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BOUNDARY OBSERVABILITY FOR THE SPACE SEMI-DISCRETIZATIONS
OF THE 1 - D WAVE EQUATION

JUAN ANTONIO INFANTE1 AND ENRIQUE ZUAZUA1'*

Abstract. We consider space semi-discretizations of the 1 — d wave équation in a bounded interval
with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability,
i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the
energy concentrated on the boundary as the net-spacing h —> 0. We prove that, due to the spurious
modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound.
We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the
discrete System. When h —> 0 this finite-dimensional spaces increase and eventually cover the whole
space. We thus recover the well-known observability property of the continuons System as the limit of
discrete observability estimâtes as the mesh size tends to zero. We consider bot h finit e-différence and
finit e-element semi-discret izat ions.

Resumé. On considère l'approximation par différences finies et éléments finis en espace de l'équation
des ondes 1 — d avec des conditions aux limites de Dirichlet homogènes. On étudie le problème de
Pobservabilité frontière, i.e., la possibilité d'estimer l'énergie totale des solutions par l'énergie concen-
trée sur un extrême du bord, uniformément lorsque h, le pas de la discrétisation, tend vers zéro. On
démontre que cette estimation uniforme n'a pas lieu à cause d'un comportement singulier des fonctions
propres à hautes fréquences, Néanmoins, on démontre une estimation uniforme dans des sous-espaces
convenables de solutions qui, lorsque h —> 0, finissent par couvrir l'espace d'énergie tout entier. On
retrouve donc la propriété d'observabilité, bien connue pour le système continu, comme la limite des
estimations discrètes lorsque le pas en espace tend vers zéro.
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1. INTRODUCTION: FINITE-DIFFERENCE SEMI-DISCRETIZATIONS

Consider the 1 — d wave équation

utt - uxx = 0, 0 < x < L7 0 < t < T
u(0, t) = w(£, t) = 0, 0 < t < T (1.1)
u(x,0) = UQ(X), wt(a;,0) = u\(x), 0 < x < L.
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System (1.1) is well-posed in the energy space Hl (0, L) x L2(0, L). More precisely, for any (UQ7UI) € HQ (0, L) x
L2(0,L) there exists a unique solution u € C ([0,T];Hg(0,L)) flC1 ([0,T];L2(0,L)).

The energy of solutions is given by

\2f [| ut{x, t)\2 + \ ux(x, t) |2] dx (1.2)
«/o

and it is conserved along time, t.e.

E(t) = E(0), V0 < t < T. (1.3)

It is by now well known that when T > 2L, the total energy of solutions can be estimated uniformly by
means of the energy concentrated on one extreme of the boundary, say, x = L. More precisely, for any T > 2L
there exists C(T) > 0 such that

E(ö) < C(T) / | ux(L,t) |2 dt (1.4)
Jo

for every finite energy solution of (1.1).
When the energy concentrated on the boundary is measured in both extrêmes x = 0 and L, the inequality

holds for all T > L.
In this paper we focus on inequality (1.4).
Inequalities of the form (1.4) are related to the boundary controllability of the wave équation. We refer to [9]

and [11] for a systematic analysis of these issues, both in the context of wave équations and plate models.
In this paper we analyze the analogue of (1.4) for several space semi-discretizations of the wave équation.
Let us consider first the finit e-différence semi-discretization to illustrate the kind of problems we have in

mind.
Given N G N we set h = L/(N +1) and introducé the net

x0 = 0 < xi = h < - • • < xjy = Nh < XN+I = L (1.5)

with Xj — jh, j = 0, - • • , N + 1.
We then introducé the following finite-différence semi-discretization of (1.1)

i w-2tiJ(*)] t o < t < r , j = i, • • •

«o(t) = uN+1(t) = 0 , 0 < t < T (1.6)
uj(o) - «?, «;(o) = u), j = o, •. •, jv +1 .

In (1.6) ' dénotes dérivation with respect to time.
System (1.6) is a system of TV linear differential équations with N unknowns ui, • • • , UN, since, in view of

the boundary conditions, UQ = tiiv+i = 0.
Obviously, u3(t) is an approximation of u(x3^t)^ u being the solution of (1.1), provided the initial data

(uj, uj) , j — 0, • • • , N + 1 are an approximation of the initial data in (1.1).
The energy of system (1.6) is given by

N

= ? E u'3{t) |2

h

u3+1(t) - u3{t)
(1.7)

which is a discretization of the continuous energy E.
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It is easy to see that the energy Eh is conserved along time for the solutions of (1.6), ie .

Eh{t) = £h(0), VO < t < T. (1.8)

The main goal of this paper is to analyze the following discrete version of (1.4):

Eh(0)<C(T,h) f
JQ

uN{i)
dt. (1.9)

Remark 1.1. Let us discuss the choice of the approximation —UN{t)/h for the normal derivative ux(L,t).
Needless to say, Taylor's expansion suggests that the simplest approximation for ux(L,t) is

or, wit h the notation above,

u(L,t)-u(L-h,t)
h

UN+l(t) ~UN(t)

Taking into account that, due to the Dirichlet boundary conditions,

~uN(t)

= 0, we deduce that

ux(lyt) h

On the other hand, as we shall see in Section 2.1, it follows that —uw/h —> ux(L) as h —>• 0 for each eigenfunction
when the frequency is fixed. This indicates that —UN{t)/h is also a good approximation for the solutions of the
wave équation (1.1) (see also Remark 2.1). D

In view of (1.4) one may expect that, when T > 2L, there exists C = C(T) > 0 independent of h such that
(1.9) holds for every solution of (1.6) and for every 0 < h < 1.

