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CONVERGENCE RATE OF A FINITE VOLUME SCHEME
FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM

YVES COUDIÈRE1, JEAN-PAUL VILA1 AND PHILIPPE VILLEDIEU2

Abstract. In this paper, a class of cell centered finite volume schemes, on gênerai unstructured
meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are
respectively approximated by means of an upwind scheme and the so called diamond cell method [4].
Our main resuit is an error estimât e of order h, assuming only the W2iV (for p > 2) regularity of
the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas
developed in [12]. Some new difficultés arise hère, due to the weak regularity of the solution, and the
necessity to approximate the entire gradient, and not only its normal component, as in [12].

Résumé . Dans cet article, on étudie une classe de schémas volumes finis sur des maillages stucturés
généraux, pour un problème linéaire de convection diffusion. La convection est approchée par un
schéma décentré amont, et la diffusion par un schéma dit "des cellules diamants" [4]. On démontre
une estimation d'erreur d'ordre h pour une solution continue dans W2'p (p > 2), sur des maillages de
quadrangles. La démonstration est une généralisation des idées de [12]. Les nouvelles difficultés sont la
régularité plus faible de la solution exacte et la nécessité de construire une approximation du gradient
et pas seulement de sa composante normale aux interfaces.
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1. INTRODUCTION

The aim of this paper is to provide a gênerai framework to analyse the convergence of a particular class of cell
centered finite volume schemes (the so called diamond cell method [4,5,14,22]), on structured or unstructured
meshes, for the following linear convection-diffusion équation:

- div(AVu) 4- div(vu) = ƒ in ft, , ,
tz|r — g in I\

It is supposed
• Q to be an open convex bounded polygonal set of M2, of boundary F,
• A to be a symmetrie definite positive matrix with coefficients in C2(f2),
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• v to be a vector in (C 1 ^) ) 2 such that divv > 0,
• gtobe in V{T) = 7o(W2^(n)), the space of the traces on T of W2^(Q),

For sake of simplicity, we consider the case of a Dirichlet boundary condition, although convergence may be
studied similarly for other boundary conditions (Neumann type for instance [6]).

Assuming ƒ to be in LP(O), the solution u of (1) is known to be in W2'p(f2), under the condition 2 < p < po
in the 2D case (where po dépends on the least angle of the convex polygon Q [7]).

In the fîrst part, the family of meshes {Th)h>o considered for the discretization is gênerai, including any kind
of convex polygonal cells, but satisfying some classical hypotheses of regularity.

There exists a, /? ,7 > 0, such that for h — max Ô(K) we have:

Th, ah2<m(K), CarddK < 7 , ( ,
VeedK, (3h<m{e). ^ ]

) , m{K), dK and m(e) are, respectively, the diameter, the measure and the set of the edges e of the polygon
K, and the measure of such an edge e.

Based on the intégral form of (1) on the grid éléments, the finite volume discretization requires to approximate
the fluxes of vu and AVu (resp. flux of convection and flux of diffusion) on the interfaces of the cells. In our
case, the simplest upwind numerical flux is chosen for the convection part. Afterwards, the main point is the
approximation of the diffusion part. The only way to deal with gênerai meshes and diffusion matrices is to
build an approximation of the entire gradient on each edge of the mesh. There are in the literature prevalently
two separate classes of reconstruction, known as Green-Gauss type (tested in [2,4,5,14,22]), and polynomial
Lagrangian interpolation (examined in [8,15]). Those two methods both take into account more cells than the
ones only neighboring an edge. The diamond cell method is of Green-Gauss type and will be described and
analysed in this paper. The gradient along an edge is approximated by using all the cells which share a common
node with the edge.

The diffusion may also be approached by using cell vertex methods (see for instance [11,16,17]). They
require to discretize the diffusion and the convection on two distinct meshes. But the cell centered methods are
generally simpler, and the most widely used, and in conséquence focused on in this paper.

A review of the results of convergence of finite volume cell centered schemes for convection-diffusion problems
reveals the existence of two techniques of démonstration. The mixed finite element method is used in [3,18-20]
to reach an error estimât e on meshes of quadr angles and of triangles, but with some restrictions due to the
principles of finite element methods (conform meshes made either of triangles or of quadrangles). They also
obtain a few results for a three dimensional problem. The second method is due to Herbin who proved by means
of finite volume techniques an error estimate for the VF4 scheme [12], defined for a simpler problem on conform
meshes of triangles. It is remarkable that this scheme (as well as her results) can also be obtained by using
the first method, or by using the diamond cell method of discretization described below. It has been extended
to more gênerai problems with a matrix of diffusion and to a wider class of meshes including polygonal cells
(Voronoï meshes for instance, [13]) in case of an exact solution being in C2(Q) and lately in case of a solution
being in iï2 , but for a mesh of rectangles [21].

Our proof is inspired by the ideas of Herbin, but we point out the generality of the équation and of the meshes
on which we carry them out. Apart from the gênerai framework described here (Th. 5.1), our actual result is
the h convergence rate of the diamond cell approximation of (1) on some regular meshes of quadrangles, in case
that the exact solution is in W2>P(Q) (Th. 6.1).

