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DIVERGENCE BOUNDARY CONDITIONS FOR VECTOR HELMHOLTZ
EQUATIONS WITH DIVERGENCE CONSTRAINTS

URVE KANGRO1 AND ROY NICOLAIDES2

Abstract. The idea of replacing a divergence constraint by a divergence boundary condition is inves-
tigated. The connections bet ween the formulations are considered in detail. It is shown that the most
common methods of using divergence boundary conditions do not always work properly. Necessary
and sufficient conditions for the équivalence of the formulations are given.
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1. INTRODUCTION

A well known problem in computational electromagnetics is the appearance of "spurious modes" arising from
incorrect ly imposing divergence constraint s. To avoid imposing these constraint s direct ly, which is difficult,
it has been suggested that they need to be enforced only on the boundary of the domain [5,7]. This has
some significant advantages. For instance, the vector Helmholtz équation with a divergence constraint on the
field can then be solved using standard finite element spaces instead of more complex spaces of edge éléments.
Furthermore, as we will show below, the divergence boundary condition can be treated as a natural boundary
condition.

It is essential to know when the interior and boundary formulations of divergence constraint s give the same
resuit and that is the main aim of this work. We shall show that the formulations are equivalent if and only if
the scalar Poisson équation with any smooth right hand side and Dirichlet boundary conditions has a solution
in H2. When this is not true, a simple minded application of divergence boundary conditions as in [5] and [7]
will normally give incorrect solutions with a nonzero divergence.

Our resuit s for Systems with the interior divergence constraint are obtained by formulât ing the problem in
the space V defined in the next section. This approach avoids enforcing the divergence constraint explicitly —
it is automatically satisfied. We provide a proof of this fact for interior problems; for exterior domains see [4].
Unfortunately, H1 is not dense in V in gênerai. To use standard H1 finite éléments we impose the divergence
condition on the boundary and formulât e the problem in the space iïgt C H1 defined below. We discuss the
relationship between the V and i?ot formulations in some detail.
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480 U. KANGRO AND R. NICOLAIDES

To avoid relatively unimportant technical issues we will give proofs of these results for the vector Poisson
équation subject to tangential boundary conditions and a divergence constraint. In the end we will show how
they may be extended to other problems including the vector Helmholtz case of electromagnetics.

The next section gives the strong forms of the governing équations and the reasoning behind the use of
divergence boundary conditions. It also contains a formula for the boundary divergence, which is used to
reformulate the divergence boundary condition as a natural boundary condition in H1 setting. Section 3 sets
up a weak form for the équation with the interior divergence constraint and proves the coercivity for the weak
form, which follows from a compact embedding resuit for vector fields. Sections 4 and 5 prove coercivity for the
weak form which uses divergence boundary conditions. This time, coercivity follows from a close and somewhat
surprising connection with the previous weak form. This resuit is based on a trace theorem proved in Section 5.

The coercivity results of Sections 3-5 are used in Section 6 to prove équivalence of the strong and weak
formulations (Theorem 2). We also discuss in what sensé the boundary divergence condition is satisfied and
prove a formula for calculating the divergence on the boundary (Lemma 10 in Sect. 6). Section 7 contains a
discussion of when one can say a priori that the interior and boundary divergence formulations are equivalent,
and when they are not equivalent (ie. may have different solutions for the same data). It also contains an
example showing nonequivalence of the two formulations for nonconvex polyhedra. In Section 8 we give the
modifications to include the Helmholt z équation and briefly mention some other extensions. Section 9 mentions
some implications for numerical approximations of the problem.

2. FORMULATION OF THE PROBLEMS

Assume that Q is an open bounded subset of R^, TV = 2 or 3, with a connected, Lipchitz boundary F.
We will consider the relationship between the problems

in fi,

a)
[u x n = 0 on F

and

f - A u = f in fi,

(2)

We assume that f £ L2(fl)N and the compatibility condition divf = 0 is satisfied. Superficially it seems that
the two problems are equivalent. Indeed, if u is a solution of (1), it is clearly a solution of (2). Conversely,
if u is a solution of (2), then taking the divergence of the first équation of (2) we get that A(divu) = 0, and
since divu == 0 on F, one might argue that divu = 0 in fi, so u is a solution of (1). This is basically the
reasoning in [7]. But it might not always be true. The difficulty is caused by insufficient regularity of the
solution. Laplace's équation with Dirichlet boundary conditions has a unique solution in H1^), but in gênerai
we cannot assume that divu 6 H1^). It may be only in L2(Q.) and the homogeneous équation for divu may
have a nonzero solution in L2(fi) (this happens, for example, in the case of domains with reentrant corners).

