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ON THE DERIVATION OF A QUANTUM BOLTZMANN EQUATION
FROM THE PERIODIC VON-NEUMANN EQUATION

FRANÇOIS CASTELLA1

Abstract. We present the semi-conductor Boltzmann équation, which is time réversible, and mdicate
that it can be formally derived by considermg the large time and small perturbmg potential limit m the
Von-Neumann équation (time-réversible) We then rigorously compute the corresponding asymptotics
in the case of the Von-Neumann équation on the Torus We show that the limit mg équation we obtam
does not coïncide with the physically reahstic model The former is indeed an équation of Boltzmann
type, yet W1th memory m time, so that it appears to be time-reversible We comment on this point,
and further describe the properties of the hmitmg équation

Resumé. Nous présentons l'equation de Boltzmann des semi-conducteurs, qui est irréversible en
temps, et indiquons qu'elle peut être dérivée heunstiquement par une limite en temps grand et potentiel
perturbateur petit dans l'équation de Von-Neumann (réversible) Puis nous calculons rigoureusement
cette asymptotique dans le cas de l'équation de Von-Neumann sur le Tore Nous montrons que le
modèle limite ainsi obtenu ne coïncide pas avec le modèle physique attendu II s'agit d'une équation
de type Boltzmann, mais avec un effet de mémoire en temps, de sorte qu'elle apparaît réversible dans
le temps Nous commentons ce point, et proposons une description plus complète des propriétés de
l'équation limite
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1 INTRODUCTION

In the theory of semi-conductors, many transport phenomena can not be correctly described in the mere
framework of the standard kmetic équations, hke the Vlasov, Vlasov-Poisson, Vlasov-Maxwell, or Vlasov-
Boltzmann équations In many applications, one needs to write down transport équations which take mto
account purely quantum phenomena Examples or considérations of this kmd can be found for instance m the
books [21,33], or m the papers [18,24,25]

One famous example of a purely quantum transport équation is the Boltzmann équation of semi-conductors,
derived first by Pauli [26], and then m the late fifties by Kubo [17], as well as Kohn and Luttmger [14,15]

Formally, the Boltzmann équation of semi-conductors, also called quantum Boltzmann équation [see (12—
1 5)], descnbes the hmitmg dynamics of an électron m a Hamiltoman of the type "Free Hamiltoman+ pertur-
bation", for "large" values of time and "small" values of the perturbation In this framework, the pertuibation

Keywords and phrases Quantum Boltzmann équation, Von-Neumann équation, Fermi Golden Rule, time-irreversibihty, memory
effects, weak couphng limit
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can represent a large class of phenomena, such as the interaction of an électron with some impurities in a box
(or in a periodic crystal), the interaction of an électron with phonons, or other scattering events, and we refer
to [20,22,23], or [2]. Also3 the free Hamiltonian HQ can take fairly gênerai values, and the case Ho — —A is not
prescribed.

In the simplest case of an électron interacting with some impurities, described through a perturbing potential
V, the formalism of Quantum Mechanics leads to write down the Von-Neumann équation on the density matrix
p associated with the électron. It reads,

idtp=[Ho + Ve + V,p]i (1-1)

where HQ is the free Hamiltonian, Ve dénotes the electric potential, with associated electric field Ee, and [•, •]
dénotes the commutator.

When dealing with the large-time/small-perturbing-potential asymptotics in (1.1), the gênerai method of
[14,15,17], leads to transform p into a function f(t, k) which dépends on the time tGM and on the "impulse"
fcel3. The vector k corresponds to the different (degenerated) energy levels of the électron, and the function
ƒ (£, k) represents the probability for finding the électron in the energy level fc, at time t. Also, for physical
reasons, the function ƒ is expected to satisfy the semi-conductor Boltzmann équation, which is a linear transport
équation of Boltzmann type, namely,

dtf(t,k)+Ee.Vkf = Q(f), (1.2)

and équation (1.1) should converge in some sensé towards (1.2) in the above-mentioned asymptotics. Hère, the
field Ee is assumed constant (in space) to simplify the présentation. The expression Q(f) in (1.2) describes the
transitions of the électron between the different energy levels due to the perturbation, and it has the standard
form of a Boltzmann intégral kernel,

Q(f) = f B{k, kf)[f(t, kf) - ƒ(t, k)] dkf. (1.3)
Jk'

This intégral involves a purely quantum cross-section B^ and in some sensé these transitions can be interpreted
as "collisions" between the électron and the perturbing potential V. Also, the expression £?e.Vfc/ in (1.2)
describes the transport of the particles due to the electric field Ee, as it is standard in kinetic équations.

To be more précise, starting from (1.1), the quantum cross-section B should satisfy (see, e.g., [14,15]),

, kf) = W(k, k') 6{ek - ek>)7 (1.4)

with the Fermi-Golden-Rule,

W(k, k') = 2TT | / 4>k(x) V(x - y) fâ,(y) dx dy \\ (1.5)
Jx,y

In (1.4-1.5), the 5 dénotes the Dirac measure, the ̂ ' s and e^'s are the eigenfunctions and eigen-énergies of
the free Hamiltonian Ho. Also, in (1.4), the Dirac measure indicates that the collision operator Q acts on
the energy-shell eu — £&• In other terms, only eigenstates tpk and ipk' having the same energy (degenerated
eigenstates) can interact via Q. Finally, one recognizes in (1.5) the celebrated Fermi Golden Rule (see [9]),
which gives the transition rate between two eigenstates -0/c, i>k' i n terms of the perturbing potential V.

More complete références on the physical dérivation of (1.2) by means of (1.1) can be found in [6], and we
would like to quote the références [5], as well as the books [1,16,19,27,33].

Before coming to the description of our results, we emphasize hère some important features of the limiting
équation (1.2), in comparison to (1.1):

a) Equation (1.2-1.5) is time-irréversible, which is a fact of paramount importance: this shows indeed how
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the microscopic dynamics (the Von-Neumann équation (1.1), which is time-reversible) générâtes an irréversible
dynamics in the macroscopic scale. This kind of considérations is very gênerai in statistical physics.

b) Equation (1.2) is local in time. In other words, the collisîonal process as described in équation (1.3)
is Markovian. This is obviously not the case in the original model (1.1) (see Sects. 3, 4 below for précise
statements).

c) Equation (1.2) découplés the influence of the electric field and the effect of the perturbation, where the
latter générâtes "collisions", or transitions between the different energy levels.

