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CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION
OF THE NAVIER-STOKES EQUATIONS

IN VORTICITY AND STREAM FUNCTION FORMULATION

MOHAMED AMARA 1 AND CHRISTINE BERNARDI 2

Abstract. The standard discretization of the Stokes and Navier-Stokes équations in vorticity and
stream function formulation by affine finite éléments is known for its bad convergence. We present here
a modified discretization, we prove that the convergence is improved and we establish a priori error
estimâtes.

Résumé. Il est bien connu que la discrétisation usuelle des équations de Stokes et de Navier-Stokes
en formulation tourbillon et fonction courant par éléments finis affines converge mal. Nous présentons
ici une discrétisation modifiée dont nous prouvons la meilleure convergence et nous établissons des
majorations d'erreur a priori.
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1. INTRODUCTION

When set in a twodimensional bounded domain, the Stokes and Navier-Stokes équations admit an equivalent
variational formulation where the unknowns are the stream function and vorticity. The main interest of this
formulation is that only two scalar unknowns are involved instead of three, so that it could lead to very cheap
discretizations. However, even in the simplest case of the linear Stokes problem, the less expensive finite element
method, which relies on this formulation and the approximation by piecewise affine functions, présents poor
convergence properties. Prom a theoretical point of view, non optimal convergence results are proven with some
rather restrictive assumptions on the geometry and the mesh: they only hold in the case of a convex domain
provided with a uniformly regular family of triangulations. Moreover these properties are too weak to treat the
nonlinear Navier-Stokes équations. Numerical experiments confirm this lack of accuracy. A first improvement
of this technique is proposed by Amara and El Dabaghi [2], however it seems unsufficient for the extension to
the Navier-Stokes équations.

The aim of this paper is to present and analyze a modified version of the usual discretization by affine finite
éléments, which improves its convergence properties. The key idea relies on the décomposition of the vorticity as
the sum of a harmonie part and another term which satisfies homogeneous Dirichlet boundary conditions. Such
a décomposition is involved in the well-known Glowinski and Pironneau algorithm [13] for solving the linear
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1034 M. AMARA AND C. BERNARDI

System which results from the discretization. And the modification consists in adding a further stabilization
term in the discrete problem, which, in contrast to [2], only concerns the harmonie part of the vorticity.

Working with this improvement, we are in a position to prove, for the Stokes problem, some quasi-optimal
error estimâtes, with much weaker restrictions than for the standard technique. The resulting convergence
property turns out to be sufficient to handle the convection term in the Navier-Stokes équations thanks to
the theorem of Brezzi, Rappaz and Raviart [8]: we prove the same estimâtes for these équations without any
further limitation on the geometry. Finally, we extend the new discretization to the case of the mortar element
technique, with similar results, and we present analogous modifications of higher order discretizations that also
improve the error estimâtes.

An outline of the paper is as follows:
• In Section 2, we recall the stream fonction and vorticity formulation of the Stokes problem, we describe the
corresponding discrete problem and we check its well-posedriess.
• In Section 3, we prove the convergence of the solution of the discrete problem towards the exact one,
together with a priori error estimâtes.
• In Section 4, we describe the analogous discrete problem for the nonlinear Navier-Stokes équations and we
prove that all the previous results still hold in this case.
• Section 5 is devoted to some further extensions: mortar element discretization, higher order discretizations.

2. THE STOKES CONTINUOUS AND DISCRETE PROBLEMS

Let Q be a bounded two-dimensional domain with a Lipschitz-continuous boundary. For simplicity, we assume
that Cl is simply-connected. In this section, we consider the Stokes problem:

(2.1)

where the unknowns are the velocity u and the pressure p. The data are a density of body forces ƒ and, only
for simplicity, we take homogeneous boundary conditions on the velocity.

To write the vorticity and stream function formulation of this problem, we firstly observe that the divergence-
free constraint in (2.1) is equivalent to the existence of a (scalar) stream function ip such that u = curl tp.
Also the nullity conditions on u on the boundary can be translated as nullity conditions on ip and its normal
derivative dnip. Finally we introducé the vorticity u> such that OÜ = curl u. This leads to the system:

—ALÜ = curl ƒ in Î7,
~Aip =^cü in fï, (2.2)
ip = dnip = 0 on dQ.

2.1. T h e cont inuous p rob lem

Throughout this paper, we use the standard Sobolev spaces Hs(ö), s G K, on any two-dimensional domain
O with a Lipschitz boundary, and the analogous spaces on any part of its boundary dö. We also use the
non-Hilbertian Sobolev spaces Wm'p(O) of intégral order m, provided with their usual norms and seminorms.
We introducé the space that is needed for problem (2.2) (see [5]):

—A
div
u =

u
u
0

H- grad
= 0

P = f in
in
on

ft,
n,
dn,

X = {9 e L2(Q)- A6 E tf"1^)}, (2.3)

it is provided with the natural norm
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and we set: M = HQ(Q,).

Now it is readily checked that, for any ƒ in L2(Q)2, problem (2.2) admits the following equivalent variational
formulation: find a pair (u;,^) in X x M such that

f (2-4)
VV G M, 6(UJ, (f) ~ — / ƒ . curl (p dxy

Jn

where the bilinear forms a(.,.) and &(.,.) are defined respectively on X x X and I x M b y

CL(ÜJ,6) = / u>0da;, 6(0,cp) — (A#,</?),

the brackets (•, •) denoting the duality pairing between H~1(QI) and JÉTQ^).