In order to discuss the the relationship between (1) and (2) we first have to make explicit in what fonction
spaces we look for the solutions. It turns out that the natural space for (1) is

V = {u G L2(Q)N | divu E L2(fi), curlu € L2(Sl)N\ u x n|r = 0},

where TV' = 3 if TV = 3 and TV' = 1 in TV = 2. The standard scalar product in V is

(u, v)y = I u • v -f curlu • curlv + divudivv.

- A u - f
div u = 0
u x n = 0

- A u = f
div u = 0
u x n = 0

in
in

on

in

on

on

fi,
fi,

F

r,
F.
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On the other hand, the natural space for (2) is

f#t(fi) ={ue H1^^ | u x n | r - 0}

with the scalar product

(u,v)i = / u- v + Vu • Vv.

- A u =
öu

u x n =

f

nu • n =
0

0

in

on

on

fi,

r,
r,

We will show that while problem (1) has a unique solution in F, it may not be solvable in i/,Jt(fi), and while
problem (2) has a unique solution in i?Qt(fi), the solution may not be unique in V. We will also discuss in what
sensé the divergence boundary condition in problem (2) is satisfied-

It is shown in Section 6 (under the additional assumptions that F is piecewise C1'1 and the jump condition
given in (6) is satisfied) that problem (2) (in i ï^f i ) ) is equivalent to: find u € i?ot(fi)

 s u c n

(3)

where K is the curvature of the boundary (n = divn), which is defined almost everywhere on F. This follows
from the resuit (see Lemma 10 for the précise formulation)

J , du ,
divu|r = TT- • n r + ^u • n r-

an

It is convenient to begin with the weak formulations of problems (1) and (3). The next three sections deal with
the coercivity of the corresponding weak forms. Following this we show the équivalence of the strong and weak
problems and then examine the relationship of problems (1) and (3), and show the équivalence of problems (2)
and (3).

3. WEAK FORMULATION IN V

Let Çl and f be as above. To dérive the weak formulation of (1) in V we substitute curlcurlu for —Au
in (1), multiply the first équation by v (belonging to F), the second by divv and intégrât e by parts using the
boundary condition. For u, v G V define

a(u, v) = / curlu • curlv + divudivv. (4)
JÇÎ

Then the statement of the weak problem is: find u e V such that

a(u,v) = / f -v Vve V. (5)
Jn

The only hypothesis of the Lax-Milgram lemma which is nontrivial to check is the coercivity of a on V. It
follows from the next compact embedding theorem. The embedding is actually a corollary of the regularity
result in [1], where it is proved that V C iJ1/2(fi). We have provided a new and concise proof.

Theorem 1. V is compactly embedded in L2(Çl)N.
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The proof makes use of Murât's div-curl lemma (see [8]).

Lemma 1. (div-curl lemma). Let U be an open subset ofHN. Let vn and wn be weakly convergent séquences
in L2(U)N with the limits v and w correspondingly. Assume that {divvn}^! and {cnr\iwn}

<^L1 lie in compact
subsets of H~1{U) and H~X(U)N respectively, Then for every <f> G T>(U)}

f f
/ <pvn - wn —• / < | )V'wa5n4 oo.

Ju Ju
Proof o f Theorem 1. Let un be a weakly convergent séquence in V with the limit u. We want to show that nn

converges strongly in L2{SÏ). The idea is to extend un outside SI in two ways: vn and wn will be the extensions
with "good" divergence and curl respectively We construct the extensions so that supp vn H supp wn C SI and
then use div-curl lemma for these séquences.

Let U be an open bail containing SI. We start with the construction of vn (the extension with divvn in a
compact set of H-X{U)). For each n G N we define gn G HX{U \ SI) by

r Agn = 0 in U \ Q,
dgnr̂— = u n - n on dSl,
dn

gn = 0 on dU.

Now define vn by

_ I un in H
Vn~{Vgin in U\Sl

and wn by

I un in Q
\0 in U\Sl.

Then

J div Un in fî,

and

f curl Un in SI,

so {divvn}n
<L1 and { c u r l w ^ } ^ ! are bounded subsets of L2(U) and L2(Sl)N , respectively (hence lie in compact

sets of H~l(U) and i7~1(fi)iV'). Moreover, vn -^ v in L2(U)N and wn ^ w in L2(U)N', where v and w are
similar extensions of u.

Now choose </> G T>(U) such that </>= 1 in SI. Using the div-curl lemma we get (note that vn • wn = 0 in
U\SÎ)

ul= ^ v n ' W n - ^ ƒ 0 v w = ƒ u2.