Needless to say, the points a, b, c above give rise to important mathematical difficulties when one wants to
dérive the quantum Boltzmann équation (1.2) from the Von-Neumann équation (1.1).

Now, the purpose of the present paper is to study the rigorous large-time/small- perturbât ion asymptotics of
the Von-Neumann équation on the Torus: in Section 2, we start from the Von-Neumann équation in a three-
dimensional periodic box T3 = [0; 2TT]3, with a vanishing electric field (Ee = 0 in (1-1)), and perforai the natural
scaling V -> AV, t —> t/A, where A is some (small) parameter, as it is suggested by the physics. We perform the
limit A —» 0 in Section 3. We give in this way a rigorous dérivation of an équation similar to (1.2). Nevertheless,
our limit does not coincide with the physically realistic équation (1.2). Indeed, our scaling leads to a model
which is non-local in tinie, contrary to (1.2), namely,

ft ƒ(*,*)= [ Q(sJ)ds,
Jo (1.6)

with, \/s G R, Q(s , / )= / B(s,k,kf)[f{s,kf)- f{s,k)}dkf .
Jk>

(See Theorem 1 and 2). Also, our model (1.6) appears to be time-reversible, contrary to (1.2) (Theorerri 6).
On the more, the scaling presented here is the only non-trivial scaling when starting from the Von-Neumann
équation on the Torus as we do here.

This paper shows therefore that the periodic Von-Neumann équation can by no means converge towards the
physically realistic Quantum Boltzmann équation (1.2). This is due to the fact that the periodic case studied
here is highly non-generic, as well as to the fact that the spectrum of — Ax on TT3 is discrete. We mention
in this respect that the author proved recently in a joint work [7] that the correct Boltzmann équation (1.2)
can be recovered from the (damped) Von-Neumann équation on a periodic box [0; 2TTL]3 when we first perform
the infinite-volume limit L —>• oo. This first limit cancels indeed effects due to the periodicity and makes the
spectrum of — Ax become continuous. Thus, the present paper together with [7] show how the convergence
towards the Quantum-Boltzmann Equation (1.2) is deeply linked, amongst others, to the infinité volume limit.
From the physical point of view, we would like to mention that the possibility of getting a non-Markovian
Boltzmann équation by means of the Von-Neumann équation (1.1) in the limit V —» 0, t —> oo, as we do here,
was already pointed out in [33] (see also [13]), so that the lack of Markovianity of the limit ing équation (1.6)
derived in the present paper is somewhat not surprising (See Sect. 4).

Before ending this introduction, we would like to quote the works of F. Nier [24,25], where an équation
similar to (1.2) is rigorously derived, using very different arguments than those of the present article. Indeed,
the articles [24}25] heavily rely on arguments from the Semiclassical Analysis (h —» 0) and from the Scattering
Theory. More precisely, it is shown in [25] that the Schrödinger équation,

ihdMt, x) = - Ç A ^ + V{x)i> + £ Ui^^W , (1.7)

" c o n v e r g e s " i n t h e o n e d i m e n s i o n a l c a s e x G l t o w a r d s ,

dtf(t,x,v) + v dxf - dxV • dvf = ̂ 2S(x- xAQiWfaxjtv) , (1.8)
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as h —> 0, where the collision kernels Qj, describing the collisions with each center x3i act on the energy-shell
y2 — {yf)2, and are Markovian. Nevertheless, the model (1.8) appears to be time-reversible, contrary to (1.2).

Also, we would like to quote [10-12,28]. In all these références, the Schrödinger équation with a random
potential is shown to converge towards a time-irréversible, Markovian, Boltzmann équation, under different
appropriate scalings. In particular, in [12,28], rigorous results are given concerning the celebrated "Van Hove
limit" (see [29-32]), also called the "weak coupling limit". Hère the potential is scaled by À (V —> XV), À tends
to zero, and t goes to infinity with X2t = r being fixed. However, in these models, the assumption of a stochastic
potential allows to compute averaged quantities which behave quite differently from the deterministic quantities
involved in [24,25], in the present paper, or in [7]. We refer to Section 4 and to [7] for more considérations in
this direction.

Finally, we mention [20,22,23], for the mathematical analysis of the semiconductor Boltzmann équations like
(1.2), as well as for various related problems. More références to related topics can be found in [6].

This paper is organized as follows: In Sections 2 and 3, we rescale (1.1) using a small parameter À > 0, and
we perform the rigorous limiting procedure À —)• 0. We recover a quantum Boltzmann équation like (1.6) in the
limit. Section 4 is therefore devoted to some physical and mathematical comments on the models (1.6) (the
rigorous limit obtained in the present paper) and on (1.2) (the physically realistic model). We prove in Section 5
several properties of our model (1.6), and we prove in particular that it satisfies the natural maximum principle:
if the initial data is non-negative, then the corresponding solution remains non-negative for all times, and this
important property makes (1.6) a "reasonable" kinetic model. We prove also in Section 5 that the model (1.6)
is time-reversible.

The main results of this paper are Theorems 1, 2, 5, 6.

2. A RESCALED VON-NEUMANN EQUATION

We consider the following rescaled Von-Neumann équation on the Torus T3 = M3/(2TTZ)3,

— A

p{t = 0) = exp(±^)/rr(exp(±^)),

or, in other words:

±JhLpx(t,x,y)+X{V{x)-V{y))px{t,x,y),
n2/2 -zn(x-y) x [fo^3 V^ -n2/2]~1 (2-2)

6 X [(ZIT) 2_^ e J Î
nez3

and /5A(£, X, y) E L2(T^ X Ty) is called the density matrix of the System. Hère À > 0 is a small parameter.
The initial data that we choose hère corresponds to a System which is initially at the thermodynamical

equilibrium for the free Hamiltonian — Ax/2. This important assumption is suggested by the physics, and we
refer to [5], or also [32]. We will consider in f act a generalization of this initial data below, and we refer to the
équations (2.8)-(2.9).

On the other hand, the scaling (2.1-2.2) corresponds to the Von-Neuman équation for large times (change
of variables t —> t/A), and for a small perturbation (the potential is ÀV). Again, this agrées with the usual
physical dérivation of (1.2), as briefly explained in the introduction. Moreover, it is in fact the only non-trivial
scaling for which the limit À —» 0 is not obvious, as it is clear from the computations below (see the proof of
Theorem 1).

