
ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

ALFREDO BERMÚDEZ

RODOLFO RODRÍGUEZ
Finite element analysis of sloshing and hydroelastic
vibrations under gravity
ESAIM: Modélisation mathématique et analyse numérique, tome 33, no 2 (1999),
p. 305-327
<http://www.numdam.org/item?id=M2AN_1999__33_2_305_0>

© SMAI, EDP Sciences, 1999, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1999__33_2_305_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Mathematical Modelling and Numerical Analysis M2AN, Vol 33, N° 2, 1999, p 305-327
Modélisation Mathématique et Analyse Numérique

FINITE ELEMENT ANALYSIS OF SLOSHING AND HYDROELASTIC
VIBRATIONS UNDER GRAVITY

ALFREDO BERMÜDEZ1 AND RODOLFO RODRIGUEZ2

Abstract. This paper deals with a fimte element method to solve fluid-structure interaction problems
More precisely it concerns the numerical computation of harmonie hydroelastic vibrations under gravity
It is based on a displacement formulation for both the fiuid and the sohd Gravity effect s are mcluded
on the free surface of the fluid as well as on the hquid-solid interface The pressure of the fluid is used as
a variable for the theoretical analysis leadmg to a well posed mixed lmear eigenvalue problem Lowest
order triangular Raviart-Thomas éléments are used for the fluid and classical piecewise lmear éléments
for the sohd Transmission conditions at the fluid-sohd interface are taken mto account m a weak
sense yieldmg a non conformmg discretization The method does not present spunous or circulation
modes for nonzero frequencies Convergence is proved and optimal error estimâtes are given Fmally,
numerical results are shown

Resumé. Cet article concerne une méthode d'éléments finis pour la résolution de problèmes d'mtérac-
tion d'un fluide avec une structure Plus précisément il s'agit de calculer les vibrations hydroélastiques
harmoniques sous gravite La methode est basée sur une formulation en déplacements à la fois pour le
solide et le fluide Les effets de gravité sont inclus sur la surface libre du fluide et sur l'interphase entre
le fluide et le solide La pression dans le fluide est utilisée comme variable pour l'analyse théorique
de la méthode ce qui conduit à un problème mixte aux valeurs propres bien posé L'élément trian-
gulaire de Raviart-Thomas du plus bas degré est utilisé pour discretiser le fluide , pour le solide on
utilise des éléments finis linéaires par morceaux classiques La condition de transmission cinématique
à l'mterphase est prise en compte de façon faible ce qui donne une discrétisation non conforme La
méthode ne produit pas des modes parasites rotationnels pour des fréquences non nulles On démontre
aussi la convergence et des estimations d'erreur qui sont optimales Finalement, quelques résultats
numériques sont présentés
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1. INTRODUCTION

Increasing attention has recently been paid to problems involving fluid-structure interactions. For a survey of
current results see [10,17] and the références therein. In this paper, we are concerned with hydroelastic vibrations
under gravity- We consider as a model problem a 2D elastic vessel partially filled by an incompressible or nearly
incompressible fluid (typically a liquid) with an open or f ree boundary. Gravity effect s are considered by using
the Tong model on the fluid-solid interface (see [21]) and a classical first order approximation of the kinetic
condition on the free interface of the fluid.

Under the usual assumptions leading to linear problems, the évolution of the coupled System is governed
by second order in time linear équations. Their solution can be written in terms of the corresponding free
vibration modes which are eigenfunctions of a linear eigenvalue problem (see for instance [7]). The hydroelastic
problem has been dealt with in previous papers by using different primai variables for fluid and solid: typically
displacements for the structure, and velocity [19], velocity potential [2,6] or displacement potential [7,17] for
the fluid. We have used displacement variables for both, fluid and solid; to provide a theoretical analysis, the
pressure in the fluid has also been used as a variable.

As it is well known, spurious modes appear when a displacement formulation is discretized by using classical
Lagrangian finite éléments (see [5,15]). Such spurious modes are approximations of pure rotational motions
of the fluid not inducing vibrations on the structure, which are zero frequency eigenmodes of the continuons
problem. Therefore, when the discrete problem does not have zero as an eigenfrequency with a corresponding
eigenspace approximating this set of rotational motions, spurious eigenmodes arise with non zero frequencies
placed among those of the relevant ones.

