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MATHEMATICAL AND NUMERICAL STUDIES OF NON LINEAR
FERROMAGNETIC MATERIALS

PATRICK JOLY! AND OLIVIER VACUS?

Abstract. In this paper we are interested in the numerical modeling of absorbing ferromagnetic
materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and
scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the
corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based
on an appropriate modification of Yee’s scheme, that we show to preserve some important properties of
the continuous model such as the conservation of the norm of the magnetization and the decay of the
electromagnetic energy. Stability is proved under a suitable CFL condition. Some numerical results
for the 1D model are presented.
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1. INTRODUCTION

1.1. Exposition of the physical problem

Without entering into the details of the theory of ferromagnetism (see for this [2,3] or [4]), we briefly describe
the physics of our problem.

1.1.1. The ferromagnetic zone

By a “ferromagnetic material” we mean a material that possesses a spontaneous magnetization M. (Through-
out bold letters will be used for vectors.) Ferromagnetic materials such as ferrites or garnets are widely used
in the microwave industry as shifters or circulators for instance. In this paper we study in particular the prop-
agation of electromagnetic waves inside such ferromagnetic materials; they are said to be absorbing materials,
we will see what sense we can give to this assertion.

A ferromagnetic zone is a region in which M # 0, and we denote by Q such a region. This zone will be
examined in this paper on a scale large enough to permit the use of a continuous magnetization vector M (x)
at any time; so we do not consider a priori any domain or wall concept [1]. The magnetization M is assumed
to satisfy the Landau-Lifchitz-Gilbert equation (LLG):

oM a oM

5 = NWHr(HEH,M)xM + ™M > )
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594 P. JOLY AND O. VACUS

where X and (,) denote the usual vector and scalar products respectively in R, ! -| is the usual Euclidean norm,
v is the gyromagnetic factor (v < 0) and « in the last term is called the damping constant, damping in a sense
we shall explain later (a > 0).

It is straightforward to show — at least formally — from the (LLG) equation the conservation in time of the
norm of the magnetization at any point:

oM 0 5
— M = —{M = 0.
Consequently, the LLG equation can be simplified to

oM o oM
—_ = H, M M —M X — h M = M(x,t =0). 2
5 [y Hr(H,M) x M + o] X 5  Where o(x) (x, ) (2)

1.1.2. The total magnetic field Hr(H, M)
The total magnetic field Hy(H, M) is defined as a sum:

Hr(H,M) = H + Hes(M), (3)
where H is the magnetic field appearing in Maxwell’s equations

oB

— = -VxE
o 2
— = VxH,
€0 ot X
the relation between H, B and M being
B
H:N——M or B = po(H+M). (5)
0

In (4) and (5), we denote by:

e B the magnetic induction,
o E the electric field,
e g9 and o, the electric permittivity and the magnetic permeability in a vacuum.

In this paper we present the non conductive case but no new difficulty would arise if the conductivity o were
different from 0.

It is important to note that the (LLG) equation is a non-linear differential equation in time, whereas people
often study linear materials in the frequency domain where it is possible to define the magnetic susceptibility x
and to write that M = yH. In our case, the relation which links M and H is implicitly defined by the coupled
system (LLG) equation—Maxwell’s equations.

The effective field Heg(M) is the result of several contributions. In the mode we are interested in, we retain
two of them:

Hen(M) = H, + Ho(M) (6)

where H; is a static field and H,(M) is a field of anisotropy, a field derived from an energy of anisotropy. In
Section 2.1 we define these fields in a ferromagnetic zone 2.
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1.1.3. The mathematical model

As a model of insulating non-linear ferrites, we get the following Cauchy problem from (2, 4, 5):

68—? = -VxE
OE B(x,t =0) = Bo(x)
EOE = VxH
B with ¢ E(x,t =0) = Eo(x) (7)
H=—-M
Ho
M(x,t =0) = Mp(x)
oM o oM ’
g H el
| Y Hr(H,M) x M + IMIMX 5

or, if we simplify the system by eliminating the magnetic induction B,

OH oM
#0—6_t+'uoﬁ = -VxE H(x,t =0) = Hp(x)
OE .
c05 = VxH with  { E(x,t=0) = Eo(x) (8)
oM : o oM
B |y Hr(H,M) x M + I-I\T]M X T M(x,t = 0) = Mp(x).

1.2. Presentation of the paper

Two main mathematical issues naturally arise: 1. Is it possible to show the existence and uniqueness of a
solution to this non-linear problem? 2. How can we discretize the equations of this problem to get a numerical
modeling of ferromagnetic materials which respects the main properties of the continuous problem?

These are the two questions we intend to address in this paper. Concerning the first point, as far as we know,
the only paper where a partial answer is given is Visintin [5] where the existence of weak solutions to a problem
very similar to (7) is established. However Visintin includes in Heg (M) a new field, derived from an exchange
energy, and this new field ensures more regularity for M. His existence result and some secondary properties
are proved for the corresponding variational formulation by using a Galerkin method. But, he can not allow «
to be 0, and it is also stated in [5] that “the possible uniqueness of the solution is an open question”.

Concerning the second point, the situation is even clearer: we have not found in the literature any satisfying
answer to the question of the discretization of the complete non-linear problem (7). All the works on the subject
mention at least one of the two following assumptions:

1. the damping is neglected and « is taken to be 0 [13-15];
2. the material is supposed to be saturated and either the internal field is a priori known, or a small signal
approximation is made, which leads to a linearization of the equations [10-14].

In the present paper, we establish more complete results concerning both aspects of the problem in the one
dimensional case — which is of course a limitation. However all that we do concerning the numerical analysis
can be generalized to more space dimensions [16].

We shall show by applying the theory of semi-groups the existence of a unique maximal local strong solution
to (7) and then we establish suitable a priori estimates to guarantee that this solution is indeed a maximal
global strong solution (the two cases & = 0 and « # 0 are treated separately). This theoretical result requiring
quite technical proofs, they must be seen as a complementary result to the theorem presented in [17], about
existence and uniqueness of weak solutions to (7). (In [17], solutions are sought in L?(R) N L°°(R) instead of in
H'(R) as in the present paper.) In particular, in the case a # 0, uniqueness will be ensured by results of [17].



596 P JOLY AND O VACUS

In the discrete case. we propose an approach based on Yee’s scheme [9] and an original way to solve numerically
the discrete (LLG) equation. We show that this method ensures the conservation of the norm of the magnetiza-
tion. We also establish the discrete equivalent of the a prior: estimates of the continuous case which guarantees
in particular the stability of the scheme under a classical Courant-Friedrichs-Levy condition.

Our paper is organized as follows. In Section 2, we develop the machinery of semi-groups to study the
existence and the uniqueness of solutions to the problem (7). In Section 3, we give both time and space
discretizations of the equations and their main properties. In Section 4, a representative collection of numerical
experiments is presented.

2. MATHEMATICAL RESULTS

In this section we mainly work from the formulation (8) involving the three vector unknowns E, H and M.

2.1. About the effective field

In this paragraph we give the precise mathematical definition of the two local fields we consider in our work.

1. The static field H; is a vector field that is constant in time. For technical reason, H is chosen so that :
H, € H'(R), (9)
which does not constitute an actual restriction.
2. The field of anisotropy is derived as follows from the energy of anisotropy &£, — we assume &, € C*(L%(Q);
R.). For all M € L?(2), we have

(Ea(M),6M) = — po (Ho(M),dM) ., (10)

case [1] where
£ = oy PP, (1)
where K is a positive constant depending on the material and P(M) the projection of M on the plane
perpendicular to the “easy axis” which is simply a privileged direction of the material, not depending on
time. Consequently
H,(M) = — KP(M). (12)
Remark 1. If we introduce p, a unit vector along the easy axis, we see that
H,(M) = —K (M — (p-M)p). (13)
This new form will be particularly useful in the numerical part because it leads to
H,(M)xM = K(p-M)p x M. (14)

It can be seen in (14) that H, (M) can be also taken equal to K (p - M) p.

