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ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED
THREE-DIMENSIONAL DOMAINS

TAHAR-ZAMENE BOULMEZAOUD!, YVON MADAY ? AND TAHAR AMARI®

Abstract. Linear Force-free (or Beltrami) fields are three-components divergence-free fields solutions
of the equation curl B = aB, where a is a real number. Such fields appear in many branches of
physics like astrophysics, fluid mechanics, electromagnetics and plasma physics. In this paper, we deal
with some related boundary value problems in multiply-connected bounded domains, in half-cylindrical
domains and in exterior domains.

Résumé. Les champs de Beltrami (ou sans-force) linéaires sont des champs tri-dimensionnels & di-
vergence nulle et vérifiant I’équation rotB = aB oll « est une constante réelle connue ou inconnue.
Ces champs apparaissent dans plusieurs domaines de la physique tels que la mécanique des fluides, la
physique des plasmas, 1’astrophysique et 1’électromagnétisme. Dans ce papier, nous présentons quelques
nouveaux résultats concernant des problémes aux limites associés dans des domaines tri-dimensionnels
bornés (simplement ou multiplement connexes) et non-bornés (cylindre semi-infini et extérieur d’'un
domaine). Ces résultats concernent essentiellement 'existence, 1'unicité, la régularité et les propriétés
d’énergie des solutions.
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INTRODUCTION

A three-components field function B is called Beltrami (or force-free) if B is solution of the system

curlBxB = 0, (1)
divB = 0. (2)

Such fields play a prominent role in solar physics (see, e.g., [5,42]), in plasma physics (see [27,45]), in fluid
mechanics -they are solutions to Euler’s equation (see [7,15,19,38,49]), in superconducting materials (see [24])
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and in electromagnetic waves theory. The basic equation (1) is often replaced by:
curl B = o(x)B, (3)

where B as well as the scalar function a(x) are unknown. Two situations are commonly distinguished: o
constant everywhere and « a variable function. In the first case, equation (3) reduces to a linear equation called
also the Trkalian equation. The case a = 0 corresponds to the well known potential field theory.

Recently, linear Beltrami fields have been investigated by many authors; see, e.g., [9,10,14,15,30-33, 35, 36,
38,39,41]. Note that they are also subject of a very intensive research in astrophysics and especially in solar
physics (see [42], reviews by [5] or [43] and references therein).

In this paper, we shall present some new results about existence and uniqueness of 3-D Beltrami fields in
a bounded domain, in half-cylinder and in an exterior domain. The sequel of this paper is divided into three
separated and independent parts:

e SECTION 1. We present a new and a general theorem concerning the existence, uniqueness and regularity
of linear force-free fields subject to appropriate boundary conditions in a bounded region. The proof of
this theorem is mainly based on Fredholm alternative and spectral theory. A similar problem with a given
helicity-like data instead of o, which is unknown, is also studied. Note that in this last situation, our
approach is different from the minimization one presented by [33].

e SECTION 2. We deal with linear force-free fields in a semi-infinite cylindrical domain Qx]0,4o00[. A
diagonalization method is used for deriving an explicit formula of the general solution.

e SECTION 3. We discuss the existence or not of linear force-free fields in exterior domains using a new
approach based on weighted Sobolev spaces.

1. LINEAR BELTRAMI FIELDS IN A BOUNDED DOMAIN
1.1. Preliminaries

Let Q be a bounded open set of R® with boundary I'.  We make the following assumptions on Q:  is
bounded, connected but eventually multiply-connected and its boundary T is of class C2. Let I'g be the exterior
boundary of Q and I'y, ..., I, the other components of I'.

)/

We assume that there exists m manifolds of dimension 2, X1, ..., ¥,,, such that Qo = Q\UZ,X; is smooth and
simply-connected and ¥; NX; = @ if 7 # j (m describes the connectedness of 2, and %, ..., Xy, are regular cuts
linking (I";)1<i<p). We set m = 0 when Q is simply-connected.

In the sequel we shall denote by (.,.) both the scalar product in L?(£2) and in L?(2)3. The duality product
between H~3(T';) and Hz(T;) will be denoted by (., .)r,.

r
0
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Define the following spaces:

V = {veL*0)? divv e L}Q),curlv € L2(Q)*,v.n =0 on T'},
U = {velIL?*Q)3divv e L}Q),curlv € L?(Q)®,v x n = 0 on T},

equipped with the norm:

. i
IVl = (IvlIg,o + ldiv viIg o + lleurl V][5 o). (4)

We need the following result due to [23] (see also [22,26]):

Lemma 1. The spaces U and V are Hilbert spaces. Moreover, one has the following identities topologically and
algebraically:

V = {veH'(Q)?,vn=0o0nT},

U = {veH Q)3 vxn=0onT}.

Now, define the spaces:

H = {veV,divv =0, curlv =0},
G = {veU, divv=0, curlv=_0}.

One has also the following result (see [18]):

Lemma 2. The space H (resp. G) has a finite dimension m (resp. p) and there exists a base (Q;)i=1,....m (Tesp.
(f;)i=1,....p) such that:

/qi.nda =6; -, 7=1,..,m,
.

y (5)
/fi.nda = Ji,j; ’L,j = 1, ey D
T

J

Thus, we denote by Py (resp. Pg) the orthogonal projection from V on H (resp. from U on G) with respect
to inner product associated with the norm (4). The two next lemmas will be useful throughout this section
(see [18]):

Lemma 3. For any vector field v in L*(Q)* verifying
divv =0,

we have
e IfveV then

Pyv = Z(/ v.ndo)q;.
=1 Y%

e IfveU then
P

Pgev = Z(/pv.nda)&

=1 $
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Lemma 4. The mapping v — ||vlly = (ldivv|[§ o + [[curl v|Z o + HPHVK%,Q)% (resp. the mapping v —
Ivliv = (fldivv[§ o + [[curl v[F o + ||ng{|g,n)% ) is a norm on 'V (resp. on U) equivalent to the norm (4).

In the remaining of this paper, we shall denote by a(2) and ;(£2) the constants defined by:

_ Ivilv
aO(Q) - VEI‘;,I\t;#O ”v”O,Q, (6)

M
@ = i Viea ’

ao(?) and o;(?) are positive and not equal to zero because of Lemma 4. An estimate of these constants will
be given in Lemma 12.

1.2. Statement of the problem when « is known

In this section, we assume a to be a given real number not equal to zero (the case @ = 0 corresponds to the
classical potential theory). We propose to study the following boundary value problem:

curlB = oB inQ,
divB = 0 inQ,
Bn = g onT, (8)
/(B xn).qdoc = aa; i=1,..,m,
r

where (a1,a2,...,am) € R™ and g e H z (") are given. Note that g must verify the compatibility condition
/gda:O, for 0 <i<p. (9)
r;

In fact, let B € H'(£2)® solution of (8). For 0 < i < p, let x; be a function of D(R?) satisfying «i(r) =4;; in a
neighborhood of I';. One has
curl (x;B) = ax;B + Vk; x B.
Thus « [ B.ndo = /curl (k;B).n = /div curl (x;B)d2 = 0.
r

Ty Q
Note that the boundary condition

aa; = /(B x n).q;do = /curlB.qidQ = /B.qidQ,
r Q Q

means that the orthogonal projection of B on H is given.

1.3. A general existence and uniqueness result

In this section, we deal with the problems of existence, uniqueness and regularity of solutions to (8). The
approach we propose in a first time is based on the use of Fredholm alternative. It is divided into several steps.

1.3.1. An equivalent problem

For any g € H3(T') verifying (9) and (a1, ...,am) € R™, define a potential field By € H' ()3 by By =
Vo — > .ir., a:q;, where @o € H2(2)/R is solution of the Neumann problem:

Apg =0, %—fg =g onl. (10)
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Observe that By verifies
curlBo =0, divByg=0, Bon=gonT, and / Bo.qdQ2 = —a; fori=1,...,m.
Q

In the sequel, we define the energy Ey > 0 by

Eo = |Bol3.0 = IVpoll o+ Y ai- (11)
=1

Now, B € H(Q)? is solution of (8) if and only if b =B — By € H(Q2)? is solution of

curlb = ab+aBy in Q,
divb = 0 in £,
bn = 0 onT, (12)
Pygb = 0.