Finally, we choose here to consider the Von-Neumann équation in a periodic box (i.e. we impose periodic
boundary conditions in (2.1)) since it agrées with the Born-Von Karmann approximation [9] in the limit where
the size of the box is great.
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We now write down équation (2.2) in the basis of the eigenfunctions etnx. In other words, we now perform
a Fourier transform on (2.2), and obtain therefore an équation on the coefficients,

/ px(t,x,y)e~™x e+i™dxdy).
x,y€T3

(2.3)

We shall need at this level the following fondamental assumptions for V(n) — ̂ V(n) = fJ3 V(x)éinxdx,

V{n)ell ( = 11(ZD), (2.4)

V(-n) = V(n)* , VneZ 3 ( V is real ). (2.5)

Now équations (2.2)-(2.3) give, for (n,p) e Z6,

2 2

V ( n , p ) ë Z 6 , i\atp
x{t,n,p) = ^-^-px(t,n,p) + \^2 [V(k)px(t,n- k,p) -V(-k)px(t,n,p - k)},

feez3

(2.6)

The initial data satisfles on the other hand, according to (2.1),

px(t = 0, n,p) - Cte e~n2
 x ( n = p). (2.7)

(x(" = p) = 1 iff n = p).
Before describing the limiting procedure, we first consider slightly more gênerai initial data than (2.7) above

(initial thermodynamical equilibrium).
We shall consider indeed two sets of assumptions. The first set [see (2.8, 2.9)] will be used in an essential

way in order to perform the limit À —ï 0. The second set [see (2.11)] is more related to physical considérations,
and it plays no particular role in the nier e limiting procedure. The second set of assumptions is discussed in
detail in Section 5 below.

To be more précise, we first generalize the assumption of initial thermodynamical equilibrium (2.7), and we
will consider an initial data satisfying the following conditions. The diagonal part satisfies, as À —> 0,

f px(t = 0,n,n)el2{Z3
n), . ,

\ px{t = 0,n,n)^p(t = 0,n,n) inl2(Z3
n),

 K >

and the non-diagonal part satisfies,

px(t - 0,n,p) X(n ÏP)^0 in £,p = l2{1Z
n x Z3

p). (2.9)

In fact, one of the main ideas leading from the Von-Neumann équation (1.1) to the Quantum Boltzmann équa-
tion (1.2) in the physical literature (see, e.g.y [14,15]), is the following: for a physical System which is initially
at thermodynamical equilibrium, the density matrix is purely diagonal at time t = 0. Therefore, one naturally
considers (at least formally) the non-diagonal part of the density matrix as a higher order perturbation of the
diagonal part, for all values of time. One recovers in this way a closed équation relating the diagonal éléments
p(t,n,n) only, at least in the higher order approximation, and this leads formally to (1.2). The mathematical
assumptions (2.8, 2.9) are therefore very natural.

In a second step, we now observe that the density matrix px(t = 0, x,y) (which we identify with its kernel)
has to be a hermitian, positive, and trace class operator on the Hilbert space L2(T^). This property is implied
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by the usual formalism of Quantum Mechanics, and we refer for instance to [9,18]. Again, this point will play
no particular rôle in performing the limit À •—> 0, and we will discuss the conséquences of this property in detail
only in Section 5 below. Nevertheless, it is equivalent to,

y

px(t = 0,x,y) = px(t = Oî2/,a0* (hermiticity),
G L2(T3

X) , ƒ T3 <j>{y) px(t = 0, x, y) 0(x)* > 0 (positivity), ( 2*10)

pA(t — 0, œ, x) < oo (trace class),

and we refer to [18] for a detailed discussion of this équivalence.
Now if we Fourier transform (2.10), we get the following informations on the coefficients px(t = 0,n,p),

px(t = 0,n,p) = px(t = 0,p, n)* (hermiticity),

V0(n) G l (Zn) j 2 ^(p) P (* ~ OÎ^ÎP) 0(n)* ^ 0 (positivity), l^-HJ

^ n e Z s pA(t = 0,n,n) < oo (trace class).

We would like to quote that the assumption px(t — 0,n,p) G l\v appears already in (2.8-2.9), so that the first
point in (2.11) could also be removed.

We emphasize also that we choose hère to work in an l2 framework, which is the natural physical setting when
considering the Von-Neumann équation. But the limiting procedure as described below (Theorems 1 and 2)
would work, without any modification, in an ls framework for any 1 < s < oo.

3. TAKING THE LIMIT A -±0

In this section we study the convergence of the solution px(t,n,p) to the Von-Neumann équation (2.6) as
À —> 0, under the smallness assumption on the non-diagonal part of pA(t,n,p) (2.8, 2.9).

More precisely, we show hère how one can recover a closed équation of Boltzmann type (3.11) [see also (3.13)]
involving only the diagonal coefficients / ( t ,n) , the limit of pA(t,n,n) as À —y 0. We show also that the limit
p(tj n,p) of px(t, n^p) as A —> 0 (for n ^ p) is supported on the set n2 = p2, which indicates that the transitions
can only occur between two eigenstates having the same energy (degenerated eigenstates).

We now corne to the details.
With the assumptions (2.4, 2.8, 2.9), it is straightforward that, for any À > 0, there exists a unique global

solution pA(i,n,p) to (2.6),

Now, following the usual dérivation of (1.2) [5], we décompose the séquence pA(t, n,p) into its diagonal and
non-diagonal parts, at each time t, and we define,

fX(tyn}p)=px(tJn:n)X(n = p) e C * ^ ) , (3.2)

gx{t,n,p) =pA(t ,n,p) x (n ̂  v) e Q 1 ^ ) . (3.3)

We emphasize the fact that we will identify in what follows the séquence fx(t,n7p) G l\v with a séquence
/A(t, n) depending on a single variable.
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We readily observe that the séquence gx is complex valued, while the séquence ƒA is real valued (we will even
prove in Section 5 below that it takes only non-negative values). Indeed, since the initial data px(t = 0,n,p) is
hermitian (2.11) and becaube of the property V(—n) — Vr(ri)* [cf. (2.5)], it i& ùtiaightforward to check that,

V(t,n,p) , pA(t,n,p) = pA(t,p,n)*, (3.4)

so that,

fx{t,n) 6R, (3.5)

gx(t,n,p)=gx(t,p,n)*. (3.6)

We are now ready to perform the limit À —>• 0 in (2.6). For that purpose, we introducé hère two operators which
play a central rôle in the sequel.