Problem (2.4) is of saddle-point type, so its numerical analysis relies on the following arguments (Section l
of Chapter III in [12]):
• the form a(.,.) is continuous on L2(Q) x L2(Q) and elliptic on the kernel

• the form &(.,.) is continuous on X x M and satisfies the inf-sup condition, for a positive constant (3:

So, for any data ƒ in L2(Q)2, it admits a unique solution which is the solution of problem (2.2).
The standard discretization of problem (2.2) is constructed by the Galerkin method applied to formula-

tion (2.4), see [11] and Section 2 of Chapter III in [12], however a well-known algorithm for solving the corre-
sponding discrete problem, due to Glowinski and Pironneau [13], relies on a décomposition of the vorticity u) as
the sum of a harmonie part OU* and a fonction UJ° with homogeneous boundary conditions. Since our discretiza-
tion also relies on this décomposition, we present the corresponding problem, which reads:

-Au;0 = curl ƒ in Û,
-Au;* = 0 in O, , ,
—/sip = UJ H- LU m Si,

Î/J = dntp = 0 and u;0 = 0 on ôfi.

It admits the following uncoupled variational formulation: find a function u?0 in M such that

\/r] G M, b(<jü°,rj) = — I ƒ .curl rjdx, (2.6)
Jn

next: find a pair (u;*, ip) in X x M such that

(2.7)
\/(p G M, b(uj*, ip) = 0.

Of course, by setting: tu = u;0 +u;*, we observe that problem (2.4) is completely equivalent to the System (2.6)-
(2.7). So, for any data ƒ in L2{Q)2, this System has a unique solution. This solution satisfies

a)». (2-8)
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Moreover, since the function ip 'is the solution of a biharmonic équation with homogeneous boundary data, it
follows from the standard regularity results (Theorem 7.3.2.1 of [14]) that it also satisfies

IW^(Q) <c | | / | |L 2 (n ) 2 . (2.9)

Remark. In view of the discretization, it must be observed that for ail functions 6 and rj in HQ (O), the form
&(*,-) can be written equivalently

b(9,r}) = — I grad# • grad 77 dx,
Jn

so that problem (2.6) is a standard Dirichlet problem with homogeneous boundary conditions.

2.2. The discrete problem

To discretize problem (2.4) or (2.6)-(2.7), we now assume that Q is a polygon and we introducé a regular
family (7k) h of triangulations of H, in the sensé that:
• each Th is the set of a finite number of triangles such that Q = UKçj~hK, the intersection of two different
triangles being either empty or a corner or an edge of both triangles;
• for ail triangles K in ail 7k > the ratio of the diameter hx of K to the diameter of the inscribed circle in K is
smaller than a positive constant a independent of h.

We also dénote by S h the set of all edges of triangles in Th that are not contained in d£l and by he the lengt h
of each edge e in £&. As usual, h is the largest of the diameters tiK of triangles K in Th and, in all that follows,
c, c', c" stand for generic constants which are independent of h.

Next we defme the discrete spaces:

Xh = {0h G Sf°(îî); VK e Th, ehlK e Pi(if)}, Mh = XhnH^(ü), (2.10)

where F1(K) dénotes the space of affine functions on K. The space Xh is spanned by the Lagrange polynomials
associated with the corners of all triangles K in Th-

Our modifled discretization requires the introduction of new bilinear forms: for all functions u)h and Oh in Xh,

ah
with Ah(ujh,6h)= J ^ he j [dnu)h)[dn0h}ar,

where [dn-] dénotes the jump of the normal derivative through the edge. Here, ah stands for a positive constant
which can depend on the triangulation Th, its choice is made précise later on. Thus, for any data ƒ in L2(Q)2,
the discrete problem consists in three steps:
• flrstly, find a function UJ^ in Mh such that

Mr]h e Mh, b(tü°h,r]h) = - f ƒ .curl rihdx, (2.11)
Ju

• secondly, find a pair (cu^.iph) in Xh x Mh such that

a(ujh,eh)1

V<ph£Mh, b(cj*h,<ph)=0,

thirdly, set

LJh=LÜ°h+UJ*h. (2.13)
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Remark. Problem (2.11)-(2.13) coincides with the standard discretization when ah is zero.

Remark. Another improved discretization was firstly proposed by Amara and El Dabaghi [2], where the
stabilization term concerns the full vorticity &h- it is built via the Galerkin method applied to formulation (2.4),
with a further term Ah{wh->6h)- We show later the advantages of the new formulation.

Problem (2.11) is the standard finite element discretization of problem (2.6), hence it is well-posed. Further-
more, since all norms on the fmite-dimensional discrete space Xh are equivalent, the form a/^-, -) is continuous
on Xh x Xh and, since Ah(0hy@h) is nonnegative for all 6h in Xh, it is elliptic on Xh. Similarly, the continuity
of the form &(•,•) on X x M implies its continuity on Xh x M h and the following inf-sup condition is easily
derived for a positive constant /3 independent of h (by taking 9h equal to iph):

sup h ^ ^ h ) >P\Vh\m{ay (2.14)

This leads to the following result.

Theorem 2.1. For any nonnegative constant ah and for all functions f in L2(Q,)2, problem (2.11)-(2.13) has
a unique solution {ooh^h) in Xh x M^.

Note as a conclusion that the modification we propose is not at all expensive: the décomposition (2.13) is
most often used for solving the linear system resulting from the discrete problem. Moreover, when applied to
piecewise affine functions, the form Ah(-, *) is rather simple:

Ah(cjh,Oh) =^2 hl [dnujh}le [dn0h]\e. (2.15)

3. ERROR ESTIMATES

The aim of this section is to prove the convergence of (o^, tph) towards (oj, ip) in L2(Q) x W1>4(Ct) with weak
assumptions. To obtain this result, we dérive some more gênerai a priori estimâtes for the error between these
solutions.

In all that follows, we need the semi-norm defined on Xh by

\\9h\U = (Ah(9h,eh))K (3.1)

Indeed, we introducé the discrete kernel

Vh = {0h G Xh; \/<ph G Mh, b(6h, <ph) = 0 } , (3.2)

and we observe from the following lemma that this semi-norm can be used to construct a discrete analogue of
the norm of X on V .̂ Another conséquence is that the form a^(*, •) is elliptic on Vh for the norm of X, with
ellipticity constant inf{l, ah/c2}^ for the constant c of this lemma.