Finally, let us mention that the diamond cell method may also apply in the three dimensional case [6]. Our
gênerai theorem (weak consistency and coercivity implying convergence) remains true.

This paper is organized as follows. In the next section, we define the numerical scheme and précise the
notations. In Section 3, there is given a condition on the gradient reconstruction procedure, sufficient to ensure
the weak consistency of the scheme. In Section 4 we define a notion of coercivity; and then prove a fondamental
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result in Section 5: weak consistency and coercivity imply convergence. In Section 6 the framework of Sections 3
to 5 is applied and leads to an error estimate in h for the diamond cell scheme on regular meshes of quadrangles.

2. THE FINITE VOLUME SCHEME

2.1. Notations

Equation (1) has the following intégral form on any K in 7\.

[u((v.nKe) - (AVu).nKe)ds = f fax. (3)

Th is the mesh while for each edge e of dK, n^ e dénotes the normal to e outward to K. Equation (3) can also
be written as

Y, s^e (<tf(u) - 4%{u)) m(e) = m(K)fK, (4)
eedK

with

JK is the mean value of ƒ on K and ne is the normal to e such that ve.ne > 0 (ve is the mean value of v
along e) and then SK& = nKe.ne.

We are looking for an approximation Uh constant and of value UK on each cell K (UH = (uK)KeTh)
 w m c n

should represent the mean value of u on K. The finite volume discretization proceeds by approximating the
fluxes of convection <pÇ(u) and of diffusion <j)®(u) by some numerical fluxes respectively noted <f>f(uh)

We shall use capital letters such as K,N,S to dénote the éléments of the mesh such as the cells or the vertices,
while point coordinates are denoted by small letters, such as x,y.

In addition to the previous ones, we shall also use the following notations to write the scheme (see Fig. 2.1).
• Concerning a cell K

- XK is the centre of gravity of K.
• Concerning the edges

- 5^ is the set of all the edges e.
- S'£ is the set of the edges interior to Q (such that e ï cF) ,
- r \ is the set of the edges in F (such that e c F ) .
- te is a unit vector parallel to e such that (ne ,te) is a local direct basis (we recall that ne is the unit

vector normal to e in the direction of the mean velocity of convection ve).
- An edge e is an open segment of endpoints N and 5 (which coordinates are XN and xs) such that

(xN - x s ) . t c > 0.
- Around an edge e, E and W dénote the downstream and upstream cells with respect to the convection

direction ve, one of which (E or W) may reduce to the edge itself (in case e G Th) and then XEOTW
is the midpoint of e.

- Xe is the polygon of vertices XN, X^, # S , XW and is called co-volume associated to e.
• Concerning the vertices

- Nh is the set of all the vertices P of the mesh.
- N£ is the set of the vertices P interior to Q, (such that P ^ F).
- For P G Nh, Vp is the set of the cells K £ T^ which share P as a common node.

Throughout the paper, we shall use C to dénote a generic positive constant which is independent of any
mesh used (and dépends only on A, v and £2).
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FIGURE 2.1.

2.2. The numerical flux of convection

It is given by the classical upwind approximation:

Vee Shi <t>C(uh)=uw(ve-ne).

If e G Th and ne = — next (te. W is reduced to the edge), then we take

uw = g(%w)-

g(xw) naakes sensé because of the continuous imbedding of V(T) in C°(V) (see [1]).

2.3. The numerical flux of diffusion

(5)

The essence of the flux of diffusion ($^(u)) approximation is the reconstruction of the gradient Vu from the
cell values % . The exact solution vérifies:

(6); r / Vudx = — - /
Xe) JXe rn(Xe) Jd

A formai discretization of (6) leads to the following natural approximation of the gradient on e

Pe = i(c') +

where %e is the co-volume associated to e, and noting Ni(e') and Ar2(e') the endpoints of an edge e' of dxe
and nXe6' its outward unit normal. This kind of reconstruction is commonly called Green-Gauss type (see [4,5]
and the références therein). The spécifie name (diamond-cell) of our method is due to the choice of Xe as a
diamond-shaped polygon. The values at the centres XE and xw are UE and uw, while the values at the vertices
xN and xs are linearly interpolated from Uh (or issued of the boundary condition if necessary) and noted UN
and us:

for

= g(xP).

(7)

(8)
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*S a se^ of weights around P which will be precised later. The reconstructed gradient is

(UE-UW uN -us\ UN-US ,OX
Pe = r ot-e 7Y" ne -\ r-p-te, (9)

\ he m(e) ) m(e)

where he = V7E.ne, m(e) = SN.te and ae = tan(ne, WZ£) = * e -
Vr £/.ne

If e G Th and ne = next (i-e. E is reduced to the edge), then we take naturally

uE =g(xE).

Remark that we took uw = g{%w) if *ie = —next.
Using this gradient in the flux function yields the numerical flux of diffusion.

tâfah) = —TT {Ape).neds = (Aepe).ne
rW'\€') Je

+ (3e
UN

ie

— Uw

m(e)

where Ae = —— / Ads = \ e in (n e , t e) , and /3e = Me — ote\e.