Définition and Lemma 1. We define the following operators acting on the functions u(t,n,p) G C°(Z^p):

a) Let T be given by,

[V(k) u(t,n-k,p) - V(-k) u{t,n,p~k)}. (3.7)

Then T acts continuously on C^(l^p), and it satisfies the estimate,

\\Tu\\llJt)<2\\V\\ii\H\llJt). (3.8)

b) Let K be given by,

(Ku)(t,n,p) = -i f x[n2=p2} J2 [^(*) <^n~k,p) - V(-k) u(s,n,p~k)] ds. (3.9)

Then K acts continuously on C t°(^p). More precisely, the following estimate holds truefor ail values of l G N*;

(2\t\\\V\\ii)1-1

{i- i)i se[-|t|,|*|]

In particular} the operator (ld — K)~l = Ylien^1 is well defined and continuous on C°(Z^)P) (here and in the
sequel, we write ld = identity).

The operator T appears explicitly in the right-hand side of (2.6), and that is the reason why we introducé
it here. Also, the operator K appears in a natural way when one wants to take the limit À —> 0 in (2.6). This
operator allows to describe the transitions of an électron between the different eigenstates (see Theorems 1
and 2).

Proof. The point a) is obvious. In order to prove b), we first write, thanks to (3.8) and from the définition
of if,

\\Ku\\llp<2\t\\\V\\ii s u p \\u(s)\\llp.
s€[-\t\t\t\]

Reiterating this estimate, we get (3.10). D
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With these notations and preliminary resuit s, we now show the following,

Theorem 1. (Convergence as A —» 0).
Let px{t = 0,rc,p) satisfy (2.8, 2.9, 2.11). Let px(t,n,p) he the unique solution to (2.6) with initial data px(t —
0,n,p). Then, the diagonal part fx(t,n) of px [See (3.2)] converges in the space C}{ï^) towards f(t,n) G M,
the solution to,

dtf(t,n) = _

— [T{la — K) iv/J(t, n, n), (3.11)

with initial data f(t — 0, n) ~ p(t = 0, n, n).
On the other hand, the non-diagonal part gx(t^nJp) of px(t1n,p) (See (3.3)) converges in the space C^(l^p

towards g given by,

i,p). (3.12)

The séquence g{t,n,p) is supported on the set n2 — p2, and it satisfies the hermiticity property, g{t^n,p) =•

Theorem 2. (Description of the limiting équation).
For each l E N*, the term [TKlf](t^n^n) appearing in the series on the right-hand side of (3.11) is given by the
following explicit formula,

[TKlf}(t,n,n) = -il+1 /
Jo

(+ _ _Qy-i
ds

(l - 1)!

x [ƒ (5, n + (1 - ei)fei + ••• + ( ! - ei)ki) - ƒ (s, n - exkx ah)] , (3.13)

w h e r e t h e s u m J2 - • - ^s e x t e n d e d t o all ( & i , . . . y k i ) G ( Z 3 ) ^ a n d ( e i , . . . , £ ; ) € { 0 , 1 } * s u c h t h a t ,

ki ^ 0 , A2 / 0 , . . . , h ^ 0,

(n - Êxfei - £2^2)2 = (n + (1 - ei)fci + (1 - £2)fe)2, (3.14)

(n - eifci eih)2 = (n + (1 - £i)fci H h (1 - £i)ki)2.

Remark. It is clear from Theorems 1 and 2 that the limiting équation (3.11) is a linear Boltzmann équation
with memory in time.

We now corne to the proof of Theorems 1 and 2.
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Proof of Theorem 1.
We start from (2.6), and we begin by writing the corresponding équations on gx and / A , according to the

décomposition (3.2 3.3). Wc have,

2 2
1 ^ ^ (t,n,p)J (3.15)

dtfx(t,n) = (Tgx)(t,n,n) , (3.16)

with initial data gx(t = 0}n,p) = o(l) in l^p, and fx(t = 0,n) = px(t = 0,n,n) -> p(t = 0,n,n) in l\p.
The useful point to notice is that the right-hand side of (3.16) involves the function gx only, thanks to the

equality,

(Tfx)(t,n,n) = V{n-p) [f(t,p) - f(t,n)]\n=p = 0 . (3.17)

This is the key observation that allows to get a closed équation on the diagonal coefficients ƒA in the limit
À —> 0, as described in Theorem 1.

We now solve separately équations (3.15) et (3.16). At first, Duhamel's formula gives in (3.15),

2 2

gx(t,n,p) = expH^^-f ] gx(t = 0,n,p) = +Œxf
x+iKxg

x, (3.18)

with the operator K\ given by,

- *)] {Tu)(s, n,p) ds , (3.19)

for u G Ct(lnyP)- We will prove below that K\ converges towards K (see (3.25)).
Now we rewrite équation (3.18) in the form,

2 2

gx = Kxf
x + Kxg

x + e x p H ^ ^ - * ) ^ = 0,n,p) . (3.20)

It is clear that the estimate (3.10) applies to K\ as well as K (the e1"' factor in (3.19) has modulus one), so
that we have the following estimate, uniform with respect to À, for ail I E N * ,

In particular, the operators K\ and (Id — K\)~x are well defined and uniformly continuons with respect to À
on C£(Z£jP). With this observation, (3.20) gives, thanks to the assumption gx(t = 0) = o(l) in Z^p,

gx = (Id - Kx)^Kxf
x + o(l) in C?(£ ip) . (3.22)

Therefore, gx is now an explicit function of ƒA, and inserting (3.22) into (3.16) gives the following équation on

dtƒ\t, n) = T{Id - Kx)-
lKxf

x + o(l) in Ct°(^p) . (3.23)

As desired, we now have a closed équation on fx [up to an o(l)].
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On the other hand, the Gronwall Lemma in équations (3.22) and (3.23) readily gives the following uniform
bounds,

ƒ gx is uniformly bounded in C$(llp) , ( ,
\ fx is uniformly bounded in C£(Z£)P) .

 K }

We prove below the following estimât e,

\\Kxu~Ku\\llp(t) < C\\\u(s,n,p)\\ci{iij , (3.25)

for ail u G Cl(l^p). This estimate shows that K\u converges to Ku in C°(Z2
)P), uniformly with respect to the

norm of u in Cl{l^p). Obviously, this estimate, together with (3.24), allows to pass to the limit in (3.22-3.23)
andto get (3.11-3.12).