This together with un -^ u in L2(Q) shows that un -> u in L2(Sl).
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We will use Peetre's lemma (see [2], for example) in the following form

Lemma 2. Let E, E\ and E<i be Banach spaces. Let Ai and A^ be continuons hnear operators from E to E\
and from E to E^ respectzvely. Assume that there exists C > 0 such that

\\U\\E < C(\\AlU\\El + \\A2u\\E2) VU G E.

Assume als o that Ker^i = {0} and that A<z is compact. Then there is C\ > 0 such that

\\U\\E < QWAWWE! VueE.

The coercivity resuit is then

Lemma 3. There is C > 0, independent of v, such that

a(v,v) >C| |v|& V v e F .

Proof We use Lemma 2 with E = V, E1 = L2(n) x L2(Q)N\ E2 = L2{Ct)N and Aiu = (divu,curlu),
A2U = u. By Lemma 1 the operator A<z is compact. We must show that Ker A\ ~ {0}. But

u G Ker Ai <=> div u — 0 and curl u = 0 in fi, and u x n = 0 on F.

This implies that u = 0 (by using the gradient potential, for example). So by Lemma 2 the result follows.
The Lax-Milgram lemma now implies that (5) has a unique, stable solution in V.

4. WEAK FORMULATION IN Hot(fi)

For deriving the weak form of (3) we shall make additional assumptions about the smoothness of the boundary.
In the following Q is a bounded subset of R^, N = 2 or 3, with a connected, Lipchitz and piecewise C1'1

o o

boundary F, i.e. F = U^=1Fj with F^ H T%— 0 for % ^ j , and Fj, j = 1,. . . ,n are of class C1'1. Let 7 dénote
the set of "edges and corners", i.e.

(f.nf,).

We assume that the jump of the normal on 7 is bounded below, i.e. there is 8 > 0 such that for all x G 7 with
x e f % n f j, % 7̂  j we have

n*(x) .n ' (x)<l -<5 , (6)

where n* (x) and n3 (x) are the limits of the unit outer normals when approaching x from F2 and T3, corre-
spondingly.

This condition is satisfied for all polygons and polyhedra. Also included are polygons and polyhedra with
curved sides. It excludes three-dimensional bodies which have points like the tip of a cone, and bodies with
edges which "natten out", %.e. the angle between the faces gets arbitrarily close to 7r. This condition is needed
for proving some results about trace operators in the next section, and implicitly in the proof of Lemma 4,
which gives the relation between the two weak forms.

To obtain a suitable weak form for (3) we proceed formally, multiplying the équation by a test function
v G HQt(Q) and integrating by parts as usual. We get

" " = l , . v .ƒ Vu • Vv - / - ^ v = /
Jn Jv dn Jn



484 U. KANGRO AND R. NICOLAIDES

Rewriting the boundary term as a sum over the smooth boundary pièces and using the boundary conditions on
u and v gives the weak problem: find u G HQt(Q) such that

/ Vu • Vv + V / reu • v = / f • v Vv G H%t

JQ. ~{Jr3 JQ

(tl). (7)

Since K G L 0 0 ^ ) , by the usual trace theorem the boundary term is well defined. Note that, in this framework,
the divergence boundary condition (or the equivalent one in problem (3)) is natural.

Proving coercivity of the weak form (7) is a nontrivial matter because the curvature can be of either sign.
The result will follow from the next lemma whose pro of is deferred to the following section.

Lemma 4. Assume that Q satisfies the assumptions made in the beginning of the section. For u, v G
we have

a(u ,v )= ƒ Vu-Vv + V / «u-v,
JQ ~[ JTJ

(8)

where Vj, j = 1 , . . . , n are the smooth (C1*1) pièces ofT, and a is the same as in (4).

This means that the weak problem (7) is in fact equivalent to: Find u G Hot(Q) such that

o ( u , v ) = ƒ f - v V v G i 4 ( Q ) , (9)
Jn

in which the équation is the same as in (5) but the spaces are different.
In fact, one can get (9) from problem (1), but they are not equivalent: in gênerai we cannot assume that

the solution of (1) belongs to Hçit(Q), and we cannot prove later that the solution of (9) satisfies divu = 0.
We can also formally get (9) from (2) by substituting —Au by curlcuriu — Vdivu, multiplying by v and
integrating by parts using the boundary conditions, but this is not easy to justify rigorously (for the solution
of (2), curlcuriu and Vdivu may not be in L2).

The coercivity resuit for (9) is:

Lemma 5. There is C > 0 such that

a(u,v)>C||u||x Vu e i4(fî).

