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Mathematical Modelling and Numerical Analysis M2AN, Vol 33, N° 3, 1999, p 443-458
Modélisation Mathématique et Analyse Numérique

A STABILITY ANALYSIS FOR FINITE VOLUME SCHEMES
APPLIED TO THE MAXWELL SYSTEM

SOPHIE DEPEYRE1

Abstract. We present in this paper a stabihty study concernmg finite volume schemes applied to
the two-dimensional Maxwell System, usmg rectangular or triangular meshes. A stabihty condition is
proved for the first-order upwmd scheme on a rectangular mesh Stability comparisons between the
Yee scheme and the finite volume formulation are proposed. We also compare the stabihty domains
obtained when considermg the Maxwell System and the convection équation

Résumé. Nous présentons dans cet article une étude de stabilité pour les schémas de type volumes
finis appliqués au système de Maxwell bidimensionnel, sur des maillages en rectangles ou en triangles
Un résultat de stabilité est démontré pour le schéma décentré d'ordre un sur un maillage rectangulaire
Des comparaisons de stabilité entre le schéma de Yee et la formulation en volumes finis sont proposées.
Nous comparons également les domaines de stabilité obtenus pour le système de Maxwell et pour
l'équation d'advection

AMS Subject Classification. 11C08, 11C20, 65C20, 65L06, 65M12, 65M60, 65T20.
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1. INTRODUCTION

We are concerned, in this paper, with a stability study for finite volume schemes applied to the two-
dimensional time domain Maxwell System. This analysis is achieved for a homogeneous medium, for instance
the vacuüm.

We shall consider first-order and higher-order schemes on rectangular and triangular meshes. In the case of
a first-order scheme using a rectangular mesh, a necessary and sufficient stability condition will be proved. This
stability resuit will be compared to the one obtained for a Yee scheme [10], which is largely used in CE.M.
applications.

In order to increase the accuracy of finite-volume schemes as well as the stability domains, high-order schemes,
both in time and space, are achieved by means of an upwinding parameter f3 and a multi-step Runge-Kutta time
discretization [4]. In this case, représentations of the stability domains will be computed, in order to compare
stability conditions for the Yee scheme and for third-order finite volume schemes. This stability analysis will
allow us to draw the most efficient schemes, on triangular and rectangular meshes, from a class of high-order
accurate methods.

Keywords and phrases Finite volume, finite element, stability, Maxwell System, Fourier analysis
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A comparison of the stability limits obtained for the Maxwell System and for the scalar convection équation
will also be proposed.

This paper is divided into three parts: in the two first ones, we recall the Maxwell équations and also the
numerical approximation based on finite volumes; the third one is concerned with the stability study and the
comparison of the stability results between the Yee scheme and finite-volume methods applied to the Maxwell
System and to the convection équation.

2. M A X W E L L SYSTEM

2.1. Electromagnetic field équations

The electric field E = E(£, x) and the magnetic induction B = B(i, x) are solutions in vacuüm of the Maxwell
équations:

| _ c 2 r o t ( B H _ i . ( X G

-g + rot(E) = 0
div(E) = -£-

[ div(B) = 0

(1.1)

(1.2)

(1.3)

(1.4)

the vacuüm magnetic permeability.where c is the light vélo city, €o the vacuüm electric permittivity and
These values satisfy the relation: eofx^c2 = 1.
We dénote by j = j(£, x) and p = p(£,x) the given current and the given charge densities which are related by
the conservation law:

We assume that the initial electric field Eo and the magnetic induction Bo are such that:

€0
(3)

One can easily prove that conditions (3) and the charge conservation law (2) imply that constraints (1.3, 1.4)
are satisfied for ail t > 0. Hence, only the first two équations (1.1, 1.2) will be considered in the numerical
model since (1.3, 1.4) are redundant in the continuous one.