The equivalence between this system and the original problem (8) is obvious. In fact, let B € H'(Q)? be
solution of (8). Then, it is clear that b = B — By belongs to V' and verifies the first three equations of (12). In
addition,

oaa; = /(B X n).q;do = —/ curl B.q;dQ2 = — / a(b + Bg).qidQY = —a(Pgb,q;) + aa;.
r Q Q

Hence Pyb = 0. Conversely, if b is solution of (12), then the same calculus asserts that B is solution of (8).
Now, in order to give a new formulation of (12), let us introduce the space
X ={velL*N)?3 divv=0and (v.an,)r, =0, 1 <3< p}. (13)

X is a closed subspace of H(div;Q) = {v € L?(Q)3, divv € L%(Q)}. Hence, it is a Hilbert space equipped with
the norm of L?(02)3.

As a first step of our investigation, we consider the curl-div system:
Given j € X, Find u € V such that:

curlu=j, divu=0, Pgu=0. (14)

Lemma 5. u € V is solution of (14) if and only if u is solution of the variational problem: |
(curlu, curlv) + (divu,divv) + (Pgu,Pgv) = (j,curlv), VveV. (15)
In addition, this problem admits one and only one solution u € V', and there exists a constant C(2) such that:

lullz @ < C@)llillo.g- (16)

Proof. First, it is quite obvious that if u is solution of (14), then it is also solution of the variational problem (15).
The converse is slightly more complicated; let u be solution of (15). On one hand, taking v = Pgu in (15),
one obtains Pyu = 0. On the other hand, let ® be solution of the Neumann problem:

AP =divuin Q, 6—(1):0 onT.
on
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This problem admits a unique solution in H!(2)/R since (divu,1) = 0 by Green’s formula. Now, taking
v = V® in (15) one yields divu = 0 (almost everywhere).
It remains to prove that curlu = j. We set w = curlu — j. Then divw = 0 and (15) implies:

curlw=0, (wxn,v)r=0, VYWweV.

Thus w belongs to G. In addition, (w.n,1)r, = (curlun,l)r, — (j,1)r, = 0. Hence Pgw = 0 and therefore

w=20.

The existence and uniqueness of solution are a direct consequence of Lax-Milgram’s theorem and the Lemma 4.
0

This existence lemma allows us to introduce a bounded linear operator

K: je X v u€ X solution of (14).

Moreover, one can observe that K is a product of a linear continuous operator j € X + u € V solution of (14)
and the imbedding V<X which is obviously compact since the imbedding H*(2)— L?(f2) is compact. Thus,
we have the lemma

Lemma 6. K 15 a compact operator.

Now, we can rewrite the system (12) into the form
Find b € X such that: b— aKb = aKBy. ()

In order to use the Fredholm alternative, let us introduce the Adjoint problem.

1.3.2. The Adjownt problem
The following lemma will be useful here (see [18]):

Lemma 7. Let u be a gwen field of L?(2)® such that

divu =0 and /u.nda =0,1=1,...,m.
Z’L

Then, gwen d = (da,...,dp) € RP, there exists a unaque vector potential ® € HY(Q)? that satisfies:

curl® =u, div® =0, ®xn=0o0onT and /@do:dl, i=1,..,p. (18)
Fz

In particular, this lemma implies that any vector field j in X admits a unique Weyl-Helmoltz decomposition
into the form (see [16,20,23]):

j=Vs+ Zcqu + curl @, (19)
=1

. . Os .
where s € H'(Q) is solution of the Neumann problem As =0, 8—8 =jmnonI'. The numbers cy,...,c,, are
n
given by

c, = / ( — Vs).ndo.

2

The vector field ® belongs to H(Q)? and verifies

divd =0, ®xn=0, /@.nda:O, 1<i<p.
T,
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® exists by virtue of Lemmma 7. Furthermore, it is characterized by the variational problem:

Lemma 8. For any j € X, the vector ® wn the decomposition (19) 1s the unique solution wn U of the varwational
problem:

(curl ¥, curlv) + (div ¥, divv) + (Pg¥,Pgv) = (j,curlv), VveU. (20)
The proof of this lemma is similar to that of Lemma 5.

Now, consider the operator
K*:je X — ® € X solution of (20) .

Lemma 9. K* s the adjownt operator of K.

Proof. Let u and v be two elements of X. v can be decomposed into the form
m
v=Vs+ Z ¢, q, + curl (K*v).
=1

Hence

/ Ku.vdQl = / Ku[Vs + Z ¢,q, + curl (K*v)]dQ.
Q Q

=1
But, one has

/QKu.Vsz—/Qdiv(Ku)s—i-/Fs(Ku).n:O,

/ Ku.q,dQ? = (PgKu,q,) =0, for:=1,...,p.
Q
Thus
/ Ku.vdQ) = / Ku.curl (K*v)do = / curl (Ku).K*vdo = / u.K*vdo.
Q Q Q Q

Therefore K* is the adjoint operator of K. O
The homogeneous adjoint equation can be written into the form

Find ¢ wn X such that: (I —aK*)p =0. (21)

In other words, Find ¢ € X, s € H'(Q)/R, (71,--.,Ym) € R™, such that

m
1
Vs+) ma+—curlp=¢, ¢xn=0onT. (22)

=1

Remark 1. One can also prove that ¢ is solution of the homogeneous adjoint problem if and only if ¢ € X
and

curlcurlgp —acurlp =0, p xn=0onT. (23)
In fact, (22) means that K*(curl ¢ — o) = 0, say, by lemma 8, dive =0 and
(curlp — ap,curlv) =0, VWweU

which is equivalent to (23).
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1.3.3. Fredholm alternative

Since K is compact, its adjoint operator K* is also compact. In addition, according to classical Riesz-
Fredholm theory, the direct and the adjoint homogeneous problems admit two finite dimensional spaces of
solutions with the same dimension n. The following lemma display the relationship between their solutions:

Lemma 10. Let ¢ € X be solution of the homogeneous adjoint problem

p—aK*p=0. (24)
Then curl ¢ is solution to the direct homogeneous problem

£ —aKE=0. (25)

Conversely, if € is solution of (25), then there exists a unique @ in X, solution of (24) and such that curlp = £.

Proof. Let ¢ be a solution of (24). Applying the curl operator to (22), one gets
curl (curl ) = acurl ¢.

In addition, curl ¢ is divergence-free and verifies

curlpopn=0o0nTI and / curl p.ndo = 0.
Ez

Hence curl ¢ is solution of the dircct homogeneous equation.
Counversely, let € be solution of (25). We set p — K*¢ € X. Since divé = 0 and Py& =0, then £ = curlep
and ¢ verifies (23). m]
Now, observe that the homogeneous problem admits a non trivial solution if and only if 1/a belongs to o(K),
the spectrum of K. Since K is compact, o(K) contains 0 and o(K)/{0} is an empty, a finite or a countable set
of eigenvalues contained in [—|| K|, || K||]. To settle this question, we use the following result due to [48]:

Lemma 11. The operator S, defined in the Hilbert Space
X;={veX, vn=0onT,Pyv =0}

by Su=curlu, forue D(S)={ue X, curlue X;}, is self-adjoint and its spectrum o(S) consists of
countable sequence of eigenvalues.

Since every eigenfunction of K belongs to D(S) and is an eigenfunction of S, with an inverse eigenvalue, and
conversely, we conclude that

1
o(K) = {0} U {;, uea(S)} e [-IK], K1) (26)
Now, applying the Fredholm alternative to the inhomogeneous problem (17) yields:

e If 1/a & o(K), then the inhomogeneous problem admits one and only one solution (the direct and the
adjoint homogeneous problems don’t admit any non-trivial solution).
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e 1/a € o(K), then the adjoint homogeneous problem (22) admits a finite dimensional space of non-trivial
solutions. The inhomogeneous problem (17) is solvable if and only if the right hand side verifies

/ KBo.U =0, 27)
Q

for any ¥ solution of (22). If this solvability condition is fulfilled, then (17) has a general solution of the
form

b=Db+curl ¥,

where b is a particular solution and ¥ is a solution of the homogeneous adjoint problem (22) (since by
Lemma 10, curl ¥ is solution of homogeneous problem (25)).

