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EXISTENCE OF A SOLUTION FOR A NONLINEARLY ELASTIC PLANE
MEMBRANE "UNDER TENSION"

DANIEL COUTAND1

Abstract. A justification of the two-dimensional nonlinear "membrane" équations for a plate made
of a Saint Venant-Kirchhoff material has been given by Fox et al [9] by means of the method of formai
asymptotic expansions applied to the three-dimensional équations of nonlinear elasticity. This model,
which retains the material-frame indifférence of the original three dimensional problem in the sensé
that its energy density is invariant under the rotations of M3, is equivalent to finding the critical points
of a functional whose nonlinear part dépends on the first fondamental form of the unknown deformed
surface. We establish hère an existence resuit for these équations in the case of the membrane submitted
to a boundary condition of "tension", and we show that the solution found in our analysis is injective
and is the unique minimizer of the nonlinear membrane functional, which is not sequentially weakly
lower semi-continuous. We also analyze the behaviour of the membrane when the "tension" goes to
infinity and we conclude that a "well-extended" membrane may undergo large loadings.

Résumé. Une justification des équations bidimensionnelles non linéaires "en membrane"d'une plaque
constituée d'un matériau de Saint Venant-Kirchhoff a été fournie par Fox et al. [9] par la méthode des
développements asymptotiques formels appliquée aux équations de l'élasticité tridimensionnelle non
linéaire. Ce modèle, qui conserve la propriété d'indifférence matérielle du problème tridimensionnel
non linéaire en ce sens que sa densité d'énergie est invariante par les rotations de R3, s'écrit sous la
forme d'un problème de point critique pour une fonctionnelle dont la partie non linéaire dépend de la
première forme fondamentale de la surface déformée inconnue. On établit ici un résultat d'existence
pour ces équations dans le cas d'une plaque membranaire soumise à une condition au bord de "tension",
et on montre que la solution mise en évidence par notre analyse est injective et est l'unique minimiseur
de la fonctionnelle membranaire non linéaire} qui n'est pas faiblement séquentiellement semi-continue
inférieurement. L'analyse du comportement de la membrane lorsque la "tension" tend vers l'infini nous
permet de conclure qu'une membrane convenablement "étirée" est en mesure de supporter des forces
importantes.
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1. INTRODUCTION

The classical two-dimensional équations of a nonlinearly elastic "membrane" plate and those of a nonlinearly
elastic "flexural" plate have been identifled and justified as they appear in the mechanical literature (see [11]
for instance) by Fox et al. [9] by means of the method of formai asymptotic expansions applied to the three-
dimensional équations of nonlinear elasticity for a Saint Venant-Kirchhoff material.

Those two nonlinear models present two remarkable common features. In both cases, the scalings for the
displacements set in the analysis of Fox et al [9] are of order O(l) with respect to the thickness e of the plate
and their energy density is invariant under the rotations of M3 as the original three-dimensional energy. For
these reasons, they are called "large displacements" and frame-indifferent théories. In conséquence, they must
be distinguished from the more familiar nonlinear Kirchhoff-Love theory justified, again by a formai asymptotic
analysis, by Ciarlet and Destuynder [4]; see in this respect the extensive présentation given in [3].

Another approach has been developed by Le Dret and Raoult [12] who have justified another nonlinear
"membrane" plate model By using F-convergence theory, they give a convergence resuit, as the thickness
tends to zero, of quasi-minimizers of the three-dimensional énergies towards a minimizer of a two-dimensional
"membrane" energy. The existence of a minimizer to this energy is thus de facto established.

The équations found by Fox et al [9] take the form of critical point problems for the associated énergies,
which in both cases are expressed in terms of the geometry of the unknown deformed surface.

The energy density of a "membrane" plate is a quadratic and positive definite expression (via the two-
dimensional elasticity tensor of the plate) in terms of the exact différence between the metric tensor of the
unknown surface and that of the référence configuration.