Lemma 3.1. The following estimate holds for all functions Oh in Vh

H-,{n)<c\\eh\^ (3.3)

Proof We observe from (3.2) that, for all 0h in Vh,

= sup

. Jn grad 6h - grad (tp - tph) dx
= sup ïnf ^^ :—j

VheMh mH1 (Cl)
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Integrating by parts implies

lAfclM-m, - sup inf

whence

U- 1 ( n ) < sup inf

So, choosing tph equal to the image of ip by a regularization operator with values in M^, see for instance
équation (4.10) in [4], and using a Cauchy-Schwarz inequality lead to the desired resuit.

The error estimâtes are established in several steps. The first one deals with the discretization (2.11) of the
Laplace équation (2.6) for tu0 and is completely standard, see Theorem 13.1 in [9] for instance.

Proposition 3.2. The following estimate holds

° i(n) = i nL lw° " Vh\m{ay (3.4)

Next, we work with the saddle-point problem (2.12) and we once more need the discrete kernel Vh introduced
in (3.2).

Proposition 3.3. The following estimate holds

0 / ] 0 | | _|_ i-nf ƒ 11/ J * f) \\ -\- /Tv H/9 II \

-f sup inf -jj—r-^— —— J.

Proof. Let Oh be any fonction in V^. Thus, the function Th = a£ — 9h belongs to Vh and satisfies

2 f f
\\Th\\L2(n) + ah \\rh\\* = / i^h ~~ w*)Thdx + ah Ah{u>h,Th) + / (ĉ * — 6h)Thdx — ah Ah{6h,Th)-

Jn Jn

Using now problems (2.7) and (2.12) together with the définition (3.2) of Vh, gives, for any cph in Mh

\\rh\\h(n) +<Xh\\Th\\Ï =b(rh,ip-iph)+ / (w* - 0h)rhdx - ahAh(0hiTh) + / (LÜ° - o>£) rh dx.
Jn Jn

This yields

il * a il i / — i l * Û w ^ ( \KTh^ - <Ph)\ , n * a „

The desired resuit follows by using two triangular inequalities.
As standard in the numerical analysis of this discretization ((A.25) of Chapter III in [12]), we now introducé

the projection operator P^, with values in Xh, defined for ail functions ji in W1'1^) by

\/6h e Xh, f grad (fi - Ph/j,) - grad0h dx = 0 and / Phfidx = [ fidx. (3.6)
Jn Jn Jn
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Proposition 3.4. The following estimate holds

(3-7)

sup +h\w° -o ; " '

Proof. We have

. / / i In 9 - grad (^ --0fc) do;
|-0 - i>h\w^(n) - sup ^ r

f (H)2
 II

So, let g be any function in L%(Q)2. Then, div gf belongs to W~1>^(QI) and we observe from Theorem 7.3.2.1
of [14] that the solution x °f ^ne problem

f A2x = div g in Q,
{ (3.8)
l X = dnX = 0 on dQ,

belongs to Ws^(ü) and satisfies

(3.9)

Then, the function /x = — A% belongs to VKlj3(Q) and satisfies: — A/z = div 5. So, integrating twice by parts,
we have

/ g • grad (^ - iph) dx = - / grad /i • grad (^ - iph) dx.
Jn Ja

By using problems (2.7) and (2.12) and the définition (3.6) of P^, we obtain

/ g - grad (V> - iph) dx = grad (PhfjL - //) - grad (^ - iph) dx - grad P^^ • grad (tp - ^ ) dx
Jn Jn Jn

= / grad (Ph(j, - fj,) * grad (ip - Phip) dx ~ a(w - u)hj Phfj) + a
Jn

= - ƒ grad y, • grad (^ - Pfe^) dx + a(tü -uh,fJL- Phfi)
Jn
ah Ah(u)*h, Phii)
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So, it remains to bound each of the four terms in the right-hand side. The flrst three ones are easy:

| ƒ grad/i • grad (ip - Phip) dx\ < \{J>\wli±{Q)\ip - PH^\W^(Q)

< c \ip - Phiplw^Hn) llffllLf (n)2>

:|KIU||F^IU<

Concerning the fourth one, we have for ail Xh i

b(uj - u)h, x) = b(u> -u>h,x~ Xh) = (A(u;0 - a;^), X ~ Xh) - (Aa;^, x ~ Xh),

whence

So, noting that VF3'3 (Î7) is included in üT2(r2) and taking Xh equal to the standard Lagrange interpolate of x->
we dérive from (3.9) that

Finally, applying Lemma 3.1 to UJ^ gives

And combining all these estimâtes leads to the desired resuit.
The next step consists in evaluating the unusual terms that appear in the right-hand side of estimate (3.7),

namely

sup l l " ^ l l * ( " > a n d sup

We need some further notation for that.

Notation. We dénote by hm{n the smallest of the diameters hx: K e Th- Let a ,̂ 1 < i < N, be the
nonconvex corners of fi, Le. the corners in which the aperture of the angle is larger than TT. We introducé a
fixed neighbourhood Ui of each corner a ,̂ and we assume that

[/* n E/,- = 0, 1 < i < j < N.

In what follows, hi stands for the largest of the diameters KK of triangles K of % that intersect Ui.

Lemma 3.5. There exist real numbers aif 1 < i < 7V; satisfying: 1/2 < c^ < 1 and swc/i

sup "^ ^ < c / d ( H i ; C ) . (3.10)
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Proof. Let \i be any function in W1^ (il). Evaluating the L2(ft) norm of fi — PhfJ* relies on a duality argument.
So, we consider the solution £ in Hx(iï) with null intégral of the Neumann problem

in ft,
(3.11)

on du.