2.4. The discrete operator

At last, the approximation uu is the solution of the following discrete problem

52 m(e) - m(K)fK. (10)

Denoting by Vo(Th) the space of the fonctions constant on each cell K, we can define a discrete operator Ch on
and for a given boundary condition g in V(T) by

such that ŵ  is the solution in Vo(Th) of Ch{uh^g) = fh> where f h désignâtes the function in Vo{Th) of value
fK on K.

3. WEAK CONSISTENCY

The consistency error as defined below is the différence between the exact flux calculât ed for a given function
u G W2'V{VL) on each edge of the mesh and the corresponding numerical flux evaluated with the L2 projection
TThU oïu on Vo(Th). A similar définition has been introduced by Gallouët et al in [9,10] or by Herbin in [12] but
assuming the C2 regularity of u and using pointwise values of u instead of mean values to define the discrete flux.

3.1. Définition

Définition 3.1. For u G VK2'P(Q), the consistency error Rh(u) is the piecewise constant function of value Re

on each of the diamond-shaped co-volumes Xe > such that

Re(u) = (
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TThU is the L2 projection of u on Vo{Th) and </>e {^h1^) are the fluxes defined like in Section 2, but for the
discrete function TT̂W and the boundary condition g — 70(u).

The scheme (10) [or the operator Ch (H)] is said to be weakly consistent if

Vu e W2-"(fl), \\Rh(u)\\L2-^0.
h—>0

Remark. A strong consistency error between the discrete operator Ch and the continuous one C-
v.) can be worked out as follows:

m(K) (nh(Cu)\K - Ch(TrhUyjou)\K) = ƒ (Cu -
JK

eedK

We find after a short calculation

C
\\Kh{£>u) - Ch(7thu^0u)\\L2{n) < —\\Rh(u)\\L2.

But generally, the best estimât e of Rh should only be of order h. Hence, the finit e volume scheme (10) may not
be consistent in the usual sense.

3.2. A weak consistency sufficient condition

The weak consistency of the discrete operator (11) is characterized by some properties of the node interpo-
lation weights VK(P) with the following lemma.

Theorem 3.1. /ƒ the three following conditions are fulfilled

V P G AT*, J2 y^iP) = 1. (12)

XP)=0, (13)

Vh > 0, VPeNj;, max \yK(P)\ < C, (14)
KEVp

then Ch is weakly consistent and the error vérifies the following estimate:

\\Rh(u)\\L2 < C\\u\\W2,Ph. (15)

Remark. The two conditions (12, 13) characterize a projection which preserves the linear functions. The third
condition (14) characterizes a uniformly (with respect to h) bounded projection.
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Proof of Theorem 3.1. We shall use the following lemma.

Lemma 3.1. For u G WliP(ö) where O is a convex domam ofR2 and p > 2,

\/x,y€Ö, \u(x)-u(y)\ <

0(0) and m(O) are the diameter and the surface of ö. C dépends only on p.

Proof of Lemma 3.1. Remark that for x E Ö , U(X) makes sense because of the continuous imbedding of W1)

into C°(ö). Of course u dénotes the continuous représentative of u G WltP(ö).
We begin by proving the result for the functions u of C°°(ö). For x, x0 G C>, we have

u(x0) - u(x) = / — (u(x H- t(x0 - x))) dt,
Jo dt

\u(xo)-u(x)\ < / \Vu(x + t(xo-x)).(xo-x)\dt
Jo

pi

< Ö(O) Y" |Ö,u(x + t(xo-x))|dt,
J° t=l,2

because \X1Q — x%\ < Ö(ö) for % = 1, 2. Noting {u)ö the average value of u on O, we get

f [
Jxo€0 JO

[

since t2dx = dy if we set y = x + t(xo — x). The Hölder's inequality gives

I-I/P

since x + t(ö - x) C O ïor t e]0,1[. Hence, it is deduced

and then for x, y £ O, using the triangular inequality, we have

where C dépends only on p.
For u G WltP{O), we use a séquence (un) in C°°(ö) such that un —>u in ̂ ^ ( O ) and in C0((9). D
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Following of the proof of Theorem 3.1. Afterwards, the error of consistency along an edge can be written as
follows:

Re(u) = (

where

—r̂ - /(v.ne)(üUA-u)d5)
rn\e) Je

{APe).ne - {A\>u).neds.f {
Je

We note

uK — 7rhu\K = (u)K for all K G Th,
ÛK = U[XK) for each midpoint XK of a boundary edge,

VK{P)ÛK for ail P G AT*,

= u(xP) for each P € NhnT.

(16)

3.2.1. Error on the flux o f convection

For any e 6 5^, if W G Th, then for any s € e C W and x Ç W, by application of Lemma 3.1 to the function
u of Wl>p on the convex W, and using hypotheses (2) (ô(W) < h and m(W) > ah2),

\u(x) - u(s)\ <

~ u{s)\ < —f— f \u(x) - u(s)\d
m\W) Jw

Otherwise, uw = u(xw), and then for any s e e we also have by application of Lemma 3.1 on E, because
xw,s e E,

\üw — u(s)\ < C\\\/u\\LP^E)hl~2^p.