The stored energy of a "flexural" plate is a quadratic and positive definite expression (again via the two-
dimensional elasticity tensor of the plate) in terms of the exact différence between the curvature tensor of the
unknown surface and that of the référence configuration. Another spécifie feature of the "flexural" model is
that the critical point problem is formulated over a manifold of admissible déformations which are those that
preserve the metric of the undeformed plate and satisfy boundary conditions of clamping or of simple support.
The existence of a minimizer to the nonlinear "flexural" plate functional is established in [5].

The purpose of this paper is to establish existence resuits for the noniinear membrane plate équations and
to give some properties of the solutions.

In Section 2, we describe the problem, in terms of a System of partial differential équations or equivalently
as a critical point problem. The difficulties inherent to these two formulations are of two kinds. First, the
boundary value problem System is quasilinear and not semi-linear as in the case of the nonlinear Kirchhoff-Love
theory for instance. Second, as already noted by Fox et al [9], the functional energy associated to the nonlinear
membrane model is coercive but not sequentially weakly lower semi-continuous, which forbids to apply the
classical theorem of the calculus of variations. For these reasons, the mathematical analysis of these équations
is very delicate.

In Section 3, via the inverse function theorem, we establish as announced in [6] the existence of an injective
solution to the nonlinear membrane problem when the plate is submitted to a boundary condition of place of
"tension", introduced by Fox et al [9], and to "small enough" forces. This resuit holds without restriction on
the direction of the forces in contrast to the case of the clamped plate for which the forces were assumed to
be parallel to the plane of the plate (see [7]). Furthermore, we show that the solution found in this fashion
possesses the remarkable feature of being the unique minimizer to the associated membrane functional over
the "whole" affine space of admissible déformations. Thus, we establish in an indirect way, an existence and
uniqueness resuit for a minimization problem in a case where the standard method of the calculus of variation
cannot be applied. For the case of the clamped plate, the solution was only a local minimizer in an "optimal"
affine space strictly included in the set of admissible déformations (see [7]).

In Section 4, we prove that when the "tension" goes to infinity, the radius of the bail containing the forces
for which we can associate an injective solution may also go to infinity, in a cubic fashion. As a conséquence of
this resuit, we can assert that a "well extended" plate can undergo important loadings. For any given force, we
also give an asymptotic estimate for the solutions when the "tension" goes to infinity.
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2. THE NONLINEAR MEMBRANE PLATE MODEL

Greek indices and exponents take their values in the set {1,2}, Latin indices take their values in the set
{1,2,3}, and the summation convention with respect to.repeated indices is used. Vectors of R2 or R3 and
vector valued functions are written in boldface letters. The Euclidean inner product, the exterior product, and
the Euclidean norm of vectors a, b G R3 are denoted a • b, a A b and | a |. The standard Euclidean distance
between x and y, points of R2 is denoted by d(x, y).

Let Co be an open, bounded, and connected subset of R2 with a Lipschitz-continuous boundary 7, the set OÜ
being locally on one side of 7. Let 70 be a subset of 7 whose length is > 0.

The usual norm of the Sobolev space Wm'p(cj;IR3),m G N,p G]0,+oo[, is noted || . ||m,P)W.
The bail of Wm'p(u;; R3) (m G N,p G]0, +00[) centered at 0 and with radius R>0 is denoted Bm>p(0, R).

Let (p0 G W ï ) 4 (7; R3) be a given mapping defming the boundary condition of place and let ƒ G L2(u;; R3) be
the density of forces acting on the plate. Then the asymptotic analysis of Fox et al. [9] justifies the nonlinear
membrane plate model as a critical point problem for the functional

where IM and L(f) are defined on the affine space

by

IM(<P) = J

where

are the components of the change of metric tensor between the unknown deformed surface and the undeformed
one.

As noted by Foxe£ al. [9], the functional IM is not sequentially weakly lower semi-continuous, which forbids
the use of the standard method of the calculus of variations.

Equivalently, this problem can be written under the form of the following boundary value problem: Find
<p G W1)4(o;;IR3) such that, in the distributional sense:

) I = ƒ inw,

V? = <p0 o n 70,

) + 2 à ( ) ) d 0 on 7 - 70,

where öap dénote the Kronecker symbol. Note that in this formulation, the unknown <p is the déformation of
the plate, i.e. the position taken by the plate under the action of the applied forces.