Note that the function £ belongs to W1)4(Q). We have

\\V - PhvWhfQ) = / grad£ • grad (/J - Phfi) dx = / grad (e -
Jn Jn

so that

Next, for any ^ in Xhy from the local inverse inequality

|£ - PhÏ\w^{K) < IC " CAIWI^W + C/I^ (|e - P ^ I H I ( K ) + IC - a l

we dérive by Jensen's inequality

ie - Ph^\w^{Q) < ie - ^iwi.4(n) + c/i~?n (ie - ^eiifi(n) + ie - e ^ i ^ ( ^ ) ,

whence, from the définition of P^,

i.*(n) <\t- th\wi*(n) + c V l |e ~ &|ifi(n). (3.13)

To evaluate the terms in the right-hand side, we recall from Chapter 4 of [14] that the solution e of (3.11) can
be written as the sum of a regular part Çr in H2(il) and of a linear combination Yli=i ^ *%> where the Â  are
real constants and the Si are singular functions with support in Ui. Moreover, the following estimate holds:

N

2 = 1

and the Si belong to H1+OLi(Ui) for real numbers ai satisfying the conditions of the lemma (more precisely, each
ai is smaller than ir divided by the aperture of the angle in a*). So, we now choose e^ equal to the Lagrange
interpolate of e, we observe that it can be written as the sum ^ru -f YliLi ^ &ihi where £rh and Sih are the
Lagrange interpolâtes of £j- and the Si respectively. Since the support of each Sih is contained in the union of
triangles K of Th that intersect C/i, we have the estimâtes

and \Si- Sih\m{Q) < chf4- ||Si||iyi+«<(n),

and also, due to the embeddings of H2(il) and H^ai(il) into wiA(Q) and Wr5+tti'4(ft) respectively,

i ~ Sih \ W^Q) < c K Wi \\

We conclude by combining all these estimâtes and noting that h > hm{n and hi > hmin.
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Lemma 3.6. The following estimate holds

sup Jjftfifc_<c»i. (3.14)

Proof. Let /i be any function in Wlj3 (fl). We introducé the function $ in HQ(Q) such that its restriction to each
K in Tu is a polynomial of degree < 2, which vanishes at ail corners of ail K in Th and is equal to | / i e [9n̂ /iM]|e
at the midpoint of each edge e in £fc. Equivalently, if tpe dénotes the Lagrange polynomial associated with the
midpoint of e (which vanishes in ail endpoints and midpoints of ail edges ^ e of éléments of Th), the function $
is given by

o

$ = 2

We observe that, for ail Oh in Xh^

from which we deduce

Using an inverse inequality together with Jensen's inequality gives

So it remains to estimate |$|J/I(Q>. We note that \<pe\ir-(n) is bounded independently of h and that the support
of (pe is made of the two triangles which share the edge e, so that it is orthogonal to ail other functions tpet but
at most four. Due to (2.15), we obtain

This ends the proof.

Remark. Using exactly the same arguments yields that, for ail functions 9h in

\H-i{n). (3.15)

Indeed, choosing $ equal to

ee£h

we have

\\0h\\l = &(0h,*) < \\&eh\\H-i{n) \®\m(ci) and
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So, combining this result with Lemma 3.1, we dérive that the norm

( a { e h , e h ) + A h { o h

1043

is equivalent to the norm of X on Vh, with équivalence constants independent of h. As a conséquence, the
discrete problem (2.12) satisfies the properties of uniform ellipticity and uniform inf-sup condition when ah is
a constant independent of ft, and this leads to the simpler estimate

c(wï | |w*-0h| |x+ inf \tp - (PHIH^Q)+ \\^°-^h

This is sumcient to prove the convergence of u>j* towards LJ* in X but not the convergence of iph towards ip in

We are now in a position to bound the right-hand sides of (3.4), (3.5) and (3.7). Firstly, we observe from
(3.4) that, if the data ƒ belong to L2(fi)2, the solution a;° converges towards the solution CÜ° of problem (2.6)
in iï1(fi). Moreover applying the duality argument of Aubin-Nitsche leads to the estimate

N

Concerning estimate (3.5), we observe that the solution (o;*, ij)) of problem (2.7) belongs to W1^ (fi) x H2(Q).
By noting that P^u;* belongs to 14, applying Lemmas 3.5 and 3.6 to o;* yields

Finally, we use Lemma 3.1 to dérive that, for all Th in

i n f
- iph\Hi{n)

\\TH\\L2(Q) i~h\

and we can take <ph equal to the Lagrange interpolate of ip to conclude. So we have estimated all the terms
of (3.5). Next, in estimate (3.7), we bound the first term in the right-hand side thanks to (3.13) and we make
use of Lemmas 3.5 and 3.6 once more. Finally, the quantity ^/ö~h \\ A(w — ^/i)||Jff-

1(fï) ig bounded by the sum of
y/öëh\\A(u°-ujl)\\H-nci) andofy/öh\\A{uj*-ujl)\\H-i^n) = ^/ö^||A^||^-i(n), this last term being estimated
thanks to Lemma 3.1.

Theorem 3.7. The following error estimate holds between the solution
(u)h,iph) of problem (2Al)-(2.13):

< cEh

of problem (2.4) and the solution

(3.18)

where Eh dénotes the quantity
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If the following assumption holds:

hi <c/imin, l<i<N, (3.20)

and if ah is chosen such that

l i m h~}n oth = § and lim h2 aT1 = 0, (3.21)
h^o m i n h~+o n

the following convergence property holds:

lim ||Ù; - ojh\\L2{Q) + ^/aj ||A(u; - ujh)\\H-i(Q) + \tp - ^h\w^(ti) = 0- (3.22)

Note that, in the gênerai case of a nonconvex geometry and for the standard discretization (ah = 0), the
convergence of u)~Uh in L2(£l) is not proven and seems not to hold from numerical experiments. This convergence
is proven for the modified discretization proposed in [2], however the convergence of ip — tph in Wli4(ft) is
established neither for the standard discretization nor for the modified one of [2].

Remark. Assumption (3.20) only concerns the triangulation 7^, note that it is much less restrictive than
the uniform regularity: using triangles of minimal size in a neighbourhood of the nonconvex corners seems
reasonable. Assumption (3.21) also implies the condition lim/^o h^n h2 = 0, however the inequality hm{n >
h2~£ for a positive real number e is satisfied in most practical situations.