Proof. We use Lemma 2 with£ = H%t(Q), Ex = L2(fl) x L2{Q)N\ E2 - L2(Ü)N xL2(T)N, Axu = (divu,curlu)
and ^2U = (u,u|r). The operator A^ : E —> E<i is compact because it is bounded as an operator from E to
H1^) x iï1 /2(r) i V and the latter is compactly embedded into E2. We already showed (in the proof of Lemma 3)
that Ker Ai = {0}. The resuit follows.

Applying the Lax-Milgram lemma to the weak form (9) (or, equivalently, to (9)) and using the coercivity
resuit above shows the existence of a unique stable solution to (9).

Note that to prove the coercivity of a in HQt(Q) we do not need the additional smoothness assumptions made
in the beginning of this section: they are needed to make sensé of the term containing the curvature in (7) and
to show later that the divergence boundary condition is satisfied for the solution of problem (9). They are not
needed for uniqueness of solution of (9).

5. PROOFS FOR PREVIOUS SECTION

This section will present the proof of Lemma 4. We will assume throughout the section that the assumptions
made in the beginning of the previous section are satisfied.
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First we need some preliminary results. We begin by recalling some f acts about the trace spaces. First, for
Lipchitz F C RN , the following is an equivalent norm on Hl/2(T) (see e.g. [3]):

,
/ /

h Jv | x _ y | iv

We will also need the spaces JÏQO (-^J)» J' ~ 1» • • • )n> w n i c n consist of all functions in Jï1/2(Fj) whose extension
by zero to F belongs to ff1/2(F). The norm of a function in HQQ(TJ) is the norm of its extension by zero in
HXI2(T), Le.

„
-/r\r, Jrt

1 /2
We will use the same notation for a function in HOQ (TJ) and its extension by zero to F.

We will also need the following resuit:
Lemma 6. The trace operator v 4 v - n|r3- is a continuons linear operator from Hçjt(Q,) onto HOQ (TJ).

Proof. We use the fact that the usual trace operator v \-ï v|r is a continuous linear operator from i71(Q)iV onto
H1/2^)1*. First we will show that if v x n = 0 and the jump condition (6) is satisfied, then ||v • n|| i/2,P , <

00 \ 3 )

C||v||jH-i/2(r). Let 4> = v • n on Tj and <\> = 0 on F \ F^. Clearly ||^||jï1/2(rJ-) ^ I IVIIH 1 / 2^)) S O w e n a v e t o show
only that

Because of the jump condition we can find e > 0 such that

x e r,-, y e r \ r , , |x - y | < e => n(x) • n ( y ) < i - -•

For x G Fj, y G F \ Fj such that |x — y| < e we have

|v(x) - v(y)|2 = |v(x)|2 + |v(y)|2 - 2(v(x) • n(x))(v(y) • n(y))(n(x) • n(y))

Ö2

Since ö —— > 0 (note that 0 < ô < 2, otherwise the jump condition could not be satisfied), we have

Mrjr, \*-y\N yr\r,./r,\Be(y) lx~yl Jr\r, ^r

< i / / \4>{x)\2dSxdSy + - 1 ^ f f |V(X

x —

) -
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Consequently, the operator v i—» v • n|pj is a continuous linear operator from ÜQt(U) to jEf0Q (Fj).
Let <j> G H^2(r3) be given. Extend it by 0 to I\ Then <f>n G F1/2(F) and we can find v G Hl{Ü)N such that

v|r = <f>n and ||vj|i < C\\(j>n\\Hi/2(r) < Ci\\<f>\\„i/2tr v Clearly v G Hot(Q), so the trace operator is onto.
The next lemma gives a formula for calculating the divergence on the boundary.

Lemma 7. For smooth u the restriction of div u to T3 satisfies

div u|r\, = I divruT + nu - n + •»— * n 1

where u r is t/ie tangential component ofu and divp is t/ie divergence of a tangential vector field in the tangential
coordinate System.