In the next section, we establish the existence of an injective solution when the plane membrane is submit-
ted to a boundary condition of place of "tension" via the inverse function theorem. We also show that the
solution found in this fashion has the remarkable property of being the unique minimizer of the associated
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membrane functional - which is not sequentially weakly lower semi-continuous - over the whole set of admissible
déformations.

3. THE MEMBRANE SUBMITTED TO A BOUNDARY CONDITION OF "TENSION"

In the sequelj we dénote by i the mapping defined from ü into M3 by

i(xux2) = (2:1,2:2,0), for all (xX)x2) e ö>,

and by id the restriction of the identity map of M2 to Q.
In the case where 70 = 7 and the boundary condition of place is of the form

(p — k 1 on 7, (3.1)

where k > 1 is given, we have the following existence résulta which shows that a nonlinear plane membrane
"under tension", and submitted to "small enough" forces , has a solution:

Theorem 3.1. Assume that the boundary 7 is of class C2. For any p > 2, there exists a neighborhood F^ of
the origin in Lp(uj]R3) and a neighborhood U£ of the origin in W2'p(u;;IR3) D Wj'4(w;M3) such that for each
ƒ G F ^ there is a unique u G U^ such that <p(u) = u + k 1 is a solution to the nonlinear membrane boundary
value problem. Furthermore, the mapping implicitly defined in this fashion is a C°° — diffeomorphism between
{k i + \Jp

k} andFp
k.

Proof The proof is broken into five steps.

Step 1. Consider the nonlinear operator T^ defined from the space W2iP(u; M3)nWj'4(w; M3) into I/(o;; M3) by:

Tk(u) = -da{ (^~ <W àffff(<p(u)) + 2M â^(v(u)))ô^(u)}, (3.2)

where <p(u) is the element of W 2 ' P ( C J ; R 3 ) defined by

(p(u) = k 1 + u, (3.3)

for all u G
As already noted by Fox et al. [9], the linearization of T& around 0 gives the usual linear Poisson équation

for the vertical component.
More precisely, since W1 '33^) is a Banach algebra for p > 2, this operator is of class C°° between W2'p(u;; R3)n

Wj>4(w;I3) and I/(a;;M3), and its difTerential at the origin is given by

dTfc(0)(u) = -2/z(fc2 - l ) 3
x

A +
o

2 / i Atx-A;2 (öanai(Vu),öana 2(Vu),0), (3.4)

where

naj3(Vu) = A + 2 ea(T(u)SŒp + 4/x eap(u). (3.5)

Step 2. We next show that the linear operator dT^(O) associated to boundary conditions of Dirichlet type
satisfies the spécifie assumptions of [1].

For conciseness, let us introducé the following quantities:

ax = 2n(k2 - l ) y ^ > 0, a2 = ^ ^ k 2 > 0, a3 = 4 ^ 2 > 0.
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Using the same notations as in [1], we have for £ = (£x, £2) G M2 and | £ |2 = £i2 + £2
2 :

+ y ) & & , (a,/?) € {1,2}2,

« 3 a = ^ 3 = 0 , a = 1,2.

(i) Firstj we establish that the system is uniformly elliptic in the sense that there exists c> l such that:

1023

A simple computation gives us

= ai (ax + y ) (<*! + a2 + a3)| £ |6,

which establishes the uniform ellipticity of the system.

(ii) Next, we have to verify that the system satisfies the supplementary condition^ namely that for each pair of
linearly independent vectors £ and £' of M2, the polynomial

r G C -> L(£ + T£') G C

has exactly m = 3 roots with positive imaginary part, where 2m- = 6 dénotes the degree of the polynomial

C G M2 -> L(Ç) G R.

Let ^ and £' be a given pair of linearly independent vectors of M?. Then, for r G C, we have:

L(£ + T£') = a i (Ol + ^ ) (oi + a2 + a3)(r2| ^ f + 2r$, • Ç + | ^ |2)3 .