As a consequence of these definitions an important property of Heg(M) is that it is an affine continuous function
of M — that is to say: [Heg(IM) — Hy] is linear in M.
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2.2. Preliminary results independent of the space dimension

The results that we give in this paragraph are obtained regardless of both the dimension of the problem
and the geometry of the ferromagnetic zone 2. We denote by x = (z,y, z) the current point of R3.

2.2.1. A new form of the (LLG) equation

. . .. oM )
For later use in the mathematical analysis, it would be useful to express ra as a function of M and H. We

shall use:

Lemma 1. Given any vector a, the function A : x — x + a X X is a homeomorphism from R to R3 and

A—l(y) — y+(a'y)a_axy.

15
1+ |af? (15)

Moreover, A™1 is a contraction.

Proof. Continuity of A is clear. Let (x,y) € (R®)? be such that A(x) = y. Taking the scalar product with a,
we get (a-x) = (a-y), and taking the vector product with a,

axx+ax(axx) = axx—|a’x+(a-x)a = axy.
Then we can consider
X+axx=y
—la’x+axx=axy—(a-y)a

This system is linear in (x, a x x) and can be solved for x which leads to (15). Finally, taking the scalar product

of A(x) =y with x gives |x|? = x-y. Thus Vy, |[A~1(y)| < |yl i
With a = _|13I_|M’ the (LLG) equation can be written A (%—?) = |y|Hy(H,M) x M. Applying Lemma 1
leads to
oM 7 o
- = Hr(HM)xM+ —M x (Hr(H,M . 1
ot 1+a2 T( ) )X +|M| X( T( ) )XM) (6)

M
This new form of the (LLG) equation shows that aa—t is a continuous function of H and M that we shall denote
by Lg:

Lg (M, Hr(H,M)) = Hp(H,M) x M + “:"/I—lM X (Hy(H, M) x M). (17)

Remark 2. Using this new form of the (LLG) equation and the Pythagorean theorem (given that Hy x M
and M x (Hr x M) are orthogonal vectors), it is easy to see that

BM 2 ’}’2 2
l‘a? = Toop Hr XM (18)
We shall also use, in the part devoted to the numerical method
B
Lemma 2. L& is linear with respect to H and LG (M, H) = Lg (M, %>

Proof. The proof is straightforward. O
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2.2.2. A priori estimates
We assume in this paragraph that there exists a local solution (E, H, M) to problem (8) in C* (0, T; L2(R3’))3 N

Cc®(0,T; H(R? ))3 We assume that the system (8) is satisfied in the classical sense which means that the three
equations of (8) are equalities in C° (0, T; L*(R?)).

e Conservation of the norm of M

It is straightforward to show — at least formally in our case — from the (LLG) equation the conservation in
time of the norm of the magnetization at any point:

oM

— M = — {|IM}?} =

P {I I’} =0
This computation is valid if we assume that for each x, the function ¢ — M(x,t) is of class C!, which is not
necessary the case under our assumptions. Rigorously we can multiply the (LLG) equation in L?(R)® by M,
with ¢ € D(R3), to get:

%(/Rs (p(x)!M(x,t)fdx> =0 (19)
that is to say
[, (M6 = MoGol?) plax = o (20)
R3
Thus
IM(x, t)] Mo (x)|?, a.e.x € R3 (21)

In particular || M(2)]

a1 pPar will

A( generally, if M belongs to LP(R3), with 1 < p < +o0, then M(#)
belongs to LP(R3) fo |

e Decay in time of the electromagnetic energy
The second estimate that we can get in any case expresses the decay in time of the total electromagnetic
energy. Multiplying Maxwell’s equations by H and E, we get

OE oH oM
E'(VXH)_H'(VXE)—EOE'E?+NOH'_6?+“OH'§" (22)
We then integrate in space and, using Green’s formula, we get
OE OH oM
. =0= H. - — 2
]RSV (ExH)dx=0 /R3 (60E 5t + puoH - 5t )dx+uo/ % dx. (23)
By adding Hes(M) to H, we obtain
d oM oM
= [ . + 2 ] m,/ Hor(M) - 2 dx = _,Lo/ Hr (H, M) - 2 dx. (24)
R3

Let us transform the left hand side of (24). First, concerning the field of anisotropy, we have

~no [ (-EPOW)- Flax = & [”—‘;ff [ lP(M)lz]. (25)
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(In the general case, we would have

oM . oM e a_M _ _i
Ho /xs H,(M) - —ade = lo (Ha, W) = —{&, (M), 5t ) = % (E.(M)).)

Finally, we obtain, using (6) and (25):
d [uok oM
5 |55 0PI — o (M| = <o [ (tem - 7 ) ax, (26)

or, by adding some terms constant in time,

d [peK oM
& PSP+ 2 e - M| = <o [ (et ) e (2)
R3
oM
Besides, we have, taking the vector product of the (LLG) equation with —— e
oM _ oM oM a 2
IV O _ g = Hr(H,M M- = |2 28
ot X ot |7|( r(H,M)- 6t) IM] | 8¢ (28)
that yields, everywhere My is different from 0,
oM a 1
HrHM). 22 - o 1 |oM 29

On the other hand, everywhere Mg = 0, this equality reduces to 0 = 0, since (18) implies that

, 1 [aM|?
o (5] ) = o 0

(6
R T
17| Jrs (M | Ot

Finally, from (24, 27, 29), we deduce that

d

2
T dx. (31)

€0 HOK
'|E|lL2+ IEL]| 7+ =~ ||P(M)||L2+ IHs M”LZ]:

It can be understood with this equality why the sign of « is crucial and why it is called a damping constant. It also
explains why the ferromagnetic materials are expected to be absorbing since it shows that the electromagnetic
energy

oK

[0 Ho . ,uO
&r (B,H,M) = 2 |[E[}> + 5} H|72 + =~ [POM)[72 + 5 [Hs — M|z (32)

is decreasing in time. From (31), we get

eolE®I32 < (20 IBolfa + o IHoll3z + (1 + K)o Mol + o [ ELs[13: )

po | H(®) 122

(33)

INA

(c0 o2 + o [Foll32 + (1 + K)o Mol + o [ HLs| 13 )

These estimates show that E € L2(R®)® and H € L?(R®)3 as soon as Eq € L%(R?)? and Hy € L*(R®)® (and of
course M € L%(R?)3).
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2.3. The 1D model

In order to shorten the forthcoming formulae in our mathematical developments, henceforth all the positive
physical constants except o — €g, o, ||, K and 1 + o2 — will be replaced by one.

Moreover we consider from now on a mono-dimensional problem: we assume that all the unknowns in the
following problem depend only on x, the first space variable, and ¢, the time variable. In other words we are
interested in plane waves propagating along the z-direction. We shall denote by (ez,ey,e,) the orthonormal
basis of R3 where e, is parallel to the z-direction.

The first consequence of this 1D hypothesis is to simplify the definition of the curl operator. Given any field
A = (A;, Ay, A;) depending only on the z variable, we simply have

VxA = <0, _94. aAy).

Oz’ Oz

The interest of this remark appears if you notice that taking the projection of (4) on the propagation axis
leads to

dB, dE,
@ - 0 and It

=0 (34)

and so, the longitudinal components E; and B, are both constant in the 1D problem. (Concerning the magnetic
field, we simply have H, = —M, up to a constant.) However we would like to underline the fact that, contrary
to what happens in the vacuum, it is not possible — even in the 1D case — to consider the propagation of a
transverse electric mode on the one hand and the propagation of a transverse magnetic mode on the other hand
because all the components of H are coupled by the (LLG) equation.

We shall also use in the sequel the two following properties of L in the 1D case:

Lemma 3. Assuming that Hy belongs to L?(R)®, L% maps L?(R)3 N L (R)3 x L?(R)? into L2(R)3.