At last we have

II < l|v||L~(n)—TT / l«(s) - üw\ds < Cf[Vw||— ..^h1-2/?m(e) Je

As a conséquence, using the hypotheses (2) (m(xe) =

- E

i ( p i h

< h2 and Cardöi^ < 7), we have

C

< Ch? J2 \\Vu\\p
LP{K)Cs*ddK

and then
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3.2.2. Error on the flux of diffusion

On any edge e in Sh, we have

f Af \ \ \ / \

(A(s)pe) .ne = X(s) he
 MK J m(e)

The exact fiux can also be divided similarly:

(A(s)Vu(s)) .ne = A(s)Vu(s).(ne + aete) + /3(s)Vu(s).te.

We note that he(ne + aete) = XE — %w and m(e)te ~ xN — x$, and so

.(#£ — xv^) — (ÜE — ÜH

m(e)
Vit(s).(xiv — xs) — (UN — ''

mie)

ds

ds.

We shall use the following lemma.

Lemma 3.2. (corollary of Lemma 3.1) For u G W2iP(O) where O is a convex domain of M2 and p > 2, for all
xyy e~Ö let be

X(x, y) = u(x) - u(y) - SJu{y).{x - y)

= ƒ (Vu(y + a(x-y))-Vu(y)).(x-y)der.
Jo

6{Of
We have

(C dépends only on p).

Proof of Lemma 3.2. Like in Lemma 3.1, diU G C°(ö) for u G W2^{O). The result is obvious by applying
Lemma 3.1 to the functions diU (i = 1,2). •

End of the proof of Theorem 3.1. {.)x still dénotes the average value on X. Consider the following notations
for any s G £l:

if K G Th) 1R{S) =ÜK~ U(S) - Vu(s).(xK - s) = <!(., a)>^ ,

if XK G F, XR-(S) = ÜK — u{s) — S/U(S).(XJK — s) = T(XK, 5),

if P G F, . lp(s) =üP- u(s) - Vu(s).(xP - s) = X(xp, s),

if P G 7V̂ , Xp(s) = ü p - u ( s ) - V u ( s ) . ( a ï p - s ) = V ] yK(P) (ï(-,s))K ,

where ÜK and üp are deflned by (16). The last equality results of hypotheses (12, 13) of Theorem 3.1, and then
we can write for e G S^ and s G e:

\Vu(s).(xE -xw) - (ÜE-ÜW)\ = \%E(S) -XW{S)\ ,
\Vu(s).(xN - xs) - (üN - üs)\ = \TN(S) -
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Hence, the local error on a given edge e is

m(e) Je he m(e) Je m(e)

and it remains to estimate separately the different errors XK and Xp on a given edge e G Sh-
The first case is K = E or W. We have with Lemma 3.2 used as in the case of the flux of convection (using

again 6(K) < h and m(K) > ah2)

Vs G e, \XK(s)\ < C\\V2u\\LP{EuW)h
2-2^.

The second case i s P = i V o r 5 G r n iV ,̂ for which s, xp G xe. Consequently, Lemma 3.2 gives

The last case is P = AT or S 6 JV£. In that case, Xp{s) dépends on all the IK($) for if G Vp. But since
is not necessarily convex, we shall use the following décomposition:

X(x, y) = X(x, z) + X(2r, y) + (Vu(z) - V«(y)) .(x - z).

As a resuit, for K G Vp, we get for ail 5 G e,

XK(s) = <X(, s ) ) x = (X(., flîp))^ + X(xPj 5) + (VU(XP) - Vu(s)). ((. - xP))K .

Applying Lemma 3.2 on if and %e for the two first terms, (. — xp)K < ö(K) and Lemma 3.1 for d%u on Xe for
the last term, we have

\iK(s)\ <

Hypothesis (14) of Theorem 3.1 and the geometrie assumptions (2) yields finally

\Tp(s)\ < C H V ^ I U P ^ ) ^ - 2 ^ + CIIV^IUPÖ,.)^- 2^. (18)

At last, gather ing the different contributions to calculate the error (17), we have

|J2?(u)| < CIMIlico^HV^lUp^uvs)/»1-2/". (19)

Completing the calculation as in the case of the flux of convection yields

e€Sh

(u)\\LP{n) <
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At last, for any u in W2'p{ti) we have proved:

ll-Rfe(u)IU2(n) < C||u||vp2.p(fi)ft. (20)

n
Remark.

• This method yields the same result if the consistency is defined with a pointwise valued projection (TT^U^ —
U{XK) instead oi TÏHU\K

 =
 (U)K)-

• The inequalities resulting from the hypotheses on the mesh (2) only use ah2 < m(K) and CarddX < 7,
except (18, 19). In this case, several terms have to be divided by he or m(e). Hence, the hypothesis
m(e) > ph is also necessary.

3.3. A least squares interpolation to calculate the weights

In this paragraph the couple (x, y) G M2 will dénote a couple of coordinates.
Let w be an affine function defined on the reunion of the K in Vp for P in N£. In a System of coordinates

of origin P the function w takes the following form.

w(x, y) = a-\-bx + cy.