The first result of this paper asserts that this is false:

Theorem 1.1. For any T > 0, we have

sup
u solution of (1.6)

Eh(0)

UN{t)/h P dt
oo as h —> 0. (1.10)

As we shall see, this is due to the spurious modes that the numerical scheme introduces at high frequencies. This
was already observed by R. Glowinski et al in [3=5], in connection with the exact boundary controllability of
the wave équation in se ver al space dimensions and the numerical implementation of the so-called HUM method
(see J.L. Lions [11])- In these works two methods were proposed to cure this high frequency pathology: (a) A
Tychonoff regularization procedure for the quadratic functional to be minimized when computing the controls;
(b) A filtering technique to eliminate the short wave length components of the solutions of the discrete system.
The efficiency of both methods was exhibited in these works by various numerical experiments.

To prove Theorem 1.1 we analyze the spectrum of (1.6) and we use discrete multiplier techniques to dérive
sharp observability inequalities for the eigenvectors of the eigenvalue problem associated to (1.6). In order to
prove the positive counterpart of Theorem 1.1, ie. inequalities of the form (1.9) which are uniform as h —> 0,
we use discrete multiplier techniques. As we mentioned above, in order for these inequalities to be uniform,
one has to rule out the high frequency spurious modes introduced by the numerical scheme. This will be done
by considering suitable classes of solutions of (1.6) generated by the low frequency eigenvectors of (1.6), or, in
other words, by a suitable truncation of the Fourier development of solutions of (1.6). Thus, our approach is
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very close to the filtering technique mentioned above (we refer to Glowinski [3] for a complete discussion of this
issue).

To make our statements précise, let us consider the eigenvalue problem associated with (1.6):

h2

= 0.

Let us dénote by Ai (ft), • • • , Ajv(ft) the iV eigenvalues of (1.11):

0 < Ai (ft) < A2(ft) < • • • < Ajv(ft).

These eigenvalues can be computed explicitly. We have (see [8], p. 456):

(1.11)

(1.12)

(1.13)

The eigenfunction <pk = (<pk,ii " • <> <pk,n) associated to the eigenvalue Afc(ft) can also be computed explicitly:

•= sin
L J

(1.14)

Solutions of (1.6) admit a Fourier development on the basis of eigenvectors of System (1.11). More precisely,
every solution u = (ui, * * • ,uN) of (1.6) can be written as

N

u(t) = Ufc sinin f y cos (1.15)

for suitable coefficients afc,&fc e -R, fc = 1, • • • ,iV, that can be computed explicitly in terms of the initial data
in (1.6).

Before getting into the discussion of the observability of solutions of (1.6) it is interesting to analyze the
boundary observability of the eigenvectors. The following Lemma provides the answer:

L e m m a 1.1. For any eigenvector (p — (y?i, • * • , ipN) of system (1.11) the following identity holds:

N

i=o

2L

4-Aft2 ft
(1.16)

This identity provides an explicit relation between the total energy of the eigenvectors (the left hand side of
(1.16)) and the energy concentrated on the extreme x = L which is represented by the quantity | <pN/h \2-

On the other hand, it is easy to check that

Aft2 < 4 (1.17)

for all ft > 0 and all the eigenvalues of (1.11). But, obviously, (1.17) does not exclude the blow up of the
constant in the right hand side of (1.16). In fact, one can check that

XN(h)h2 ->4 as ft -* 0.

Therefore blow-up occurs. This immediately yields the négative resuit of Theorem 1.1.

(1.18)
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In order to obtain a positive counterpart to Theorem 1.1 we have to introducé suitable subclasses of solutions
of (1.6). Given any 0 < 7 < 4 we introducé the class ^ ( 7 ) of solutions of (1.6) generated by eigenvectors of
(1.11) associated with eigenvalues such that

Xh2 < 7. (1.19)

More precisely,

Ch{l) := < u = J2 [a*sin (\AfcW*) +bfccos (\Afc(/0*)] <pk with akjbk G R > . (1.20)( ( ) 2 J
According to Lemma 1.1, the energy of every eigenvector entering in ^ ( 7 ) can be estimated uniformly in terms
of the energy concentrated on the boundary.

The following result guarantees that this is in fact the case for all solutions of (1.6) in the class Ch{l) provided
the lengt h T of the time interval is large enough:

Theorem 1.2. Assume that 0 < 7 < 4. Then, there exists T(j) > 2L such that for all T > T(*y) there exists
C = C(T, 7) such that (1.9) holds for every solution of (1.6) in the class Ch(j), uniformly as h —>• 0.

Moreover,

(a) T(7) / 00 as 7 /* 4 and T(j) \ 2L as 7 \ 0.
(b) C(Tn)\w^T) as <y\Q.

Remark 1.2. Theorem L2 asserts that the uniform observability inequality (1.9) holds in the class
provided T is large enough. In fact, T(j) —> 00 as 7 -»• 4. This is due to the fact that the gap between the roots
of consécutive eigenvalues vanishes as they approach the critical value. However, as 7 —> 0 the observability
time T(j) converges to 2£, which is the observability time for system (1.1). Note that, according to this result,
the uniform observability inequality (1.9) holds for T > 2L for solutions of (1.6) of the form

^2 [aksin (\AfcC0*) + hk cos («\Afc(h)t)] Vk (1-21)
Xk(h)<fj,(h)

with ii(h) such that

fx{h)h2 -> 0 as h -> 0. (1-22)

This allows to recover the observability of the original system (1.1) as the limit as h —»• 0 of the observability of
solutions of the form (1.21)-(1.22) of the semi-discrete system (1.6).