Proof. To calculate div u at some xo G T3 let usfixa coordinate System i, j , k (if N = 2 then omit j), where i,
j are tangent to T at xo and k is the normal at xo (we can do this for every XQ in the interior of T3 ). Dénote
uT = u — (u • n)n. Then

/ x 9u, x . du. s . 9u / N ,
divu(xo) = •^r(xo)-i+-^r(xo)-J + ^ ( x o ) - k

duT . s . öuT f , . öf(u • n)nl, x . d\{u - n)nl , , m du f , , .
= - ^ ( x o ) • i + ~(xo) • j + lV

 m
 } J(xQ) • i + [V

 a j
 ; J(x0) • j + —(xo) • n(xo)

= divruT + nu • n + TT~ • n

where

divruT(x0) = -^ï"(xo) • i + -^r-(xo) * J-

Now we can prove Lemma 4:
Proof of Lemma 4- For v G HQt(fl) and smooth u (we do not require u x n = 0 yet, because it does not seem
straight for war d to show the density of smooth functions with zero tangential trace in HQt(Ù)) we have

/ eurl u • curl v + div u div v = I curl curl u • v — Vdiv u • v + ƒ (div u)v * n
Jn Jn Jr

= — / Au • v -f / (div u)v • n
Ja JT

= ƒ Vu • Vv + / ( div u — -r— - n I v • n.
Jn Jr\ dn J

By Lemma 7

/ curlu • curlv + div udivv = / Vu • Vv + V] / (divruT H- nu • n) v • n. (10)
Jû Jo ^ Jv3

For any <f> G HQQ (FJ) (extended by zero to F) we can find v G ifot(Jl) such that v|r = 0n and ||v||i <
v2iT3y From (10) we get

(divpuT + KU * n) < i H^2(Tj), Vu smooth.
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By density of smooth functions in H1 (Q) and Hahn-Banach theorem we can continue the mapping u \-> (divruT+
KU - n)|r\, uniquely to a continuous linear mapping from iJ1(^) iV to (H^CTj))'. Since for any v G HQ^SÏ),

v • n G i?oo2(rj) (by Lemma 6), (10) holds for ail u G Hl(Çl)N and v G H^(n) (the intégrais over F3 have a
meaning as a duality pairing between (HQQ2(T3)Y and HQQ(T3)).

To finish the proof we need to show only that if u G i?Qt(fi), then divru r = 0 o n F r For this first note that

since u »-» Ku-n|r\, is linear and continuous from iï1(fi)iV to L2(T3) C (HQQ(T3))\ the operator u \-ï divrur|r:7

is also continuous from Hl(CÏ)N to (i?oo (^J))'» an<^ t n e n u s e t n

- - f u r

and the density of Cl(T3) in i ^ 2 ^ ) .

6. EQUIVALENCE OF THE STRONG AND WEAK FORMS

In this section we will prove that (1) in V is equivalent to the weak problem (5), and that (3) in HQt(Ù) is
equivalent to the weak problem (7). It follows that problem (1) is uniquely solvable in V and problem (3) is
uniquely solvable in HQt(ü). We will also show that problems (2) and (3) are equivalent with the divergence
boundary condition having a meaning in the sensé of traces.

Let us first deal with problem (1).

L e m m a 8 . Let Q and f be as in Section 2. Then the problem of finding u G l ^ satisfyzng (1) %$ equivalent to
solvmg the weak problem (5).

Proof. Let u G V be a solution of (1). Then - A u = curlcurlu G L2{Q)) and so the formai calculations
leading to (5) can be rigorously justified.

Conversely, if u G V satisfies (5), then by using v G V(Q)N and transferring all derivatives to v we get
—Au = f in the sensé of distributions. For any <j> G V(Q) we can find g G HQ(Q) such that A# = (f>. Now use
v = V<7 in the weak form (note that V# G V). We get

/ (divu)0 = / f • Vc, = - [ (divf)s + ƒ (f • n)g = 0,
Jn Jn JQ. JT

so divu = 0 in the sensé of distributions. Consequently the problem (1) (in V) and the weak form (5) are
equivalent.

Corollary 1. The problem (1) has a unique solution uy mV.

In the proof of the theorem we used the fact that V# £V. If we were dealing with the weak form in Hçjt(Q,),
then V# may not have been a legitimate test fonction (in the case g <£ H2(Q)), which would make it impossible
to prove that divu = 0. This is the différence between the weak problems (5) and (9), even though they appear
ver y similar.

The corresponding proof for the problem (3) is a little more difficult, but follows the same pattern.

Lemma 9. Let ft and f be as m Section 2. Assume m addition that the boundary T is piecewise C1 '1 and the
jump condition (6) is satisfied. Then the problem of finding u G HQt(Q) satisfymg (3) is equivalent to solvmg
the weak problem (7).