Proof. We can deduce from (3) that

[Hr(H,M) x M. < [M|lze||Hl|z2 + || M|izee|[Hsll2 + C||M]|Leo | M| 2 (35)

and then
[LEg (M, Hr (H, M))|[> < (1+0a) Mz ([Hllz> + [Hsllz2 + CM]jz2). (36)
O

Lemma 4. Assuming that Hy belongs to H'(R)3, LE s locally Lipchitz from H*(R)® x H*(R)? into H*(R)?
if and only if a = 0.

Proof. If o = 0, the result is straightforward since the map (u,v) — wv is locally Lipschitz from H*(R) x H*(R)
to H'(R).

To understand what happens if a # 0, the reader can check that the “absolute value” map is not locally
Lipchitz from H'(I) to H!(I), for any open interval I, by considering the two functions u, = 2 + sin(nz) and
vp, = —2 + sin(nz). Anyway this case is not important for our paper.
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2.4. Local results

The aim of this paragraph is to show the existence of a unique maximal local strong solution by applying
the following theorem (see [6] or [7]) which applies to semi-linear abstract evolution equations:

Theorem 1. Let H be a Banach space and A a mazimal monotone operator (6] with domain D(A). Let F :
H — H be alocally Lipschitz function on D(A). Then, for all uop € D(A), there exists a unique solution to

ou
u(t=0) = uo

with u € C* (0, Tmax; D(A)) NC° (0, Tmax; H ) where either
(Tmax = +00) or (Tmax < 40 and t/l‘iTmm)c ||u|]fH = +oo).

In order to apply this theorem, it is natural to try to divide our problem into the linear part — the operator
A — and the non-linear part — the function F', and then to check the required assumptions. It is exactly what
is done in the next paragraph in the case @ = 0. But in the general case (@ # 0), the function F' (indeed the
function L) is no longer locally Lipchitz as mentioned in Lemma 4 and we have to adapt our proof.

Remark 3. It would have been possible to treat the general case in the same manner as the case a = 0 if we
had considered (37), the same equation as in [5], where the term 1/|M| is omitted:

oM
—at—:]fy|HxM+aMx(HxM). (37)
But this change in the LLG equation is valid only if the norm of the magnetization can be assumed to be
constant in space, which is impossible when you consider the interface between the vacuum and a ferromagnetic
material.

We establish below local results by applying Theorem 1. We consider separately the two cases « = 0 and
a # 0, that is to say with and without damping. In each case, we shall decompose our proof into three steps.
First we define the appropriate functional framework H as well as the operator A and the non-linear part F'.
Then we establish that A, and F, have the required properties.

2.41. The case a =0
The (LLG) equation is

oM
e Mathematical framework
We introduce H = L?(R)3 x L?(R)® x H1(R)3, which is clearly a Hilbert space, and take as our unknown the
vector u = (E,H,M) € H . We also introduce the Hilbert space H(curl,R) = {v € L*(R)?; curl(v) € L*(R)?},
which is in the 1D case nothing else than L*(R) x H*(R) x H* (R). It is now possible to rewrite the three equations
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of (8) as:
OE
B = curlH
OH oM
— 4+ — = —curl
ot ot curlE
oM .

that leads to the following system of evolution equations:

aa_? = curlH
081: = —curlE - Hr(HM)xM -
% = HrH,M)xM

It is now natural to introduce the unbounded operator
A(u) = A(E,H,M) = (curlH, —curlE, 0)

with domain D(A) = H(curl,R) x H(curl,R) x H'(R)3, and the function:

F(u) = F(E,H,M) = (0, — Hy(H, M) x M, Hr(H, M) x M).

With these notations, the problem (8) is equivalent to:

ou
i Au + F(u)
u(t=0) = ug

(40)

(41)

(43)

where of course ug = (Eg, Hp, Mp). It remains to show that A is maximal monotone and that F is locally

Lipschitz from D(A) to D(A).

e A is a maximal monotone operator

This result is not surprising since A is nothing other than the operator associated to Maxwell’s equations.

First using the Green’s formula:
/ (curlE-H — curlH-E)dz = 0
R

for all (E,H) in H(curl,R) x H(curl,R) yields to:

(Au,u)yy =0, VYue D(A).

(44)

(45)
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Then, to get the surjectivity of A+ I from D(A) in H , we have to show that, for all (e,h,m) in # , there exists
(E,H,M) in D(A) such that:

—cuwrlH+E =e
curlE+ H=h (46)

M=m
Reminding that the longitudinal components are constant, this leads to solve for the transverse components
curl (curlE) + E = e + curlh. (47)

The Lax-Milgram theorem ensures that there exists a unique solution H*(IR)? — here are considered only the
transverse components — for a right hand side in L?(R)2. This implies in our case that E is in H(curl,R) for
(e,h) in L%(R)3. We can then conclude with H = h — curlE.

e F' is a locally Lipschitz continuous function from D(A) to D(A)

It is clear by Lemma 4.
This was the last point of our proof. Eventually we can state the

Theorem 2. Given (Eq,Ho,My) € H(curl,R) x H(curl,R) x H*(R)3, there ezists a unique local mazimal
strong solution of (8) so that:

E € C' (0, Tmax; L*(R)*) N C° (0, Trmax; H (curl, R))
H € C* (0, Tmax; L2 (R)?) N C° (0, Tinax; H (curl, R)) (48)

M € C* (0, Tmax; H' (R)?)
with moreover the following alternative: either Typax = +00,
. 2 2
or tim {IBO)ieun) + IO ey + IMOIFn } = +oo. (49)

2.4.2. The case a # 0
The (LLG) equation is

M x (HT(Ha M) X M) = L% (Mv HT(Ha M)) . (50)
As said in the introduction, in the case & # 0, we shall only present an existence result but, since
HYR) C L*(R) N L*°(R) (51)

uniqueness will be ensured by the theorem about weak solutions presented in [17]. (For this reason, this
paragraph can be seen as complementary to [17].)
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First of all it must be said that this existence result is obtained under a new and purely technical assumption
on the initial distribution of magnetization My, namely

Mo

Mo

€ H'(R) (52)

or, to be more rigorous,

Img € H'(R) such that: Vz € R, [Mp(z)| #0 = 'ﬁoggl = mg(x). (53)
{+¥10

However it is important to understand that assumption (53) represents no serious restriction, other than My
must be of bounded support (see Rem. 4).

e A new formulation
We know that it is possible to write the three equations of (8) as the following system of evolution equations:

OE

5% = curlH

88—17_51 = —curlE — L% (M, Hr(H,M)) (54)
oM o

-5 = L& (M,Hr(H,M))

associated with the initial data (Eq, Hop, Mp). The idea of this section is to consider a normalized magnetization
vector m; more exactly, we define the following problem

OE
[ B = curlH
%—I;I = —curlE — |[M,|L® (m, H) (55)
Om o
where
L% (m,Hr) = [Hr(H, |Mo/m) X m + am x (Hr(H, |Mg|/m) x m)] (56)

M,
| M|
let (E,H, m) be a solution to problem (55) and let M(z,t) = |My(z)|/m(z,t). We have M € H1(2), and also,
because of the conservation of the norm of M (and m):

associated with the initial data (Eq, Hg, mg) with mg =

€ H'(R) as indicated in assumption (53). Now

& (M, H) = |M,|L* (m, H) (57)
and
%l\t./l_ =L (M, H) %’t’—l =L (m,H). (58)

In other words every solution to problem (55) is clearly a solution to problem (54), and it only remains now to
conclude to apply Theorem 1 to problem (55).
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e Mathematical framework

The notation is the same as in the case & = 0. We take as unknown the vector u = (E,H,m) € H . Again
we introduce the operator

A(u) = A(E,H,m) = (curlH, —curlE, 0) (59)
with domain D(A) = H(curl, Q) x H(curl, Q) x H}(Q)3, and the function:
Fivio (1) = (0, — [Mo|L®* (m,Hr), L* (m, Hr)) . (60)

With this notation, the problem (55) is equivalent to:

Ou

— = Au+ F,(u

i e o
u(t =0) = ug

with ug = (Eo, Hg, mg). It remains to see that

¢ A is a maximal monotone operator
It is clear since this operator is exactly the same as in the previous section.