We also observe that the constant C(Tyj) of the observability inequality (1.9) converges to L/2(T — 2L),
which is the constant that one obtains by multiplier techniques for the observability of the continuous system
(1.1) (see [11]). G

Remark 1.3. It is easy to see that system (1.6) is observable. Since it is a system of ode's, we deduce that it
is observable for all T > 0 (see [10]). Therefore, for any h > 0 and T > 0 there exits C(T7 h) > 0 such that
(1.9) holds for any solution of (1.6). However, in order to get a uniform (as h —> 0) observability constant we
need to filter the high frequencies (i.e., to consider solutions in the class ^ (7 ) ) and to take T large enough. G

Roughly speaking, Theorem 1.2 guarantees that the semi-discrete Systems are uniformly observable as h —> 0
provided the high frequencies are filtered.

We shall give two proofs of Theorem 1.2. The first one is an adaptation of the classical multiplier techniques
that are used to prove the observability of wave and plate équations (see [9,11]). The second one is based on
the classical inequality by Ingham [7] for non-harmonie Fourier series.
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One may think that these results are due to the particular finite-difference discretization we have considered.
But this is not the case. We also consider the finite-element space semi-discretization and obtain similar results,
both, in what concerns the négative resuit of Theorem 1.1 but also the positive one of Theorem 1.2.

It is also worth mentioning that the phenomena we have described hère for the discretizations of the wave
équation have been found earlier in the context of the observability of the 1 — d wave équation with rapidly
oscillating periodic coefficients (see [1] and [2]). Roughly, in both cases, the interaction of waves with the
microstructure or the discrete mesh produces spurious high frequency vibrations that are not observed in the
limit continuous model.

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of the finite-difference
approximation. In particular, we develop and prove the results stated in this introduction. Section 3 is dedicated
to the analysis of the finite-element discretization. In Section 4 we briefly compare finite-difference and finite-
element semi-discretizations.

2. FINITE-DIFFERENCE SEMI-DISCRETIZATION

In this section we analyze in detail the problem of the observability of the finite-difference space semi-
discretization (1.6) of the wave équation (1.1) that we have discussed in the introduction.

First of all we perform a careful analysis of the spectrum. In particular we prove Lemma 1.1 and, as an
immédiate conséquence of it, Theorem 1.1. We then prove Theorem 1.2 in detail using multiplier techniques.
We also indicate how the same results can be recovered using well-known results on non-harmonie Fourier series.

2.1. Spectral analysis

Let us recall the system that eigenfunctions (p = (y?i, * * • , ipw) and eigenvalues À of system (1.6) satisfy:

h2 j - ^ > . / - * > i - (2.1)

= 0.

This system is the eigenvalue problem of the matrix

/ 2 - 1 0 0 \
- 1 2 - 1

- 1 2 - 1
y 0 - 1 2 /

The eigenvalues and eigenvectors of system (2.1) (or, of matrix A) can be computed explicitly. We have (see [8],
p. 456):

, j = l , ' " ,N (2.2)
ft" y LIJ J

and

Observe in particular that eigenvectors of the discrete system coïncide with the eigenfunctions sin (Ejf-) of the
continuous one. On the other hand, for k fixed,

-» ~^r> as fc-»0 (2.4)
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which is the kih eigenvalue of the continuous system.

Lemma 2*1. For any eigenvector ip with eigenvalue X of (2.1) the foliowmg identity holds:

N 2 N

Z ^ fa Z ^ I J I *

If (pk and <p* are eigenvectors assoczated to eigenvalues À& ̂  Â  it follows that

N

-- 0. (2.6)

Proof Multiplying in (2.1) by (p3 and adding for j = 1, • • • , iV the identity (2.5) follows immediately. (Note
that (2.5) can be read as (A(p,<p) = \((p,(p)).

In order to get (2.6) we point out that, A being symmetrie, eigenvectors associated with distinct eigenvalues
are orthogonal and A-orthogonal, ^.e., ((pk,(p£) = 0 and (A(pk,tp*) = 0. Consequently

TV

and
AT TV

0 =

Therefore
N N N

J = l 3 = 1 J = l

In other words

TV

= 0, (2.8)

which, in view of (2.7) is equivalent to (2.6). •
The gap between consécutive eigenvalues plays an important role on the analysis of the boundary observability

problem, since eigenvalues that are very close produce time harmonies at x = L that are almost indistinguishible
for short intervals of time. For the continuous model we have

(fe + 1)7 r klï n r9Q^

Thus, the gap, J , is independent of the frequency.
However, as we shall see, the gap between consécutive eigenvalues in the discrete problem decreases at high

frequencies and it is of the order of h as h —> 0.
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We have

'\k+l(h)-y/\k(h) = -
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sin

s i n ——- cos —— — 1 + s in —- cos. \2Lj\ \2LJ ) \2LJ V 2L /J

1 — cos
Trft

2L

ivhk

and, taking into account that (N + l)ft = L,

/Trhfc' f w {k - {N + l))hws

^ COSU + TL ,
. f((iNr + l)-fe)h7r

" S m V 2L

and that

we deduce

— cos
7T2h

2L2

Therefore, as soon as

for some j G IV we have

N+l-k<j<=>k>N

(2.10)

(2.11)

(2.12)

This shows that the gap between the roots of the largest j eigenvalues corresponding to the indexes k
N + 1 — j , N + 2 — j , * * • , TV is of the order of ft, with a multiplicative factor that increases as j increases.