The least squares interpolation consists in choosing a, 6, c in order to

LP(w) =

Hence, a, 6, c are given by

Using Va,bi

the quadratic function

= 0.

with

1
XK

Tïp

Rx 1
Ry J

, it yields

Rx Ry

Ixx Ixy
xy J-yy

a
b
c

Ixx = lyy =Rx = Z>*:> Ry =
np = CardVp is the number of cell around P. All the sums are performed over Vp. Afterwards, noting that
w(P) = a, the least squares approximation yields the following node value:

E

and where
— T * 2

> with yK(P) -

XV V

XyKy
(21)

D ' y D
Remark that D cannot be equal to zero because IXxIyy > Ixy (Schwarz' inequality for the two vectors X and
Y of coordinates of the centres of the K of Vp, which are linearly independent because the centres (XK^VK)
cannot be ail aligned with P).

The first two hypotheses (12, 13) of 3.1 are obviously satisfied. To ensure the weak consistency, it remains
the third condition (14) to be verified.
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Setting Rx = npxc and Ry = npyc, we have

2 _ 1

2 _ J_

œ v = np(ax -f XGyG)-> with cr^ = —

With these notations, a calculation yields

tr>\ l (i i X G ( ^ G - ^ K ) , VG{VG-VK)\
VK\P) = — I H 2̂  ! 2̂  I •

Hence, hypothesis (14) is a direct conséquence of the regularity assumptions (2) on the mesh: \XQ <
\XQ — XK\ < \XG — XP\ + \XP — XK\ < 2max^(i;C) and Y^K<=Vp(XG ~ XK)2 ^ C/i2 (see [6] for the details).

Let us finally mention that this set of weights has been successfully used for various numerical experiments
by different authors [2,14,22].

4. COERCIVITY OF THE DISCRETE OPERATOR

4.1. Définition
Définition 4.1. The discrete operator Ch is said to be coercive if there exists a > 0 such that

V/i > 0,Vefc G Po{Th), (£h(eh,0),eh)L2 >

where

(
We assume the following convention for e € Sh'-

SE = 0 if n e = ne x t and e\y = 0 if ne = — next-

We recall that he = (XE — xw)-ne and remark that (22) actually defines a norm on Vo{Th) (see for instance
Lemma 5.1).

Note that a straight for ward conséquence of the coercivity of Ch is the well-posedness of the discrete problem
Ch(uh,g) = fh-

4.2. A sufficient coercivity condition

Throughout this part, we would note ChUh for £ ^ ( ^ , 0 ) .
The main issue of this part is to provide a condition on the tangential part of the gradient to ensure the

coercivity of the discrete operator.
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Uh)L2 can be obviously split into a part of diffusion QD(uh) and a part of convection Qc(uh)*

Q(uh) = (£huh,uh)L2 = 5Z UK E SKe (^e(uh) ~ 4%{uh)) m(e)

eesh

Remark that m(xe) — «™(e)fte-

4.2.1. Coercivity estimate for the flux of convection

Recalling the expression (5) of <ftc(uh), we have

— Wiy)m( e)

— y ve.ne ((UE — uw) + {uw — uE)) m(e).

The first term is obviously positive and the second one is positive thanks to the hypothesis divv > 0:

UK

Hence, we have proved

Qc > 0 and so Q > QD. (23)

4.2.2. Coercivity estimate for the flux of diffusion

Denoting by p^ the component of the discrete gradient (9) which appears in the définition (22) of ||-||I,0J
QD(uh) can be written as

QD(uh) - E (^eP^).Pe2m(xe) = 2(Ahp£
eesh

where

• Pe = 7 ne and pe is given by (9) on Xe,
he

• Ah is the piecewise constant function of value Ae on \e for each e e
In the continuous case, the operator is easily proved to be coercive since the quadratic form (AVu1

is a norm of Vn, equivalent to the L2 norm of Vu. This last result comes out as a natural conséquence of the
strict positivity of the matrix A. Similarly in the discrete case, the bilinear form (AhP^Ph)L2 being a norm
for p£, equivalent to the L<i norm of p^, ensure the coercivity of the discrete operator as defined by (4.1). So

is split to be minorated into the norm (A^p^,P/^)L2 and a remainder which is to be controlled:

p ^ - p ^ ) L 2 | , (24)

and it can be completed the following lemma which will be used in Section 6.
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Lemma 4.1. If there exists a positive constant 7 < 1 such that Vuh G Vo(Th),

uE -UW\ A (25)

tfie discrete finite volume operator (11) is coercive:

> 2Amin

• Amin = inf Ae > C > 0.eesh

• We recall that Ae = \ e \ in the basis (n e , t e), and /3e = /j,e — aeXe (ae = tan(ne, (XE — xw)))-
[Me ve \

Proof. QD{uh) has been shown in (24) to be eventually split into a norm of p^" and a remainder. Afterwards,
we have (remark that UJV — us = 0 for e S

UE — Uw UN —

m(e)

s ; 2
eest

[using hypothesis (25)]. Hence, the conclusion is being completed as a natural conséquence of (24) and of the
hypothesis 7 < 1:

\QD{uh) >

D

Remark. The hypothesis of Lemma 4.1 expresses the fact that the contribution of the tangential gradient
(ujy —us) should be controlled by the normal gradient.