In [3] a finite element method which does not present spurious modes is introduced for the case of a com-
pressible fluid. It consists of using piecewise linear éléments for the solid and Raviart-Thomas éléments of lowest
order for the fluid, the coupling of both being of non conforming type. Such discretization yields a sparse linear
symmetrie eigenvalue problem. In [4] it is shown that this method can be adapted to deal with incompressible
fluids too.

In the present paper the previous results are extended to the case where gravity effects are taken into account:
we give simiiar theorems concerning convergence and error estimâtes, and show that spurious modes do not arise,
but using a different approach to that in the above mentioned références. ïndeed^the approach in those papers
could be extended to take into account the new terms in the variational formulation and the free boundary,
however it would only allow to prove non optimal order error estimâtes. Instead, we present an alternative
analysis leading to optimal orders of convergence. Furthermore, it allows to consider more complex geometries.
In particular, the case of fluid domains with interior angles of 2TT is now covered. Thus the method can be used
to simulate the effect of very thin baffle-plates which are included in some liquid reservoirs to avoid excessive
sloshing.

Finallvj we discuss implementation issues and present a numerical experiment showing the effectiveness of
the method. We compute the sloshing and the elastic modes of an elastic vessel containing a liquid with a free
boundary and estimate in both cases the orders of convergence.

2. THE MODEL PROBLEM

We consider the problem of determining the vibration modes of a linear elastic structure containing an
inviscid fluid. Our model problem consists of a 2D polygonal vessel filled with a fluid with an open boundary
as that in Figure 1.

Let fip and Os be the domains occupied by the fluid and the solid, respectively, which are not supposed to
be convex or simply connected; even interior angles of 2ir are allowed. Let us dénote by Fp the boundary of
the fluid domain and by v its unit normal vector pointing outwards Op. This boundary is split into two parts:
the interface between the solid and the fluid Fr and the open boundary of the fluid F o . On the other hand,
the solid boundary is the union of three parts: the interface F n FD and FN; the structure is supposed to be
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n

FIGURE 1. Fluid and solid domains.

fixed along FD (meas FD > 0 is assumed for simplicity) and free of stress along FN. Finally n dénotes the unit
outward normal vector along FN.

Throughout this paper we use the standard notation for Sobolev spaces, norms and seminorms. We also
dénote fT(div,fiF) := {u G L2(ÜF)2 : divu G L2(ÜF)} and ||u||^(diVïnp) := ||u||*a(np)3 + || divu|£2 ( n p ) . We
dénote by C a generic constant not necessarily the same at each occurrence.

We use the following notations for the physical magnitudes in the fluid:
u: the displacement vector,
p: the pressure,
pF: the density,
c: the acoustic speed,

and in the solid:
v: the displacement vector,
ps: the density,
As and /j,3: the Lamé coefficients,
e(v): the strain tensor defined by e^(v) := | ( | ^ + §^) , ij - 1,2,
<x(v): the stress tensor, which we assume is related to the strains by Hooke's law:

= As = 1,2.

Gravity forces produce displacements in the solid v° and prestresses <r° := <r(v°). We are interested in small
amplitude motions departing from this prestressed equilibrium state. The classical linearization procedure yields
the following approximate expression for the first Piola-Kirchofï stress tensor 6 (see Chapter 6 of [17] or [16]):

0 = Vv<7° + aijkleki(y),

where v is the displacement field with respect to the prestressed equilibrium state.
In gênerai, the second term on the right-hand side of the expression above may be neglected when compared

with the third one. Indeed, a0 is of the order of {psgLs +p°), with Ls a typical length of the structure and
p° the static pressure exerted by the fluid; this pressure is in its turn of the order of pTgLT, with LF a typical
depth of the fluid domain. In real problems the Lamé coefficients are very much larger than pFgLF and psgLs,
allowing to neglect VV<T°, what will be done in the rest of the paper.

We notice that the term V v j 0 can be very important in some other situations, mostly related to slender
or thin structures where reduced dimension models are used instead of the standard linear elasticity équations.
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Let us mention, for instance, the vibrations of an inflated rubber tire. However these cases are beyond the scope
of the present paper and they will not be considered.

The classical linearization procedure yields the foilowing eigenvalue problem for the vibration modes of the
coupled System and their corresponding frequencies u) (see, for instance, [17]).