In particular, the gap between the largest eigenvalues may be bounded above as follows

3TT2

-i(ft) ^ "7^/i —> 0, as ft —> 0.\/\N(h) -

Reciprocally, it can be shown that the gap remains bounded below for the low eigenvalues. Indeed,

> S sin cos cos
n2h

- ^ - (2.13)

The right hand side of this inequality converges to ̂  as ft —̂  0 when k remains bounded, or even if k is
unbounded but hk is bounded above by ÔL with 0 < ô < L Recall that -K/L is the gap between the roots of
the eigenvalues in the continuous model.
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2.2. Boundary observability of eigenvectors

The goal of this section is to prove the identity (1.16) of Lemma 1.1.
In view of the explicit values of the eigenvalues and eigenvectors in (2.2) and (2.3) this identity can be checked

easily. However, we shall prove it using multiplier techniques.
First of all, we normalize the eigenvector so that

N

(2.14)

Now, (2.5) becomes

Thus,

and so,

N

3=0

(2.15)

N

N 1 Xh
(2.16)

We multiply in (2.1) by j(<p3+i — y?j_i)/2 and add for j = 1, •
multiplier xtpx). We obtain on the left hand side

, N (note that this is a discrete version of the

A JV

by virtue of (2.14) and (2.16)
On the right hand side we have,

^ \ 2 ) = ~ 2 g
A (l Xh

2 U
Therefore

In other words,

A
2h

(N

2 \h 2

VN
h

A A
2 + 2 4

(2.17)

(2.18)
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Combining (2.18) and (2.15) we deduce that

i=o

This complètes the proof of Lemma 1.1.

2L
(4 - Xh2)

ipN

D

Remark 2.1. In Remark 1.1 we have justified the choice of —UN{t)/h as an approximation of ux(Ly t). In view
of the explicit form of the eigenvectors (pk in (2.3) it is immédiate to see that for any k > 1 fixed

as h -> 0

which is the normal derivative of the kih eigenfunction ipk(x) = sin(^J^) of the continuous wave équation.
For fixed k > 1, we can also pass to the limit in (1.16) of Lemma 1.1. We then obtain the identity

Observe however that identity (1.16) dégénérâtes when Xh2 —» 4 as h —> 0. This is also a typical fact in the
numerical approximation of wave équations which is due to the spurious high frequency oscillations that the
numerical scheme introduces (see [3]). G

2.3. Proof of the non-uniform observability

This section is devoted to prove Theorem 1.1. As indicated in the Introduction, it is an immédiate conséquence
of Lemma 1.1. Indeed, let u be the solution of (1.6) associated to the JVth eigenvector, ie.,

According to Lemma LI we have

r UN(t)
h

dt-T
h

Th
2L

N

3=0

On the other hand

N

Eh(O) = T:
3=0
N r,

1 l^'J' ~
3=0 L

In view of (2.20) and (2.21) we deduce that

Eh(0)

h2

2L

i:\uN(t)/h\ dt

(2.19)

(2.20)

(2.21)

(2.22)
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Moreover, in view of (2.2):

= 4 sin2

2L

417

(2.23)

[
= 4 cos2 — -> 4 as h -> 0.

\2LJ

Combining (2.22) and (2.23), Theorem 1.1 follows. •

2.4. Boundary observability of the discrete wave équation: the multiplier method

This section is devoted to prove Theorem 1.2 using the multiplier method. As we shall see in Section 2.5
below, the results of this section can be obtained more directly by means of Fourier series techniques. However,
we think that the development we present here of the discrete multiplier techniques is of independent interest
in view of its potential applications in the analysis of similar problems in several space dimensions.

First of all we establish some basic identities.

Lemma 2.2. (Conservation of energy) For any h > 0 and u solution of (1.6) we have

Proof. We multiply in (1.6) by v!3(t) and add for j = 1, • • • ,TV.
We have

N
1

N

On the other hand,

N

3=i

N

and

N
, 1 d

N

3=0

Combining (2.25-2.27) we deduce that

AT

3=0

u3+1

h
= 0

which is equivalent to (2.24).

Lemma 2.3. For any h > 0 and u solution of (1.6) we have

N

+
ttj+l dt + Xh{t)

uN(t)
dt

(2.24)

(2.25)

(2.26)

(2.27)

D

(2.28)
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(2.29)

Remark 2.2. Identity (2.28) is the discrete analogue of the well-known identity for the 1 — d wave équation
(1.1) obtained by multipliers that reads as follows (see [11]):

2io Jo
dt (2.30)

with

X(t) ~ / xuxutdx.
Jo

(2.31)

Note that the main différence between (2.28)-(2.29) and (2.30)-(2.31) is that, in (2.28), we get

N

as a discret izat ion of JQ JQ u2dxdt> which is not a positive définit e quant ity. G

Proof of Lemma 2.3. We multiply in (1.6) by j
multiplier xux for the wave équation. We obtain

— u3-\) /2 which is a discrete version of the classical

We now develop the two terms in this identity- For the first one we have:

(2.33)
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On the other hand,

419

^tiidt = -Y [ j\\uj+11
2 -1« j - i i2]

X̂  /

3 = 1
+

N rT

/
1 r1

3=0 J°
t. (2.34).

Combining (2.32-2.34) we deduce that

f

This concludes the proof of the Lemma. D

Lemma 2.4. (Equipartition of energy) For any h > 0 and u solution of (1.6) t/ie following identity holds:

tfcj -
Yh(t) = 0 (2.35)

lüith

N

Yh(t) = h 5 » (2.36)

Proof. We multiply in (1.6) by Uj. Note that this is the discrete version of the classical multiplier u for the
wave équation. We obtain

= 0. (2.37)

On the other hand,

N T N „T N

J2 <«id* = - E / i ^ i 2 d t + E
i= i t / o i = i J o J=I

(2.38)
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and, again,
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N N

3 = 1 3=0

(2.39)

Combining (2.37-2.39) we deduce that (2.35) holds.
We may now proceed to the proof of Theorem 1.2.
In view of the conservation of energy, identity (2.28) may be rewritten as

N

TEh(O) + -
3—v

d t

UN(t)
dt (2.40)

On the other hand

=0 Jo
=0 J°

(2.41)

The right hand side of (2.41) can be estimated as follows. Let A be the largest eigenvalue in the Fourier
development of u. Then

with fik = \/Âfe" for k > 0 and /i_fc = — /xfc. Therefore

akjjLke •** ip

Thus

(2 42)

(2.43)

V \u' - u' 2 = V

AT

AT

E

2 i |2

(2.44)
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In view of the identities (2.5-2.6) the term in (2.44) can be rewritten as

421

N

J-0
= E

< A

N

3=1

N

E KI2-
3 = 1

Therefore

E / [^+i-

Combining (2.40) and (2.45) we deduce that

TEh{0) - Xh(t)
V>N(t) dt.