2.2. Conservative formulation and hyperbolic character

System (1) can be written in the following conservative form:

where

Qt + Fi(Q)x + F2(Q)y + F3(Q), = J

Q= (Ei,E2,E3,Bi,B2,B3)
Fi(Q)= t(0,c2B3,-c

2B2,0,-E3,E2)
F2(Q) = t(-c2B3,0,c2BuE3,0,-E1)
Fs(Q)= t(c2B2,-c

2B1,0,-E2,E1,0)

(4)

J= — * , o.o.o)
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or in condensed form:

Qt + V.F(Q) = J (5)

with F(Q) - * (Fi(Q) î Fa(Q) ; P8(Q)).
One can easily check that System (5) is hyperbolic. Indeed, let us consider a linear combination of fluxes:

where rf= t(f}i^rf2, Vs) is any nonzero vector of M3.
The Jacobian matrix A defined by;

is diagonalizable for any nonzero vector tf of M3 and for any vector Q of M6.
Its three real eigenvalues of double multiplicity are given by:

'A1=c||fî||
A2 - -C | | I Ï | |
À3 = 0.

Two types of wave polarization are particularly interest ing when modelling two dimensional problems : trans-
verse electric polarizations noted TE (E.ez=0) and transverse magnetic polarizations noted TM (B.ez=0).
Indeed, in the two-dimensional case, these polarizations allow the Maxwell System to be splitted according to
these two types of waves. From now, we shall restrict our study to the transverse electric waves (TE). The
TM case is treated similarly. In this case, (4) writes:

Qt + F!(Q)S + F2(Q)V = J (6)

where:
(Q=t(EuE2jB3)

Fi(Q)= t(0Jc
2BZjE2)

The conservative form as well as the hyperbolic character of the Maxwell system leads up naturally to the use
of upwind schemes which are known to be well adapted to solve numerically hyperbolic conservative Systems.

3. NUMERICAL APPROXIMATION

The two-dimensional time domain solver presented here is based on a finite volume formulation using struc-
türed triangular or rectangular meshes. We describe briefiy in the following section the finite volume method
applied to the Maxwell équations. For more details on this method, one may refer to [2-4].

3.1. Spatial formulation

Let % be a standard finite element discretization of fi/^ the polygonal approximation of a computational
domain Q:

nt
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FIGURE 1. 2D cell C% for a triangular mesh.

r

L

«•1)

—i

j i .
Ü.k) j 0+1 .

û,ki)

FIGURE 2. 2D cell Cz for a rectangular mesh.

where T3 is a triangular or a rectangular element and nt is the number of éléments. Another partition of Q,
using finite volumes is then constructed as follows:

where ns is the number of nodes and C% is the control volume or cell whose construction is shown in Figures 1
and 2.

A weak formulation is then obtained by integrating System (5) on each control volume C% taking the charac-
teristic functions of the cells as test fonctions.
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Assuming partial derivative Qt to be constant in space on C% and using a Green formula yields to the following
équation written at each node of the mesh:

Area(C;) (Qt), + f = / Jdx (7)

where i/i is the unit normal exterior to dC%.
The intégral term in équation (7) is splitted into a sum of internai fluxes and boundary terms. Since we are

mainly interested in the study of stability conditions, we shall consider periodic boundary conditions, which
makes the contribution of these boundary terms to be zero.

Ni

Area(Ct) (Qt)t + £ *XJ = Area(C0 Ji (8)

where Nt is the number of the neighbours of the node i and $2J is an approximation of the internai flux

I F(Q).i/$j der which will be discussed in the sequel.
JdClndC3

3.2. First-order upwind scheme

Since the Maxwell System is hyperbolic, we choose an upwind approximation for the évaluation of the nu-
merical fluxes $2J. Let us set:

T / = ƒ

where dC% n dC3 represents the common interface between the two cells C% and C3. We recall that the Maxwell
équations in vacuüm f or m is a linear System wit h constant coefficients. Thus ail first-order upwind schemes
reduce to the classical LCR. (Isaac-Courant-Reeves) scheme [7] which writes:

Q„„)

where Qt dénotes the value of Q at node i and A(t]) is the Jacobian matrix of ̂ -"(Q, rjj).