Remark. When the domain O is convex {N — 0) and the family of triangulations (Th)h is uniformly regular
(hmin ̂  c/i), the following estimate is known in the case ah = 0 of the standard discretization

1-0 - *l>h\w^(n) <chi || ƒ \\L2{a)*. (3.23)

Its proof relies on an argument due to Scholz [15], see for instance Theorem 3.1 of Chanter II in [12]. And this
estimate is still valid for our modified discretization with ah = ft, it can be derived by replacing (3.17) by an
improved estimate relying on the fact that a;* belongs to H1^).

We conclude with a stability resuit which is needed for the extension to the Navier-Stokes équations.

Corollary 3.8. Assume that conditions (3.20) and (3.21) are satisfied. For ail functions ƒ in L^(Ü)2, prob-
lem (2.11)-(2.13) has a unique solution {UH^H) in ^h x M^. Moreover, this solution satisfies

\\wh\\mn) + W W M ( O ) < c || ƒ ||L j ( n ) 2 - (3.24)

Proof The arguments are very similar to the previous ones. The existence for ƒ in Lâ(fî)2 cornes from the
continuity of the right-hand side, since Mh is included in W1^^). Next, choosing rjh equal to UJ^ in (2.11)
yields, thanks to an inverse inequality in the right-hand side,

Taking 0h equal to u>h in the first line of (2.12) and combining it with the second line yield

Using a Cauchy-Schwarz inequality in the last term leads to

IMl£ +
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Combining the inverse inequality on each edge e of a triangle K

with the previous estimate on u;°, we deduce from (2.11) that

IKI&fli) + Y Kil? < Jj • curl ^ d * + chjnah || ƒ ||* f (n)3.

As in the proof of Proposition 3.4, problem

f A2x = curl ƒ in fi,
{ (3.25)
{ X = dnX = 0 on öfi,

has a unique solution x m W3^(ft), so that the function \i = —Ax belongs to Wx'3 (fi). This gives

/ ƒ • curl Vhda; = -b(n,iph) = -b(Phfx,iph).
Jn

Using once more (2.12) leads to

/ ƒ - curl ^
Jn

whence

So, we deduce from Lemmas 3.5 and 3.6 that

IKIU'(n) + V ^ l l ^ l l * < c ((1 + £?h) ||A*llwi.î(n) + y/h^nah II ƒ llL j ( n ) 2).

Thanks to assumption (3.21), this yields the first estimate. To establish the second one, we write

Jng • g r a d ^ d x
\^h\w^(Q) = sup

So, with any g in Ls (fi)2, we associate the solution x °f problem (3.8), so that the function /i = —Ax belongs
to W1^^) and satisfies: —A^ = div g. This leads to

/ g • graidiphdx =

and using (2.12) gives

[ g •
n

We conclude as previously.
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4. EXTENSION TO THE NAVIER-STOKES ÉQUATIONS

We wish to extend the previous discretization to the Navier-Stokes équations. When the nonlinear convection
term (u * V)tt is translated in terras of vorticity and stream function, they can be expressed as

—AOJ + ^ curl (u;grad ip) = curl ƒ in £7,
ùJ in fi, (4.1)

i) = 0 on an,

where the viscosity v is a positive constant. Moreover, by using the previous décomposition u) = u;0 -h CJ*, this
problem can equivalently be written

—Au;0 + ~ curl (a; grad ip) = curl ƒ in fi,
-Au;* = 0 in fi, , ,
-A</> = a; . in fi, { }

$ = dnij; = 0 and u;0 = 0 on dû.

So, in contrast to the linear problem, the équations for ÜÜ° and u;* are now coupled by the function ij) and the
full vorticity u in the équation for u;0. Choosing to put the nonlinear term in the first équation relies on the
idea that the main advantage of u;* is to be harmonie.

We firstly write the variational formulation of this new System and we recall its properties. Next we describe
the corresponding discretization. We conclude by a priori error estimâtes when a nonsingular solution of the
continuous problem is considered.

4.1. The continuous problem

In order to handle the nonlinear term, we introducé the mapping G defined from L2(Q) x Wli4(Q) into
W-i,l(O) by

QA(ÇI), (G(tJ,ip),(p) = - / o;grad ip • curl
v Jn

where (•, •) now dénotes the duality pairing between W~l^(fl) and W0
lî4(fi). Note that this mapping is also

continuous from L4(CL) x VF1)4(fi) into Jî~1(fi). So, problem (4.2) admits the following equivalent variational

formulation: find a triple (UJ°,u;*, ip) in Wo'
3 (Ü) x X x WQ}4(£1) such that, with UJ = UJ° -f a;*,

Vr? E W-0
M(fî), 6(a;°î77) + {G(a;^)^) = - / f.curlrjdx,

Jn
MO e X, a{uj\e)+b{6^) - -a(w°,0), (4-3)

V^GW0
1>4(fi)) b(u>%<p)=Q.

The properties of problem (4.3) are well-known, see Section 2 of Chapter IV in [12] for instance: for any data
ƒ in £2(fi)2, this problem has a solution and this solution is unique when the following condition holds:

where the constant K only dépends on the domain fi.
However, in order to avoid the too restrictive assumption (4.4), we give another formulation of problem (4.3).