In view of the equipartition of energy identity (2.35) it follows that

uj\2(it=

Combining (2.46) and (2.47) we deduce that

uN(t)
dt

with

Zh{t) =

-Uj- i ) Ah2

8 u.

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

for every solution of (1.6) in which A is the largest eigenvalue entering in its Fourier expansion.
The following provides an estimate on the term Zh:

Lemma 2.5. For any h > 0, t G [0,T] and u solution of (1.6) tn which A is the upper bound on the ezgenvalues
entering m its Fourier development, %t follows that

(2.50)
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Proof. We do not make explicit the time dependence to simplify the notation. We have

Zh\<h
N

1/2
N

E
1/2

with 7] = -Ah2/8.
On the other hand

N

»£ - Uj-l)
N rj2

3 = 1
N

hT\J
Y

,2 , r

1 h \2 ) h h

rj\h2 (r /2+ 1 7j |)

2 Ai

3=1

2

j = 0

Uj - Uj+1

h

16

In the last step we have used the fact that

N N

3=0

Uj - Uj+i

h

(2.51)

3=1

(2.52)

which is the discrete version of Poincaré's inequality and can be deduced easily from (2.5=2.6). We have also
used that r}2jc \ r\ |< | | rj \ which is a conséquence of the fact that | 77 |= Ah2/S < 1/2 as it is immediately seen
from (2.2).

Combining (2.51-2.52) we deduce that

7
Zh

ZAh?
N

1/2
N

1/2

16
3=0

- Uj (2.53)

A/14

D

Using (2.48) and (2.50) we deduce that

M 4 ZAh2

16 + 16Ai

T r1< f / UN(t)
dt. (2.54)
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As a conséquence of (2.54) and taking into account that A = 7/fr2 in the class of solutions Ch(j) of System (1.6)
we deduce that

Eh(0) <
- 7/4) - 1:uN(t)

h
dt

provided

Taking into account that Ai > TT2/2L2 for h sumciently small, the statement of Theorem 1.2 holds with

T(7) = (2-55)

and

C(T,7) =
- 7/4) - 37/87T2) - <yh2/16)

(2.56)

2.5. Boundary observability of the semi-discrete wave équation: non-harmonie Fourier
series

In this section we prove Theorem 1.2 using well known results from the theory of nonharmonic Fourier series.
To do that we need an estimate between the roots of consécutive eigenvalues entering in the Fourier devel-

opment of the solutions of (1.6) in the class ^ ( 7 ) . We have

Lemma 2.6. Assume that

for some 0 < e < 1. Then

for all eigenvalues in the range

\ c o s

A/12 < 7 .

(2.57)

(2-58)

(2.59)

Remark 2.3. Note that every 0 < 7 < 4 can be written in the form (2.57) for some 0 < e < 1. Note also that
the gap given in (2.58) tends to TT/L, the gap in the continuous wave équation, as e —» 0, z.e., as 7 —> 0. This
is consistent with the estimâtes of Section 2.2 in which we observed that the gap for large eigenvalues is of the
order of h. D

Proof of Lemma 2.6. In view of the expression (2.2) the eigenvalues A satisfy (2.59) with 7 as in (2.57) if and
only if

(j + 1)A < eL. (2.60)

Let us now compute the gap:

= l [sin sin( 1 ? )] = l
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for some f E [ ^ , ^ " ^ H . In view of (2.60), 0 < £ < Ç and therefore cos£ > COS(TT£/2). Thus (2.58) holds.
D

According to Ingham's inequality [7] and in view of Lemma 2.6 it follows that for any 0 < e < 1 and
T > COJ^£,2) there exist positive constants d (T ,e ) , C2(T,e) > 0 such that

< C2(T,e) ]T

with

dt (2.62)

(2.63)

On the other hand, in the range of eigenvalues

Xh2<7(e), (2.64)

according to the identity of Lemma 1.1 it follows that

N

3=0

tpj+1 ~ <Pj 2L

4 - 2COS2(TT£:/2)
<PN (2.65)

for any eigenvector <p = (</?i, • • • , ip^) associated to an eigenvalue À in the range (2.64).
Let us now consider a solution u of (1.6) in the class ^(7(5)). It can be written as

u =

According to (2.62) and (2.65) we deduce that, for T > 2L/COS(TT6:/2),

(2.66)

~ Jo

Ci(T,e)L v

2COS2(TT£/2) ^

N

»£

(2.67)

(2.68)
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Moreover,

425

E
N

Q>k E
N

j - o

E
N

3=0

Therefore, as a conséquence of (2.67) it follows that

Eh(0) <
2cos2(7re/2)
Ld(T,e) f

Jo

UN(t)
dt (2.69)

for any T > 2L/ cos(7re/2) and for any u
Therefore, Theorem 1.2 holds with

and

2L

C(T,7) =

\ / l - 7/4

2(1-7 /4)

(2.70)

(2.71)

provided 7 = 7(6:).
Observe that the estimate (2.70) obtained by Ingham's inequality for the observabihty time is slightly better

than (2.55) obtained by multipliers. However both expressions coincide in the limit when h —» 0.
Note also that, according to (2.62), the reverse inequality also holds, ie.,

/
Jo

uN(t)

h
dt<CEh(0). (2.72)

However, from the identity (2.28) it is easy to see that (2.72) holds for all ft > 0, every solution u of (1.6) and
all T > 0 with C = C(T) > 0 independent of ft.