3.3. High order approximation

The MUSCL (Monotonie Upwind Schemes for Conservation Laws) method [5,8] allows us to increase the
précision of the schemes by definmg new values Q2J and Q3l at the interface of the cells without altering the
numerical fluxes function 3>. In the MUSCL method, these values are obtained by using a linear interpolation
on each cell. We choose hère a /3-scheme formulation which writes:

= Q. + ^{ (1 - 2^)(QJ - Q.) + 2/3VQf.StSJ

k = Q,-|{(i-

where j3 is an upwinding parameter whose value détermines the accuracy of the scheme. Choosing /? = 1/3 gives
a third-order accurate scheme in space for structured meshes [3,4]. The formulation requires the évaluation of
a nodal gradient (VQ)f^ which can be defined in several ways. We use hère a flnite element approach.
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In the case of a rectangular mesh, it writes:

VQ?* = -r * , „ f VQdx
Area(Supp(<^)) Jsuppfa)

where the ik (k = 1, ...,4) are the four vertices of the rectangle R and V^* is the gradient of the bilinear Q1

function at node ik.

In the case of a triangular mesh, we use the following définition:

Area(Supp(y>i)) JsupP(<pi

•i A /m\ 4

1 V

VQdx

where the ik (k = 1, 2,3) are the three vertices of the triangle T and V< f̂c(T) is the gradient of the linear P1

function at node ik, which is constant on T.

3.4. Time intégration

The time accuracy for unsteady problems is important that is why we choose explicit accurate time schemes.
We use a Runge-Kutta multi-step explicit method; the step number for the accuracy of the scherne is fixed with
regard to the value of f3. The RKr algorithm is given below (in our case r = 1,..., 3):

where tn = nAt and <I>(Q* x) represent the fluxes calculated with fields Q̂  *• For the values j3 = 1/3 and
r = 3, the scheme is third-order accurate in time and space since the Maxwell system is linear.

4. STABILITY ANALYSIS

We study here the stability of the schemes presented above for both rectangular and trianguiar meshes. The
Maxwell System is written dimensionless and we choose c = 1. We consider the fîrst-order accurate scheme and
we present a proof of the stability condition in the case of a rectangular grid. Then we study the /3-scheme
stability on both rectangular and triangular meshes by adjusting the parameter f3. Stability study is based on
Von Neumann analysis [1], but we fîrst introducé some définitions before developing this analysis. We note:

where i2 — — 1. Then we obtain the relation:
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where G$Xi$2 is the 3 x 3 amplification matrix of the scheme which dépends on the time incrément At and the
Fourier angles 0i, 02-

4.1. First-order accurate schemes

We recall that a necessary and sufficient stability condition (Von Neumann condition) writes:

V (0i,02) G [0,2TT]
 2, r(G9l,e2) = rnox^^l < 1 (12)

where /z^ $2 are the eigenvalues of Ggly$2 and r is the spectral radius of the matrix Gglye2-

4.1.1. Rectangular mesh

In this part, we shall establish a necessary and sufficient stability condition for the first-order finite volume
scheme on a rectangular mesh. The amplification matrix Gelie2 writes in this case:

Geuö2 = ld - Ai

0

Xl (13)

2 Ù O Û

• 9 " l , r ^ . 9 "2
where X\ = -—• sin — , X% — -— sin —

Ax 2 Av 2

We notice that Ge^fo is a complex symmetrie matrix.

Theorem 4.1. The first-order finite volume scheme applied to the Maxwell System using a rectangular mesh is
stable if and only if — h -r— < 1.