It remains to prove (3.25). We first observe, using (3.7),

ds . (3.26)

We let v(t, n,p) = Y2k^o • • • » an<^ observe in an obvions way that v G C£(Z^ p), with \\v\\c*{i2 ) ^
Therefore, we estimate using an intégration by parts,

\Kxu - Ku\(t, n,p) = | f e - ' ^ * * - ) v(s, n,p) ds - f x(n
2 =

= | f e

2lA / o , O\ r / . ̂ P

<CX \\v\\ci{iij, (because |(n2 - p2)X{n2 ? p2}\ > 1),

from which (3.25) follows, and the pro of of (3.11-3.12) is complete.
It remains to observe that the solution ƒ to (3.11) is in fact real valued. A first possibility is given by the

observation that ƒA itself is real-vahied, and we conclude by taking the limit X —> 0. One might worry that
this first method does not indicate which simple algebraic properties of the operator K imply that ƒ remains
real-valued for all values of time. Therefore, we also mention that ƒ* satisnes the same équation (3.11) than ƒ
with the same initial data, which gives the result using the uniqueness of the solution. To observe this, one has
to make a repeated use of the property V{—n) — V"(n)*, and of the corresponding symmetries for the operator
K. This point of view has the advantage that it makes a précise use of all the symmetries of the problem, and
in particular it explains the central role of the coefficient —i in the définition of the operator K [cf. (3.9)]. The
fact that g is hermitian is obtained in the same manner. We do not give details on this point, and we refer to
Section 5 (see Theorem 5) for detailed calculât ions in this spirit. •
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Proof of Theorem 2. We have,

(Ku)(t,n,p) = - i l x[n2=P2} [^V(k) u(s,n-k,p)-V(-k) u(s,n,p-k)] ds .

In order to simplify the présentation, we introducé here the two operators A and B, given by the following
formulae,

(Au)(£,n,p) = / ti(s,n,p) ds ,
Jo

(Bu)(t,n,p) = -%x[n2 =i

It is clear from these définitions that the operator K admits the décomposition K = AB = BA (A and B
obviously commute).

Hence,

TKl

(T and A commute), so that the identity,

(Azu)(t,n,p)= /
" 1 ) 1

u(s,n,p) ds ,

gives the factor (t — s)1 1/(l — 1)! in Theorem 2. On the other hand, we easily get the following equality, using
the commutation properties of T and B,

(TBu)(t,n,p) = -i J2 W(n " k)2 =^ ^ W {Tu){t,n- k,p)

-X[n2 = (P-k)2} V(-k) (Tu)(tyn,p-k)] . (3.28)

We can therefore reiterate formula (3.28) in order to compute the explicit value of TBlu in terms of Tu in
(3.27). We obtain,

[TBlu](t, n,p) = il J2(-iri+'"+£l V(fci) • V(k2)... V{h)

x (Tu)(s, n - exkx ehkup+ (1 - e-f)^ + • • • + (1 - ei)h), (3.29)

where the sum ][)••• is as in Theorem 2. Using now the obvious identity,

in (3.27) and (3.29), gives Theorem 2. D

4. SOME COMMENTS ON THE LIMITING EQUATION

Now it seems interesting to comment on the resuit obtained in the previous section. We have proved that
the solution fx to (2.6) converges to ƒ, where ƒ solves (3.11). On the other hand, the physical dérivation as
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briefly described in the introduction leads to write down the following Boltzmann équation [see (1.2-1.5) - hère,
Ee = 0,1>n(x)=emx,neZ%

)-f{t,n)]. (4.1)

In order to compare the two models, we write down the explicit value of the fîrst two terms in the series
appearing on the right-hand side of (3.11):

dtf(t,n) = [TKf](t,n) + iTK2f}(t,n) + ...

It is indeed clear from Theorem 2 that this series involves at each order l £ N a collisional operator describing
the transitions between the eigenstates n — e\k\ — - — —eiki and n H- (1 — e\)k\ + • • • + (1 — ei)ki of the électron.
Moreover, these eigenstates should have the same energy, thanks to the equality (n — €\k\ — • • - — sih)2 =
(n + (1 — €i)ki + • - • + (1 — Ei)ki)2 (cf. Theorem 2). Therefore, we want to compare the sum of collisional
operators in (3.11) with the single collisional operator appearing in the physically realistic équation (4.1).

The first collisional term (corresponding to l — 1) on the right-hand side of (3.11) is,

[TKf]{t, n) = 2 f ] T x[n2 = (n - k)2} \V(k)\2 [/(s, n - k) - f (s, n)} ds, (4.2)
JQ Mo

and the second term (l = 2) is,

[TK2f}(t,n)=i f ( t ~ s ) Y l [t>i + b2 + b3 + b4}(s,n,k,kf)ds, (4.3)
^ ° fc, fe' ^ 0

where b\ describes the transition betwccn thc eigenstates n and n k fc;,

6 i ( « , n , Jfe, k ' ) = X [ ( n - k ' ) 2 = n 2 } x [ ( n - k - k 1 ) 2 = n2]

V ( k ) V ( k f ) V ( - k - kf) [f(s, n ) - f (s, n ~ k - k')} . (4.4)

The terms &25 • • • > &4 &re of the same kind.
Therefore, in the collisional operators themselves (that is, if we forget about the intégrais in time and concen-

trate on the sums in the &, n, . . . , variables), we observe that the scaling that we present hère allows to describe
the transitions of the électrons between the different eigenstates, due to the perturbing potential V. Moreover,
the first term [TKf](t,n) appearing in (3.11) is exactly the right-hand side of the physical équation (4.1), up
to the 2?r factor. Therefore, if we concentrate on the higher order term (in V) of the collisional operator on the
right-hand side of (3.11), the transitions are described according to the Fermi Golden Rule (1.5), up to the 2TT
factor.

Now the main drawback of équation (3.11) is clearly its non-local nature (in time). In other words, (3.11)
describes a non-Markovian collisional process, contrary to what is expected. Moreover, it is proved in section 5
that the memory terms are also precisely responsible for the time-reversibility of équation (3.11) (See Theorem
6) contrary to the time-irreversibility of the physical model (4.1).

Besides, it is proved in [12,28] (see also [10,11]) that the Schrödinger équation with a random potential
V = XVQ, converges in the weak coupling limit À —> 0, t -> oo, X2t = r being fixed, towards a linear, Markovian,
irréversible, Boltzmann équation like (4.1). Also, it is proved in [7] that the "damped" Von-Neumann équation
on the periodic box [0, 2?rL]3 converges equally towards a linear, Markovian, irréversible, Boltzmann équation
like (4.1) in the infinité volume limit L —> oo and for a small "damping". (We refer to the articles quoted for
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précise statements). It is therefore natural to look at the connections between these previous results and the
present model.