3. FINITE-ELEMENT SEMI-DISCRETIZATION

3.1. Problem formulation
Let us consider the finite-element space semi-discretization of the wave équation (1.1):

= 0.
h2 (3.1)

Let us recall that system (3.1) is obtained by a Galerkin approximation of the wave équation when the basis of
HQ (0, L) is built by means of finite éléments

ej(x)= 1 - (3.2)

with Xj = jh.
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The Galerkin approximation of (1.1) is given by

N

3 = 1

/ u"ekdx = / uxek)Xdx, 0 < t < T, VA; = 1, • • • , JV.
^ Jo Jo

System (3.1) can be easily derived taking into account that

= 0 if | fe - j |> 2
f1 h fL

/ eóehdx = - if j = j + 1, j - 1, ƒ e, e
Jo ° JO

ƒ i2 *̂

Jo *̂

/>L 1 fT

/ ejtXektxdx = - - if fc = j - 1, j + 1; / e^xeKxdx = O if | fc - i
Jo ^ Jo

/ I I 2 2

7o JfX A

> 2,

The conserved energy for system (3.1) is given by

T JV , N N

J = 0

(3.3)

(3.4)

(3.5)

(3.6)

= £7h(0), VO <i<T

for all ft > 0 and for every solution of (3.1).
As in Section 2 above, the goal is to obtain observability inequalities of the for m

f1

Eh(0) < C /
Jo

uN{t)
dt

(3.7)

(3.8)

Observe that we adopt —uj^(t)/h as approximation of the normal derivative ux(L,t). We refer to Remarks 1.1
and 2.1 above for a detailed discussion of this issue.

Let us see first that the constant C in (3.8) may not be uniform when ft —> 0. For that we analyze the
eigenvectors of the system:

<Pa - = 0.

± < p J - 1 ] , j = l , - - - , N (3.9)

We dénote by 0 < Ai < A2 < * • • < Â v the eigenvalues of (3.9) and by {(pk}k_1 the associated eigenvectors.

L e m m a 3.1 . For any ft > 0 and any eigenvector of system (3.9) the following identity holds:

N

3=0

6 +Aft2

1 2 - A f t 2 '
<PN

(3.10)
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Moreover, as we shall see À < 12h~2 for any h > 0 and any eigenvalue and

\N{h)h2 -> 12 as h -» 0.

Therefore, as in the case of the finite-difference it follows that:

Theorem 3.1. For any T > 0;

427

(3.11)

sup
u solution of (3.1) I

Eh(0)

uN(t)
h

2
dt

—> oo (3.12)

as h -» 0.

In order to prove uniform observability results, for any 0 < 7 < 12 we introducé the class of solutions of (3.1)
in which only the terms of the Fourier development corresponding to Xh2 < 7 do not vanish. More precisely,

C h ( 7 ) = <{ u s o l u t i o n o f ( 3 . 1 ) : u = o,ke
ifikWt(pk (3.13)

where, as in the previous section /^(fo) = \AfcW when k > 1 and /i-k(h) = —fik{h).
The following holds:

Theorem 3.2. For any 0 < 7 < 12 there exists T(j) > 0 such that for any T > T(j) there exists a positive
constant C(Ty 7) such that

Eh(0)<C(T,-y) f
Jo

uN(t)
h

dt (3.14)

for any solution u of (3.1) in the class ^ ( 7 ) . Moreover,

(a) T(7) /* 00 as 7 / 12 and T(j) \ 2L as 7 \ 0,
(b) C(T,7) -> L/[2(T - 2L)] a5 7 \ 0.

Note that an extra term Jo | uf
N(t) |2 dt appears on the right hand side of the observability inequality

(3.14). This was not the case in the context of the finite-difference semi-discret ization. We shall see that, by
using Ingham's inequality, this extra term can be absorved by the term JQ \ UN(t)/h |2 dt by increasing the
observability constant.

As in Section 2, the observability inequality (3.14) can be directly proved by Ingham's inequality. However
we shall dérive it using multipliers.

The rest of this section is organized as follows. First we analyze the spectrum of the system. Then we dérive
observability identity (3.10) for the eigenvectors. Then we prove Theorem 3.2 by multipliers. Finally, using
Ingham's inequality we absorve the term jQ \ u'N(t) |2 dt from the right hand side of (3.14).

3.2. Spectral analysis

Eigenvalues and eigenvectors of the system (3.9) are those of the matrix M~xA, where A is the matrix in

o \
Section 2 and M is the matrix

M =

/ 2/3 1/6
1/6 2/3 1/6

1/6 2/3 1/6
1/6 2/3 )
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In order to compute the spectrum, consider a nonsingular matrix P such that P 1AP ~ D, D being a diagonal
matrix. Taking

/ 0 1 0 \
1 0 1

1 O 1
1 0/

we have A = ^ ( 2 / — J) and then

Now, since M = \{2I 4- \ J), then

6 ~ '
which is a diagonal matrix. Thus, matrix M XA and A have the same eigenvectors and, consequently, the
eigenfunctions of the system (3.9) are those of the system (2.1). Moreover,

As we mentioned above

Xk(A) = 6 s i n 2 ( ^ )
ft2 3 _ gjn

2f fc?rM

XN(h)h2 ->• 12.

