. Estimating the
consistency error terms by using the matching condition (5.4) is well known (Section V in [7]): for instance,

Opw° d
sup fs( w ) [Hh] T
wnenty  Menllm g

< ch® W0 grves (oy- (5.16)

Also, the approximation results are slightly modified, however we refer to Lemma 3.1 in [3] for the following
result, valid for all functions p in H'(Q) such that uq,, 1 < k < K, belongs to H™(Qk), & > 1,

K

b= Pusil gy < € D Il e s,
k=1
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from which the estimates in other norms can be derived. Combining all together leads to the final result. We
denote by hmin the smallest diameter of all triangles in 77:2 ,1<k<K.

Theorem 5.5. The following error estimate holds between the solution (w,v) of problem (2.4) and the solution
(wh,n) of problem (5.6)—(5.8):

K

1 ’ '

lw = wallzz@) + O b, 1AW = wr)ll-100) * + 1 = Ynlipra@ < KsEgK{E’;fk sup{Ex,, 1}} | £ll 202,
k=1 SRS

(5.17)

where each Ef  denotes the quantity

Bf, = hk, (hi + o hf4fak)+ T (5.18)

Uank;é(Z) V a;‘;k

If assumption (3.20) holds and if the aﬁk, 1 <k <K, are chosen such that

Jim, homoh, =0  and Jim, hi (af )t =0, (5.19)

the following convergence property holds:
K 1
Lim flw — whllz2@) + O ok 1AW = wr)llzr-1(a) ® + 1% — Yalragg) = 0- (5.20)

k=1

There also the estimate is exactly of the same order as in (3.18). Moreover, since local values of the a,’jk can be
chosen, the global assumption (3.21) is replaced by a local one, so that nearly completely independent meshes
can be used on the different subdomains, which allows for performing mesh adaptivity in a simple way.

5.2. Higher order elements

For the same domain 2 as in Section 2.2 and for an analogous regular family of triangulations (73)p, we now
introduce the spaces - .

Xt = {0h € €°(Q); VK € Th, Oh | € Pe(K)}, M = X;7 0 H}(Q), (5.21)

where £ is an integer > 2 and P¢(K) denotes the space of polynomials on K with degree < £.
For consistency reasons, we need define modified bilinear forms. So, we set

a;{(wh, eh) = a(wh,, eh) + ap A;’L_ (wh, gh),

with

AZ(wh,oh) = Z he /[anh] [8n9h] dr + Z h%( / Awyp, Aby, dx.
e K

ec&p KeT;

Note that the further terms in A} (-,-) vanish for £ = 1. Their introduction when £ is > 2 is justified later on.
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Then, for any data f in L2(Q)2, the discrete problem still consists in three steps:
o firstly, find a function w9 in M;" such that

Vnn € My, b(wh,nh) = — /Q f .curl n, dzx, (5.22)

e secondly, find a pair (W}, ¥r) in X;‘ X M,j such that

VO € Xi,  af (wh,0n) + b(On, ¥n) = —a(wp, Or),

, (5.23
Von € MjF, b(wp,en) =0, )

e thirdly, set
wh = wy + Wh. (5.24)

For exactly the same reasons as previously, namely the positivity of a;’(-, -) and the inf-sup condition-on b(, ),
this problem has a unique solution (wp,%5) in X;" x M,
We firstly observe that Lemma 3.1 still holds in this case, for the new discrete kernel

Vb = {0n € X;f; Vou € MyF, b(0n, 0n) = 0}, (5.25)

and with the norm ||64|]. replaced by

1
2

164113 = (47 0n,00) .

Estimate (3.4) with M), replaced by M, obviously holds for problem (5.11), since it is completely similar to
problem (2.11). And it can also be checked that estimates (3.5) and (3.7) with further exponents + also hold
(the operator P;f is still defined by (3.6) but with X, replaced by X;7). So it remains to analyze the terms in
their right-hand sides. We still use Lemma 3.5 for the term

llw— P}j_//‘”LZ(Q)

sup :
pewrd@ Pl
and an analogue of Lemma 3.6 for the term
sup 1Py plir2 @

pewi b Hlwri

(the proof of this analogous result is more technical, we skip it for the sake of brevity). However the terms
concerning the approximation error are now smaller: for instance, if ¥ belongs to H*(Q), 2 <t < {+1,

% — P lwree) < chgl B [$llaee),

and, if w* belongs to H5(Q), 3 < s <£+1,

N
6 iéllt;* {llw* = llzaie) + Var l10allF} < choi (h+ A& + /an) b 7% |lw™ || s ()
h h . 1=1

Combining all this leads to the following theorem.
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Theorem 5.6. Let us assume that the solution (wo,w*,'z/)) of problem (2.5) belongs to H™ () x H*(§Y) x H*(S2)
for some real numbers r, s and t such that

1<r<f+1, <s<{£+1, 2<t<{+1. (5.26)

N}

The following error estimate holds between the solution (w,) of problem (2.4) and the solution (wn,%¥n) of
problem (5.22)—(5.24):

llw = whrllr2(0) + Vor AW — wi) m-1(@) + ¥ — Yrlwra)
<ec (hr—l + hs—% + ht—Z) Ej, sup{Eh, 1} (”wOHHT(Q) + HW*HHS(Q) + H’l,bh;n(g)), (5‘27)

for the quantity Ep, defined in (3.19).

Remark. Assume for a while that the solution (w® w*,1) is very smooth, i.e. that it belongs to H*(f2) x
HY(Q) x H**1(Q). In the case ap = 0 of the standard discretization, the best known convergence order in
the previous norm is h¢~!. So, when assumptions (3.20) and (3.21) hold, the modified discretization that we
propose is slightly better since the error behaves like h*~! Ej and Ej tends to zero.

Remark. Let v denote the largest angle of Q. For smooth enough data f, the solution w® of problem (2.6)
belongs to H™ () for all 7o < m/~ (Section 4.4.3 in [14]), while the solution (w*, %) of problem (2.7) belongs
to Hinf{rotLlso}(Q) x H0+2(Q) for all sp < n(y) (Section 7.3.3 in [14]), where 7 is a decreasing function on
10,27[. So, we have the estimate

: : . i ; 1 -
lw — wall2@) + van |Aw — w)l -1y + 1% ~ Yrlwray < chi™ ooz} By sup{Ey, 1} || fll2@)2.  (5.28)

When 2 is not convex, n(7y) is < 7/7, so that the error behaves like h%o~3% E),. So, working with polynomials
of maximal degree ¢ = 2 leads to a better estimate than for £ = 1 but is more expensive, while working with
polynomials of maximal degree £ > 3 seems a priori useless.

Of course, combining the two extensions that we present in this section is possible, leading to higher order
mortar element discretizations. And also both extensions can be applied to the full Navier—Stokes equations,
with the same error estimates as previously.

The authors are very grateful towards Vivette Girault for her careful reading of the paper and helpful comments.
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