e F, is a locally Lipschitz continuous function from D(4) to D(A)

First it is obvious that Fy, maps D(A) to D(A) since H1(2)? is an algebra. Moreover Fi, is locally Lipchitz
by Lemma 4. ‘

Applying Theorem 1, we obtain a local solution (E,H, m) to problem (55) ; it is then possible to define
M = |My|m a solution to problem (54) and finally we can state

Theorem 3. Given (Eg,Ho,My) € H(curl,Q) x H(curl,Q) x H*(Q)3, there exists a unique local mazimal
strong solution of (8) so that:

E € C* (0, Tomax; L*(92)%) N C° (0, Tinax; H(curl, 2))
H € C (0, Tmax; L*(€2)%) N C° (0, Tax; H (curl, 2)) (62)

M € C" (0, Trmax; H'(Q)?)
with the following alternative: either Thmax = +00,

or tim {IB) ey + O reuny + MO0 | = +oo. (63)

max

Remark 4. Without studying the most general case, let us see briefly that there exists a large class of admissible
initial distributions. For instance it suffices that My = f(z)u with u a fixed vector and f € H*(R) a positive
function with bounded support: it is easy in this case to construct my € H'(R) equal to u on the support of f.
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f(z)

Q
<
8

M, = 0 M, # 0 My = 0

From this first example, the reader can easily check that more generally, one may consider any ferromagnetic
zone [a, b] such that

Je, > 0, Ju, € R3, vz €la,a+eq], Mo = fa(z)u, (folz) 20) (64)

Jdep > 0, Juy € Rs, Yz E]b — Ep, b[ , Mo = fo(z)up (fb(.’lf) > 0) .

In this case, we have

Mi Ya,a + 3 an - 1 _ 3
<|M0|)]a,a+ea[ € H'(la,a+¢,[)° and (lMol)]b—sb,b[ € H*(]b— e,0])

and it is easy to check, because 3C, > 0 such that [Mg| > C¢ on Ja + €4, b — €3], that

Mo

=1 M n 3
T~ € H- (ja+e€a,0— &) .
IMO‘]a—i-sa,b—sb[ :

Hence the result since M is continuous for x = a + ¢, and z = b — ¢,. And of course, the ferromagnetic zone
can be defined as the union of such disjoint intervals:

0 = Jla, b, (65)

T

which leads to a large class of admissible initial distributions.
2
On the contrary Mg = e™® sin(z)u is not an admissible initial data.

As a conclusion let us simply say that assumption (53) only implies a kind of control on the way Mg vanishes
to zero.

It remains now to show that the local solutions of Theorem 2 and Theorem 3 are indeed global. Rather than
expliciting two very similar demonstrations, we now end this mathematical part of our work in the most general
case: no assumption is made either on a or on My. This way we can eventually conclude in each case.

2.5. A new estimate for H

We have now to verify that no local solution can blow up in a finite time. With (21) and (33) which are valid
in our case for any 7' < Tiax, only the L? norm of the local solutions provided by Theorem 2 is controlled. So,
to prove global existence we have to find H' estimates for these solutions depending on ¢ in a locally bounded
manner. More precisely we first establish in this paragraph that H € H(curl, R).

Before beginning, let us introduce the following technical lemma.
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Lemma 5. Concerning the infinity norm of the magnetic field, we have
Iz < Moo + 2 [H]| s [lcurlH]| , (66)
Proof. First let us recall that for all u € H*(R), we have

ou

lullze < 2 ulls || 5

(67)

L2

as D(R) is dense in H*(R). Then it suffices to apply (67) to the transverse components of H and to recall, for
the longitudinal component, that H, = —M,. O

Now we can give the three steps of our proof.

e Step 1: Estimates on M.
As far as we know at this point, M € C! (O,Tmax;H 1(R)3) but it is not difficult to prove that M €
C? (0, Trmax; H*(R)3), and moreover that ||M(t)||« = | Mg||re. Indeed

oM a
—aT—HTXM+MMX(HTXM) (68)

and as we know that H € C? (0, Tmax; L*(R)?), it is clear that
Hy = [H+H, + H,(M)] € C' (0, Trax; L*(R)?)
since H,(M) linearly depends on M. Moreover we know that
M € C" (0, Tmax; H*(R)?) <= C* (0, Trmax; L= (R)?) .

We can conclude that Hr x M and M x (Hy x M) are in C? (0, Tinax; L*(R)?).
Thus M € C? (0, Tmax; L2(R)?).

e Step 2: A new energy-type identity.
The idea is to do the same kind of computations we made to get the decay in time of the electromagnetic

energy but for the time derivatives of the fields E and H. Let us give a formal proof assuming that E and H
are smooth enough. We start from

0’H + *M U OE
o2 o2 ot (69)
’E _ on
o ot
Then we multiply by 00—1;1 and %—Pt: and integrate in space to obtain
1d dE|* |6H| M OH
- _— 4+ |— = - _— 70
2dt[/R<,at "Bt )dx] TR (70)
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IE
or, since — = curlH,

ot

N

r Ot2 Ot

d
— [
" {/ﬂg(curlH! +| e

This reduces to, Vt < Thax,

%/R (]curlH(t)[2 + I%—?

As we know that V¢ € [0, Trax)

)dx] __[EM (71)

2
>dz ;/ <|curlH(O)| +'%I;I(O)

tr o™ OH
) dz — [) = W - deds (72)

oH oM N
57 = —cwlE — —= = —curlE — L§(M, H), (73)

we introduce Ag = —curlEq — L& (Mo, Hyg) € L2. (Aq is well defined since Eq and Hg are taken in H{curl, R)
and M is taken in H'(R)3.) Then (72) is equivalent to

2
):§(||cur1HonL2+||AoHLz / / o deds. (14)

Now, to give a rigorous proof of (74), since E and H are not regular enough, we have to use a discrete
differentiation. More precisely, for any Banach space X and any u € C’O([O, T*[; X), we introduce

1 2 O0H
! (ucuﬂﬂmnp 5o

VT < T*, Vh €l0;T* = T[, Dyu(t) = ult +h) — u®)

N

b t i

c O%0. T: X).
SR J
Moreover, if u € C1([0, T*[; X), then, as h — 0,

Ou .0

Applying Dp, to Maxwell’s equations — with 7 = T},.x —, we get by linearity

0

Bt (DLE) — curl(DyH) = 0 ; (75)
52 (DrH) + curl (DLE) = ~ % (DpM)
We multiply the first equation by DpE and the second one by DpH and then integrate the sum to get
1d
537 (IDAEl3: + IDuHI:) = / Dh— DyHdz. (76)

We now integrate in time, for any ¢t € [0, Tmax|,

5 (IDE@IZ+ 1DHO)2:) = £ (IDABO) 2+ | DAHO) 2, - / / D, 2% - DyHdads.  (77)
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As E € CH0, Tmax; L2(R))® and H € CY(0, Thmax; L2(R))3, we have

oE  |I?

i 2 2
lim | DAE()|2, = W(t) _ ewlH ()2,

L2
12

2o
Moreover, as H € C*(0,T; L*(R))® and M € C?(0,T; L%(R))3, we have, Vt € [0, Timax/,
¢ oM tr9’™M OH
li — = . = .
hlil’%) /0 /RDh e DpHdzds /0 /R ETC Y dx ds

It is thus possible to take the limit as A — 0 in (77) and then to get (74).

. |0H
fim 1D = | G0

H
e Step 3: The estimate for (%;) and (curlH).