Since the two vectors are supposed to be independent, we have:

Hence, the polynomial

has two non real complex conjugate roots. We deduce that the polynomial of degree 2m = 6:

r e C ^ a ^ a i + l ) (ai + a2 + a3) (V
2| g |2 + 2r^ • £' + | £ |2)3 G C

has exactly m = 3 roots with positive imaginary part. Therefore, the supplementary condition is satisfied.

(iii) Now, we establish the strong ellipticity of the system in the sense that there exists c > 0 such that

3 »(&(Ö»fcifc)>e| € |2(I vi I2 + I m I2
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Since the Z -̂(£) are real, it sufnces to show that:

V£ G M2,V77 e M3, li3(OViVj>c | Î |2(r?i2 +T722 + T732)-

In our case, we have

WW, = ail £ |2(r?1
2 + 7722+r?32) + °f\ £ \2 {rf + m

2) + (a2 + y)l € |2

which gives the strong ellipticity of the System:

(iv) Finally, the complementary boundary condition also holds, since we know from [1] that this is the case for
any system verifying the strong ellipticity property and associated to a boundary condition of Dirichlet type.

Step 3. From the strong ellipticity of the system established in Step 2, from the Hj(<^;R3)-ellipticity of the
corresponding bilinear form (which is a conséquence of the strong ellipticity of the system for the boundary
condition considered here), we deduce from a resuit of Necas [13] that dT^(O), considered as an operator from
H2(o;;R3) nHQ(u;;IR3) into L2(u;R3), defines an isomorphism between those spaces.

Step 4. The results of Step 2 allow us to use a resuit of Geymonat [10] to deduce that dT^(O), seen as an
operator from V9(CJ;M3) into Lq(u>]R3) where V9(w;R3) = {ifr G W2'q(cü;R3)]ip = 0 on 7}, has an index
independent of q G]1, +00[.

From Step 3, we then know that this index is equal to 0.
FromtheimbeddingofW2;p(o;;M3)nWj;4(u;;IR3) into H2(w;M3)nHo(u;;IR3)(p > 2), and from the injectivity

of dT^(O) onH2(^;M3)nHj(tj;M3), it follows that dT^(O) is injective on the space W2lP(w;E3)nWj l4(w;l3).
The nullity of the index then shows the surjectivity of the linear operator dT^,(0) from the space W2)P(OJ; M3) PI

Wj'4(o;;R3) into Lp(cu; M3).
From the open mapping theorem, we deduce that dT^(O) is an isomorphism between W2)P(o;;lR3)n

Wâ'4(o;;R3) and L-(eu; M3).
Step 5. Combined with the results of Steps 1 and 4 and the relation Tfc(O) = 0, the inverse function theorem
provides the existence of a neighborhood F^ of the origin in Lp(cu; M3) and of a neighborhood U^ of the origin
in W2'p(o;;M3) H Wj'4(u;;IR3) such that Tk defines a C°° diffeomorphism between U^ and Fp

k. This establishes
the theorem.

We can also establish the injectivity of the déformation:

Theorem 3.2. With the assumptions and notations of Theorem 3.1, there exists a neighborhood ¥k of the
origin in LP(CJ;R3) contained in F^ such that the unique solution in {k t + U^} (Theorem 3.1) to the nonlinear
membrane "under tension" problem associated to any element ofFk, is injective in ü>.

Proof In fact, we prove a stronger result: The mapping defined by the two first components of the déformation
is already injective in a neighborhood included in F£.

From Theorem 3.1 and the continuity of the imbedding of W2'p(o;) into C 1 ^ ) , we infer the existence of a
neighborhood Fk c F^ such that to any p E Ffe, the element u associated by Theorem 3.1 satisfies:

det(V(pH) > 0 in ö> where <pH = k id + (^1,^2)-

Moreover, ipH G C1(ô>,IR2) satisfies:

(pH = k id on 7.
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The application k id being injective, a classical resuit using topological degree arguments (see for instance
Th. 5.5-2 in [2]) gives the injectivity of the mapping (pH.