Proof We first have to show that the boundary condition

du n—- • n + /ai • n = 0 on Fon
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has a meaning for u G HQt(Q) with Au G L2(Q). Since Vu G L2(Ü)N and divVu G L2(£7), the gradient has a

normal trace on the boundary - ^ G H~l/2(T) (see [2] for example). For 4> G H^2(Tj) we have <£n G H1/2 (F)

(using the extension of <j> by zero) and therefore the boundary condition may be interpreted as

( i p _|_ KUî 0 n ) r = o V0 G | | Hoo (rj)> (11)

or, equivalently,

where (•, -)r is the duality pairing between H X/2(F) and
Let u G HQt(Çl) be a solution of (3). Using (12) we can justify to formai calculations leading to the weak

form (7) (the boundary intégrais in the weak form should be understood as duality pairings between (HQQ (Tj))f

a n c t i j Q O [L j ) ) .
Conversely, if u G HQt(£l) satisfies (7), then by using v G D(Q)N we get as before —Au = f in the sense of

distributions. For any v G HQt(fï)y integrating by parts in the weak form (note that Au G L2(Û)N) we get

f-v,
C Q ^ P f*

- \ Auv+(-^îv)r+V' / «u-v= /

hence (12) is satisfied. Consequently the problem (3) (in HQt(Q)) and the weak form (7) are equivalent.

Corollary 2. The problem (3) has a unique solution ü in JEZQ4(ÎÎ).

Now we will show that problems (2) and (3) are equivalent. The only différence in these two problems is
in the boundary condition, so we have to show that the divergence boundary condition makes sensé and is
equivalent to the boundary condition in (3). This is done in the following lemma.

Lemma 10. Assume ft satisfies the conditions of Lemma 9. For u G i?ot(fi) with Au G L2(ft)N, and any
j G {1 , . . . ,n}, the trace of divu on Tj exists and belongs to (HQQÇTJ))', and

i ou . .
div u\Tj = ^ - • n | r , + ̂ u • n | r j .

Proof. This foilows from Lemma (7) which gives the formula for smooth u without the condition u x n = 0.
By density this can be extended to u G f f 1 ^ ) ^ with Au G L2(Ü)N. Then use the fact that for u G H^t(ft) we
have divruT = 0 (see the end of proof of Lemma 4).

Corollary 3. Problems (2) and (3) are equivalent.

Let us summarize the results in a theorem:

Theorem 2. Assume that Q is a bounded subset of"RN with a connected, Lipschitz boundary. Let f G L2(Q)N

with div f = 0 be given. Then
a) The problem (1) in V is equivalent to the weak form (5) and has a unique solution uv £V.
b) If in addition the boundary is piecewise C1*1 and satisfies the jump condition (6), then the problems (2)

and (3) in H^t(Q) are both equivalent to weak problems (7) and (9), and have a unique solution u# G Hlt(ÇÏ).
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7. RELATIONSHIP OF THE V AND Hjt(îî) FORMULATIONS

Let uy G V be the solution of (5) (or the strong form (1 with the interior divergence condition) and
let ujy G i?ot(^) D e the solution of (9) (which under the additional smoothness conditions is equivalent to
problems (2) and (3) with the divergence boundary condition). In this section we will discuss when the two
solutions are the same. The following is clearly true.

Lemma 11. Let Q, and f be as in Section 2. Assume in addition that the jump condition (6) is satisfied. Then
the following are equivalent

a) nv = nH;
b) div UH = 0 in Q;
c) uv G H0\(Q).

Let us now examine when uy = u^. First, note that Lemma 5 implies that 11^(0.) is closed in V. We
have two possibilities: either V — Hlt(Q) o r F / Hlt(Q). In the first case the solutions are obviously the same
(the corresponding weak forms are exactly the same). The following lemma gives the necessary and sufficient
conditions for the equality of the spaces.

Lemma 12. Assume that Cl is a bounded subset of R^ with a connectée Lipschitz boundary. The spaces V
and H§t(Vt) are equal if and only if the homogeneous Dirichlet problem for the scalar Poisson équation with any
right hand side in T>(ÇÏ) has a solution in H2 (Q).

Proof Suppose that the regularity condition holds. For any given w G V we can solve the weak problem: find

u G iïot(fi) s u c n t n a t

a(u ,v)=a(w,v) Vv G J^(f i ) (13)

(Le. u is a projection of w onto H^t(Ù) corresponding to the scalar product a(-, *)). As in the proof of Lemma 8
we can show that A(u — w) = 0, and using the iJ2-regularity of the solution of the Dirichlet problem for the
Poisson équation we also get div (u — w) = 0. Since (u — w) x n|r = 0, by the uniqueness of solution of (1) we
have u = w, ie. w G HQt(Q). Consequently V = HQt(Ù).