609

(78)

(79)

To shorten the proof given below we shall consider here the case (o = 0, Heg(M) = 0) which presents all the
difficulties of the case (a # 0, Heg(M) # 0) that we shall detail in Appendix A. In other words we assume here

that

oM

— = HxM
ot x

while the case of the complete (LLG) is considered in the appendix.
In the case (a = 0, Heg(M) = 0), it is easy to compute at each point:

M OH O0H OM| OH OH
T m = e MR | Gy = o xm G
which reduces to
’°M OE 2 |OH
— — < — .
‘( o2 8t> s MIHF ) 5

Thus, plugging (81) into (74), we obtain

L(]joH
2 ot

We then note that

2 1 ¢ » |6H
+|;cuﬂnuiz> < 3 (||cur1HoHiz+nAolliz) +1|M1|Lw/ /|H[ e
L2 0 JR

/ H?
R

that is to say, applying Lemma 5,

O0H O0H
—_— < o || —=— Hi,.
R

2 |OH 2 R WARAE o
/RlHl Bt dz < (“NI“Lw""2||Hi!132 ;ICUI’IH';Lz) 1 0t ||
' 1 aH | | aH
< VaEp fowrr |2 g e —H .
l t | 12 3t L2

dzds.

(80)

(81)

(82)

(83)

(84)
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In the case (o = 0, Heg(M) = 0), (31) gives:

IBIZ. + IHIZ: = [Bollzs + [ Hollz - (85)
Introducing
1 2
& = 5 (IBolZ: + IHol7:) (36)
we get
Moz < V3 (260)%* Jlewrt H|Z |5 + (260)*% [Moo| poo || = (87)
ot ||, Ot {12
Therefore, with C = Max (\/5 (2E0)%/* (Mol 00 ,(280)*? ”M()”ioo)) we get from (82) and (87)
1 2 2 1 1/2
§<HE . + chrlH||L2> §(chrlH0||L2 —|—||A0HL2 +C/ 1+||curlH|| ) ’E L2 ds (88)
and so
1(||e” | 1
US|+ lewnts | < 5 (JlourlELo| 32 + [1Aoll3: )
2\ Ot |l 2
t 2 (89)
+g/ flcurlH|[ ;2 + || =-|| +2 oH ds
2 Jo \CTHIE T T 3t . )
Noticing that
lcurlH||,» < 1+ [[curlH|7. (90)
we have
OH 3
(||curlH]|L2 + ]l +2 ”——— ) = (H + chrlH”Lz) .
L2 t L2 2"
. . 1 2 ? . .
Introducing the function F(t) = 3 |curlH||72 + e , we see that (89) is equivalent to
L2
F(t) < F(0) + 20/ ( +F(s)) (91)

3
We can then apply Gronwall’s Lemma to the function (Z + F(t)> to get

(Z + F(t)) < (% + F(0)> exp (2Ct) (92)
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which yields

oH || . . 3
(||cur1H||§2+“W ) < (ucuﬂHOn; +|_A0||L2> exp (2C) + S (exp(2Ct) - 1) (93)
L

which is exactly the kind of estimate that we were looking for.
2.6. The global existence and uniqueness results
We can conclude from estimates (33) and (93) that for all T > 0, there exists Cy (T") > 0 such that
vt € [0, 7], H®l g < Cu(T). (94)

H M M
é; n + = 3 . We recall that 38_ € L?(R) sinceM € L°°(R) and H € L*(R).

Thus (33) and (93) yield: for all T > 0, there exists Cg(T') > 0 such that

Besides, we know that curlE = —

Ve, T),  [E@lm < Co(D) (95)

It remains to see that we can get the same conclusion for M by taking the derivative in space of the (LLG)
equation:

d (M O0H . OHcq oM
5‘5(%) = op Mt g, ¥MAHr X5,
a M OH  OH.g
= U = pinind 96
+|M|6 ><[(H+Heﬁ)><M]+|M|M [(6w+ o )xM] (96)
oM M oM
< [ < G o (- 57 Mx e e v
. oM . .
Then, multiplying by e and integrating in space, we get:
1d oM |? OH oM , OHez . OM
24t (/R oz dx) = A(%M’E) d“/R (—am ’M’E;) dz
87 6M OH BHeff
- —= (M M| d 7
fo (v B (52 + 7)) oo 7

a (9 oM M oM
- /R|_MI (MX g (H+ Hen), (%“—iw '%M))‘i’”

where (a, b, ¢) denotes the product (a X b) - ¢. It is then easy to see that (97) becomes

) 6].\/,[ ) ) oM
< | 1 :oc € 1 =
a (H ) < Mg B |G| M Bl ||
) laHl! 6M| ) OH. g oM
oM |22 1By (||| M (98)
‘ L i o iL |L L | Oz L2
. -‘8M!?2 , oM |2
20 =l o | S0 + 20 [ Hegll . | 21|
F2o || H| 2 B iL2+ all ffI_Lz- 7z |,
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Let us recall that we know that all the terms in the right hand side of (98), but maybe ||[Hegl| ;. and

M

oz ||
are bounded. In what concerns Heg, we use the fact that Heg(M) is affine with respect to M. Then, using
the Cauchy-Schwartz inequalities, it is straightforward to see that (98) leads to: there exists C1(T") > 0 and

C1(T) > 0 such that, for all t < T,

BMI
< T
( | ) o) + oam) |5 (99)
We can then conclude with the Gronwall’s Lemma that for all T > 0, there exists Cp(T') > 0 such that
vt € (0,77, M)l gn < Cu(T). (100)

Finally, we can state

Theorem 4. Given (Eo,Hy,Mp) € H(curl,R) x H{curl,R) x H*(R)3, there ezists a unique global strong
solution of (8) so that:

E € C' (R4; L*(R)}) N C° (Ry; HY(R)?)
H ¢ C' (R LA(R)®) nC° (Ry; HAY(R)?) - (101)
M € C? (Ry; H'(R)?)

2.7. About finite velocity of propagation

Using an energy method, it is possible to show that the velocity of propagation of electromagnetic waves in
ferromagnetic media is finite. The idea of our proof consists in evaluating the electromagnetic energy outside a
domain which is bounded but whose width increases with time. Note that only small changes are required to
obtain the same result for arbitrary dimension of the problem.

More precisely, let us assume that there exists two reals a and b such that, at time ¢t = 0,

1. Eg and Hj are equal to 0 outside the interval [a, b];

2. the initial distribution My, outside [a, b], corresponds to a stable steady state; that means that My is

parallel to (H; + H,(Mjy)) outside [a, b] and that the function

UM) = £ (KIPQD + [H, ~ MP) (102)

reaches a global minimum, almost everywhere outside [a, b], for M = M.

In this case, it is possible to multiply Maxwell’s equations by H and E and to integrate the result in space as
follows:

+o00 +o0 -+00
/ (eOE OB + puoH - 8H)dm + ,uo/ H. a—lvl—dw + V- (E xH)dz =0. (103)
bt+wt 8 0 b+t ot b+t

Our aim is to estimate the electromagnetic energy for all z greater than b + vt, the positive constant v being
defined later. Equation (103) can also be formulated as

Bl tee  OM +oo
/ { E? +Eo ]H[ + K(a:)] dz + /.Lo/ H. —dz+ V- (ExH)dz =0 (104)
b-+ut dt b+ut ot btut
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where we denote by (E x H)(z) the scalar function (Ey(z)Hz(z) — Ez(z)Hy(z)). In this expression, the
function K (z) must be taken constant in time. Our choice consists in K (z) = —U(Mp). Then, from (104), the
computations unfold as in the general case: by adding Hes(M) to H, we obtain

% 4 reg . oo oM
/ - [—O EP + 22| - U(Mo)] dz — po Heg(M) - ——dz
bt A L2 2 | b ot ot (105)
oo oM
+0 Hr(H,M) - ——dz — (E x H)(b+ vt) = 0.
b+t 8
Using (27) and (29) we obtain
/+°° d [ B2 + Ko > H+UM) - UM )]dx a [T 1 4o +(E x H)(b+vt). (106)
bior ° HO1 Jyroe M | B '

We deduce that
+o00 1

iy “de + (Bl [H) (b4 vr). (107

< — —_
/m dt[ B + £2 |H| +UM) — (MO)}dz_ o Ivl/

As we know that

/:: jtf( )ds % [/b::f(s)ds] + v . f(s)ds (108)

we can conclude that

a[/:o (5 180+ G+ U - (M"))d“’]— “wops [ v | 01
—[o (2 1EP + £+ v(v) - U(Mo))—IEIIHI] (b-+ )

(109)

Because of the choice K(z) = —U(Mp), the function of the left hand side, which is the total electromagnetic
energy for = greater than b, is always positive or equal to 0 at time ¢ = 0. To show that that the speed of
propagation is smaller than v, it suffices to show that this energy can not increase in time, that is to say that
the derivative in time can not be positive. Since (U(M) — U(My)(b + vt)) > 0, it remains to choose v such that

(v%ml%v%gm?—mum) (b+wt) > 0. (110)

1/2
1
The reader can easily check that a possible choice is v = ¢, = ( ) .
Eolto
Of course it would remain to do the same for z smaller than a.