In fact, it is clear from the mathematical point of view that the weak coupling limit with a random potential
has deep différences in structure from the present deterministic approach. One of the key ingrédients in [12,28]
(it is also very transparent in [10]) is a fine study of the order of growth or decay (in À) of iterated kernels
like K\ above [see (3.19)], in cases where the variables n, p, ..., become continuous. In these works, both the
fact that the variables n, p, ..., vary in the whole space IR3, and the stochastic nature of the équations (which
allows to consider averages over the possible events), lead to gain powers of the À variable in many places.
This phenomenon is of paramount importance, since it can not hold in the present deterministic, and discrete,
case. In particular, we would like to emphasize that the proof of our Theorem 1 relies essentially on a simple
application of the Riemann-Lebesgue Lemma [see (3.25)].

In the same vein, the convergence resuit established in [7] heavily relies on two ingrédients: due to a systematic
use of oscillatory intégrais, the fact that the variables n, p, ..., become continuous in the infinité volume limit
is a key argument in the above mentioned paper. In other words, the infinité volume limit allows to cancel
effects which are spécifie to the periodic case, like the non-Markovianity appearing in the limiting équation
of the present paper. Also, in [7], since the potential V is chosen deterministic, the time-irreversibility of the
limiting Boltzmann équation appears as a conséquence of the damping that the authors introducé in the original
Von-Neumann équation.

These différences are the reasons why we are led both to a different scaling (t —> t/X instead of t —> i/A2),
and to a different (non-Markovian) limit in the present paper. All these considérations indicate that, in order
to recover a Markovian, irréversible limit in a deterministic framework, one should (at least) avoid the highly
non-generic case of the periodic Von-Neumann équation with given (deterministic) potential V (for example we
could look at the case of a disordered distribution of obstacles in the whole space M3). This last point clearly
agrées, amongst others, with the Born-Von Karmann approximation, according to which periodic boundary
conditions only make sense in the limit of a "large" periodic box.

On the more, Zwanzig already pointed out in a similar context that one can dérive an équation of Boltzmann
type still containing memory effects, and we refer to [33] (See also [13]) for a physical discussion of this point.
Roughly speaking, the Markovianity of the limiting model appears in these références as a conséquence of
certain physical assumptions (the weak coupling limit and the Markov approximation for the heat bath), and it
is a gênerai feature that the Markovianity of the quantum Boltzmann équation always dérives from additional
assumptions in the physical literature. We refer in particular to the celebrated Random Phase Approximation
[32]. (See [7]; see also [4,8] for considérations about the origin of Markovianity in the context of Fokker-Planck
équations.)

Before ending this section, we would like to mention an analogous problem in classical mechanics: it is well-
known that a random distribution of scatterers gives a linear transport équation in the Boltzmann-Grad limit,
while it was proved in [3] that a deterministic, periodic distribution does not yield such a transport équation in
the same limit.

All these observations indicate that the lack of Markovianity of (3.11) in the quantum framework considered
here, is somewhat not unexpected.

5. THE LIMITING ÉQUATION IS RÉVERSIBLE AND PRESERVES THE POSITIVE CÔNE

In this section, we are interested in the following natural question: let the initial data ƒ (t = 0, n) in (3.11) be
non-negative, is it possible to prove that, for all t > 0, the function ƒ (t, n) remains non-negative ( ƒ (£, n) > 0)? In
other words, can one show that a natural maximum principle holds for the Boltzmann équation (3.11) obtained
in the previous section?

We prove here that such a maximum principle holds indeed (cf. Theorem 5 below). This point relies on a
spécifie factorization Theorem (cf. Theorem 5) which allows to décompose at each time t the solution /(t ,n)
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to (3.11) as,

J2(tyn)\2, (5.1)

for some complex-valued functions </>m(£,n) E C}{ïfy and some weights jim > 0. The functions </>m(t,n) are
obtained by passing to the limit in a rescaled Schrödinger équation which is naturally associated to (2.6) (cf.
Theorems 4 and 5 below). This factorization resuit implies that (3.11) is time réversible (Theorem 6).

In fact, before proving that the solution /(£,n) to (3.11) remains non-negative, we will first prove that the
coefficients px(tyn,n) themselves (where px is the solution to (2.6)) remain non-negative (before we take the
limit À -> 0).

At this level, assumption (2.11) plays a crucial rôle. We recall that, according to (2.11), the initial data
px(t ~ 0) in (2.6) has to be hermitian, positive, and trace class, and this point has not been really exploited in
the previous section.

Indeed, the Theorems we prove in this section ail rely more or less on the following fundament al argument:
Let px(t = 0,n,p) G l^p be hermitian, positive, and trace class as in (2.11). We consider from now on

px(t = 0,n,p) as a compact, hermitian and trace class operator on j£. This operator associâtes with a given
function <f>(n) G 1% the function,

(px(t = 0) • 4>){n) :

The standard theory of compact operators allows then to factorize px(t = 0) under the form,

p\t = 0,n,p) = J > i ^ ( * = °'n) ^ ( * = 0>P)*> (5-3)

where the weights /x^ (m G N) are the eigenvalues of the operator px(t = 0) (defined by (5.2)), and the family
if>m(t = 0, n) (m e N) is an orthonormal basis of l\, the ipm(t — 0) being the eigenvectors of px(t = 0).

Once px(t = 0) is decomposed as in (5.3), it is clear from this formula that px(t = 0) is hermitian. The fact
that px(t = 0) is positive and trace class translates into,

We are now ready to give the theorems of this section.

Theorem 3. Let px(t — 0,n,p) G l^p be hermitian, positive, and trace class as in (2.11). We consider its
naturni factorization as in (5.3-5.4)- Let px(t,n}p) be the solution to (2.6) with initial data px(t = 0). Let also
ip^t^n) G Cl(ln) be the unique solution to the following rescaled Schrödinger équation,

^ n - Â ; ) , (5-5)

with initial data ^^{t — 0,n). Then} we have the following identity,

Vt € M , p\t,n,p) = Y^ A&V>m(*.n) ^(*,p)*- (5-6)
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In particular, the operator pA(t,n,p) remains hermitian, positive and trace class for ail values o f tinte.