Since the associated déformation (Th. 3.1) satisfies (p(u) = (<pHyus), the injectivity of the déformation fol-
lows from that of (pH. •

In the next paragraph, we establish that the solution given by Theorem 3.1 is also the unique minimizer of
the functional associated to the problem over the whole space, and not only a local minimizer as in the case of
the clamped plate [7], Thus, we will have shown, in an indirect way, both the existence and uniqueness of the
solution to a minimization problem whose functional is not sequentially weakly-lower semi-continuous.

Theorem 3.3. Under the assumptions and notations of Theorem 3.1, there exists a neighborhood ¥k of the
origin in Lp(o;;IR3) contained in F^ ; such that the unique solution to the nonlinear membrane ecunder tension"
problem in the set {k i + U^} associated by Theorem 3.1 to any element ƒ of Ffc is the unique minimizer of
the functional Ijvrif) over the whole affine space { h + Wo ' (a;;]

Proof The proof is divided into two steps.

Step 1. For any ƒ in F£, consider the functional ƒ*.(ƒ) of class C°° defined from WO' 4(CJ;R 3) into R by

Ik(f)(u)=IM(f)(ki + u) (3.6)

for ail u G Wj'4(u;;R3). From the définition, we see that

h(f)(v) = j ^ f (JT, (dav •dOLv + 2k dava + k2 -

a,/3
/ (daV ' dPv + * ( 9 * U 0 + dPv<*) + (k<2 - i ) ^ ) duJ ~ / f'(&*< + v)dco.

(3.7)

[Note that in (3.7) we don't use the summation convention with respect to the repeated indices. We do the
same in (3.8)].

Let <p(u) = u + k i be the déformation associated by Theorem 3.1 in the set {k t + U^}. From the définition
of /&(ƒ), it follows that u is a critical point of the functional Ik(f)-

Step 2. We next establish that, provided ƒ belongs to an appropriate neighborhood F^ of the origin, included
in F^, this critical point is also the unique minimizer of /&(ƒ) over the space Wj)4(w;]

To this end, let w be any element ofWj'4(a;,M3). Then, from (3.7), a computation shows that:

Ik(f)(u + u;) = h(f)(u) + dlk(f)(u)(w)

+ -—7— / ( y2(daw • daw H- 2 k dawa + 2 dau • daw)) dcu

, 2
dcj

^ J - V ' (3.8)

A

2

f
/ (dau - dpu + k (daU0 + dpua) + (k2 - l)Sap)
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Let

V À + 2/x /

Then it follows that

Ik(f)(u + w) > Ik(f)(u) + dlk(f)(u)(w) + ak J daw • daw du;

+ — / (dau • dau -f 2 k d<jUa) (dTw • öriü) du;
A + 2/x J^

+ 2\x I (dau - dpu + k (daup + dpUa)
J oj

Since n is a critical point of the functional /fc(/), this inequality becomes

• <2fc ƒ ÖQ-IÜ • triode*;

, v ^ « • öCTit + 2 fc ôauff) (ÖTK; • aTw) du; (3.10)

2/x / (9aiA • Ô/31A + fc (ôau/3 + dpua)) daw - dpw du;.
Ju

From Theorem 3.1 and the continuity of the imbedding of W2'P(UJ) in C^ö)), we infer the existence of a neigh-
borhood F^ contained in F^ such that the solution u associated in U^ satisfies the following inequality for all

where the constant a!k satisfies

0 < af
k < ak.

This last inequality shows that, for any element v of Wj'4(u;;M3) different from u, we have

Ik(f)(v) > h(f)(u).

From the définition of Ik(f), we have then established that

which establishes the theorem. •

In the next Section, we study the behaviour of the plane membrane as the "tension" goes to infinity ie . as
k tends to infinity. We establish that as k tends to infinity the neighborhood F^ of Theorem 3.1 contains a
bail centered at 0 in I/(u;;M3) whose radius grows proportionally to A:3. For any given force we also prove a
convergence resuit for the solutions as k tends to infinity.
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4. BEHAVIOUR OF THE MEMBRANE AS THE "TENSION" GOES TO INFINITY

We first need two preliminary results, for which the same assumptions as in Theorem 3.1 are made. In the
following K dénotes a given real satisfying 0 < K < 1.