Now, let us rewrite the solvability condition (27) differently. Let (¥, s,y = (71, -..,Ym)) be solution of
(22). Then

1
(KB, ¥) = (BO,K*‘I’)ZE(BO,‘I’),

1 v =
= ~(Bo,curl —+ Vs + > va),

i=1

1 m

= = . i B.iQ.,
a(/I:sBonda+izzlq'/Q 0.9;dQ)
1 m

= = do — ;).
a(/Fsgw > via)

=1

Hence, we can rewrite the solvability condition (27) into the form

m
/ sgdo — Z yia; = 0.
r

=1
Finally, we summarize our investigation in the following general existence and uniqueness result:

Theorem 1. There exists a countable sequence of real values {a;,i € N}, verifying
e VieN, o > ay,
e the sequence (ozl-_ l)ieN converges to zero,
and such that:
(i) If a & {au, % € N} (in particular if |a| < ap), then the problem (8) admits one and only one solution
B ¢ HY(Q)? for any g € H2(T) verifying (9) and (ay, ..., am) in R™.
(ii) If @ = oy for some i € N, then the adjoint homogeneous problem (22) admits a finite dimensional
space of solutions, and the problem (8) is solvable if and only if the data g and (as, ..., am) verify the condition:

m
/ sg— Y viai =0, (28)
r i=1

for any (@,5,7 = (71, ---yYm)) solution of (22). If this solvability condition is fulfilled, then (8) has a general
solution of the form

B=B+curl ¥,

where B is a particular solution and U is a solution of the homogeneous adjoint problem (22).
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Remark 2. In Theorem 1, the estimate || > g is in fact deduced from the next lemma which gives some
inequalities relating ||K||, ap, 1. A1 and Ay are the first and the second eigenvalues of the Laplace operator
associated with the homogeneous Dirichlet and Neumann boundary conditions respectively (see Appendix):
Lemma 12. We have:

(i) The followwng wmequalities hold

a(®) < imf(33, K], (29)
a(Q) < if(, K. (30)
(ii) If T s connected then
ap <y = 1 (31)
K]

(iii) If, wn addition Q 1s sumply-connected then
ao = inf(A, | K| 7Y). (32)
(iv) If Q s star-shaped, then
a1d(Q) > 1, (33)
where d(2) = supy yeq |X — y| 15 the diameter of Q.

1.4. Regularity of solutions

B € H™*1(Q). Moreover, B — By € H™*2(Q).

This corollary stems from the following lemma (see for instance [22]) combined with the basic equation curl B =
aB (by induction):

Lemma 13. Assume I to be of class C™ 1. Then
H™(Q)? = {v € L}(Q)3;divv € H™(Q), curlv € H™(Q),v.n € H™3(T')}.

1.5. A variational formulation and energy estimate

When |a| < ag, the problem (12) admits a variational formulation which brings all the equations of this
problem together.

Proposition 1. If |a| < ag(Q), then B 1s solution of (8) 1f and only 1f b = B —By 15 solution of the variational
problem

(curlb — ab, curlv) + (divb,divv) + (Pgb,Pyv) = (aBg, curl v). (34)

Moreover, this problem admats one and only one solution B € HY(Q)3, and we have the energy estimate

Eo < |B|§q <

1— 72 Eo (35)

where Eg 15 defined by (11) and r = &Oi-
0
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Proof. First, it is obvious that (12) implies (34). Conversely, let b a solution of (34). Then, one can prove
exactly as in the proof of Lemma 5 that Pyb = 0 and divb = 0. It remains to prove that curlb — ab = aBg.
We use the following lemma (see, e.g., [25], p. 47):

Lemma 14. Let w € L?(Q)3 such that

divw =0 and (w.n,1)r, =0, 1 <i<p.
Then, there exists A € H'(Q)® such that

curlA=w, divA =0, An=0.

The identity curlb — ab — aBg = 0 is deduced by taking v =b — aA € V in (34), where A is in H'(Q)3 and
satisfies curl A = b — By, divA =0,A.n = 0.
The existence and uniqueness of solution of the variational problem are a direct consequence of the Lax-Milgram’s

theorem since the left hand side in (34) is a bilinear form a(., .) which verifies |a(v,v)| > (1— I::—')HVH%/, Vv ev.

0
Note that the energy estimate (35) is slightly more accurate than the one obtained directly from the variational
formulation and the ellipticity of a. In fact, to prove it, one remarks that

(curlb,b) = a”b”aﬂv
since (Bo, b) = 0. Thus

o®||Bf|[3 0 = llcurlb — ab||§ o = [lcurlbljo,a — &|[b[|§ o > (af — o®)IIbll5 o

2
Hence |[b|| < hEo. (35) is then deduced by observing that

IBg,0 = IIbllg.o + IBollg o

a

Remark 3. If a is a not a constant function, then the variational problem (34) is not in general equivalent to
the problem (12). In fact, following exactly the same steps of the proof above (see [12]), one can show that if b
is solution of (12) with a(x) a variable function, then b is divergence-free and there exists a function p € H3(Q2)
such that

curlb = a(x)(B + Bg) + Vp.
Thus, applying the divergence operator to this equation yields

Ap = div(aB) = Va.B.
Hence, if o is constant p is necessary equal to zero.

1.6. A vector potential formulation

Another variational formulation based on the use of vector potential is possible. The vector potential can be
introduced using Lemma 7.

Thus, given d = (di, ...,d,) € RP, one can introduce ® € U such that curl® = b, where b is solution
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of (12). The next lemma characterizes ® as the unique solution of a variational problem:

Proposition 2. If |a] < ai, then b is solution of (12) if and only if @ is solution of the variational problem:
YVwvelU

P
(curl®,curlv —av) + (div®,divv)+ (Pg®,Pev) = a(Bo,v) + Z di(f,, Pav).

=1

Proof. First, if b is solution of (12) then it is obvious that @ is solution of (36). Conversely, the Lemma 4
ensures us that the bilinear form a4 (.,.) defined by:

a1(u,v) = (curlu, curlv — av) + (divu,divv) + (Pgu,Pgv),

is continuous and U-elliptic since |a| < ;. Hence, by virtue of Lax-Milgram’s theorem, (36) admits a unique
solution which is necessarily the vector potential of the unique solution of (12). O

1.7. Example. Q2 is a sphere

Here we consider the particular case where  is the unit sphere. In this simple geometry, following [14], we
shall see that it is possible to give an explicit expression of the solution of the interior boundary value problem.
First, set x = (z,y, z) and introduce the toroidal-poloidal decomposition (see [34])

B = curl (T'x) + curl curl (Px), (36)
where T and P are two unknown functions. One can verify easily that if 7" and P are solutions of
T = aP,
AP +o?P =0 in(Q, 37

AgP =—g on S,

then B is linear force-free. S is the surface of the unit sphere 2 and Ag is the Laplace-Beltrami operator on S
defined by:

1 82’11, 1 8 . u
Asu = sin” W + sin 6 66 (smO%) ’ (38)

In the sequel, we shall denote (.,.)s the scalar product L?(S) and by ¥, I > 0 and —I < m < I, the spherical
harmonics on S. They constitute an orthonormal basis of L2(S) and an orthogonal basis of H!(S). Recall that

L+ H({l—m)

2n(l +m)! } e Fi" (cos )

¥(0.0) = (-1 |

where P/™ is the Legendre function of order m and degree . For any | > 0, -l <m <, Zm verifies
AsY" + {1+ 1)Y" =0. (39)
In addition, for any distribution u € D(S), we set u]” = (u,Y;™)s. u € H*(Q2) where s is a real number if and

only if:
+oo  +1

Do U+ < +oo.