• It becomes obvious on regular meshes, such that there is no contributions of the tangential gradient:
rectangles, triangles (VF4 scheme, see [12]), or more generally Voronoï meshes, for A = i/Id.

• It is quite easy to obtain on regular meshes of parallelograms, and consequently on smoothly deformed
parallelograms (see Sect. 6).

• In case of a scalar diffusion, the following rough estimate can be derived from Lemma 4.1.

m(e)
(26)
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where Ne dénotes the total number of cells which share ë. This very restrictive condition was shown,
however, not to be necessary, by some numerical experiment s, carried out on very unstructured meshes.
They show a convergence rate of order h in case of refined heterogeneous meshes of quadrangles an triangles
(see [22]).

• Another approach of the coercivity is currently studied, which leads to an explicit geometrical condition,
rather less restrictive than (26). But, verifying this condition needs a few additional geometrie properties
of the mesh. It is being tested on locally refined Cartesian meshes.

5. ERROR ESTIMATE FOR THE DIAMOND CELL METHOD ON GENERAL MESHES

5.1. A discrete Poincaré's inequality

To prove our main resuit, we shall need the following

Lemma 5.1. 3C > 0 such that \/h > 0, \feh e V0(Th),

\\eh\\i,o>C\\eh\\L2.

Proof. The démonstration is carried out with an analysis similar to the one of the continuous case (see [12]).
A peculiar oriented direction V is previously sen. Thus any cell centre K of TH is connected to an upstream
(with respect to V) centre Ko of an edge of the boundary Th by a straight line of direction V. This connection
crosses a certain number V(K) of cells and their interfaces e. As a resuit, UK niay be written as

UK = uK - UKQ = 2 ^ ^ e + ~ u&- h
eeV(K)

where e+ and e~ dénote the downstream and upstream cells along the edge e, with respect to the previous
orientation and UKQ = 0. Afterwards, a Cauchy-Schwarz inequality procures the majoration of the square of
this equality:

s E
eeD(K)

j/g-i- W'e-

The following estimate of the number of cells of T>(K) has been proved in [12], remarking that hypotheses (2)
provide /3h < m(e) < h and ah2 < m(K) < Ch2.

CardD(i^) < ~ and ^e
 x - - ^ ^ < C.

h m(xe) m{e)

The Poincaré's inequality is then deduced from multiplying (28) by m(K), summing over the cells K and then
swapping the two sums:

— T $J z_J m(K) ( 7 1 rn{Xe)
KeTh eeV(K) V e /

eeSh \K£$(e)
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The cells K of S(e) are such that e is in the upstream "shadow" of the cell K (e G V(K)). Consequently, S(e)
collects the cells K which cross the downstream Connecting line from the edge e to the boundary, with respect
toD:

e G Sh and K G S(e) & K E Th and e G D(if).
At last (see [12]),

Card<S(e) < j and m(K) < Ch2,

and the resuit ing inequality follows:

IMIJ9 < CKII;I0-
D

5.2. Main resuit

Theorem 5.1. If the conditions of consistency (12, 13, 14) and Lemma 4-1 of coercivity are fulfilled, then the
diamond cell finite volume scheme (10) converges to the exact solution u of (1) with the following error estimate:

3C > 0, Vft > 0, \\uh - Vhuhfl + \\v>h ~ ^IIL2 < C\\u\\W2,Ph, (29)

where TT̂ U dénotes the L2 projection of u on Vo(Th)-

Proof of Theorem 5.1. Let u be the continuous solution, uu the discrete finite volume solution, TT̂ U the L2

projection of u on Vo{Th) and Eh = Uh — izhu.

£h(uh,g) - Ch(-Khu,g) = fh — £>h{Khu,g) ~7rh(£u) - £h{nhu,g). (30)

Noticing that

„, „ \ \ — ƒ ( Tot _ C, (TT, at n\\
m l A ) J K

1

and using the linearity of Ch in (30), we find

Multiplying this equality by ZK and summing over all the cells, we obtain

E WR€
eedK eeSh

 e

Afterwards, applying a Cauchy-Schwarz inequality for the right hand side:

(£h(eh,0),eh)L2<2\\Rh\\L4eh\\1,0. (31)

Furthermore, using the hypotheses (12) to (14) and the results of Lemma 3.1 and Lemma 4.1 yields

IMko < C||fîh||La < Ch, \\eh\\L2 < C\\eh\\ifi < Ch.

Finally, using \\u — TT^UH^ < Ch complètes the proof of the theorem. D



FINITE VOLUME SCHEME FOR A CONVECTION-DIFFUSION PROBLEM 509

Eh V(e)

FIGURE 6.1.

6. CONVERGENCE OF THE DIAMOND CELL METHOD ON QUADRANGULAR MESHES

6.1. Hypotheses on the mesh

Let Eh be a Cartesian grid made of the vertices Mió = (ift,jft)i=_i...2ïj=-i...i of six squares of length ft (see
Fig. 6.1) and Qh = [-ft,2ft] x [-ft, ft].