Find <JJ > 0, u : flF ->• R2, v : J7S -> K2 and p : QF -> R, (u, v,p) ^ (0,0,0), such that:

(2.1)

(2.2)

(2.3)
(2.4)
(2.5)
(2.6)
(2.7)
(2.8)

The coupling between the fluid and the structure is taken into account by équations (2.4) and (2.5) (in the
latter k := (0,1) dénotes the unit vertical vector). The first one means that fluid and solid are in contact at the
interface. The second one relates normal stresses of the solid on the interface with the pressure into the fluid
and gravity effects. Foilowing Tong [21], the latter are modelled by the term in the right hand side of (2.5).

The problem with a perfectly incompressible fluid can be thought of as the limit case of the previous one as
c goes to infinity. In this case (2.2) could be replaced by the simpler condition divu = 0. In order to deal with
both cases in a same framework we consider —^ = 0 for an incompressible fluid (Len c = oo). Thus (2.2) also
makes sense in this case. All what follows in this paper is valid for c = oo as well as for finit e values of c.

3. VARIATION AL FORMULATION

A similar problem was considered in [4], but for a closed vessel completely filled with fluid and neglecting
the gravity effects. In this section we extend the results in that référence to cover our problem. To this goal,
we introducé the functional spaces Q := L2(QF), H := L2(QF)2 x L2(Q$)2 and

r/__ _ - \ r~ TJT(r\\-* {"} \ \ / EJ~1 ((~\ \ 2 _ , r~ r 2 / P \ 1 /Q "1 \
• — ï l U« V I \z ±J. \ CUV. o iiF I ?\ JCl "p I l i c l . W ' 1/ ^ J_j \ i- 17 J r i \ *J • -L J

D

where Hl (^s) is the subspace of fonctions in iJ1(Qs) vanishing on FD. We dénote by || • || the natural norm
D

on X:
r -| 1/2

Let V be defined by

V := {(u, v) e X : u • v = v • i/, on F j ;

V is a closed subspace of X and, in this space, the norm (3.2) is equivalent to

1 /9

• ( 3 - 3 )

Finally, we dénote by | • | the 1? norm on H or on Q, as corresponds.
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It is easy to check that the following is a mixed variational formulation of the eigenvalue problem (2.1-2.8):

Find X E K, (u,v,p) £ V x Q, (u, v,p) ^ (0,0,0), such that:

/ <T(V) : s(t/?) + / pFgn • v(j> • vdT + / pF<?k - vv • vif) • vdT — p div0
Jns i r o Jrx ^nF

A )6V , (3.4)

pg = 0, V g e Q , (3.5)

where À = a;2 and <r(v) : £(t/?) := Yl% j=i 2 crû'(v)£:^(V7) dénotes the usual inner product in the space of second
order tensors.

From now on, we make the following assumption which is always fulnlled in real problems, as it is shown in
the remark below:

Assumption 1. There exists a positive constant a such that

/ o-(v) : e(v) + / p F < / k - i / ( v i / ) 2 d r > a f |Vv|2, Vv G H£ (fis). (3.6)
Jns Jv1 Jns

 D

Remark 3.1. The previous assumption is readily satisfied in real situations. Indeed, from Korn's inequality
we have that

/ o-(v) : e(v) > 7 / |Vv|2, Vv€JTi (Ils)2,/

with a positive constant 7 of the order of the Lamé coefficients As and fis. On the other hand,

<pFgC f |Vv|2, V V G ^ (tts)2,
Jn$ D

with a constant C coming from the Trace Theorem and Poincaré's inequality; this constant is of the order of a
typical length L of the solid domain. In real problems, the Lamé coefficients are very much larger than psgL
allowing (3.6) to hold.

Let us now consider the following continuons bilinear forms:

a ((u, v), (</>, VO) := / cr(v) : e(ip) + ƒ pFgu-v> <j> • v dT

b ((u, v), q) := - q div u, (u, v) G X,

and the subspace of V

W:={(u,v) G V : 6((u,v),g) = 0, Vg€Q}-{(u îV) GV : d ivu-0} .
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The following lemma shows that the bilinear forms a and b satisfy both classical Brezzi's conditions:

Lemma 3.1. The bilinear forms a and b satisfy:

ij a is coercive on W ;
%i) there exists a strictly positive constant (3 such that

inf
(u,v)GV

Proof. The coerciveness of a in W is an immédiate conséquence of Assumption 1 and the f act that the norm
|| • || in V is equivalent to that in (3.3).