=0 m=-1



ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED THREE-DIMENSIONAL DOMAINS 371

4+oo  +1
In this case, u* = Z Z u"Y;™. Now, we decompose g € H~%(S) on this basis:
=0 m=-1

+oo 1
g0,0)=>_ > &'v",
=1 m=—1
with g* = (g,Y;™)s. Note that g/* = (—1)™g; ™, for any [ and m, and g} = (g, Yy)s = 0 since (g,1)s = 0.

We thus use a decomposition on spherical harmonics and deduce easily that Ps € H 3 (S) can be written in
the form

+oo 1 m
g
Ps(6,0)=>_ > l(l_;l)Y/"w, (40)
=1 m=-1

where C is a constant. After what P is obtained in the interior of the sphere by solving the Helmoltz’s equation
with a Dirichlet boundary condition (see, e.g., [40])

+00 l
Plr0.9) =3 gy 3 @)W + hafar). (4)

The functions k;, for [ > 0, are defined by:

jl(ar) m Sy
e =) a@ % A0

Clj(ar) if ji(e) =0 and gf* =0Vm € {—1,...,+l},

(42)

where (j;);>0 are the usual spherical Bessel functions defined by:

) = oy () ().

/

Note that, in accordance with Theorem 1, if j;(c) = 0, then the condition g™ = 0 Vm € {—{, ..., +1} is necessary
and the constants C]™ are in this case arbitrary.
Finally, B is given by
=400

l
B('rao)QD) Z Z: ll+1) l )

where b} is defined by

brnoe) = Dk anye,
[Sng Pan L+ 12 (rk(an) m]eo (43)
_[akl (a',-)ayl _r511n9¢jr( i ]
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1.8. Two problems with o unknown.

In the sections before we dealt with the existence of a linear force-free field submitted to appropriate boundary
conditions when the constant « is known. However, physical situations in which « is unknown are quite possible.
A common example is that of a closed system for confining a plasma by a magnetic field. In such a system,
if the plasma is perfectly conducting, the magnetic field is subject to a topological constraint. To express this
constraint, consider a vector potential A corresponding to B and set

H(B) = (A,B). (44)
This quantity, called the helicity, is physically meaningful and jauge invariant when B verifies the conditions:
Bn=0onT, (45)

and (if the domain is multiply-connected)

B.ndo =0, fori=1,..,m. (46)
E'L

On one hand, the helicity describes the linkage of lines of force of B with one another (see [8,37]). On the other
hand, it is an invariant of any perfect MHD motion of the plasma (see [50]; see also [46,47]).

When one of the two conditions (45) and (46) is not satisfied, the helicity, as defined by (44), loses its jauge
invariance. In that case, Berger and Field [8] (see also [29]) introduced the notion of relative helicity defined as
follows:

H.(B) = (A,B) — (Ag, curl Ay), (47)

where A is vector potential of B and Ay is solution of the system:
curlcurl Ag =0, divAg =0, Agxn=A xnonl. (48)
It is worth noting that the quantity H,.(B) is jauge invariant and generalizes the concept of helicity since

H,.(B) = H(B) when B verifies (45) and (46).
Another possible data which can be given instead of « is the integral

mo = / B.curl BdQ. (49)
Q

This quantity lacks a clear physical meaning. However, when B is force-free, mg looks like the helicity since
o~ B is a vector potential of B.

Our aim here is to treat the two following boundary value problems in which « is unknown and g is given in
H?z(T) and verifies (9):

Problem A. Find a € R and B € H'(Q)3 such that:

curlB = oB in Q,
divB = 0 in Q,
Bn = 0 on T, (50)
Bmn,l)g, = —ai, i=1,..,m,

I

H.(B) H, (prescribed helicity),
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where Hy, a1, ag, ..., a,, are given real numbers.

Problem B. Find a € R and B € H'(Q)3 such that:

curlB = oB in,
divB = 0 in €,
Bn = g on T, (51)
B xn,q)r = aa, 1=1,..,m,
(curlB,B) = my,

where my is a given real number, (a1, as, ..., am) € R™.
In both the problems, we still denote by By the potential field corresponding to the data and Ej its energy
defined as in Section 1.3. We have the following results:

Theorem 2. Assume that Hy # 0 and Eg # 0. Then, the problem (50) admats at least one solution (o, B) €
R x HY(Q)3. This solution satisfies the estimates

la| < rag (52)
E§ < B3 < nEo, (53)
Oéo]Hg]

-1
where p = V1+04, r = B= " wnth § = . In addition, of Q 15 C™+1! and g € H™ 2(T), then B €
m

Ej
H™1(Q).
Proof. Let us first introduce the vector potential ag € H1(Q)? defined as the unique solution of:

curlag = By, divag =0, agpn=00onT',Pgay = 0. (54)
Note that ag is also solution of the variational problem:

(curlag, curlv) + (divag,divv) + (Prag, Pav) = (Bg,curlv), Vv eV,

and thus verifies the estimate:

2 1 2 E§
laollg,0 < a_%”BOHO,Q =2 (55)
Now, we set b = B — By and we define a € H!(Q2)3 by:
curla=b, diva=0, axn=0onT,Pga=0. (56)

With A = a + ap and Ay = ap, one proves easily that the relative helicity H,.(B) can be rewritten as follows:

H.(B) = / a.bdQ+2/a.B0dQ. (57)
Q Q
Furthermore, if B = b + By verifies curl B = aB, then

/ [b|2dQ=/curlb.adQ :a/ a.(b 4 By)dQ.
Q Q Q
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Thus, since (a, Bg) = (a, curlag) = (curla, ag) = (b, agp), we get

/ [b|?dQ = aH,(B) — a / ap.bdf). (58)
Q Q

We consider now the following subspace of H(div; Q):
Y = {v € L*(Q)3% divv =0, vn =0 on I} / v.q=0,i=1, ...,m},
Q

the ball
B={veY;|vloa < (n—1)E},
and the mapping L : j € B — u € B where u is the unique solution of:
curlu = a(j + By), divu =0, un=0, Pgu =0,
with
13113 o

Ho—/ao.jdﬂ
Q

(59)

This mapping is well defined since

o~ | ao.jdcz{ > ||Ho| - l{aollo-llllo.l:
Q
E
> ||Ho| - ;;O(M— 1)Ep|,
E2 ; '
> 2 —p) 20
ap

Thus, o is well defined, |a| < rag and

aol[uflo,e < [lcurlullo,q < lal(ljlloe + [IBollo,q) < co(k —1)Eo.

Furthermore, T is clearly continuous and compact. Indeed, let j, be a sequence in B. The corresponding
sequences o™ and (u{™) are also bounded in R and in H*(2)3. By compacity of the inclusion H(Q)3—L?(Q)3,
a subsequence, still denotéd (u(™), converging in L2(Q)3, can be extracted. The proof is achieved by applying
Schauder’s fixed point theorem.

The proof of regularity remains the same as in Corollary 1. O

Theorem 3. If the data g, a = (a1, ..., am) and mg verify the condition

_ |mo
= <, (60)

then the problem (51) admits one and only one solution (o, B) € R x HY(2)3. Moreover, a and B wverify:

27 || Ey
—— < <7, Ep<|Bl2o<(Q+V144r2)—. 61
1+m_a0— 0~” lIO,Q—( )2 ( )

In addition, if Q is C™1 and g € H™+3(T), then B € H™1(Q).
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Proof. We consider the following sequence:

e BOO) = By

e Forn >0, o™ o

B HB(")”%,Q'

e For n > 1, B+t = By + b(®*1) | where b(®+1) is solution of the curl-div system:

curl b = (M BM)
divb(t1) = o,

62
bV n=0 onT. 62)
Pyb(™th) = 0.
This sequence (a(™), B(")) is well defined, since
[mol [mo|
Ia(n)l = < —==< ao(Q).
IB™[3o = E?
For n > 0, define v(»+t1) = B(»+t1) _B(") ¢ V. Hence
curlv) = oMBM _ 4(-Dpn-D)
leurl v D2 = o™ BO2 ; + oD BED |2 — 20Malr D (B, BEY),
B™|2 , + |B™ Y2, —2(B™ B®-1
— m2 0,2 0,0
0 [BM3 o BM=D2 o ,
L mveR.
BN oIBM=D3 o
Thus by (6):
m
vy < 7oy, (63)
Oé()Eg

By using the condition (60), it follows that (B{™),cy is a Cauchy sequence in H'(Q)? and converges to B,
solution of (51). Let E = ||B|lg,o. Then, E verifies

E? < 1

2
= 1—7'2E0

la] _ Imal
where r = o~ Elag
roots of the polynomial X2 — X — 72 and this implies (61).