3. THE NUMERICAL METHOD

We present in this third part the discretization of our problem, first in space and then in time. The physical
constants are not taken equal to 1 any longer.

For these numerical results we shall work in a bounded interval [0, L] of R with Dirichlet conditions for the
electric field E. The reader will easily check that the extension to this case of the existence and uniqueness
theorems of Section 2 is straightforward. We introduce the space H?(curl, R):

H%curl,R) = {+ € H(curl,R), ¥(0) x e, =0, ¥(L) x e, = 0} (111)
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For the “Maxwell part” of our problem, our choice consists in working from the following variational formula-
tion [8]:

(8—?,¢> + (curlE, ¢) = 0, V¢ € L2
OE )
€0 5{,1/)) — (H, curly) = 0, vy € H . (112)
B
L (H:¢) = (;;Qb) —(M,¢), V¢€L2

It is important to see that the curl term in the second equation has been integrated by parts. For this reason
functions ¢ can be taken in L? rather than in H(curl). The third equation looks like a triviality yet it indicates
that it would be better to look for H, B and M in the same functional space.

3.1. Semi-discretization in space

3.1.1. Construction of the approximate

We assume that L = Nh, where h > 0 is our space step:

We take the discrete electric field in the space V3, of piecewise linear functions and the discrete fields Hj,, By, and

M, in the space X}, of piecewise constant functions. We introduce {4, € P }5\;—11 the canonical basis functions
of V}, to define Ep:

N-1

En = Y (By()v.(z)ey + Ex (i) (x)es) (113)

=1

and {¢, € Po}fil the canonical basis functions of X} to define Hy, By and Mp,:

M=

B, = (By(i — 3)p(z)ey + B.(i — 3)¢(z)ez) (114)
N

H, = Z (—Mz(i — L) (z)es + Hy(i — 3)du(x)ey + H.(2 — 3)d(z)ez) (115)
=1
N

My = > (Mot —3)ou()ex + My(r — 3pu(x)ey + M.(2 — )ou(2)e.) . (116)

1

I

It is now possible to write a discrete variational formulation of (112):

(‘%’wh) + (curlBa,én) = 0, Ve € (Bo)?
(117)

OE
0 <6—th"ph> — (Hp,curlpn) = 0, Vepy € (Pr)?
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This leads to the following scalar system for Maxwell’s equations:

B3 EG)-BE.(i-1)
1<i<N, de Az (118)
dB.(i-3) _  E,(i)-E,(G-1)
dt o Az

(where E,(0) =0 = E,(0) and Ey(N) =0 = E,(N)), and

dE,()) Hi(i+3) - H.(i—3)
1<i<N -1, dt Az . (119)
dEZ(i) _ Hy(" + %) - Hy(Z — %)
dt o Az

With this approach and equations (119), a discrete curl operator is defined for the space X, (which is a space
of discontinuous functions); in the 1D case it is exactly the usual operator corresponding to Yee’s scheme [9],
but this would be no longer true in the 2D case (see [16]). This discrete curl operator is defined with centered
finite difference which guarantees order 2 in space for our scheme.

The situation is of course different for the (LLG) equation and the magnetic coupling since no derivative
occurs in these equations. We simply have [see (14)]:

oM, Q oM,
= Hr,(M M —M
o1 |7/ Hzpr(M) x My, + M| B X o

(120)

B
with Hpp(M) = Hy, + H, — KP(My,) and Hy, = —* — M.
Ho

3.1.2. Ezistence of solutions and stability analysis

It can be seen that the problem defined from (117) and (120) consists in solving the following system:

;

—6—313;—h + curly Ep, = 0
Br = po(Hp +My)
SE (121)
8oa—th —curly, Hp, = 0
OM}, o
L ot L& (Mp, Ha)
where curl, is the discrete curl operator defined on (P)? by:
Von € (Po)?, Yin € (P1)?, (curly ¢n,¥n) = (¢n,curlhy). (122)

We see that (121) is a system of (2+2+ 3)N ordinary differential equations. Thus the Cauchy-Lipschitz theorem
applies and ensures that there exists a unique local solution (Ep, Hp, My).

Concerning this local solution, we see first that there is nothing new to say about the conservation at each
point of the norm of My, since the (LLG) equation is exactly the same as in the continuous case:

My (z,t)> = [Mox(z)|?, Vz € [0, L]. (123)
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To get the complete control of the local solution (Ex, Hy, My,), it suffices then to prove again the decay in time
of the electromagnetic energy. If we take ¢, = Hj, and ¢, = Ej, in (117) and then integrate, we obtain by

adding
L OH}, OE, L oM,
A {u ( 5 Hh) + &g <—a—— Eh>}d$ = p,()'/(; (Hh . ot )d.’L‘ (124)

We do the same computations but with the 1D assumptions:

=3 ’ (Hah - %—fi) o = o | ’ (KP(Mh) - 95%}‘—"’) dr =2 e, ). (125)

Since the (LLG) equation has not been modified, the other results are unchanged and lead to

d [eo Ho 2 uoK /Lo / 1 aMh
IE H =
S| R IRl 52 2+ 25 POV + 42 i, — M| = o, [ dz
(126)
which is the semi-discrete equivalent of (31). Thus, as in the continuous case, we conclude that
2 2 2 2 2
o [EA@)3s < (20 lBnol3: + po IEInoll3s + (1 + K)o [Minoll3 + s L 3 ) -

po [[HA ()72 < (é‘o I Enoll72 + o [HnollZ> + (1 + K)o [Moli72 + po ||Hs“iz)
These estimations ensure that the local solution is indeed a global solution. Moreover, they do not depend on A.

3.2. Time stepping

Our semi-discrete equations must be now discretized in time.

3.2.1. Construction of the approximate

We shall use to discretize (118) and (119) in time the standard leapfrog technique: if At > 0 is our time step,
the electric field is discretized at times t" = nAt:

n o~ Ep(t =nAt) (128)

while the magnetic field, the magnetic induction and the magnetization are discretized at time s = (n + %) At:

1
B, "2 ~ By ((n+1)At), M ”*2 ~ M, ((n+1) At), H ”*2 ~ Hy, ((n+1) At). (129)
-1 nik 1 1
Besides we denote by M} (resp. H} and B}}) the half sum of M 2 and M, 2 (resp. of H % and H and

n—% n+%
of B, ? and B, ?%).
Discretizing the system (121), we get the following scheme: on the one hand, for Maxwell’s equations,

= —curly, E} (130)
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and
1
EMt! _ E7 ntd el BIT2 ntl
so—h—At—h = curl, H, 2, withH, 2 = ZO -M, 2 (131)

and on the other hand, for the (LLG) equation,

1 1 X
+35 n-5 n+35 n-3
Mn 2 _ M 2 o M 2 _ M 2
1 1
1 M, 2|+ M 2
WithH?‘h:%BZ+HS—KP(MZ)and|MZ|:| h |“;| n ’l

1

When Bz_i, M:i and E} are assumed to be known, the computations at the following step unfold like this:
1

1. BZ+2 is calculated by (130);
1

2. MZ+§ is calculated by (132), hence H7;, can be computed;
3. EF*! is calculated by (131).

Moreover it can be seen that our time stepping is centered which ensures an approximation of order 2 in
time.