For this, we introducé a generalized Stokes operator 5 which associâtes with any data ƒ in Lzfà)2, the solution
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(üj°+üj*,-ip), where (<jo,u*,ip) is the solution in W^ (ÏÎ) x X x W0
1>4(O) of

V77 G W0
M(ft), &(W°,Ï7) = - / ƒ • curl 77dx,

VÖGX, a(w*,fl) + 6(flIV) = -a(wo
>ô)> (4-5)

Indeed, we dérive from the ellipticity of a(-, •) on V, the inf-sup condition on &(•, -) and some additional regularity
of the function ^ that this operator is well defined. Moreover, from (2.8) and (2.9), it satisfies for any data ƒ
in L2(Ü)2,

however, a further argument [10] yields the modified estimate

\\Sf\\LHn)xw^(n) <c\

Next, we observe that problem (4.3) can equivalently be written:

<c\\f\\Li(n)2. (4.6)

i) = 0, (4.7)

where the mapping F is defined from L2(ft) x Wlï4(O) into Li (ft)2 by

F(uj)ifj) = o;grad ij) — f.

And we are in a position to state the key assumption on the solution.

Hypothesis 4.1. The operator ïd + SDF(u>,i()) is an isomorphism from L2(Çl) x VF1)4(Q) into itself.

From now on, we work with a solution (o;0, ou*, ip) of problem (4.3) which satisfies Hypothesis 4.1, hence is
locally unique.

4.2. The discrete problem

The discrete problem is nearly obvious now, it reads: find a triple ( 0 ; ° , ^ , ^ ) in Mh x X& x Mh such that,
with u)h ~ a>£ +w^ ;

\fr)heMhi b(u>l,7)h) + {G(vh,il>h),Vh) = - ƒ ƒ .curl ?7hdccï

Ja
\/6h e Xh, a(u>l0h) + b(0k,il>h) = -a(u>l0h), (4-8)

\f<ph €Mh, b(ü>

We intend to analyze this problem by using the discrete implicit function theorem of Brezzi, Rappaz and
Raviart [8], so we must write it in a different form. In analogy with the continuous problem, we introducé the
discrete Stokes operator: for any data ƒ in Z/t(f£)2, Shf stands for the pair (a;£ + u ^ , ^ ) , where (<*>£,u;j£,
is the solution in M h x X^ x Mh of

V7/h G Mft, Kw°,T?h) = - / ƒ • curl 77̂  das,
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Then, problem (4.8) can equivalently be written

(a*, j>h) + Sh F(tvhy 1>h) = 0. (4.10)

4.3. Existence of a solution and error estimâtes

Firstly, if assumptions (3.20) and (3.21) are satisfied, we recall from Corollary 3.8 the stability property

(4.11)

The corresponding convergence resuit is stated in (3.22), also when assumptions (3.20) and (3.21) hold and for
any ƒ in L2{Q)2:

limJ(S-5h)/||La(n)xwi.«(n)=0. • (4.12)

Now, let (CJ, V) be a solution of problem (4.3) satisfying Hypothesis 4.1. The following arguments are standard.
• By writing

and noting that any solution of problem (4.3) is slightly more regular than H^(Q) x iji(fi) so that
is compact, we dérive from (4.12) that Id + ShDF(u>,ip) is an isomorphism from L2{Q) x W1)4(Œ) into itself,
with the norm of its inverse bounded independently of h.

• Due to the improved stability property (4.11) and the continuity of the mapping: (0,x) ^ # " ë r adx fr°m

L2(Q) x W1>4(fi) into L^(Q)2
y we check that Id + ShDF(-,-) is Lipschitz-continuous in a neighbourhood of

(c*;,^), with Lipschitz constant bounded independently of h.

• We also observe that

Since it follows from the regularity of the solution (u;,^) that F(cü,tp) belongs to L2(Q)2 for any data ƒ in
L2(O)2, we know from (4.13) that this last quantity tends to zero with h.

So applying the Brezzi-Rappaz-Raviart theorem [8] (see also Theorem 3.3 of Chapter IV in [12]) leads to
the desired resuit.

Theorem 4.2. Assume that conditions (3.20) and (3.21) are satisfied. Then, for any solution (LJ°,CÜ*,IP) of
problem (4.3) satisfying Hypothesis 4.1 and for h small enough, there exists a unique solution (a>£,u;£, iph) of
problem (4.8) in a fixed neighbourhood of (cv0, UJ* , t/j). Moreover, this solution satisfies

(4.13)

for the quantity Eh defined in (3.19) and a constant c only depending on ƒ, and the following convergence
property holds

lim ||a; - UJ

The estimate is exactly of the same order as for the linear problem, and the convergence property also holds
with the same assumptions, that do not seem too restrictive.
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5. SOME EXTENSIONS

We present two extensions of the previous results. The first one also deals with affine finite éléments, but on
a nonconforming décomposition of the domain: it relies on the mortar element technique of Bernardi, Maday
and Patera [7]. Note that this technique was flrstly applied to the stream function and vorticity formulation of
the Stokes problem by Ben Younes [3]. The aim of the second extension is mainly to dérive an improved error
estimate of type (3.18) when working with higher order finite éléments.

5.1. The mortar finite element method

As previously, ft dénotes a bounded domain in M? with a polygonal boundary. We now consider a fixed
décomposition of £1 into a finite number of polygonal domains fi*, without overlapping:

K
Ü = U Ttk and fi*, n fi*/ = 0, 1 < k < kf < K. (5.1)

fc=i

We introducé the skeleton S of the décomposition:

K

s = y dtik \ an,

and we assume that it is a disjoint union of a finite number of "mortars"

M
= U 7m and 7 m n 7 m , - 0, 1 < m < m' < M, (5.2)

lm=l

where each 7 m is an edge or part of an edge of one of the polygons fi*., which we dénote by fifc(m). Without
restriction on the geometry, we assume that the internai angles of all the corners of the ftk that do not belong
to dû are < TT.

On each fi^, we introducé a regular family of triangulations (Thk)h , in the sensé introduced in Section 2.2,
where hk dénotes the maximal diameter of the triangles in 7jfc. So the global discretization parameter is a
X-tuple of hk, 1 < A; < K, we still dénote it by h. Indeed, the main interest of the mortar element method
is that completely independent meshes can be used on the different f2fc, which allows firstly for handling very
complex geometries, secondly for efficient mesh adaptivity (we refer to [6] for the first application of the mortar
method to adaptivity and to [1] for some error indicators in the stream function and vorticity formulation). For
simplicity, we make the following non restrictive assumption.