Lemma 4 .1 . There exist ôo > 0 and ko > 0 such that if 0 < ô < ÔQ and k > k0, then for any u, v, w in
W2 'p(a; ;R3)nWj ; 4(a; ;M3) satisfying

| | U | | 2 l P > w < $ k, \\v | | 2 , p , w < &k,

dTfc(0)(™ - v) - dTfc(0)(t; - u) ~ (Tk(v) -

the following inequality holds:

\\W-V

Proof (i) Let k > 0, ô > 0 be given. Let w, v,w be given éléments of W2 'p(u;; M3) H WQ'4(CC;; M3) satisfying

II u ||2,p,w < (5 *;, || v ||2)P)W< 5 fe, (4.1)

dTfc(0)(«; - v) - dTfc(0)(V - n) - (Tfc(«) - Tfc(u)). (4.2)

Then, (4.2) also reads

k2 T{w - v) + 2 3 A +
o

2 / i
 A (u , - v ) = fc (A(v) - A(w)) + (B(v) - B(tt)), (4.3)

where T, A and B are the operators defined from W 2 ' p (w;R 3 )nWj' 4 (w; l 3 ) into I / (w;R 3 ) by:

T(f|) = - 2 M y ^ 7 A T ? " (öanai(Vt|), öanQ2(V77), 0), (4.4)

A ( I Ï ) = - ô a { ( ^ ^ ^ (2 öffJ7CT) + 2M ( a a ^

-da{ ( j ^ <W (d*V • dari) + 2M dot] • 007)) dpi], (4.5)

B(f|) = -da { ( ^ | ^ JQ/3 ÖCT77 • dar, + 2M Öa77 • fy»?) ^ 7 7 } , (4.6)

for ail 77 e W2lP(o;; K3) n Wj'4(w; M3).

(ii) Since W2'p(w; R3) is a Banach algebra (p > 2), we infer that the operators A and B are of class C°°.
It can be seen that there exists a constant C± > 0 such that for each R > 0 and any 77 G -E?2!P(0, R) the

following inequalities hold

H dA(*î)(u») ||o,p,w<

H dBfa)(t») H o ^ C x i?2 II «> ||2,P,c,
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for all w e W2'p(u;; M3) O Wj'4(u;; M3).
Since Lp(u;;IR3) is a reflexive Banach space (1 < 2 < p < +oo), it has the Radon-Nikodym property with

respect to the Bochner intégral (see for instance [8]). Let R > 0 be given and let u and v be any éléments in
I?2,p(0,iï). From the Radon-Nikodym property we have

A(v)-A(u) = ƒ dA(u + t(v-u))(v-u)dt.
Jo

From the usual properties of the Bochner intégral, we deduce

A(v)-A(u) ||oïPïW< f ||dA(u + t (v-u)) ( t ; -
Jo

and then that

|| A(v) -A(u) ||o,P)W <Ci R\\v-u ||2,p)W

In the same way, we have

|| B(v) - B(u) ||O|P,W <Cx iï2 || t; - u

Moreover, exactly as for dTfc(O), it can be proved that the linear operator T defines an isomorphism between
W2 'p(a;;I3)nWj'4(a;;IR3) and I/(u;;M3). Let then C > 0 be such that

,M3), || T- 1 ( / ) ||2,„lW <C7 | | / | |O ïp | W ,

and let

(iii) Noting that (4.3) can be written as:

k2 (w-v) = T" 1 ( - eiA(w - v) + fc (A(t;) » A(u)) + B(v) - B(u)),

we infer that:

A:2 | |w- t ; | | 2 l P , w <C(ci || tü - v ||2iPïW +A: || A(t>) - A(ti) ||olPla, + || B(v) - B(u)

Hence,

(k2 - C ei) || «; - « ||2lP,w <C Ci(5 + 52) fc2 || « - u \\2tPtU!. (4.7)

Let ÖQ > 0 be given such that K — C C\ (SQ + S o) > 0, and let

ko =

Then, for 0 < ô < öo and k > ko, we have

C djô + ô2) k2
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and (4.7) shows that

\\W-V | | 2 , p , w <K\\U-V | | 2 ,p ,w,

which establishes the lemma.