Now suppose that there is g G iïj(ft) s u c h t h a t A £ E 5(îî), but g £ H2(fy. Then V# G V, but V# £ H^t(SÏ),
Ï Ù t ( )

Note that the lemma remains true if one substitutes L2(ft) for

Corollary 4. IfQ is convex or has a C1'1 boundary then V = H^t(Q).

This follows from the classical regularity theory about the smoothness of the solution of the Dirichlet problem
for the Poisson équation. It is actually enough to assume that Q is locally convex near the points where the
boundary is not C1 '1 (Le. these points have a neighborhood whose intersection with ft is convex).

The question of the equality of these spaces (and analogous ones with a boundary condition for the normal
trace) has been partly answered by different authors, but we are unaware of resuit s as sharp as these present ed
hère. In the classical book [2] it is proved that V = HQt(Q) if Q is a convex polygon or has a C1 '1 boundary.
Necessary and sufEcient conditions for V = HQt(£i) to hold in R2 are given in [6], namely that the scalar Poisson
équation with L2(Q) right hand side must have a solution in H2(Q) both with Dirichlet and Neumann condition.
As we saw, the regularity of solution of the Neumann problem is not needed, and in R2 it actually follows from
the regularity of solution of the Dirichlet problem.

In the other case, when Hçjt(ÇÏ) and V are not identical, since iï<Jt(£ï) is closed in V, there is f G L2(fl) with
div f = 0 for which the solution of (1) is in V, but not in Hçjt(ÇL). This means that the interior and boundary
divergence formulations are not equivalent and give different solutions for this f. We will show how to construct
f for which uy / u# whenever V / HQt(Q).

Lemma 13. IfV^ üT t̂(fi) than there is f e L2(fl) with div f = 0 such that the corresponding solution of (1)
is not in HQt(Sl).
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Proof. If V 7̂  HQt(Q) then we can choose a nonzero v/ E V such that

a ( w , v ) = 0 VvGffotW- (14)

First note that curl w / 0: indeed, if we had curl w = 0 then

/ div w-divv = 0 Vv G flot(fi), (15)
Ja

and hence (by using v G T>(ft)N)), Vdiv w = 0, or div w = const. It follows from (15) that JQ divv — 0 for ail
v G i?oÉ(n), which is a contradiction.

Now let f G V be a solution of

a(f, v) = ƒ curl w • curl v Vv G F. (16)
Ja

Note that f =̂  0 and div f = 0. We claim that for this f problem (1) has a solution uy G V which is not in
Hçjt(Q). Indeed, using the weak problem (5) and (16) we get

a(u, w ) = / curlu • curlw = a(u, f) = / |f |2 / 0,
Jn Ja

which by (14) implies that uy £ HQt(Q,).
We can also give a more tangible example of a solution of (1) which does not belong to i?gt(fî). Suppose

O C R3 is such that in a neighborhood of some x0 € F its boundary consists of 2 planes with the interior angle
a > ir. Choose a cylindrical coordinate System (r, 0, z) with the origin at XQ, 2-axis along the edge and 0 = 0,
6 = a on the boundary. Let 0 G C°°(fi), depending on r and z only, be such that 0 = 1 near the origin and
0 = 0 outside a neighborhood of the origin where the pièces of F are planar. Put

u(x, y, z) = curl ( 0(r, z)rn/a cos — ez ) ,

where ez is the unit vector in direction of 2-axis. Then div u = 0 and

u x n = 7— ( 0(r, z)rn/a cos — ) ez = 0 on F.
an \ a J

It follows that u is a solution of (1) with f = —Au G L2(Q) and div f = 0. In addition, f = 0 near the origin.
Since u ^ HQt(Q) and the problem (2) with the same f has a solution ü G i?Qt(îî), we must have ü / u and
d ivü^O.

This example is essentially two-dimensional. To make it work for ft C R2 in a neighborhood of a corner with
the interior angle a > TT we just use 0 independent of z. Note that the third component of u is zero, and we
get f eC°°(Ù)2.

We will state these results as a theorem:

Theorem 3. Assume that ft is a bounded subset of R^ with a Lipschitz boundary. The following are equivalent:
a) uy = UH for any f G L2(Q)N with div f = 0;
b) V = Hèt(Ü);
c) the Dirichlet problem for the scalar Poisson équation with any smooth right hand side has a solution in
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8. G E N E R A L I Z A T I O N TG HELMHOLTZ EQUATION

Most of the arguments above remain true in case of the vector Helmholtz équation. The only différence is
in the coercivity, which now will not be sufficient for using Lax-Milgram. Let us sketch the results briefly. The
analog of problem (1) is now: find u G V such that

f— Au- / c 2 u = f in fi,
divu = O infi, (17)

[ u x n = O on T.