On the other hand, to prove the inf-sup condition (ii) it is enough to show that, for all q G Q = L 2 ( ^ F ) ,

there exists (u, v) G V satisfying

dïvu = q inflF and ||(u, v)|| < C \q\. (3.7)

This can be shown by adapting the proof of Lemma 3.1 in [4] to our case. In fact, let ft := (fis UÖF)°; let
q G L2(Q) be the extension of q obtained by defining

l"s| Jnf
 q
nF

Therefore, q G LQ(U) := {q G L2(Q) : jQq = 0}. Since div is an isomorphism of a subspace of [i?o(f2)] onto

Ll(n) (see [12]), then there exists w e [H£(Ü)]2 such that

= <? in Ü and ||w||[jffi(n)]2 < C \\q\\L*(si)>

^with G independent of q. Let u :— w\nF and v := w|ng ;^ience7^u, v) € V and, since u • u — 0 on F o , it clearly
satisfles (3.7). G

As a conséquence of this lemma (see, for instance, [8]), given (f, g) E H, there exists a unique solution
(u, v,p) G V x Q of the mixed source problem

a((u, v), (0, ip)) + &((0, *l>),p) = d((f, g), (</>, */0), V(0, ̂ ) G V, (3.9)

6((u, v), g) - - ^ / OT = 0, VQ G Q (3.10)

and, moreover,

)|, (3.11)

with a constant C independent of the acoustic speed c (even for c = oo).
Let us dénote by T the operator defined by

T : H —> V c H
(f,g) H-> (u,v)

with (u, v,p) being the solution of (3.9-3.10); because of (3.11), T is a bounded linear operator. Since the
bilinear forms a and d are symmetrie, T is self-adjoint with respect to d. Hence ail of its eigenvalues are real
and it is easily checked that they are non négative.
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On the other hand, (À, (u,v)) is an eigenpair of T if and only if there exists p G L2(OF) such that
(*• — l,(u, v,p)) is a solution of (3.4-3.5). Therefore, the knowledge of the spectrum of T gives complete
information about the bolutionb of our original problem.

4. C H A R A C T E R I Z A T I O N OF THE SPECTRUM AND A PRIORI ESTIMATES

Given any function u G #(div, fiF) wit h divu = 0 and u • u ~ 0, (u, 0, 0) G V x Q is an eigenfunction of
problem (3.4)-(3.5) associât ed wit h the eigenvalue À = 0. Equivalently, À = 1 is an eigenvalue of T and it is
shown below that

K := {(u,0) : u G if(div,fîF)> divu = 0 in 0 F and u • is = 0 on FF}

is the corresponding eigenspace. The following characterization (see [12]),

K = {(curl£,O) : £ G Jff
1(lîF) and £ is constant on each connected component of FF} ,

shows that this eigenspace consists of rotational motions of the fluid inducing neither vibrations in the solid nor
variations of pressure.

Theorem 4.1. À = 1 is an eigenvalue ofT with eigenspace K.

Proof. It is a simple variation of that of Theorem 3.1 in [4]. In fact, for ail (u, 0) G K, clearly T(u, 0) = (u, 0).
Conversely, let (u, v) G V such that T(u, v) = (u, v); then,

f f f f
I 0"(v) '. £\ip) ~h / pFgu • is <f) • is dY -\- I pFg k • is~v - is ip - is dV — ƒ p div </> = 0, ^(0> VO ^ ^ ?

t / sZg f / i „ *-T t/Sip

f 1 f
— I q div u / pq = 0, \fq G Q.

Hence, divu = ~~^P in S7F and then, by using (</>, VO = (u ;v) m the first équation,

/ cr(v) : e(v) + / pFg(u • is)2 dT + f pFgk - is(v is)2 dT + ^ [ p2 = 0.
«/fis ^ro Jrx P F C Jr2F

Therefore, because of Assumption 1, and the fact that v vanishes on FD, we have that v = 0 in Os- Moreover,
u • is = 0 on FP and, in the compressible case, p = 0. Then, in both cases, u satisfies divu = 0 in f£F and
u • is — 0 on FF, and hence (u, v) G K. D

Because of the previous theorem, T is the identity on the infinité dimensional subspace K; therefore T is not
compact. However, as we show below, the restriction of T to the orthogonal complement of K is compact and
this can be used to characterize the spectrum of T.