It remains to prove uniqueness. Let (a1,B1), (az,B2) be two solutions to (51). Then doing exactly the
same calculus as above, where B(™ and B("*Y) are replaced by B; and By, one obtains the following inequality

analogous to (63).

2
m .
—z—72 <0, where z = —5 and 7 = | 0|2‘ Thus z is between the two
Eq oL

. Hence, z?

mol

B, — B,ljyv <
B2 1!|v_aOE§

|B2z — By|lv. (64)
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<1 then By — B; = 0. O

Remark 4. Toroidal geometry. The case in which Q is a torus plays a prominent role in plasma plasma
confining experiments. The toroidal pinch experiments are the best illustrations of such a situation (see [46,47]
and references therein). It is worth noting that the torus is a multiply-connected domain with m = 1; only
one cut X; suffices to make it simply-connected. The flux throughout ¥; is nothing but the classical well
known ”toroidal flux”. Theorems 1 and 2 and Proposition 1 give a complete palette of results about existence,
uniqueness, regularity and & priori estimates which can be very useful in plasma confinement.

Remark 5. Eigenfields of Maxwell operator and Beltrami fields. The purpose of this remark is to show a simple
manner of deriving linear force-free fields from the Maxwell spectrum; let A the Maxwell operator defined by:

D(A) = {(E,H)e L*N)°, curlE and curlH € L?(Q)3,
divE=divH=0, Exn=0, Hn=0o0nT}.

0 —curl
A= ( curl 0 ) ’ (65)

It is well-known that the operator .4 admits a discrete set of real eigenvalues with finite multiplicity. Let w be
an eigenvalue of A and let (E, H) € L%(Q)® be the corresponding eigenvector. One has:

curl H = iwE, curlE = —iwH, divH=divE=0, Hn=0 and Exn=0.
Then one can observe that for any complex number u, B; = Re[u(E — iH)] and By = Re[u(E + ¢H))| verify:
curl B; = wB;, curlB; = —wB.. (66)

Hence, By and B- are linear Beltrami fields in Q.

2. LINEAR BELTRAMI FIELDS IN A HALF-CYLINDER

In modelling natural phenomena physicists are often led to deal with unbounded regions of space. In the
context of force-free field, the studies of solar atmosphere supply several nice examples of this situation. For
example, in reconstructing the coronal magnetic field, the region above a small part of the solar photosphere
is often likened to a half-space [2, 5] since the curvature of the sun’s surface can be neglected. Furthermore,
some recent models for coronal heating are developed in a semi-infinite cylindrical part of space (see [3] for a
study of existence and stability of axisymmetrical linear force-free fields). Our aim here is to solve explicitly
the problem of existence of linear force-free fields in a semi-infinite cylinder with a general section (and without
any assumption on the axisymmetry of the data or the solution).

Let € be a bounded connected domain of R? with boundary T of class C1* (or assume Q) a convex polygon).
Let D be the half-cylinder of R? defined by D = QX]O, +oo[. For any field v = (v;)i=1,2,3, we set vi, = (v1,v2)
the horizontal part of v. We denote also by V} , divy, curly and Ay the horizontal gradient, divergence, curl
and Laplace operators with respect to coordinates (z,y).

Define as usual the Sobolev space HE () by:

H () = {uec H}Q); u=0o0nT},

which is a Hilbert space for the norm
iy g = IIVavllgq
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|
|

X

thanks to Poincaré’s inequality on 2. Introduce also the subspaces of L?(£2):

H(curly,Q) = {ue L?(Q)?%curlyuc L3(0)},

H(divy,,Q) = {uc L*(Q)%divpu € L3(Q)},

and set

H = H(divy, Q) N H(curly, ),
H is a Hilbert space for the norm

. 1
aller = (llullgg + lidive ullg g + [lcurlpullg g)=.
Finally, for any Banach space X, define the functional space

+oo
L*(0, +00, X) = {v :]0, +00[—> X; v is measurable and / v (t)||5dt < +oo} ,
0

equipped with the norm:
+oo
1
Wz = ([ Iv(ONan?.

2.1. Statement of the problem

377

(67)

Given a real number «, we want to find a bounded three-dimensional field B satisfying curl B = aB in the

half-cylinder D with a given vertical component B, on {2 at z =0.
First, we introduce the following closed subspace of H x Hg(f2):

Vo = {v € H x H}(Q); curlyvy, = av,}.

It is worth noting that the equation curly vy, = av, is nothing but the z-component of the Beltrami equation.

Now, given a scalar function g = g(z,y) € H}(€), we seek B satisfying:

B € L%(0, +o0, V,),pt. B € L2(0, +o0, L2(2)3),
90.B; = 0,B,+aBy inD,
8.By = 8,B, — aB, inD,
8,B, = —8,B, — 8,B, in D,

B,=g at z=0.

(68)
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This system is a non standard evolution problem, in which the vertical coordinate z plays the same role as time,
and the boundary condition on Q corresponds to initial conditions. Note that the “initial condition” at z = 0
is only on B,. Note also that the fourth equation and the description of behavior at z = +00 are included in
the definition of the space in which the solution is required to be.

Our purpose in the next section is to prove that the boundary-value problem (68) has one and only one

solution.
2.2. Existence and uniqueness of solution

In this section, we shall extensively use the spectrum of —A, in . It is well known that this operator admits
an infinite countable set of eigenfunctions {w;};=1,2,.. ,+00 € Hg(S2) with a sequence {\;};j=1,2, .. oo Of strictly
positive eigenvalues conventionally ordered such that

0< A <A< A<...< +oo.

Moreover the family {w;};j=1,2, . +00 can be chosen to form an orthonormal basis of L?(£) and an orthogonal
basis of H}(Q). So, one has for any 3,k > 1:

(wiywk) = 6i,ka (69)
(Vhwi, Vi wi) = A6 k- (70)

Theorem 4. If o® < A1, then for any g € H} (Q), the problem (68) admits a unique solution. Moreover, this
solution can be written in the form

+oo
B = (gwk)e by, (71)

k=1

where Br and by are defined by:

Br = VAx—oa?, (72)

1 Bwk (')wk
Ak ('Bk Ox ta (')y )
b = f Lg%k _ 0wk | (73)
/\k. k 8y oz
Wi

Proof. Uniqueness

Let By, By € L%(0,+00,V,) be two solutions of problem (68). Their difference B = B; — By satisfies the
same problem with an homogeneous boundary condition B,(z = 0) = 0. Multiplying the two first equations of
(68) by V}, B, and integrating by parts over Q yield the identity

1 d? OB
o1 Bl g = 15212 5 + VA Bl g — olBal2
Then, using the Poincaré’s inequality gives

14?2

s Belon = Gu-ad)IBlis 0.
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On the other hand, we have

“+oo
IB.(2 = 0)ll5 =0 and /0 IBLI2 gdz < +oo.

Thus, || B,y g = 0 on 0, +oo[.
If we multiply now the system (68) by (B, By, —B;), then we get

d d
(1Ball2 g + 1By 2 ) = ZIIBL 5 = 0.