3.2.2. Eristence and actual computation of the discrete solution
1 1
The calculation of BZ+2 , H:+2 and EP*! from (130) and (131) is obvious but we have to make precise the

. +35 . . . .
way we determinate M: 2 from (132). Moreover, because of the non-linearity of this equation, we can’t be
sure a priori either of existence of a solution, or of uniqueness. Also we shall see that although the scheme is
implicit, the computation of MZH can be carried out explicitly.

e A new form of the discrete (LLG) equation

First of all, we can “decrease” the non-linearity of (132) with the help of three simple mathematical remarks:
1. The conservation of the norm of the magnetization: one only has to take the scalar product of (132) by

My}, to find
1 1 1 1
n+35 n-s n+5 n-5
M, 2 -M, 2 M, 2 4+M, 2 1 1 1
h ) Y (e B M} 2P M 22 ) = (133)
At 2 2At
This means that |M}/| is a constant in (132) and the superscript n can be omitted.
2. A change in the second vector product: we have
1 1 1 1 .1 1 M"+% M"‘% QM"‘%
M2 M2 . M oM M M L +M, 7 ) = 2M, (134)
2 At B 2 At

Then, (132) becomes

n+

M,

D=

'n.-l At n--l- n«'——l n-s5
-M, ? = [—M Th + _ll\(/:"iMh 2} x (Mh' 24+ M, 2) . (135)
h
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3. The remark (14) about H,(M): we have
—-KP(M}p)xMp = K(p-M})p x M. (136)

Finally we have shown that the (LLG) equation is equivalent to

ol ol t (B n3  Kly|At
My o [ (B ) sang o K owapyp) coMp.
0

Introducing the following notations:
1 ~ 1
-5 At (B} n-3 K|v|At
. f=2MZ27 a=— At — +H, ) +aM, ? ) and )\:—L;
2 Ho 4
n+% ) n
e x=M, *+M, * =2Mj,
we get the following non-linear vectorial equation:

—

x+axx+ Ap-x)pxx = f (138)

where f, a and A are data and x is our new unknown.

Remark 5. If K were equal to 0, we would get x + axx = f; in this case, Lemma 1 applies, and we conclude
that

f+(a-fla—axf

- 139
1+ |al? (139)
e Existence and uniqueness of the solution
We first consider the linear function of Lemma 1
Ax) =x+axx =y & z = Aly. (140)
We recall that A~! is a contraction. Let x be now a solution to (138); we introduce
x = ATV (f - Ap-x)p xx) = F(x). (141)
1
It is not difficult to see that F': B(0,1 + |f]|) — B(0,1 + |f|) as soon as |A] < m)—z:
[F)| < I£] + X[ < Jf] + AL+ )2 (142)

Then we compute

[F(x) = F(y)l < Mlp-x)pxx—(p y)pxyl
< lp-x)(pxx—pxy)—(p-x—p-y)P XY (143)
< Mp-x)px(x—y)—p-(x—y)p xyl|

Hence

[F(x) = F(y)l < 2|Al (1 +[f]) [x -yl (144)
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We conclude that F is a contraction from B(0,1 + |f|) to B(0,1 + |f|) as soon as
AL < Min (1212 1+ 1ED)7 (L 1) 72) - (145)
Therefore, for At small enough, the contraction theorem applies and there exists a unique solution to (138).

e Actual computation

If we tried to expand (138), a quadratic vectorial equation, it would lead to a scalar polynomial of degree 6.
We should use in this case some iterative method and give up the hope of an explicit scheme.

To avoid this difficulty, our idea consists in projecting — when it is possible — the vectorial unknown x in the
basis (a, p,a x p). We distinguish two cases

1. |ax p|=0.
Then (a,p,a X p) is not a basis, but there exits § € R such that a = §p. Thus equation (138) is
equivalent to

x+ 0+Ap-x)pxx = f. (146)
Taking the scalar product by p yields (p - x) = (p - f), so that (138) is equivalent to
x+B0+Ap-fllpxx = f (147)
and Lemma 1 applies. The solution is explicit.
2. lax p|#0.

We can work in the basis (a, p,ax p) and get a system of three equations in scalar unknowns X = (a-x),
Y = (p-x) and Z = (a X p) - x by taking the scalar product of (138) by a, p and a x p:

Y-2=(pf)
X +AYZ = (a-f) : (148)
Z - (a-p)X + ||la)’Y + A(a-p) Y2 — AXY = (axp)-f

This leads to

Y =272+ (p-f)

X = (a-f) = AZ(Z + (p-f)) (149)
NZ342)((a-p)+ A (p-£) 2%+ <1+|]a||2—)\(a~f)+3/\(a~p)(p~f)+)\2(p-f)2)Z

\ ~X@-f)(p-f)—(a-p)(p-f)+A(a-p)(p-£)*+ |al*(p-f) — (ax p) - f = 0.

Solving this system is equivalent to finding the — unique — real root of a polynomial of degree 3 in Z, while
degree 6 was expected. This time again, solution is given explicitly. Knowing X, Y and Z, we can determinate
x by:

X = .a—;;lg[(X—(a-p)Y)a+(la!zY—(a-p)X)p+Zaxp]. (150)



620 P. JOLY AND O. VACUS

3.2.3. Stability analysis

We want to show the decay at each time step of a discrete electromagnetic energy by adapting the proof of

1 1
the continuous case. Multiplying (130) by At (H:+2 +H, ? ), we obtain

el a1
n-l—l n—l Bh 2 TBh 2

1 1 1
n+3 n-35 n-%
polH,, 22— ol Hy, 22+ 0o | M, 2 =M, 2, 2

-(M, 2+ M, ?)
Ho (151)
'IH-l n-l
+At (curlhE’,Z,Hh 2+H, 2) =0.

Using the conservation of |M}|, the fact that the operator curl;, as we defined it is a self-adjoint operator, and
(131), we see that (151) is equivalent to

"+’é' 2 n @ntl "‘% 2 n—1 mn "+% "‘% 2B}
pollHy " 211" + eo(ER, ER ) | — |pollHy, 2 |I° + eo(ER ™ ER) | = —uo { M, *— M, 2, - (152)
. 2B .
By adding 2H.s(M}) to , we obtain
Ho
Hn+é|2 . n grtly| i "'% 2 n—1 f@n
pollH, 2 ||* + eo(BR, ER™7) | — |mollH), 2[I° + eo(ER™, ER)
il el el ol (153)
— o (Mh - M, 2,2H63(M2)) = —lo (Mh 2 HMh 272H%h> .
Let us compute the left hand side; we have
/ nit 1\ | ar L 12 | nl 12
o (2EPOVR), M2 - M2 ) = 2K |POMG'2)| = 2K POV )| (154)
n+l n-l
Finally we obtain that —pug (Mh 2-M, 2, 2Heﬂ(MZ)) is equal to
12 1 12 1
3| n+3 3 3
2K o |P(M, )| —2uoH, - M, 2| — [2Kuo |P(M}, 2)| —2uoH,-M, 2| . (155)
nil L
Further one has only to take the vector product of (132) by M, % — M, ? to get
n#—l— n-l (67 n—&-l n—-l- 2
— Mo (Mh.- 2 —M, 27H’?"h> = —mﬂo M, 2 - M, 2 (156)
Thus, if we introduce, Vn € N,
1 n+3 o n gn+l nt3 ’ nt3 2
Uh(n + 5) = ,uoth | + EO(Eh,Eh ) + QK,U,O P Mh + lLolHS - Mh | (157)
we have established that, Vn > 1,
1 1 1 1
Un(n+3) = Unln—3) = - 2;‘—“10 M, "2 M) (158)
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This shows that the discrete quantity Ux(n + ) decreases at each step of the computation. We know that

1 1
+3 . +302 . " I
2uoK IP(MZ 2)12 4 po/Hy — MZ 2|2 is a positive term. What can we conclude about the quantity Uy (n+ 3) =

1y
! H: 2 l + (E?,E}*1)? Using the fact that
| En+1 + E7 12 At2 En%—l —~E? 2 | En—i—l + En 2 At2 E n+l 2
(EZ,EZ-H) — |[Zh L) | h h = h ' h _ = curthh 2
2 || T4 At 12 el
1 1
= 4 ) n4=
and the fact that |[cur1hH:Jr2 I < Ez’leh+2 1%, we see that
Lo A2 L |EpeERT
Un(n+3) > (1 - —,;;) L, 2 + H"—;"—— (159)

and we can conclude that U, n(n+ %) is positive, and therefore that the scheme is stable, under the classical CFL
condition: % <1

4. NUMERICAL EXPERIMENTS

In this last part, we perform some numerical simulations. The results that we present are not really “dis-
cussed”; our goal consists only in illustrating our numerical method.