/12 2 + cos(^)
(3.15)

(3.16)

Indeed,

XN(h)h2 = 6

= 6

It is also easy to see that, for j fixed,

•cos(iV7r/i/L)J

• COS(/ITT/L)1

_2--cos(/i7r/L)J

— COS(TT — /i7r/L)l

+ cos(?r — hn/L)\

12, as h -* 0.

as (3.17)

Indeed,

lim A,(fc) = 2 lim = £ limL h

J7T

L
Let us now analyze the gap between the roots of the eigenvalues. We have

l-cos(J7rfe/L)\1/2l
)

Voir \l f2 + cos(j)\1/2 f 3seng
2 V l -

cos Q1/2

> /3TT

~ V 2 L
COSA 1 / 2

(3.18)

for some ^ G [jirh/L, (j + l)?r/i/L].
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Assume we consider eigenvalues corresponding to the indexes (j + ï)h < eL with 0 < e < 1. Then £ < e-K
and therefore cos£ > cos(£?r). Going back to (3.18) we deduce the following Lemma:

Lemma 3.2. For any 0 < e < 1 the gap between the roots of consécutive eigenvalues associated to indexes such
that

(j + l)h < eL

satisfies

(3.19)

(3.20)

Observe that the lower bound on the gap vanishes as e —^ 1. However, it converges to TT/L when e —» 0.
In this sense the results are the same as those obtained in the previous section for the finite-difference semi-
discretization.

We have an analogous resuit to Lemma 2.1:

Lemma 3.3. For any eigenvector <p with eigenvalue X of (3.9) the following identity holds:

,o 1N

E
j=0

h

N

j = 1

TV

Proof Identity (3.21) can be derived easily multiplying in (3.9) by tpj and adding for j = 1, • • • , N. (Note that
(3.21) can be read as (A(p,<p) = X(M(pi(p) ). D

Let us now prove identity (3.10) in Lemma 3.1. By virtue of (1.16) in Lemma 1.1 we have

N

3=0

2L
4 - p / i 2

<PN

with p eigenvalue of the matrix A associated to (p. Then,

X

and so,

•L.
4-ph2 4+^A-A/i2 12-Xh2'

As an immédiate conséquence of the identity (3.10) and (3.16) we deduce that Theorem 3.1 holds.

3.3. Boundary observability of the semi-discrète wave équation

The main goal of this section is to prove Theorem 3.2. To do that we first prove some basic identities.

Lemma 3.4. (Conservation of energy) For any h > 0 and any solution of (3.1) it follows that

Eh(t) - Eh(Q), V0 < t < T. (3.22)
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Proof. Multiplying in (3.1) by u'j we deduce that

j = l
h? -Uj.

The right hand side term of (3.23) can be treated as in section 2. This yields

ftv 3=0

Uj - U3'

The left hand side term can be handeled as follows:

N ,^ x n N

N N

N AT

Combining (3.23-3.25) we deduce that ^ } = 0 which is equivalent to (3.22).

Lemma 3.5. For any h > 0 and any solution u of (3.1) the following identity holds:

m(o)4Ë
j=0

,-, |2

with

N

ft

l 1 1
U + U + ^

Proof We multiply in (3.1) by j (uj+i — Uj-i) /2. It follows that

n-?~1 1 dt

(3.23)

(3.24)

(3.25)

D

(3.26)

(3.27)

(3.28)

Let us develop the two terms in (3.28). The second one h can be treated as in the proof of Lemma 2.2. It
follows that

/a=4y:
N „T

J=0

j - ttj+1 dt
(7V + 1) i:UN(t)

dt. (3.29)
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On the other hand, in view of (2.33),

N

h = -dt

J=I

N

3=1

N
I • ( \

N

J - I ) 3

Combining (3.28-3.30) we deduce that

-f dt = -
i=0

2 h N rT

N fT

J = t

Finally we observe that

(3.30)

(3.31)

-cft. (3.32)

Combining (3.31) and (3.32) we obtain (3.26). D
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Lemma 3.6. (Equipartition of energy) For any h > 0 and any solution u of (3.1) the followmg identity
holds:

(3.33)

wüh

7 = 1

Proof. We multiply in (3.1) by u3. It follows that

We have

N

- Yh(t

= Yh(t)

On the other hand,

cft.

Combining (3.35-3.37) we deduce (3.33).

Let us now estimate the term VJ / \uf
3 — u3+l\ dt

—o o
the Fourier development of the solution u of (3.1), z.e.,

u = y^

(3.34)

(3.35)

(3.37)

D

in (3.26). Let A be the largest eigenvalue entering in

(3.38)

with fik — \Afc for k > 0 and fik = ~fJ—k when fe < 0. Therefore

u =%



v! -u'
a3 " j + 13=0 3=0

N- v
J - O
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Thus, using Lemmas 2.1 and 3.3 we have:

N N ¥

fet(^fcj -<Pki3 + l)

Yl \ak\2 Mfe l^fcj - PK

N

N

N

433

E

Xk I ak /1
( 3

(3.39)
3=0

In the last step we have used the fact that

N M 1
13 6

if (pfc and <pg are eigenvectors cissociated to eigenvalues Xk ̂  \e, which is a conséquence of (2.6).
On the other hand, combining the conservation of energy identity (3.22) and the equipartition of energy

(3.33) we deduce that

hJ E ( | KI2 + \
3=0

Combining (3.31-3.32) with (3.39-3.40) we deduce that

Ah2"

dt =
Yh(t) (3.40)

T 1 - 12
dt (3.41)

with

(3.42)
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The following holds:

Lemma 3.7. For any h > 0 and any solution u of (3.1) it follows that

Proof. To simplify the notation we do not make explicit the dependence on t. We have

Zh(t) = Xh(t)-^

N

AT

= h

(3.43)

with

and mXj the entries of matrix M.
Therefore

A/i2

JV
1/2

(3.44)

On the other hand,

2 2 1
N

E
J=0

1 , / | 2 1 | ,
— \u \ -\— lu

and

N N

< -

<

<

N

i2 2 A2 / l4

N

N

A2 / i5 N
A/i3 N

J = l

Ai

3^0
N

(3.45)

(3.46)

2 2Ai h
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We have used the notation 17 — A/i2/24, the fact that 7] < 1/2 and also that

N

which is a conséquence of (3.21).
Combining (3.44-3.46) we deduce that

Zh\ < 3 I < I + 6 \<+U

N

U

1/2

r]h2

—

1/2

which is equivalent to (3.43).
Let us now set A = j/h2. Combining (3.41) and (3.43) we obtain

_3T_

48 ^ I6A1

Therefore, the statement of Theorem 3.2 holds with

EH(0) < £
uN(t)

dt.