Therefore, ||Bw||§ﬁ = ||By||(2)’fz = 0 on ]0, +oo| since By, € L2(0, +00, L2(Q)?). Hence, B = 0.
Existence

We proceed in several steps:
Step 1. Construction of the Galerkin Basis

We consider the following special eigenvalue problem: find the eigenvalues v, and the eigenfunctions (u,,v,,w,) €
V. such that: '

ow,

ﬁ+av3 = YUy,

w

Fl—auj = YV, (74)
Y

ou O

oz 8y Reheh

The two first equations can be arranged in the form

Ow Ow
2
@+, = (%79;] + agj)
Ow Ow
2, .2
(& +7)v; = <7]8—y] —-aa—xj).
Then, using the identity
ow, = 2 _ 0y
7 oz oy

one obtains the equation
—Apw, = (712 + o®)w,,
which means that w; is an eigenfunction of —A; and 732 + o2 is the corresponding eigenvalue. Therefore, for

every eigenfuction w;, there are two possible values of 7,; 7, = €8, where e € {—1, 1} and 8, = 1/}, — 2.
Then, we have:

C ()
D W N
S A
7,€ )\J Ya.e By (&% oz )

Remark 6. Taking into account (69) and (70), one can deduce the relations:

(uz,e, uk,e) + ('Uz,e; 'Uk:,e) = 5zk> (75)
(uz,hvk,e) - ('Uz,s)uk,e) = 0, (76)
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for any integers 7 and k.

Step 2. Approximated solutions and convergence

The function g € H}(§2) can be expanded on the basis w;:

+00 +o0
g=) (gw)wi with Y li(gws)? < +oo. (77)
3=1 =1

We look for a solution B of (68) into the form

“+o0 “+oo
B=>) cii(2)bi1+ Y ci1(2)bi-1,
=1

=1

where the vector fields b, are defined by b; ¢ = (Ui, Vo,e, wi)-
Formally, if we substitute in (68), we deduce that the coefficients c;  are solutions to

{ dcie +eBicie =0, e=1,-1,
dz

¢i,1(0) + ¢i,—1(0) = (g, ws).
Therefore,

ci,l(z) = (ga wi)e_ﬁﬂ, ci,_l(z) =0,
since we search a bounded solution at infinity. Hence,

+0o0
B=> (gw)e b, (78)
=1

where we write b, instead of b,1 (for clearness). It remains to prove that the ficld B, given by the sum (78), is

well defined and is the solution of the problem (68): -
(i) Setting

m
B =Y (gwi)e b, (79)
=1
one gets for any z > 0
m+p
“Bh,m+p - Bh,m”aﬂ = Z (ga wi)2e_2ﬁlzv (80)
i=m+1
m+p
|divy B g — dive Bh’m||§,(-2 = Z B2(g,wi)’e 2P, : (81)
1=m+1
m—+p
chrlhBh,vTH—p - curlhBh,m“g,Q = 0(2 Z (ngi)26_2ﬁzza (82)
i=m+1
m+p
|Bz,'m.+p - Bz,mﬁ’() = Z )‘i(g,wi)2en2ﬁ12' (83)
i=m-+1

Therefore for any z > 0, (B, )m>1 is a Cauchy sequence in V,,. Hence, the series (78) converges for every z > 0
and B is well defined. Furthermore, it is clear that B € L2(0, 400, V).
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(ii) Now, we show that B,(.,z = 0) = g in H(Q).
First, given T > 0,

m+p
1Bzim+p = Bzmllcogom,maeyy = sup( Z A (g, wi)?e20+%)

(0.,7] k=m+1

m+p

Z /\k(g, wk)z.

k=m+1

IA

Hence, B, € C°([0,T], H}(Q)) and B,(.,z = 0) is defined. Moreover

ZAku g, we)e™ ™ — (g2 < (1- e W)ZZA:C Gl + 3 Mg

k=m+1

for any integer m. Using (77) , one can deduce that
lim (B,(z) —g) =0, in H3(Q).
z—=0

Thus, B.(z = 0) =g in H}(Q).
(iii) Finally, %—E € L*(0, +o0, L2(£2)*) since

too 0By, - 2_—2
— Yiz
1 =2 0 - e,

and B is a classical solution for (68).

Remark 7. Energy estimate.
The energy of the solution

E:/ IB|2dQ,
Q

can be easily computed if one uses the orthogonality relation:

(bk,bj)Lz(Q) = 25k,j, for any j, k Z 1.

In fact,
(bg,bj) 2y = ﬁkV k+—Vwk><ez ﬂVw+ —Vw; X e,
> P2/ L2(S2) Ak A ’ J )\ 3
+
— %—(Vuk,v%-) + a(ﬂ;\c y )(Vwk,VwJ X €,) + (W, w;),
= 20k; + (ﬂxk,\ 'BJ)(Vwk,curlhwj)
kAj
= 25k,j-
Thus,

:/ |B|2dQ:§M.
Q = b

381

(84)

(85)
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Remark 8. Let us clarify some points about the necessity of the condition o < A, involved in theorem 4 for
existence of solution; let B be a solution of the problem (68). Multiplying by B, the equation curlyBy, = aB,,
taken at z = 0, and integrating over (2, one gets

. Og Og

lgh,alBn(z=0)loa
flgllgﬁ

Thus

laf <

(86)

Combining the two first equations of (68) leads to
0B, 0B, dB, 0B,
- )p, (L= B, =0.
( Oy 0z ) Y ( 0z oz ) 0

= —div, By and integrating over ) gives

05,

Using the identity 5z

[Bu(z =0)lloq = 1B:(2 = 0)llo.6 = llgllo,a»

and finally (86) becomes

la| < lg[1,f)'
N ”gno,é

arnccan annditinn fan o aviatanos of anhitiong +n P 17O\ ; o
A necessary condition for the existence of solutions to (68) for any g € I‘IO (Q) is that Cr.'2 _/: /‘\1.

— Note that for a particular g given in H}() the boundary value problem (68) still has a solution if a® < A, —
where m is the smallest integer such that (g,w,,) # 0.

Remark 9. The Dirichlet condition B, = 0 included implicitly in the definition of V,, can be replaced by the
B
Neumann condition %—nz =0onT x {z > 0} (the derivative % = 0 is of course with respect to the normal of

T'). In this case, one must replace (w;);>1 and (A;);>1 by the eigenfunctions and the eigenvalues of —Aj with
Neumann boundary condition.

2.3. Approximation and error estimate

Let o a given real number such that || < vA; and g € H3(Q). Let B be the unique solution of (68) and
consider its approximation B,, defined by:

B, = Z(g,wi)e_ﬁlzbi. (87)
i=1

Denote by g,, the approximation of g defined by

B = 3 (g wi)ui. (88)
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We have the

Theorem 5. There exists two constants ag and C(Q) such that for any integer m, the following inequalities
yield

AN

B~ Bm”o,(z e~ 30MZjg — gm“o,(v (89)
IB-Bmlla < C(Q)e %™ |g —gmnl, g (90)

Proof. Let m be an integer. From (80)-(83) it stems

IB-Buloa < e Pmilg—gulog,
IB-Buls < C@ePr%lg—gul, g
Then, using the 2-D Weyl formula
Ap ~ Ln, when n — +o©
meas(§2)
we get (89) and (90). O

Remark 10. Bi-periodic Beltrami fields
A treatment of Beltrami fields bi-periodic with periods L; (¢ = 1 or 2) in each horizontal direction e, and
e, can also be done (for periodicity in the three directions the reader can see [15]). Bi-periodic Beltrami fields

may be useful for modelling some physical problems such as Prominences on Sun’s surface (see [17]). Let us use
the Fourier expansion

B(x) =bo(2) + »_ bi(z)e™™, (91)
k#0

2mn 2mm

where x = (z,¥,2) and k = (Tl—a I,

B such that curl B = oB.
First, for any real vector k = (k1, k2, 0) such that k£ = |k| # 0, we introduce the vectors:

,O), n,m € N. Given a a real number not equal to zero, we look for

k k
el(k) = ’LE, 62(1() = ZE X €y, 63(1() = €;.
The following properties are easily verified:

ei(k)éj (k) = (Si,j for 2,5 € {1, 2, 3}, (92)
ik x ey (k) = 0, ik x es(k) = kes(k), ik x e3(k) = kea(k). (93)

Thus, (e1(k),ea(k), e3(k)) is a basis of R? and for k # 0 one can decompose by (z) on this basis:
bi(2) = n(2)e1(k) + pi(2)ez(k) + Ax(z)es(k). (94)
The introduction of this decomposition is useful here since the equation curl B = oB becomes:

kpc(z) = Me(2), kn(z) = Ae(2),
(2) + (@® — E*)M(2) = 0, curlbg(z) = abg(z).
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One gets after solving this system:

by = b01eiaz ( 1 ) +b02e—icxz( _17/ ) s (95)

{ A 0ePkZ + A 1e~ 002 if a2 — k2 > 0,

A =
(2) A 0ePkZ 4+ Meqe PRz ifa? — K2 <0,

(96)

where B = /|02 — k2|, bo1, boz, Ak,0 and Ak,1 are complex constants chosen such that B is a real vector. They
can be fixed using for example a boundary condition on B, at z = 0 and a behaviour condition at infinity
(im,— 440 |B| = 0 for example).