First of all we consider the propagation of a sustained signal inside a homogeneous domain: a vacuum first,
and then a ferromagnetic domain. We represent only one component of the magnetic field H at two different

times. (In every case, we use transparent boundary conditions, namely E x e; e, x (H x e;) = 0.) See
Figure 1.

In the second case (M # 0), we see the exponential decay of the propagating signal. After some time, a
steady state will be reached.

We show now some scattering experiments. The domain of calculation is divided into three parts: on the
left and the right sides we consider a vacuum (M = 0), in the center of the calculus domain, a ferromagnetic
material. Six snapshots of one component of the magnetic field H are represented. See Figure 2.

At time t3 and t4, we see propagating toward the left a reflected part of the signal due to the interface, while
a transmitted part is decreasing inside the ferromagnetic media. At time t5, the transmitted part of the signal
reaches the vacuum on the right side.

APPENDIX A

We have shown in Section 2.5 how to get H'! estimates of our local solutions to guarantee that they are
indeed maximal solutions. In this appendix, we show that the computations of Step 3 of our proof are still valid
in the case (a # 0, Heg(M) # 0).

In other words, we work now from the complete (LLG) equation

M _ Ho(H,M)xM + -2

o ™M (Hz(H, M) x M) (160)
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alu u,

*ﬁ ”m’]u(x i f\lxw
i

i

e
e
=

FIGURE 1. h = 4 x 107*m, At = 1.33 x 107%s, f = 13GHz, H, = 10°A/m, [My| =
0 and 10° A/m, K = 1SL

and we want to get again H' estimates from (74):

1)

First, let us recall that Heg (M) is affine with respect to M which yields to:

1/, . 2 b ro*™™M 6H
+!cur1H[2 = = ([lcurlHo||%, + |A(0)[12, —=/ —— + —=-dzds.
| m) 5 (et ol%a + IAOIE:) - [ [ G- 5,

1 1 1 1 ' ' aH 6M
1, |Hesllpe < [Hlp=+Ci[Mlze and |2%E| < ¢ }_&_ . (161)
We shall use in the forthcoming computations the fact that the (LLG) equation ensures that
M
Iaat < (1 + a) M| Hp(H, M)| (162)

and also a generalized Gronwall type lemma.

Lemma 6. Given two positive constants C and C' and a positive continuous function G(t) on [0,T] such that,
vt € [0,T),

t
Glt) < G(O) + C't + C / G(s)ds.
0
Then

!
¢ eCt—1).

G(t) < G(0)eCt + = (
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1
—h—

ty M=0 M#%0 M=0
_)
i3
ts
M\/T

FIGURE 2 h = 7,5 x 107*m, At = 2,5 x 107%s, f = 13GHz, H;, = 10°A/m, M|

10°A/m, K = 1SL

Proof. We introduce the differentiable function ¢(t) = G(0) + C't + C fot G(s)ds. We have

#'(t) = C'+CGE) < C'+Co(t),

Ce'(t)
C' + Co(t)

and we deduce that

Cl

C

Hence the result, given that G(t) < ¢(¢t) and G(0) = ¢(0).

< C. This result is then integrated in time to give

G o) < (S+om) e

623
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Taking the derivative in time of the (LLG) equation, we can compute at each point:

°M OHy M o oM
5~ o MTHrx ot gy < Hrx M)

[0 6HT oM
*MMX(WXM>+MMX(H“ )

(163)

M
or, by eliminating ?gt— with the (LLG) equation,

8°M OHr @ .
otz ot M IHTXlMX(HTXM)]

+ (i>2 [M x (Hr x M)] x (Hp x M) + ITQ/I”IM x (ﬁ X M) (164)
2

XM+ Hp x (Hp x M) +

M| ot

+|—1?T|M><[HT><(HT><M)]+( ) M x [Hr x (M x (Hr x M))|.

[ivi

H
Then we can take the scalar product with %t—:

°M O6H

a
-5 B —Hy x [M x (Hr x M)]

M|
M x (Hr x M)] x (Hy x M) + —

= {HTX(HTXM)+

IM[2 —M x [HT X (HT X M)]
2

IMI

IISIIQM x [Hy x (M x (Hr x M))]} o B (?—}k M 6_H> (165)

OH OH )
= 2T oM. 2=
i (M at t)

=T+ 15+ T3,

ot ot 7 ot

where

T, = {HT x (Hz x M) + oMy 3H>

[ i
HTXMX(HTXM)]+]M](M 5t M’c‘?t
0H
ot

M

+—M><‘HT><(HT><M +
™ )]

(166)

IMPM X [HT X (M X (HT X M))]}

OHr OH o OH~t OH
= (==L el = — _— — |. E :
Ty ( 5 , M, 5 ) and T3 ™ <M, 5 x M, o ) ach term can be bounded

1. Using Cauchy-Schwartz inequalities, we have

0H

Ty < 2(1+a+a®) |M||Hr|* |- =

M < l+ata? ) M| (|H| +|Heﬂrl) (167)

ot =

and then, with (161), we get

/Tld:c <2(1+a+ad?) [IIM”LW

B de + (e + CuMIz=? | |M||

] (168)
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O0H H OH, 0H
2. As (—T,M Q——) = (———E,M —), using (161) and (162), we have

ot T Ot ot "ot
cl|M|] H < G (1+a) MP? 1H1|6H
ot
Thus
OH
/ Tode < G (14 @) [M|%e / Hol | S0 d.
R R

oH
3. As%:i('ExM o o

M

2
+ (aHeff X M) (3—H X M)), we have with (161) and (162)

om
ot

OoH |

T3dz < a||M| — | dz.
J : o

ol +a) M2, /R Exg]

L2

Then, if we define Cy by

Cy = Max {(1+ a+o?) (||Hsllze + C1l[M[lz=), C1 (1 + 0®) M|} }

we can add (168), (170) and (171) to obtain

0’M O6H
_— e —— <
T 5 dz < 30’2[

2 8H 2 2 6
O s v+ s + |

H2
Lz'

The last term to integrate is exactly the one that we have considered in Section 2.5 in (87)

aHld < 2 (26)** [|curlH |}
Bt Iz
Using (90), we see that this is equivalent to
2 |0H 3/4 . . ||loH|?
B dz < (2&) / 1+ |lcurlH||7- + !E )

If we let C = (1 + &) (1 + C2), we can deduce from (74) that, V¢ € [0, T,

; (H%—‘f(t) 2

+||cur1H(t)nZLz> < %(HCUI]HOHZLZ +HA(0)IIiz)
L2

¢ oH|?
+C (14 [Holl3: + IMofl}2) ¢+ C /0 (lacur1H1|§2 + H ) ds.

ot hLz

This is equivalent to

G(t) < GO) + C't + C/t G(s)ds,
0

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)
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2
where G(t) = [|curlH(t)||L2 + “ pn (t)

and ¢’ = C (1 + ||Ho||i2 + “MOHiz) Applying Lemma 6, we
get the desired estimate:

2 '

< | lleurH(0))|3, + eCt 4 %( Gt —1). (177)

[¢)

leurtEr1: + | 55 )|

|5l

This is the equivalent of (93) for the case (a # 0, Heg(M) # 0).
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