Ax Ay ~

Proof We prove first that the condition \- —— < 1 is necessary and then that it is sufficient.
Ax Ay

Proposition 4.1. If the scheme is stable then 1 < 1.
Ax Ay

Demonstrating this assertion is equivalent to show that if — h -r— > 1 there exits a couple (0i,02) for
Ax Ay

which max |MÖI,Ö2I
 > ** Taking (0I,02)=(TT,TT) leads up to:

t=l,2 j3

G6l,e2=Id-At
Ay

0 o

Ax Ay )

and r(G8l,g2) =
, o / At At\\
1 — 2 1 1 ] .

VAx Ayj\
At At

Hence taking ——\- —— > 1 leads clearly to an unstable scheme, which ends the proof of proposition (4.1). D
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At At
Proposition 4.2. If — h -r— < 1, then the scheme is stable.

Ax Ay ~

Proof. We first define a new matrix H$lt$2 by multiplying the third column of Gelt$2 by — i and the third line
by i. One can easily check that Gelye2

 a n d Hely$2 are similar. Hence they have the same eigenvalues, and the
stability condition (12) is identical when considering Helto2 as the scheme amplification matrix. H$lt$2 présents
the advantage to be real and can be splitted into: HeXie2 = Id — At{Delyo2 + A$li$2

>) where D$li92 is a real
diagonal matrix and A$lj$2 is a real antisymmetrie one.

0 0 - - J -
Ay

0 0 T~s i

i . . i . „ %
\ A y Ax /

The matrix (D$lto2 + A$lie2) has either three real eigenvalues or one real eigenvalue and two complex conjugate
ones. Concerning the real eigenvalues we have the following resuit:

Lemma 4.1. The real eigenvalues Ar̂ l3Ö2 °f fàoifà + A^lt$2) verify

0 < min(XljX2) < APföl|öa < X

We omit from now the subscripts Ôi,02 m what follows. This lemma and all the following ones will be proved
further.

Let fi be the eigenvalues of H and À the eigenvalues of (D + A), Then we have fi = 1 — AtX.
We first consider the case of the real eigenvalues jur of H,
Equation (12) implies: |/zr| < 1 V (Buô2) i.e. - 1 < 1 - AtXr < 1 V (ôi,e2).

2 2
Usine Lemma 4.1 one has 0 < Àr < Xi + X2i further mor e X\ + Xo < -: h ——. Therefore, if the condition

Ax Ay

— h -r— < 1 is assumed one obtains 0 < AtXr < 2 and then \/JLV\ < 1.
Ax Ay

We now consider the case of the complex eigenvalues fic of H. First we have:

= 1 - 2AtRe(Ac) + At2|A 2
c •

The condition |^c | < 1 writes At2|Ac|
2 - 2AtRe(Ac) < 0.

Assuming the real eigenvalue Ar is strictly positive, we obtain by multiplying the previous inequality by Ar:

A£2Ar|Ac|
2 - 2A£ArRe(Ac) < 0. (14)

Purthermore one has:
Ar|Ac|

2 = det(J9 + A) = 2XXX2(^- + - L ) , Ar + 2Re(Ac) = Tr(D + A) = 2(Xt + X2).
Ax Ay

Inequality (14) transforms into:

P(Xr) - A2 - 2(Xi + X2)Ar + 2X±X2 (^ + ^ ) < 0. (15)
\Ax Ay J

Lemma 4.2. If the condition 1- —— < 1 is achieved, then P(Xr) < 0.
Ax Ay

Using Lemma 4,2 allows us to conclude that |/ic| < 1 V (9x^02).

The following Lemma treats the case Ar = 0.
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Lemma 4.3. If h -r— < 1, the condition \ac\ < 1 V (#i,#2) ^ ensured.
Ax Ay

We have finally proved that if h -r— < 1> then the scheme is stable which concludes the proof of Propo-
Ax Ay

sition 4.2 and the démonstration of Theorem 4.1.
We establish in the sequel the proof of all the intermediary lemma.

Proof of Lemma 4.1. Let v be the eigenvector of the real matrix (D -f A) associated to the eigenvalue Xr. We
have: (D + A)v = Arv and fiv(D + A)v = *vArv. As A is an antisymmetric matrix, from *vAv = 0 we deduce
tvDv = *vArv which writes:

(X2 - K)vl + (X1 - Xr)vl + (Xi + X2- \r)v
2

3 = 0

where v% (i — 1, 2,3) are the components of the eigenvector v.