3. LINEAR BELTRAMI FIELDS IN EXTERIOR DOMAINS

In this last part, our investigation concerns the existence of Beltrami fields in exterior domains. The behavior
at infinity is described by setting the problem in a weighted Sobolev space. We show that the Beltrami equation
curl B = oB, with a given normal component, admits an infinity of solutions in this space, and by the way we
show also that nor one of those solutions is finite energy, as proved by [44] otherwise. Finally, we prove that
the addition of a well chosen boundary condition allows one to get well posedness of the problem.

Let 9° be the exterior of the unit sphere of R3, r = |x| = (2 + % + zz)% the distance to its center and
S = {x € R3; |x| = 1} its surface. For any real number k, define the space Wy (2¢) as:

! e [ V €
Wi (Q°) = {u € D'(Q°); Tik € L*(Qe), T—;‘ € L3(Q )3}

N ’

which is a Hilbert space for the norm

u Vu 1
ullw o) = {||77;;||2L2(ne) + ||T—k||%2(ne)}2-
Observe that in the neighborhood of S = 9Q¢, the functions of W (2¢) have the same regularity as those of
the classical Sobolev space H!. Therefore, the trace on 9Q° can be defined like in H! and the usual trace
theorem holds. As in a bounded domain, let « be a real number not equal to zero and consider the problem:
find B € W(Q°) (k will be specified) such that
curlB =aB in Q€
divB =0 in Q¢, (97)
Be. =g at [x| =1,

where g is a given function. If we denote by B,, B, and By the components of B in spherical coordinates, then
7B, verifies the Helmoltz equation

A(rB,) + o®*rB, = 0. (98)
In fact, this equation can be obtained by applying the operator x.curl to the equation curl B = aB:

x.curl curl B = x.curl (aB) = o’x.B.
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Then, we get (98) using div B = 0 and the identity:
x.curlcurl B = —x.AB + x.V{div B) = —A{x.B) — 2div B + x.V(div B).

Now, a decomposition of 7B, on the spherical harmonics leads to:

B, = — Y (0, 9),
1=0 m=—1
where h]*(r) are solutions of the spherical Bessel equation:
S () + - e <o (99)
The function A]*(r) can be written into the form
R (r) = A hu(ar) + piha(ar), (100)

where h; is the spherical Hankel function given by:

mi =t (22 (%), (101)

while (A7)i>1,|m|<t> (U7")i>1,jmj<i are two families of complex numbers such that:

(i) N = (=1)"g; ™, forany!>0and me{—l,..,I} (to guarantee real value radial component B,),
(i) A"hi(@) + pthy(a) = g* for any | > 0 and m € {0, ...,1} (boundary condition at |x| = 1),

where gl = (g,Y;™). Observe that if g]* # 0 and h;(a) = 0 then the equation A;“hl(l)(a) + u{"h%z)(a) =g
does not admit any solution (A]*, ui*). Thus, we shall assume that:

g =0, Ym e {—1,..., 1} if hy(a) = 0. (102)

Under this assumption, there exists an infinity of solutions (A}*, 14]*);>1,|mi<: Vverifying (i) and (ii). Let us fix
one among them. Then, B, and By are solutions of the following differential system;

1 0B,
d[rB,] [0 —a, ][ B, sinf dp
E[TBG]_[a 0 HTBQ}JF 0B, |- (103)

£

This system is obtained by projection of the basic equation curlB = oB on e, and eg. Its homogeneous
solution is given by

bro = ¢0(9,w)cos(ar)+¢1(9,<p)w,
by = o(0,0) 50T (6, ) 2030

T
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A particular solution is

+ 1

= 1 a .0y 18 NC) fi
bo = ;mgl 0+ D [sin&hl a0 Trar M) g ] (104)
+oc 1
1 Y™ 1 8 - ay;m
be = ~ ";l (l+1) [ ohi 06 + rsin 6 or rh Oy } (105)

Hence, one deduces that (Bg, B,,) are on the form

By = bg+bpp,
B, = b‘p-i-bh#,.

Observe now that the system (98)+(103) is not equivalent to the equation curl B —aB = 0. In fact, the
projection of this one on r must be verified:

1 8(sin GB«,) 3B9 1 [0(sin 0bh,¢) _ 8bhy9

Y 50 ap | Br= 90 o |’

sinf

. 8(sin0b<,,) 8be

EY) B = arsin@B,. Thus, ¥ and 1, must verify the system:
;) (sin6¢) — Bz(ﬁ; = 0,
389 (sin6¢2) + %ﬁ 0.
Hence 91 = __(hf;—; and 7/)2 —89 where € is solutlon of the equation
(s1 985 1 625

69) + sme&p

Therefore, Agé = 0, where Ag is the surfacic Laplace-Beltrami operator defined by (38). So ¢ is a constant
function and ¢¥; = 12 = 0. It follows that By = by and B, = b, where bg and b,, are given by (104) and
(105). Let us check if B = (B,, By, B,,) € L?(£2°)3. First, remark that B can be written into the form:

B= z Z l(l+1) l ’ (106)

with
b® = ah*(r)VsY™ x e, + ;E(rhl (r)VsY™ + 11+ 1) Y™ (6, p)e, (107)
here V ——1—-6—2 p du denotes th facic gradient of w. Si
where Vgu = Sin93g0 + 5g©¢ denotes the sur acic gradient of u. Since

(}Ilznl n?z) = 5l1,526m1,m2’
(VsY™,VsY™)s (1 + 1)813,1,6my >
(VS}/ll 1% €r, vSsz)S = (Curl S)QT‘,VS)’}TZ)S = 0,

I



ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED THREE-DIMENSIONAL DOMAINS 387

one has
(b7, b7)s = 0ifly # Iy or my #ma, (108)
Br.br)s = 10+ D) (e + 2 erre)P] + 20+ 02 EEOE (109)
At infinity the function h; looks like:
far) ~ (~i)t (110)
It follows
(b*.e,,b".e,) ~ %, (111)
(b",b")s ~ 2+ 1)’-@2—;&733 (112)

Thus, b]™ does not belong to L2(Q2€)? if h7*(r) # 0. Hence

There is no finite-energy non-trivial linear Force-free fields in an exterior domain with a # 0.
However, b belongs to any W;(Q¢)3 for k > % In this last situation, the linear system of equations (i) and
(ii) given above is not square. Thus

If g verifies the hypothesis (102), then the boundary value problem (97) admits an infinity of solutions in
1
Wi (922)2 for any k > 3

In order to get well posedness of (97) one must add a supplementary condition. Here we propose to prescribe
the normal derivative of the radial component at the boundary:

OB,
or

=pat |x| =1 (113)

Remark 11. Of course, others conditions at 7 = 1 or at infinity may exist. Durant [21] in a discussion
about extrapolation of coronal magnetic field proposed to minimize the L2-norm of the transverse component
|B X nllo,s at 7 = 1. One can prove easily that such a constraint leads to a condition of type (113), which is
more general. Note also that, although the choice of a boundary data of type (113) has, as far as we know,
never been considered in solar physics, these data can today be provided by the new generation of telescopes.