Hypothesis 5.1. For any k, 1 < k < K, the corners of the Vty, 1 < k' < K, that belong to 90^, are nodes of
the triangulation T^k for all /i^.

Next, on each Q&, the discrete space X^k is the same as in (2.10):

xk
hk = {ek

h e <if°(nfe); VK e 7&, ek
hlK e F^K)} • (5.3)

With each edge F of any fi^, we also associate the space W£fc(F) of continuous functions which are affine on
each intersection K n F, K G 7^fc, but constant on the two intersections K n F that contain the endpoints of F.

The mortar space Xh is now defined in a standard way [7]: it is the space of all functions 9h such that:

• each 6h\Qki 1 < k < K, belongs to X^k,
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• the mortar function ip being defined on each 7m , 1 < m < M, as the trace of 6h \nk(m), the following matching
condition holds on ail edges F of the fik •

v^ Wfcfc
fc(r), f(vlQk - v)(r)1>(T)dT = 0. (5.4)

JT

And we also introducé the subspace Mh of Xh made of all functions which vanish on dfl.

Remark. Clearly the method is in gênerai nonconforming, since neither Mh is contained in HQ(Q) nor Xh is
contained in X except in some rather special situations (when all meshes are compatible and all corners of the
fifc belong to dfl). So we are led to work with the following broken norms and seminorm

K

-Ei
fc=l

- C
The définition of the form a(-, •) remains unchanged. Now let ££ , 1 < fe < K, stand for the set of all edges
of the K in Th\ which are not contained in 9Ofc. We now work with a üf-tuple of positive real numbers a£fc,
1 < fc < K, and we define a new bilinear form on Xh x Xh by

ûft(o;ft, ôft) = a(a;ft, öft) -

with

f

We also introducé the modified bilinear form on Xh x

K

Of course, when extended to HQ(Q) X HQ(Q), this form coïncides with b(-, •). The discrete problem now writes:

• firstly, find a function LJ^ in Mh such that

V77ft € Mh, b(u>°h, Vh) = - V / ƒ . curl Vh dx, (5.6)

• secondly, find a pair (w^iph) in Xh x M/j such that

Wh€Xh, àh(uh,6h)+b(eh,Tph) = -a(oj0
h,6h),

0
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• thirdly, set

u>h = u>l+tj%. (5.8)

The form âh(-, •) is still continuons and positive definite with respect to any norm on Xh> The form &(•, •) is
also continuous and satisfies a discrete inf-sup condition, see Appendix A in [7] or Proposition 2.1. in [6]. So,
for any data ƒ in L2(Q)2, problem (5.6)-(5.8) has a unique solution.

To dérive error estimâtes, we must extend estimâtes (3.4), (3.5) and (3.7) to this new framework. The first
estimate is standard in the mortar element technique (équation (5.3) in [7]), indeed the further term represents
the consistency error.

Proposition 5.2. The following estimate holds

" U î f ^ h ] Û T ) (5-9)

Next, we need an analogue of Lemma 3.1, which now concerns the kernel

Vh = {eh G Xh\ V<ph e Mfc, 6(0/,, ifh) = 0} • (5.10)

Since the new version only involves local terms (internai to each Clk), the proof is exactly the same.

L e m m a 5.3. The following estimate holds for all functions Oh in Vu

IIAÖfclItf-i^) <c{Ak
hk(eh,Oh))\ l<k<K. (5.11)

The next idea consists in multiplying the third line in problem (2.5) by functions in Xh- This yields

VOh€Xh, a(uj*,eh) + b(0h,iP) = -a(u;o,6h)-l f (d^) [0h] dr. (5.12)

We now dérive the analogues of estimâtes (3.5) and (3.7) by the same arguments as in Section 3, when replacing
(2.7) by (5.12). Note that the second estimate involves the modified operator Ph with values in Xh defined by

Vöh € Xh, b(v ~ PhfrOh) - 0 and f Phf^dx = ƒ /zda:, (5.13)
Jn Ja

and the broken seminorm (which now dépends on the a^k)

(

A ; = l

We also need other broken seminorms, for 1 < p < +oo,

K

we dénote by W"1)P(fi) the space of functions in LP(Q) such that this seminorm is < +oo.
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Proposition 5.4. The following estimâtes holà

^° - wg| |L2 ( f î ) + JnîA {||o;* - 0h\\L2{n) + \\0h\\~}

\\Th\\ \\Th\\7 rhevh

and

sup sup

Proof. The proof of estimate (5.14) is exactly the same as for (3.5), up to the consistency error term, so we skip
it over. To dérive estimate (5.15), we start from

K

9k

So, with any function g^ in Lz (Q)2 with norm 1, we associate the solution
on fîfe, of the problem

in VF1' ) , with a null intégral

e W1)4(fifc), / grad^dx = / grad(/?dœ.

The existence of such a solution follows from a duality argument: the operator A is an isomorphism [10] from
W1)4(fifc)/R onto the orthogonal to R in {W1^{Vtk))\ hence from W^^ft^/R onto the orthogonal to E in
(Wly4(£lk)y* We define a function /i by ĵnfc — pk, l < k < K. The end of the proof relies on the same
arguments as for Proposition 3.4, thanks to the new définition of the operator P^, when defining x\ak as the
solution of the local Dirichlet problem on flfc.

It is readily checked that the analogues of Lemmas 3.5 and 3.6 still hold in our case. Estimating the
consistency error terms by using the matching condition (5.4) is well known (Section V in [7]): for instance,

sup (5.16)

Also, the approximation results are slightly modified, however we refer to Lemma 3.1 in [3] for the following
resuit, valid for ail fonctions fj, in H1^) such that M|nfe> 1 < k < K, belongs to HVk(Qk)i ^k > 1,

K

fc=l
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from which the estimâtes in other norms can be derived. Combining all together leads to the final resuit. We
dénote by /imin the smallest diameter of all triangles in 7*^, 1 < k < K.