We note that X± + X2 — Ar > max(Xi — Ar, X2 - Ar) as X± and X2 are positive.
Since the coefficients in front of v% can not have all the same sign, one can deduce that X\ +X2 — Ar > 0 and

(Xi — Ar) or (X2 — Xr) are négative. Thus one can conclude that Ar < X\ + X2 and Ar > mm(X\, X2) > 0. •

Proo/ o/ Lemma 4-2. We recall that:

p(Ar) = A? - 2(X± + X2)Ar + 2XiX2 (p- + ^ V

The discriminant of P writes:

Assuming the condition — h -r— < 1 leads to A > 4(Xf + X| ) > 0.
Ax Ay

The particular case A — 0 corresponds to Xf -\- X2 — 0 which is equivalent to Ar = 0 in view of Lemma
4.1. Since we consider the case Ar ^ 0, the discriminant is strictly positive and the polynomial P(Ar) has two
distinct roots ri, r2 given by:

2(Xi + X2) -
n = g

We obtain that P(Ar) < 0 ever since Ar G [ n , ^ ] . Lemma 4.1 establishes that 0 < Ar < X\ -\- X2 < r2, then
we still have to show that Ar > ri .

Prom A > 4(XX
2 + X\) we have rx < Xx + X2 - y/Xf+X$. Furthermore yJX\ + X\ > max(Xi, X2) and

Xx+X2- ^Xl + X\ <XX + X 2 -max(Xi ,X 2 ) =min(X l ï X 2 ) < Ar thanks to Lemma 4.1.
Finally 7*1 < Ar < r2 and P(Ar) < 0 which ends the proof of Lemma 4.2. •

Proof of Lemma 4.3. We consider here the case of a zero eigenvalue Ar. From Lemma 4.1, if Ar = 0 then
min(Xi,X2) - 0 that is to say 0± = 2kir or 62 = 2A:TT, (k € Z). Conversely, if 9i or 92 = 2kir then Ar = 0.
Hence Ar = 0 is equivalent to 6\ = 2fc7r or 02 = 2/CTT.
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RRST-ORDER SCHEME STABILITY ON A RECTANGULAR MESH

-0 1 0 01 02 03 04 05 06 07 08 0.9 1

FIGURE 3. Maxwell System and convection équation.

Assuming 0X = 2/CTT, the matrix (D -h A) writes:

1
Ay'

Ay
0 0 0

2 0 X2

In this case, the eigenvalues of the matrix are: 0, X2 ± -r— sin02. The condition |/xc|
2 = |1 — AtÀc|

2 < 1 writes:

A/2

At2Xl + =^ i 2 0sin2 02 - 0.

One can easily check that this condition is achieved since —— < 1. In the same way if we consider the case
Ay ~~

02 = 2&7T, the stability condition is satisfled if —— < 1.
Ax

To sum up in the case of a zero eigenvalue, the condition — h -r— < 1 implies \/JLC\ < 1, which ends the
Ax Ay

proof of Lemma 4.3. D

We have proved that a necessary and sufficient stability condition for the fîrst-order scheme on a rectangular
At At ^ 1mesh was h -r— < 1.
Ax Ay

f At At\
A way to represent the stability domain is to obtain numerically the maximum values of the couple I -r—, — )

\/Xx i\y J

such that the condition (12) may be verified. To represent this domain, we choose the variables -r— and —

as coordinates in the plane.
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FIRST-ORDER SCHEME STABILITY ON A TRIANGULAR MESH.
1
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FIGURE 4. Maxwell system and convection équation.
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Remarks.