Définition 6.1. The family of meshes (Th)h>0 is said to be admissible if there exists a constant B > 0 such
that Vft > 0, Ve e S£ there exists Jhje e C2(Qh,R

2) such that

JhAEh) = V(e),
sup |VJ

xeQh

sup |V2JM(a;)|2 < B,
Q

(32)

(33)

(34)

where V(e) dénotes the set of the twelve vertices surrounding the edge e of 5£ (Eh may be truncated conveniently
if ë Pi F is not empty). |.|2 dénotes the Euclidian norm.

Remark. If J^e is linear (VJh,e is constant and V2Jh,e = 0) then Jh,e(Qh) is a mesh of six parallelograms.
Otherwise, let be LJhi€(x) = Jh,e{xo) + ^Jh,e(xo)- (x ~ xo) the linear tangent application in XQ. The différence
between Jh,e{Qh) (the real mesh) and LJhiC(Qh) (a mesh of parallelogram) is bounded by the derivatives of
J/̂ e and the characteristic size of the mesh (ft). Such meshes are easily proved to verify hypotheses (2).

6.2. Main resuit

Theorem 6.1. If (Th)h>o is an admissible family of quadrangular meshes (Def. 6.1)} then the finite volume
scheme (10), assodated with the weights (21), converges to the solution u of (1), and for h small enough,

the discrete problem (10) is well-posed,

3C > 0, Vft > 0, \\uh - 7rhu||ii0 + \\uh - u||L2 < Ch.
(35)
(36)

Proof Using Theorem 5.1, it just remains to prove the coercivity of the discrete operator Ch- Let us first notice
that, on the edges e of S£, UN — us can be naturally spread out into some contributions UE — uw on all the
edges ƒ of Ve — VN U VS as follows.
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• If ë does not intersect the boundary F, a short calculation yields

uN -us = yNw(N)(uNW - uw) + VNE(N)(UNE -
+ ysw(S){uw - usw) + VSE(S)(UE - USE)

yE(N)) - (yE(S) + ysE(S))) (uE - uw).

• If ë does intersect the boundary F with N = ë n F, using WJV = 0, it is found

(ysE{S) + yE{S))uE

+ ysE{S)(uE - USE)

- usw) + ysE{S)(uE - USE)

j writing the previous gênerai form prevaiis with the following notations:

yNW(N) = - , yNE(N) = - , ywr(iV) = 0, yE(N) = 0,
= 0.

• If e does intersect the boundary F with ë H F = S, the same expression remains, just swapping N and 5.
Let Pe be the set of all the edges ƒ perpendicular to e. The associated weight to such an edge ƒ € Ve is

denoted by ye/*

where P = ënJ,e^dK while ƒ

As a resuit, we have
Ve e S£ UN -us = AuNS + ^

where

(37)

ôye - (VNW(N) + y t v W ) - (î/sw(5) + ^ ( S ) ) .

At this stage, we note that, with the notations introduced above, Q^(uh) may be written as

Vuh G V0(Th) \QD{uh) - (Ap^Ph)L2 = Q?(Uh) +ÔQD(uh), (38)

where

(3eAuN

—Sye

Afterwards the proof of coercivity is achieved by using the ideas of Lemma 4.1. The constant 7 of condition (25)
is performed by collecting on each edge ƒ G S h the contributions issued of the outspreading of AuNS [see (37)].
It is proved the following estimate (the définition of ae will be precised in the proof).
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Lemma 6.1.

Àe he

Proof of Lemma 6.1.

Xe m(e) Ae f^
 e m(e) hf

Using Jensen inequality, we obtain

2

< TH ê

y - UeJ

where

— V ^ -̂̂  ff q*}
ae — 2-s Vef

 m ( e ) ^ ° r e h^ (39)
Thus, we have

2/Au°MQ\\ , , ^

The desired result is achieved by swapping the two sums:

2 f Au°\2 f ( u u ) \ 2

e^h\
Xe) \m(e)J emXe ~ ^ 7 / V hf

Noticing that {e G 5^ such that ƒ G Ve} =̂> e € P / Pi 5^, 7/ is simplified to be finally written as

•
To complete the proof, the main difficulty is to check the condition 0 < jf < 1 for each edge f e Sh-
Until this point, we only used the f act that the mesh was structured and we didn't take int o account the
geometrie hypothesis (32)... (34) of Définition 6.1, which ensure the mesh Th to be locally near from a mesh of
parallelograms. This last property is the key ingrediënt of the following lemma.
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Lemma 6.2.

Y. COUDIÈRB ET AL.

VP e Al, MK e VP, yK(P) = 7 + O(h).

Ve G Sh,

Ve 6 Shy

% = O(/i).

7e < (1 + O(h))

Remark. It can be easily verified that, on a mesh of parallelograms, e and e1- denoting the two directions of
the edges and 0e the measure of their angle, we have exactly:

Ve e Sh, ôye = 0,

• > • - & % *

Hence, Lemma 6.2 is just a conséquence of some Taylor expansions.