T(7) =
1-7/12

and

c(r,7) =
2 (T(1 - 7/12)

D

(3.47)

3.4. Boundary observability of the semi-discrete wave équation: improved estimâtes

The goal of this section is to get rid of the term Jo | uf
N(t) |2 dt on the right hand side of (3.14).

Note that the solution u of (3.1) can be written as

and therefore

Thus

u'N(t) = i

ƒ \u'N(t)\2dt = f dt. (3.48)

We now restrict our analysis to the solutions in the class Ch{l) that are generated by the eigenvectors associated
to eigenvalues

A < 7//12 (3.49)
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with O < 7 < 12. Restriction (3.49) is equivalent to

(j + l)h < e(7)L (3.50)

for a suitable 0 < s(j) < 1. We shall return later to the explicit computation of £(7).
Then, according (3.20) the gap between the roots of consécutive eigenvalues in the range (3.49) is given by

(3.51)

Then, by means of Ingham's inequality [7] we deduce that, provided,

1/2

(3.52)

it follows that

Jo E < C2(T,e(7))

< C2(T,e(7))7

^ C2(T, e(7))7

\2 Xk \ <Pk,N \2

<Pk,N

r
".£(7)) f'
ef7)) /

dt

ujv(t) dt. (3.53)

Combining Theorem 3.2 and (3.53) it follows that:

Theorem 3.3. For any 0 < 7 < 12 and

(3.54)

it follows that

for any solution u of (3.1) in the class Ch(j)-

-rC2(r,e(7)) UN(t)
dt (3.55)

Remark. The time of observability in Theorem 3.3 is the maximum between the time T(j) in Theorem 3.2 and
the time (3.52) needed to apply Ingham's inequality to the eigenvalues corresponding to the class of solutions
Ch(7). The observability constant in (3.55) is the addition of the constant C(T, 7) of Theorem 3.2 and the
constant needed to absorve the term Jo | u'N(t) |2 dt by Ingham's inequality as in (3.53).

Note that e(7) —» 0 as 7 —> 0 while the constants Ci(Tye) and C2(T,e) in Ingham's inequality converge to 1.
Thus, according to Theorem 3.2, the observability constant in (3.55) converges to L/[2(T - 2L)\ as 7 —> 0.



BOUNDÂRY OBSERVABILITY FOR THE SPACE SEMI-DISCRETIZATIONS OF THE 1 - D WAVE EQUATION 437

Observe that an inequality of the form (3.55) can also be obtained directly by Ingham's inequality. However
we have preferred to obtain the weaker form of observability inequality in Theorem 3.2 by multipliers since this
method can be more easily adapted to other situations. G

Let us now compute £(7). According to the explicit value of the eigenvalues obtained in (3.15) we have to
estimate j so that

6(1- cos ((j + 1)TT/I/L)) < 7 (2 + cos((j + l)nh/L)),
or, taking into account that (j + l)h < e;L, we have to estimate e > 0 such that

6(1 - cos(err)) < 7(2 + cos(£?r)),

or, equivalently,

z.e.,

6 — 27 < (7 + 6) COS(£TT),

e(7) = iarccos f^—^ . (3.56)
TT \ 7 + 6 J

Obviously £(7) —> 0 as 7 —> 0 and £(7) •=» 1 as 7 —> 12.
According to (3.52) and (3.56) the time needed to apply Ingham's inequality is:

21J / I O ± O^A X / 2

((l + cos(£(7)7T))/2)i/2 V 1 2 - 7

4. COMPARISON

In this section we briefly compare the observability results we have obtained for the finite-difference and the
finite-element semi-discretizations.

We focus on inequalities of the form

Eh(0) <C f
Jo

uN(t)

h
dt (4.1)

both, for solutions of System (1.6) and (3.1).
We consider only the estimâtes of the form (4.1) that may be obtained directly by means of Ingham's

inequalities. For, we consider solutions of (1.6) and (3.1) generated by the eigenvectors with indexes

1 < j , U + l)h < eL (4.2)

with 0 < e < 1, for which the observability inequalities are known to be uniform as h —» 0. Thus, we are
considering subspaces of solutions of dimension

d - [ £ ] - ! . (4.3)
Let us first compare the observability time that is required in both cases. We recall that the minimal observability
time dépends on the gap between the roots of consécutive eigenvalues. In the case of finite-différences, as shown
in Lemma 2.6, the gap is of the order of

7TCOs(7T£/2)/L. (4.4)
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This leads to an observability time

Ti = 2L/cos(7re/2). (4.5)

In the case of the finite-element approximation the gap is (see (3.18))

TT ^3(1+COS(£7T))V/2

(4.6)

and the observability time

__ 2 L /2(2 + cos(g7r))\ 1/2

Let us see that T\ >T<i. Indeed,

or in other words, if and only if,
(2 + cos(£7r)) < 3

which is obviously true.
This indicates that the observability time for the finite-difference semi-discretization is larger than for the

finite-element one.
This is in agreement wit h the analysis of the phase velocity of the semi-discret izations of the wave équation

in [12], Section 2.10.

The authors acknowledge C. Fabre for fruit fui comment s on the first version of this paper.
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