We assume that f G L2(Ü)N and the compatibility condition divf = 0 is satisfied. To formulate the weak
problem let us define

b(uyv) = I curlu • curlv + divudivv — k2u • v Vu, v £ V.

Then the weak problem corresponding to (17) is to find u G V such that

6(u,v) = f i -v VvG V. (18)

The coercivity resuit is that 6(u,u) > C||u||^ — Â;2||u||^2 (if k2 is complex, we take the real part). We cannot
use Lax-Milgram directly. Instead we can use the Fredholm alternative to show the existence and uniqueness
of the solution. Define an operator Ay : L2(Q.) —» L2(Q) by the requirement that Ayg G y is the solution of
a(u, v) = JQ g • v Vv G V (note that we do not need the compatibility condition divg = 0 to guarantee the
solvability of the weak problem). By the Lax-Milgram Lemma and the compact embedding theorem (Theorem 1)
Ay is a compact operator. Then the solution of (18) is the solution of u = Av(k

2u + f), and if 1/k2 is not
an eigenvalue of A y then (18) has a unique solution u G V. The operator Ay has two kinds of eigenfunctions:
those that are divergence-free, and others which are gradients of the eigenfunctions of the scalar Laplacian with
Dirichlet boundary conditions. Assuming that 1/k2 is not an eigenvalue of Ay, one can prove the équivalence of
the strong and weak problems similarly to the proof of Lemma 8 (in proving that the solution of the weak form
satisfies the divergence condition we need solvability of the scalar Helmholtz équation with Dirichlet boundary
conditions, which follows from the fact that if 1/k2 is not an eigenvalue of Ay, then it is not an eigenvalue of
the scalar Laplacian with Dirichlet boundary conditions).

The analog of problem (2) is to find u G Hot(fi) such that

in fi,
(19)

r

and the corresponding weak problem is to find u G #ot(^) s u c n ^hat

6(u,v)= / f v VvG#o t(fi). (20)

- A u -
divu =
u x n =

k2u =
0

= 0

f in fi,
on T,
o n T

One can deal with the coercivity as above, using the operator AH '- L2(ÇÏ) —> L2(Çl) defined by: A#g G #
is the solution of a(u, v) = ƒ g • v Vv G i^ot(fi)- Equivalence of the strong and weak forms follows similarly to
the zero frequency case.

The question of when the two weak problems (18) and (20) give the same solution can be answered as in
Section 7. Most of the results presented there do not depend on the frequency. The counterexamples are also
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easy to modify: if uv 0 H^t(iï) is a solution of (1), then it is also a solution of (17) with the right hand side
f — fc2uy. Theorem 3 remains true if we assume in addition that l/k2 is not an eigenvalue of either Ay or AH
and let uy and njj be the solutions of the weak problems (18) and (20) correspondingly.

Similar results can be proved for time-dependent problems, such as the vector wave équation and MaxwelPs
équations. Even with divergence-free initial conditions, using a weak form in i?Qt(£î) (similar to (20)) may give
a solution not satisfying the divergence constraint. Again, this can happen only if the #2~regularity of the
Dirichlet problem for the scalar Poisson équation fails.

9. CONCLUSIONS

We saw that in sortie cases (e.g. for nonconvex polygons) the boundary divergence formulation is not equiv-
alent to the interior divergence formulation, and the weak form (9) or (20) (the weak forms in JÏQt(fi)), while
uniquely solvable, may not have a divergence-free solution. In this case approximation methods based on these
weak formulations (e.g. the usual finite element method, the least squares method) will converge to a spurious
solution (not satisfying the divergence constraint). To avoid the spurious solution, one should use the weak
form in F, but this is not straightforward: one has to use basis functions which are in V, but not in HQt(ÇL)
(e.g. incorporating singular solutions around the re-entrant corners), in addition to the usual ones. The same
is true of the penalty method, where the weak form contains a penalty parameter in front of the divergence
term. If the solution of the original problem is not in i?ot(£7), then any choice of the penalty parameter will
resuit in a spurious solution — in fact, the smaller one makes the divergence (by choosing larger values of the
parameter), the bigger will be the error in the curl of the solution.

On the other hand, when the formulations are equivalent (this is the case when the solution of the Dirichlet
problem for the scalar Poisson équation is in iï"2(il)), one can use weak forms in HQt(Q). This permits the use
of simpler algorithme, e.g, finite element methods with piecewise linear test and trial functions. The equivalent
formulation in terms of gradients (as in (7)) may be especially useful, since it découplés the field components
inside the domain.
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