Proof o f Lemma 6.2. We shall need a few notations. For any h > 0, and any given edge
• J be the local C2-bounded transformation from Eh to V(e),
• & be the vertices of Eh [with £o = (0,0)],
• x% — J(ii) be the vertices of the mesh 7\,
• x® = XQ + V J(£o)-£ï b^ t n e vertices of a new local mesh V°(e) around e.

Using a Taylor expansion, it is found

J, let

).&(i - e)dff,

Ch2.

This inequality shows that the error made when considering the mesh as made of parallelograms is of order h2 on
the vertices coordinates. Then all the following estimâtes are resulting from V°(e) being made of parallelograms
(see Fig. 6.1).

Let K be a cell of TV K is assumed to be defmed by the vertices x0 •.. x$, while K° dénotes the parallelogram
XQ . . . x%. Let G be the function which associâtes four non aligned points (yo ... ys) of ü with the centre of gravity
y G of the corresponding quadrangle. G may be easily proved to be of class C°°(fî), and consequently,

\\XK ~

Let P E A^. P can be deflned as XQ = J(£o) f°r a n edge e ê 5 J . Besides the four cells K G Vp have their
vertices in V(e) = J(Eh), and XQ can be supposed to be the origin (xo = (0,0)). Hence, using (41), their centres
XK verify

tex + O(h2).e VP,XK = x°K + O{h2) =

But for the mesh of parallelograms V°(e), we obtain

v%
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and consequently,

Rx = O(h2), Ry - O(h2).

Besides using that V J is uniformly bounded, we have

xK = O(h), yK = O(h), Ixx = O(h2), Iyy = O(h2), Ixy = O(h2),
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thus,

Finally it yields

= O(h4),

1

" 4

Let ƒ G Sh- The endpoint S of the edge ƒ is supposed to be cc0 = J(£o)- For any edge e G V(ƒ) supposed to be
of endpoint s zi and #2, e° dénotes the edge x\x% in the mesh X£ of parallelograms.

|m(e) -m(e°) - X2\\ - \\xo _ x 0 | | | <

Let E and W be the centres of the two neighbours of a given edge e e V( ƒ ) and i?° and W° the corresponding
centres in the local mesh T® of parallelograms. The following estimâtes are straight for war d.

\he -heo\ = \(xw -

\\(XW-XE)A(XN-XS)\\ II{x°w ~x°E)A (x°N -x°s)
\\XN —

< Ch2.

\ae-aeo\ =
(x% -x°E).(x°N -x%

Besides, the following properties are clearly observed on the mesh Tj.

heo

< Ch.

lteeVfn SI m(f°)
heo

= |sinÖ/|.

f |sinö/|(e€

where 6j dénotes the angle of the parallelograms in the mesh T°.
Calculating the matrix Ae in the basis (neo, teo) for e e V( ƒ ) proceeds by evaluating the formulae of changing

bases

sm rj cos rj
cos ?7 sm Tj

— sin T} cos rj
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where r\ is the angle between the exact edge e and the approximate one e°; furthermore,

|COS??I = l(^ m*et i ( :e°r 2 ) l

| s i n 77J =
77i(e)m(e°)

m(e)m(e°)

At last, for / e 5 h and e e Vf D 5^, we have

jOJL

where fOJ~ dénotes the constant direction of the edges e° for e G Vf*
The évaluation of 7e and ôye proceeds now by collecting all the previous estimâtes. Ve G

The final estimate of 7e dérives itself from the next remark on the local angles of the parallelograms on two
neighbouring edges.

and so,
VeeS*, V/GPe, \0e\ = \0f\(l + O(h)) and ae = | smOf\(l

Afterwards, 7/ and 5ye are performed easily:

Ve e SJJ, ôye = O(h), (42)

V/G5,, 7 / < ( f ^ V * p s*» 0,(1 +O(fc)). (43)

D

jEtod of ifte proof of Theorem 6.1. The coercivity is achieved by substituting (42, 43) in the expression of 5QD

and in Lemma 4.1. The remainder ÔQD is obviously estimated.

\ÔQD\ < J2 \PeSye\ ( )

(since 0e = fjie — aeXe is clearly uniformly bounded).
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Furthermore, Lemma 4.1 provides the following estimate of Qff.

Q°(uh)>2 ini X{17 7) l
h>0eeS

7 \\uh\\l0.

Finally a more précise estimate of À€(l — je) brings out the final constant of coercivity.

A e( l -7e) >

— (AeoÀeo± — (fjbeo± sm9e + Àeoj. cosöe) 2 ) (1 + O (h)),
V / Aeo±

because j3eo± = jj,eo± — aeo^Àeo± and aeo± = —cotan#e (see Fig. 6.1).
Using the previous changing bases formulae from the basis of e o x to the basis of e°, between which the angle

is actually 6e yields

Aeo = Aeox cos2 0e + veo± sin2 6e + 2/J>eo± cosOe sinÖe,

and consequently,

Ac(l - 7e) = (fe°-LAeo-L - ^0±) s i n 2 ô c - (1 + O(h))

where 0min dénotes the smallest angle in the cells K of the (Th)h>o- This complètes the proof. •
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