Lemma 4.2. Let C, ci, ko and ÖQ be as in Lemma 4-1, let

O AJQ

For any 0 < ö < öo and 0 < ko < k if

then the séquence of W2)P(o;;IR3) nWj)4(w;M3) reeursively defined by

f u0 = O,
\ rfTfc(O)(un+i-uTl) = / -T f c ( t* n ) ,n

1 || « n ||2)P,ü
(̂  11 Un+2 — 'tU n + 1 ||2fp)W < ^ || ^ n + 1 ~ « n | |2 ,P f W , U G N .

Proo/. (i) Let 0 < 5 < 50 and fc > fc0 be given. Let ƒ e Lp(o;;IR3) such that || ƒ ||ofPlw< M 5 /c3. By définition,
dTfc(0)(wi) = ƒ. With the notations of Lemma 4.1, we also have:

k2 L(ui) = - e i Awi + ƒ.

Then

C
|| «1 ||2,p,w <k2 _ c c || ƒ \\oiPiü>-

Prom the définition of M, we infer that

|| «i ||2lPïW <<5 ( 1 - K ) k. (4.8)

(ii) Since

dTfc(0)(n2 - Ul) = dTfc(0)(ui - t*o) - Tk(m) + Tk(uo),

and || Wo ||2,P,ÜJ< S k , || «i ||2,P)a>< 5 fe, we deduce from Lemma 4.1 that

| | U>2 - Wl | | 2 ) P ,w < ^ \\U1-UO | | 2 , P l w = « II « 1 | | 2 ) P ) w

T h e n

| | « 2 | | 2 ) P ) w < II U2 - Ui | |2 ) P ,CÜ + || UX ||2)Pitaï < ( ! + « ) H « 1 | |2 l P ,w,
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which shows, from (4.8), that

II u2 ||2,p,w < (1 + K)(1 - K) S k < ö k.

(iii) Assume now that for a given n>0, we have:

m ||2tP)W < 5 fc,f VKn + 2 , \\
\ Vp<7l , || Ul+2

Since

dTfc(0)(t*n+3 - tAn+2) - dTfc(O)(tin+2 - Un+1) ~ Tk{un+2) + T fc(Un+i),

and || itn+2 ||2,p3Lj< S k , || t tn+i l^^w < £ fc, we deduce from Lemma 4.1 that

H Un+S ~ Un+2 ||2)p,ü/ < « II ̂ n+2 ~ ^n+1 ||2lP)a; <«W + 2 || ̂ 1 ||2,p,w.

Moreover, we have

n+2 n+2

ï=0 1=0

so that, from (4.18),

| | ^n+3 ||2 )P)Ü; < 5 k.

By induction we have then proved the lemma. D

Now, by conciuding as in the prooi of the inverse function iheorern based on the Banach contraction principlc,
we infer from Lemmas 4.1 and 4.2 that T^ defines a C°°-diffeoinorphism between a neighborhood of 0 in
W2'p(w;]R3)nWjl4(w;]R3) contained in the bail £2)P(0,J k) and the bail BQ,P(O,M ö k3) OÏLP(ÜJ;WL3). This
establishes the following result:

Theorem 4.1. We make the same assumptions as in Theorem 3.1 concerning 7 andp. Then there exist reals
ÖQ > 0 and ko > 0 such that if 0 < ö < ÖQ and k > ko, then the neighborhood F^ of Theorem 3.1 contains a bail
centered at 0 in Lp(a;;IR3) of radius M ö k3, where M > 0 is a constant independent of ô. Furthermore, the
element u such that Tk(u) = f, associated by Theorem 3.1 to any element f of this bail, is situated in the bail
centered at 0 in W2 'p(ù;;l3)nWj'4(ai;]R3) of radius S k.

We can also establish further properties of the solution given by the preceding theorem as k tends to +00.