Our aim here is to prove that the new boundary value problem (97)-(113) is well posed in W, (92°).
For any real number s > 0, we introduce the following space:

+oo 1

HE(S) = {u eD'(S) Y, Y. 1+ 1))l < +oo}
=1 m=-1

where u* = (u,Y,")s. This is a Hilbert space equipped with the hermitian product:

+oo 1
((w, V) ug(s) = Z Z (1 +1)** |y (@) [Pufvp

=1 m=-1
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Remark 12. One can remark that #3,(S)<—H?*(S) for any s, where H*(S) is the classical Sobolev space defined
by

+oo 1
H3(S) = {u eD(S); D> > U+ D)*urP < +oo} .
=1 m=—1]

The definition of #,(S) given above is the only one we have and no other characterization is available for the

moment.

The remaining of this section is devoted to the proof of the following result
Theorem 6. For any function g in HC(S) verifying (102) and any function p in H_(S), the problem

B,
curl B =¢aB, divB =0 in Q2°, B.e, =g and aa_r =p at x| =1, (114)

1
admits one and only one solution B € W1(Q¢)3. Furthermore B belongs to Wi (Q€)3 for any k > 5 and verifies
the estimates:

B
I xlloge = cralllgliugcs) + 1Pz s), (115)

VB
I lloge < Crallgllugis) + lellzr(sy)- (116)

Proof. The additional condition (113) is equivalent to
(1) = p* +g*, forl>0and m € {0,...,1}, (117)

where p* = (p,Y;™)s. Thus, for any [ > 0 and m € {0,...,1}, A\]* and p* are solutions of the system:

{ A ha(@) + pithu(e) = g™ (118)
oA hy(@) + ap™ho(e) = g" + o
This is a non-singular linear square system whose determinant is:
— — 24
hi(e)hy () — Py(a)Rj(a)) = ==
o (h(@)Fy(@) — Fu(@)hi(@) = -2,
where the two following properties of Hankel functions were used:
, ! — 1
hi(r) = ~h(r) = hia(r),  Im(hia(r)hu(r)) = =5
Thus, A\]* and pu* are given by
m e 77 N m T m
At = ZE ((ah’l(a) — h(@))g™ — h(a)p] ) ) (119)
e m m
wto= —ig ((ehi(a) = h(a)g™ — h(a)pl")- (120)

Let us now prove estimates (115) and (116) and convergence of the sum (106). First, given two integers [ > 0
and m € {—1,1}, we set

1 -
bim = 5 (b + by ™).
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by, is a real vector field verifying curlb = ab (the indexes ! and m will be dropped for simplicity). Let R > 1
and k be two real numbers and Qg the domain defined by

Qr={reR%1< |x| <R}

Multiplying the equation
b _
5 =
r
by —r and integrating by parts over {2g, one gets easily after few calculus
™

curlb x b=b.Vb -V 0,

2(2k — 1)/ Lo Sk/ e 0 _ g (R) — F(1) (121)
0 T2 an T2 =k k\2)s
where the function Fj, is given by

2

Fp(r) = oy /5[2|b'eT|2 _ |b|2](a', r)do.

At r =1, one has by (108) and boundary conditions
Fe(1) = [P(1+1)* = o1+ D]lgi"1? — 10+ 1)[2g]" + o] %,
while at infinity the function Fj(r) looks like

)\m 2 + m|2
Fi(r) ~ —21(1 + 1)|l|rT|1“l|_ . (122)

Indeed, orthogonality relation (108) gives
1 ™m|2
(b,b)s = 5|bi*[7a(s)-

1
Then, (122) stems from (111) and (112). Now, taking the limit in (121) when R tends to infinity with k = 3
we obtain

o f ool 2(L+ 1)(IAP[Z + | [?)
- 1 Hy (123)
+[2(1+1)2 — Q2L+ 1)]|g™)? — UL+ 1) |2 + |2

But,
AP+ [P < Calha(@)? (Jzu(e) = 12161 + |0 7).,
where C,, is a constant not depending on ! neither on m and z;(r) is the function defined by
h(r) .
ha(r)

It is well-known that the function z; verifies the estimate (see, e.g., [40}):

zi(r)=r

a(r)® <r* + (1 +1)%

Hence,
NP2+ 1 < calh(@)]? [(L+ D)8 + 10717
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Thus

2 [ Belag < @ @+ %R+ 0+ 17 ). (124)

r

Finally, taking the limit when R tends to infinity in (121) with k¥ > % yields

|b|2 4k / |b.e,|? 1
/Qer% @ = = Qe T2F Q= o7 (L), (125)
< Caglha(e)? ((T+1)4gl? + (L +1)2]p)?) -

Thus, if g belongs to H2(S) and p belongs H_1(S), then the sum (106) converges and one has the estimate:

B
I2lo0e < Cralllglug(s) + el s))-

The estimate (116) is obtained by multiplying Helmoltz’s equation

AB +a’B =0,
B . . . . o
by — and integrating over {1g, before making R tending to infinity. m|
T
APPENDIX

Proof of Lemma 12

(i) First, for any j € X, Kj belongs to V and

1KHflon < —Killy = = fleurd (Kifoa = —lille-
0 (7] Qo

1 -
Hence, | K| < p Now, let A2 > 0 be the second eigenvalue of the Neumann problem
0

Bu__

—Au = Au, an

0.

Let uz be solution of this eigenvalue problem with A= 5\2 and set vo = Vus. Then vy belongs to V and

sl _ lawlda
Vel ~ VwalR g

Hence, o3 < X and we get (29). Similarly, one gets (30).
(ii) Suppose that I' is connected and let ® be a function in Hg(2)®. & can be decomposed into the sum

d =Vs+ &,

where s € H(Q) is solution of the Laplace equation As = div®, and ®; is divergence-free and verifies
®; xn=0onT. It is clear that

1
®; = K*(curl®) and [Vs|§q < ;\—Hdiv <I>||§,Q.
1
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Hence,

202 o

IN

1 .
—I\div@)}g’g + I K*|?licurl @||3 o
1 ) 1
< 5 (div (3o + llcurl @[I3 o) + (I K*||* - A—l)licurmllg,a-
But, since ® € H}(2)3, one has
div @[j3 o + llcurl B o = [|Ve||F o.

Thus,

2 1 2 w2 L 2
18lo.0 < S-IVeIo.q + (IK™II" = =) curl &]5.q- (126)

Now, let wy be a function in H}(2) such that Aw; = Ajw;. There exists a constant vector a such that
[Vwi x allg,n # 0. We take ® = wya. Then (126) becomes

. 1
(&> - NIV % allgq > 0.

Hence
[P > o (127)
A1
Now, let u € U. Then u can be written into the form
u=Vs+uy,

where s € Hj () verifies As = divu. u; satisfies
divu; =0, uyxn=0o0nT, (u;.n,1)r =0 (by Green’s formula).

That means that u; = K*(curlu) since I is connected. Hence, for any u in U, we have

V)3 o + 1 K*(curlw)|[f o,
—Hdlvullo o+ 1K eurlulg o,
IIK*II (Idivullf o + [leurlul|g o) [by (127)].

hallg o

IA

IA

Thus, necessarily «y verifies
1

a1 2 Tt
Kl
This inequality combined with (127) imply (31).
(iii) Assume now 2 to be simply-connected. Then any vector field v in V' can be written into the form

v = Vs + K(curlv),

0
where s € H'(Q)/R is solution of the Neumann problem As = div v, 5% = 0. Tt results that

VI3, = 1Vslg.q + 1K (curl v) I3 o. (128)
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1
It is well-known that Cy = ;" is the best constant in the Poincaré-Wirtinger inequality
2

1
lu= g7 [ wixiBo < ColVula, Vue H(®). (129)
Q
1
Using this inequality, one can proves easily the estimate |!Vs||(2)’Q < 5\—||div v||3.q. Substituting in (128) yields
2

1 1
Ivlig.a < 5 lldiv vlg + 1K |*eurlv(§ o < sup(5-, IED vl
2 2

Hence, ap > inf(|| K[|, X2) and (32) holds.
The proof of estimate (33) is dropped here for similicity (the reader interesting in that proof can consult
reference [13], Chapter VI).

The authors wish to thank the unknown referee for helpful comments and suggestions about bibliography.
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