We also have the following theorem describing the limit À —?• 0 in (5.5),

Theorem 4. Let ipx(t = 0,n) E l^. Let ipx(t,n) G C*(Z )̂ be the unique solution to (5.5) with initial data
ipx(t = 0,n). Assume ipx(t = 0,n) —>• ijj(t = 0,n) in l^ . Let also </>A(£,n) = exp(i^-t) ipx(t,n). Then, we
have the following convergence,

where (j)(tyn) satisfies,

{ dt<f>{t, n) = -i Efce^3 V(k) x{n2 = (n- k)2) 0(t, n - fe),
(5.7)

4>{t = 0, n) = ^(t = 0, n).

In the spirit of the factorization formula (5.6) which holds for all À > 0, we state the following factorization
theorem in the case À = 0. We would like to emphasize the fact that, while formula (5.6) above (case À > 0) is
standard, formula (5.8) (case À = 0) below is quite surprising. In particular, a proof of this latter identity by
means of direct computations is far from obvious, as it is clear from the proof given below.

Theorem 5, With the notations and assumptions of Theorem 1, let p(t — 0,n,p) G l\v be given by

p(t = 0,n,p) = /(£ = 0,n) %(n = p).

We define, as in (5.3-5.4), ^ e natural factorization of p(t = 0)?

p(t - 0,n,p) = Y^ Vernit = 0, Tl) ̂ m{t = O,;?)*,
m<EN

where Hm > 0, /im G l^, ipm(t = 0,n) G l\} and the functions ^m ( t = 0,n) form an orthonormal basis of l\.
Let <f>m{t,n) G Cl{l^) be the unique solution to (5.7) with initial data iprn(t = 0, n). Then, we have the following
factorization formula,

In particular, we have,

f f(t>n) > 0 (maximum principle) , , „,
\ g(t,n,p) =g(t,p,n)* .

Theorem 5 indicates that a natural density matrix p(t) is associated with the solution f(t,n) to (3.11), namely,

p{t,n,p) = ^2 A t m ^ m ^ n ^ ^ p ) , (5.10)

and it is clear from Theorems 1 and 5 that the knowledge of the function ƒ allows to reconstruct the full matrix
p (p does not contain more information than ƒ).

Using this, the theorem below states the time-reversibility of the équation (3.11),



344 F. CASTELLA

Theorem 6. With the notations and assumptions of Theorem 5, we define the density matrix p(t,n,p)
by (5.10). Then, for any non-linear function F, we have,

Tr(F[p(t)}) = Tr(F[p(t = 0)]) = £ F(»m).

In particular, the entropy S(t) — Tr[p(t)lnp(t)} of the solution to the system (3.11-3.12), is constant with
respect to time.

The rest of this section is devoted to the proof of these theorems.

Proof of Theorem 3. The proof is standard, and it relies on the following simple observation: if ^^(t, n) satis-
fies the Schrödinger équation (5.5), then the function SmeN^m ^m(^n) ^mi^P)* automatically satisfies the
Von-Neumann équation (2.6), with the same initial data. We conclude by using uniqueness. ü

Proof of Theorem 4- The proof follows essentially the same arguments as the proof of Theorem 1 above
(see Sect. 3).

We observe indeed that the function <fix(t,n) = exp(i~^t) vpx(t,n) belongs to Ct
x(Z^), and it satisfies the

following équation,

dt(j>
X{t,n) = - i V V(k) exp(in ~ (n ~ fe) t)(j)X(t,n- k). (5.11)

Integrating (5.11) with respect to time gives therefore,

<£A(i,n) = VA(t = 0,n) - i Y" / V"(fc) exp(i ^ ~ j s)4>A(s^ - jfe) ds^

which implies the estimate,

UX\\il(t)<\\V\\il ! II4>Xhiis) ds, (5.12)

so that <j)x is uniformly bounded in
On the other hand, and as in (3.25), we easily prove the following estimate, which holds for ail u(t, n) G C£

a(^),

X[n2 = (n - k)2)]u(s,n - k) <fe||t,

/ ein2'^"fs
 X(n2 / (n - k)2) u(s,n- k) ds\\pn

<C\\\u\\cHll),

(5.13)

thanks to an intégration by parts. From this, we easily deduce Theorem 4. D

Proof of Theorem 5. We can prove in fact Theorem 5 using two different methods.
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The first method uses the limit ing procedure A —» 0. For that purpose, we observe the following identity,
thanks to Theorem 3,

fx(t,n) = £ Mm |^(i,n)|2 = Y, Mm|^(t,n)|2, (5.14)

where the weights fj,mi ipm(t — 0, n) are defined as in the statement of Theorem 5, i/j^t^n) satisfies the
Schrödinger équation (5.5) (cf Theorem 3), and </> (̂£,n) = exp(àg^) ^ ( £ , n), as in Theorem 4. This identity
is exactly formula (5.6) in Theorem 3.

Taking the limit on both sides of (5.14), and using the convergence results of Theorems 1 and 4, gives the
resuit. The same method applies for the function gx.

The drawback of this first method is that it only uses the case A > 0 to prove a resuit at the level A = 0,
and never the limiting équation (3.11). This is unsatisfactory for our purpose. This is the reason why we do
not give the details.

Our second method makes the algebraic properties of the quantum Boltzmann équation (3.11) more trans-
parent. We define, using the notations of Theorem 4,

*n)l2
 ( 5 J 5 )

and we now aim at proving the identities ƒ = ƒ, g = g. This is achieved by observing that ƒ, g on the one
hand, and ƒ, g on the other hand, satisfy the same differential équations with the same initial data.