Theorem 4.2. With the same assumptions and notations as in Theorem 4-1, there exists 0 < ôo < 50 such that
if 0 < Ö < So and k > ko, then the unique solution in {k t + i?2,p(0,5 fc)} to the nonlinear membrane "under
tension" problem associated to any element f of BQ^P{Q,M 8 ks) is injective and is the unique minimizer of the
functional Iuif) over the whole affine space {k 1 + Wj'4(u;;M3)}.

Proof We only sketch the proof. Let k be any real in ]&o, +00 [,

(i) To prove injectivity, we just adapt the proof of Theorem 3.2. By writing the solution as {kt + 8k IA}, with
u in the unit bail of W2'p(w;M3) n Wj'4(u;;R3), we see that there exists 0 < ö0 < ô0 such that if 0 < ö < <JOï

then:

det(ki + ôk u) > 0 in cv.
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(ii) Concerning the minimizing property, still writing the solution as {ki + Sk u]y with u in the unit bail of
W2'p(o;;E3) H Wj'4(a;;M3), from (3.10), we see that for each w G W2>P(UJ-R3) n WJ ' 4 (Ü; ;M 3 ) , the following
inequality holds:

h(f)(ku + w)> Ik(f)(k u) + 2n {k2 - i ) 3 A + 2^ f daW . daW du)

(S2 k2 dvu -dau + 2 8k2 daua) {dTw • dTw) du;

f (ô2 k2 dau • dpu + Ö k2 (daup + dpua)) d^w • dpw du.
JÜJ

Then we see as in the proof of Theorem 3.3 that there exists 0 < &Q < ÔQ such that if 0 < 5 < 50 and if w is
different from fcw, we have:

+ W)> IM(f)(k L + ku),

which establishes the theorem. •

Now, for a given density of forces, we have the following convergence resuit as k tends to +oo.

Theorem 4.3. Let R> 0 be given. With the same notations and assumptions as in Theorem 1^.1, there exists
ko(R)>ko and C > 0 such that if f e B0iP(0,R) and k > ko(R) then the element uk G W2)ï>(o;;M3) n
Wj'4(u;;]R3) associated by Theorem 4.1 to ƒ satisfies the following estimâtes:

\\k2 T(tifc)- ƒ ||oïPïW < ^ rnax(R,Rs), and\\uk- ^ T " ^ / ) ||2IPIW <— max(R,R3).

Proof Set

and let k > ko(R) be given. Then set

R

Since k > ko(R)} we have

O < ö < 60. (4.10)

From Theorem 4.1 we infer that Tk defines a C°°-difFeomorphism between a neighborhood of 0 in W 2 'P (CJ;R 3 )n
Wj'4(w;M3) contained in the bail B2iP(0,ö k) and the bail BOjP(OyM ô k3) of Lp(w;R3). This shows that Tfc

defines a C°°-diffeomorphism between a neighborhood of 0 in W2'p(u;;R3) n WQ'4(U;;1R3) contained in the bail
J32,p(0, R/Mk2) and the bail S0)P(0, R) of LP(UJ; ]

Now, let ƒ be any element in the bail S0,p(0, R) of LP(CÜ; R3). Then, the element uk associated by Theorem 4.1
satisfies

| | ^ | | 2 , p , < . < ^ - (4.11)
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But the équation

Tk(uk) = f

also reads

k2 T(uk) 4- a Auk = k A(uk) + B(uk) + ƒ.

Thanks to the estimate (4.11), we obtain from the.expressions of A and B, given in (4.5, 4.6), that there exists
a constant C2 > 0, such that

Since k > ko > 1, we have

^ Ï , J R 3 ) . (4.12)

We have already seen in Lemma 4.1 that there exists C > 0 such that

II u | |2lP ïW <C || T (« ) ||o,PlW , for all u G W 2 ' p ( w ; l 3 ) n W j ) 4 ( a ; i l 3 )

From (4.12), we deduce

|| uk - ± T-\f) ||2iPili, < ^ - ^

Then, the theorem is proved, with ko(R) and (5 = max(3 C2, 3 C C2). •

This work is part of the Human Capital and Mobility Program "Shells: Mathematical Modeling and Analysis, Scientific
Computing" 01 the Commission of the European Communities (Contract No. ERBCHRXCT 940536).
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