Theorem 5.5. The following error estimate holds between the solution (u;,^) of problem (2.4) and the solution
{^h^h) of problem (5.6)-(5.8):

K

llw - WhlU'cn) + (J2ahk HA(W ~ "Ollïï-nn*))* + ^ ~ ^*lw".*(n) < sup {E%k sup{££fc,l}} | | / | | ^ (np ,
k~ 1 l<fe<JFC

(5.17)

where each E^ dénotes the quantity

If assumption (3.20) holds and if the a£fcJ 1 < k < K, are chosen such that

and Um hj ( a ^ ) " 1 = 0, (5.19)

the following convergence property holds:

K

lim ||a; - wh||L2(n) + ( ^ a f̂c ||A(a; - e>h)\\2
H-i(nk)) * + 1̂  " ^livi.*(n) = °- (5-20)

There also the estimate is exactly of the same order as in (3.18). Moreover, since local values of the a£ can be
chosen, the global assumption (3.21) is replaced by a local one, so that nearly completely independent meshes
can be used on the different subdomains, which allows for performing mesh adaptivity in a simple way.

5.2. Higher order éléments

For the same domain ft as in Section 2.2 and for an analogous regular family of triangulations (7h)h, we now
introducé the spaces

= {eh e <*f°(n); VK G Th, eh{K e Pi(K)}, M+ = X+ ni ïo 1 ^) , (5.21)

where £ is an integer > 2 and Wi(K) dénotes the space of polynomials on K with degree < £.
For consistency reasons, we need define modified bilinear forms. So, we set

al{wh, eh) = a(u)h, 6h)

with

ff
eesh

 Je

Note that the further terms in A^(-, •) vanish for £ = 1. Their introduction when £ is > 2 is justified later on.
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Then, for any data ƒ in L2(O)2, the discrete problem still consists in three steps:

• firstly, find a function UJ^ in M^ such that

Vrfc G M+, b(ulVh) = - f f.cuvl rjndx, (5.22)
Jn

• secondly, find a pair (LÜ^^H) n̂ X^ x M^ such that

whex+, a+(cj*h,eh) + b(eh^h) = -a(uJ
o
h,eh),

, (5.23)
V ^ e M + , 6 ( ^ , ^ = 0,

• thirdly, set

üjh=üj%+ujl (5.24)

For exactly the same reasons as previously, namely the positivity of a£(-, *) and the inf-sup condition on 6(-, •),
this problem has a unique solution (ujh,iph) in X^ x M£.

We firstly observe that Lemma 3.1 still holds in this case, for the new discrete kernel

v+ = {eh e X+- \/iph e M+, b(eh, <ph) = o}, (5.25)

and with the norm \\6h\\» replaced by

\ \ 0 h \ \ t = ( A + ( 0 h , K

Estimate (3.4) with Mh replaced by M^ obviously holds for problem (5.11), since it is completeiy similar to
problem (2,11)= And it can also be checked that estimâtes (3.5) and (3.7) with further exponents + also hold
(the operator P£ is still defined by (3.6) but with Xh replaced by X£), So it remains to analyze the terms in
their right-hand sides. We still use Lemma 3.5 for the term

and an analogue of Lemma 3.6 for the term

sup

(the proof of this analogous resuit is more technical, we skip it for the sake of brevity). However the terms
concerning the approximation error are now smaller: for instance, if -0 belongs to -ff*(fi), 2 <t < £+1,

and, if ui* belongs to HS(Q), \ < s < l + l ,

inf {|K - eh\\L2{n) + y/öï\\Oh\\t} < chjn (h
N

j

Combining all this leads to the following theorem.
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Theorem 5.6. Let us assume that the solution (w0^*,^) of problem (2.5) belongs to Hr(ft) x HS(Q) x #^(£7)
for some real numbers r, s and t such that

1 < r < £ + 1, - < s < ^ + l , 2<t<£+l. (5.26)

The following error estimate holds between the solution (to^ip) of problem (2.4) and the solution (ujhiiph) of
problem (5.22)-(5.24);

( ( ) ( ) ( ) (5.27)

/or £/ie quantity Eh deftned in (3.19).

Remark. Assume for a while that the solution (o;°,o;*,^) is very smooth, i.e. that it belongs to H£(ü) x
H£(Q) x iJ£+1(O). In the case ah = 0 of the standard discretization, the best known convergence order in
the previous norm is /i^"1. So, when assumptions (3.20) and (3.21) hold, the modified discretization that we
propose is slightly better since the error behaves like hl~x Eh and Eh tends to zero.
Remark. Let 7 dénote the largest angle of O. For smooth enough data ƒ, the solution LÜ° of problem (2.6)
belongs to # r o + 1(Q) for all ro < TT/J (Section 4.4.3 in [14]), while the solution (o;*, ip) of problem (2.7) belongs
to #inf{ro+1's°}(fi) x HSo+2(Q) for all s0 < 77(7) (Section 7.3.3 in [14]), where 77 is a decreasing function on
]0, 2?r[. SO, we have the estimate

Ik - wft||La(n) + v /^| |A(o; - ^ ) | | H - 1 ( Q ) + \ij) ~ ^ | w i , 4 ( n ) < c^f^o^o-è} ^ s u p{ j B f c > 1} || ƒ ||L2(Q)2. (5.28)

When ^ is not convex, 77(7) is < TT/7, SO that the error behaves like hs°~i Eh- So, working with polynomials
of maximal degree £ — 2 leads to a better estimate than for £ = 1 but is more expensive, while working with
polynomials of maximal degree £ > 3 seems a priori useless.

Of course, combining the two extensions that we present in this section is possible, leading to higher order
mortar element discretizations. And also both extensions can be applied to the full Navier-Stokes équations,
with the same error estimâtes as previously.

The authors are very grateful towards Vivette Girault for her careful reading of the paper and helpful comments.
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