First, it is clear from the définitions that we have f(t = 0) = f(t = 0), and g(t = 0) = g(t = 0) (= 0).
Our second step is therefore to find a simple differential System satisfied by ƒ(£), g(t). For that purpose,

we need do perform some computations on these functions. Indeed, using the équations satisfied by ƒ and g
(Theorem 1), and using also the définition of the operators T and K in Lemma 1, we readily obtain,

dtf{t,n) = [Tg]{t7n,n)J

g(t,n,p) =

so that,

On the other hand, it is clear from the définition of g and of the operator K (cf Lemma 1 and Theorem 1)
that the séquence #(£,n,p) (for fixed values of time) is entirely supported on the set n2 = p2, which implies that
g = ^[n2 = p2]g. We obtain in this way,

'*
ds /_̂ V"(fc) g(s,n — k7p) — V(—k) g(s,n,p — k)

! = (n - k)2} g(s, n-k,p)- V(-k) x\p2 = (p - k)2} g(s, n,p~ k)] ds

(because the contribution when k = 0 vanishes, and thanks to the property on the support of g)

:=[if*5](*,n,p),
(5.17)

where formula (5.17) serves as the définition of the operator K*.
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We obtain also in the same way,

[Tg]{t,n,n) = -i ^V(k) g{t,n- fc,n) -V{-k) g(t,n,n- h)

ln* = (« - k?) [V(k) 9& n - A;, n) - V(-fc) <?(*, n, n - k)]

,71), (5.18)

where formula (5.18) serves as the définition of the operator T*.
Using (5.17) and (5.18), (5.16) gives therefore,

f dtf(t,n) = [T*g}(t,n,n),
\ g(t,n,p) = {Kf}(t,n,p)+[K*g}(t,n,p), ^

which is the simple differential System for ƒ and g.
We now establish that the functions ƒ, g satisfy the same System (5.19). We first write, thanks to (5.7),

dj(t,n) = dt^2 !im\4>{t,n)\2

[{dt(j>m){t,n)<f>(t,n)* + <f>(t,n){dt<j>m)(t,n)*}

V{k) X(n2 = (n - fe)2)

fcez3

-F(-fe) X(n2 = (n - fc)2) g(n,n- k)).

This last equality uses the définition of g and the fact that the contribution vanishes when k = 0. Thus,
by (5.18),

,n). (5.20)

Then we have, using the same computations,

dtg(t,n,p) = -i^2V(k)Xln2 = (n-k)

-V(-k) x\p2 = (P - A;)2] (X; A^^W^m(p - *)*]

^(n - p) [f(t,p) ~ f{t, n)}

x[n2 = (n- k)2} g(t,n- k,p)

-V(-k) x\p2 - (P - /c)2] â(*,».P - *)• (5-21)

The last identity is obtained by considering separately the cases n~ k = p and p — k — n in the sum over the k
variable.
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Integrating (5.21) between 0 and £, using the initial data g(t = 0) = 0, and inserting the définition of X, K*y

we obtain,

g{tyn,p) - [Kf](t,n,p) + [K*g](t,n,p). (5.22)

This, together with (5.19) and (5.20), proves that ƒ = ƒ, and g = g, and the proof of Theorem 5 is complete. D

Proof of Theorem 6. Using the notations of Theorem 5, let p(i,n,p) = E m e N ^ ^ ^ ' 7 1 ) ^ ^ ^ ) * Also,
given the initial value </>m(t = 0,n) G Z2, we define the functions

7/^(£,n) G C^iï^) and </> (̂£,n) = exp[m t/2X]ip^l(tjn) E C^{1^)

according to the notations of Theorems 3 and 4.
With these notations, it is clear that the density matrix,

is the unique solution to the rescaled Von-Neumann équation (2.6) with initial data px (t — 0, n, p) = p(t = 0, n, p)
(=ƒ(* = 0) ™) x[n = p])- I n particular, the entropy of the System before letting À —> 0 is,

Sx(t) = Tr[pA(t) In / (*)] .

Now writing,

— . n 2 - ü 2 ., , , . x , x ̂ y . ,
9 \ JT7TIv1') 'v/^rm v>r/5

we obtain, in view of Theorems 3, 4 and 5, that px converges in Ct°(Z2
p) towards the density matrix p(£,n,p).

Indeed, Theorem 4 ensures that the terms px(t,nip) for which n2 = p2 have the correct behaviour, and another
use of the Riemann-Lebesgue Lemma ensures that the part of px for which n2 ^ p2 tends strongly to 0. In fact
this convergence clearly holds in Cf (£^.(Z2)), where £+(Z2) dénotes the subspace of Z2

 p consisting of Hilbert-
Schmidt, positive, and trace class operators acting on Z2. Therefore, the entropy of the system (3*11-3.12) as À
vanishes has to be defined as,

S(i)=Tr[p(t)lnp(t)]. (5.24)

It remains to compute this quantity.
It is clear from the définition of (j>m(t = 0,n) that we have the following orthogonality property initially,

<f>m(t = 0 , n ) ^ / ( t = 0,n) = x(m = mf). (5.25)

Now, using équation (5.7), we easily see that the orthogonality in Z2 of the </>m's is preserved through time
évolution, since we have, using V*(k) = V(—fe),

Hence in the décomposition, p{t,n,p) = 5Zm€NMm<^m(*)^)0m(*)P)) the <^m's are eigenvectors of the operator p
(see 5.2) forming an orthonormal basis of Z2, and the /xm's are the eigenvalues of p. Hence, for any non-linear
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function F, we have,

F{p)

F. CASTELLA

as an operator acting on Z2, and we get,

Tr(F{p(t))) = £ FM = Tr(F(p(t = 0))).

In particular, the time-reversibility is proved. Ü
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the present paper. Also, the author expresses his gratitude to Prof. D. Calecki for numerous discussions on the topic
of "master équations". Finally, the author would like to thank Prof. B. Perthame for pointing out to his attention the
topic of the Quantum Boltzmann équation.

NOTE ADDED IN PROOF

We would like to mention the following fact. Equation (3.11) reads dtf = Yli TKlf. If we only keep track
of the leading order term (in V) in this équation, we obtain:

dtf « TKf ,

with TK given by (3.13) or more explicitly (4.2). Up to differentiating this last équation once in the time
variable, we observe that ƒ(£) has an oscillating behaviour in this simplified case. This is typical for the
discrete-spectrum case, and this phenomenon is known under the name of Rabi oscillations. We refer to the
book "Processus d'interaction entre photons et atomes" ("Savoirs actuels", CNRS Editions, EDP Sciences,
1988) by C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. This observation partly explains the lack of
reversibility of our limiting model (3.11) (with the full expansion on the r.h.s). Our Theorem 6 says indeed
essentially that the lack of reversibility, which obviously holds for the simplified model above, also holds for the
fully expanded model (3.11). On the other hand, the present paper also indicates that, unfortunately, there is
no natural rescaling in time and potential (rescaling t like t/ea for some a > 0 and V like eV) leading from the
fully expanded model (3.11) to the truncated model above. Indeed, the only non-trivial rescaling corresponds
to a — 1, and it leaves (3.11) invariant. In some sense, this means that the 'right' cross-section in the present
(naive) case is rather the cross-section given by the full expansion (3.11) than its leading order term given
in (4.2).
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