• First we can notice that if we consider one direction infinité, for instance Ay, we obtain the monodi-

mensional stability condition -— < 1. This stability condition is the most restrictive when we choose
Ax = Ay.
We note also that the stability domain represent ed on Figure 3 is the same as the one obtained when con-
sidering the first-order scheme applied to the two-dimensional scalar convection équation ut + ux + uy = 0
on a rectangular mesh. For more details on the stability analysis concerning the convection équation, one
may refer to [4,6].

• Maxwell System (1.1, 1.2) can be written into a non conservative form:

Qt + AQX + BQy = 0

where A and B are the Jacobians of the fluxes Fi(Q) and F2(Q).
In the monodimensional case, one can diagonalize the Jacobian matrix which leads up to a splitted System:
each component is solution of the convection équation with speeds (c,-c,0).
Unfortunately, in the two-dimensional case, the mat rixes A and B are not diagonalizable in the same basis
for the two space coordinates (x,y). Thus it is not possible to transform the Maxwell System in order
to obtain a System which each component may verify the convection équation, as it is in one dimension.
However we find the same stability condition for the first-order scheme applied either to the Maxwell
System or to the convection équation. As we shall see later, we do not observe the same concerning the
/3-schemes and the schemes using a triangular mesh.

4.1.2. Triangular mesh

In this part we study the stability in the case of a first-order scheme applied to the Maxwell System. The
mesh used hère is a structured triangular mesh obtained by cutting rectangles diagonally. We use again a
Fourier analysis but in this case the matrix H writes: H = Id — At{D + A + S) where S is a symmetrie matrix,
which prevents us to apply the same démonstration as for the rectangular mesh.
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"FV scheme on rectangles '
'"--, 'YEE scheme'

"FVscheme on triangles "

FIGURE 5. Stability domains for Yee and first-order finite volume schemes.

The eigenvalues of the amplification matrix are calculated numerically in order to obtain numerically a
' At At\sufHcient stability condition verifying (12). As done in the rectangular case, we choose the variables [ ——, •—

\Ax Ay J
to represent the stability domain. A comparison between the convection équation and the Maxwell System is
shown in Figure 4. We notice that the stability domain obtained when considering the convection équation is
wider than the one obtained with the Maxwell System.

If we choose Ax* = Ay, we can take CFL=1.17 in the ca^e of the coiiveciioii équation, and GFL=0.93 foi the
Maxwell System, where CFL is the Courant-Friedricks-Levy number. The stability limit is generally higher for
the triangular mesh (see Figs. 3 and 4).

However, when a direction Ax or Ay is almost infinité, then the rectangular mesh gives a higher stability
limit.

4.1.3. Comparison with the Yee scheme
One recalls that Yee introduced a set of finite-difference équations to discretize Maxwell équations. Yee

algorithm consists in using finite différence expressions for the space and time derivatives, and in positioning
the component s of E and B orthogonally to each other. In order to achieve a second-order accurate scheme,
in time and space, E and B are evaluated at half-time and half-space steps. The stability criterion for the
two-dimensional Yee scheme writes as:

At
Ax2 Ay,2 —< 1 (16)

and a proof of the above result can be found in [9].

Choosing the variables —— and —— to represent the stability domain leads up to a quart er-circular unit
Ace Ay

domain. Therefore, this stability condition is less restrictive than the one obtained for the first-order upwind
scheme on both rectangular and triangular meshes (see Fig. 5). It is mainly due to the second-order accuracy
of the Yee scheme.
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FIGURE 6. Maxwell System.

4.2. Higher order schemes

In the case of a three-step Runge-Kutta time intégration we introducé the char act er ist ic polynomial

z2 zz

g{z) = l + z + — + — •
2 6

For z = A Ai, we recall that the polynomial G (A At) represents the amplification matrix of the Runge-Kutta
met ho d applied to the different ial System Qt = A Q where A is the 3x3 scheme matrix. We obtain the following
relation using a Fourier analysis:

and Von Neumann theorem (12) still applies to Gex,e2-

4.2.1. Rectangular mesh

In this section we plot some stability domains computed with different values of the upwinding parameter (3.
We recall that for ƒ? = 0 we obtain a centered scheme, for /?=l/2 the scheme is half-cent ered, f3 = 1 gives an

upwind scheme.
Figure 6 shows that the closer to 1 ƒ? is, the smaller the stability limit is, which means that using a centered

scheme allows us to take a higher time step.
As a comparison, we represent in Figure 7 the stability domain in the case of the convection équation.

Although they vary in the same way with /?, the stability domains are different except for f3 — 1 where we

obtain in bot h cases the numerical stability limit: — h —— =0.62. If we choose Ax or Àw infinité we find in
Aa; Ay

bot h cases the monodimensional stability limit. For Ax and Ay finit e and for a fixed value of (3 the stability
domain is wider for the Maxwell system than for the advection équation, especially for (3 — 1/3 or (3 = 0.
4.2.2. Tnangular mesh

The stability domains obtained for the ^-schemes on a triangular mesh are still different concerning the
Maxwell system and the convection équation (see Figs. 8 and 9). As for the rectangular case, the stability limit
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BETA-SCHEME STABILITY FOR THE RECTANGULAR MESH
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FIGURE 8. Maxwell System.

decreases when (3 is closer to 1. However, the stability domains are wider in the case of the convection équation
for ail value of the upwinding parameter j3.

If we take Ax or Ay infinité we find again the same monodimensional stability limit for the Maxwell System
and for the convection équation.

We can notice that using a triangular mesh gives the privilege to the direction Ax = Ay concerning the
stability: it is the direction where we can choose the highest time step, on the contrary to the rectangular mesh
where imposing Ax — Ay is the most restrictive choice. However, if a direction Ax or Ay is close to infinity,
the use of rectangular meshes is more interest ing concerning the stability limit. The two last remarks concern
the Maxwell System as well as the scalar convection équation.
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FIGURE 10. Stability domains for Yee and third-order finite volume schemes.

4.2.3. Comparison with the Yee scheme

We now compare the stability domains obtained for the Yee scheme and for third-order finite volume schemes
applied to the Maxwell System. Figure 10 shows that stability domains are wider for /3-schemes (/3 ~ 1/3), on
both rectangular and triangular meshes.

On the contrary to the Yee scheme, the finite volume approach has the advantage to extend easily first-order
upwind schemes to /3-schemes, and then to achieve high-order accuracy in time and space. This method is also
more flexible, as it can be applied to many sorts of meshes. However, /3-schemes require an additional CPU
time cost compared to the use of the Yee scheme.
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5. CONCLUSION

A stability study concerning a class of finite volume schemes applied to the two-dimensional Maxwell System
has been presented hère. We have proposed a démonstration of a necessary and sufficient stability condition for
the first-order upwind scheme, on a rectangular mesh. In this case, we find the same stability condition for the
Maxwell system and for the convection équation: ut + ux + uy = 0.

High-order finite volume schemes are achieved by using a MUSCL formulation, and stability domains are
computed on both triangular and rectangular meshes. We also compare the stability limits obtained for the
Maxwell System with those obtained when considering the convection équation. We can observe that the stability
domains are wider for the convection équation when using a triangular mesh. On the other hand, stability limits
are higher for /3-schemes applied to the Maxwell System on rectangular meshes.

We can note that stability limits vary in the same way with /3 for the Maxwell System and for the convection
équation: the lirait on the time-step is the highest for a fully-centered scheme. When one of the mesh-step tends
to infmity, we find again in both cases (the Maxwell System and the convection équation) the one-dimensional
stability condition.

A comparison between the Yee scheme and the finite volume approximation is also proposed. In the case of
third-order finite volume schemes, stability domains are wider, on both rectangular and triangular meshes.

The author wishes to thank Serge Piperno, Bernard Larrouturou, Loula Fézoui, Didier Issautier (CERMICS-INRIA
Sophia-Antipolis) and J.A. Désidéri (INRIA Sophia-Antipolis) for their fruitful help concerning this study.
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