The orthogonal complement of K in H is given by (see [12]):

K X H = {(V<p, v) G H : ip G Hl(ÇlF), v G L2(OS)2} .

Since pF is constant on QF, K and K X H are also orthogonal with respect to the bilinear form d. Now K c V ;
let G dénote the orthogonal complement of K in V. It is easy to check that G := Kxv = K X H n V and that
K and G are also orthogonal with respect to d. Hence we have the following lemma and, as a conséquence of
it, G is an invariant subspace for T.

Lemma 4.1. It holds that T ( K X H ) C G.
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Proof. Since by Theorem 4.1, K is an invariant subspace for T, the lemma is an immédiate conséquence of the
orthogonality of K and K X H with respect to d and the self-adjointness of T with respect to this inner product.

D
On the other hand, we have the following a priori estimate for T ( K X H ) :

Lemma 4.2. There exist constants s G [|, l] and C > 0 (not depending on c) such that if (u, v,p) G V x Q is
the solution of problem (3.9)-(3.10) with (f, g) G KXH ; then u G #S(HF)2

; u • u G Hl/2(TO), p G if^fip) and

Proof. Let (f, g) G K^H and let (u, v,p) G V x Q b e the solution of problem (3.9-3.10). By using <j> G CO°(ÜF)2

and -0 = 0 in (3.9), it turns out that

Hence p G H1^?) and, because of (3.11),

On the other hand, by using (f) G C°°(ÙF)2 such that supp(</>) Pi TI ~ 0 and ift = 0, integrating by parts and
using (4.1), we obtain

Hence, pFg u • u = p on Fo and so

Now, because of Lemma 4.1, (u, v) G G and then there exists (p G H1 (ftp) such that u = Vip. Since u • u = v • i/
on Fj and, because of (3.10), divu = ^2Pi then y> is a solution of the compatible Neumann problem:

-A(f = -p, in fiF,

o" PF9

^ = v . i / , onlV

By using the standard a priori estimate for this Neumann problem (see, for instance, [13]) we know that
(p G i2"1+s(f£F), where 5 = 1 if f2p is convex, and s = TT/9 (0 being the biggest reentrant corner of fip) otherwise;
moreover,

' J 1 n

çC|(f,g)|, (4.4)

where we have used (3.11) and (4.2) for the last inequality (Fj, 1 < j < J, dénote the edges of the polygonal
interface FJ . Notice that the last constant C can be chosen independently of the value of c, for c bounded
below away from zero. Thus, (4.2), (4.3) and (4.4) allow us to conclude the lemma. O

Now we can give a complete characterization of the eigenpairs of T and hence of the solutions of (3.4-3.5).
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Theorem 4.2. Except for X = 0, the spectrum of T consiste of the eigenvalue X = 1 and a séquence of
ftnite mulüphcity eigenvalues {Xn : n G IN} C (0,1) converging to 0. K is the eigenspace of X = 1 and each
etgenfunction (un .vn) associaïed with an eigenvalue Xn G (0,1) satisfies curltin = 0.

Proof It is an immédiate conséquence of Theorem 4.1, Lemmas 4.1 and 4.2 and the fact that, for s > 0,
Hs(ftF)2 x H1^)2 is compactly embedded in H. D

In order to prove error estimâtes for the discretization to be introduced in the next section, further regularity
of the eigenfunctions associated with Àn G (0,1) is needed. Lemma 4.2 provides such regularity for the Huid
displacements and the following Lemma for the solid ones.

Lemma 4.3. There exist constants t G (0,1] and C > 0 such that if (u, v,p) e V x Q is the solution of problem
(3.9)-(3.10) with (f,g) G K ^ H , then v e iJ1+t(fts)

2 and

Proof For any rj> G H^(Q$)2 let 0 G iJ(div,QF) be such that (0 ,^) G V. Then, by using (3.9) and (4.1),
we obtain

f < T ( V ) : Ê ( ^ ) + f W k . i / v i / ^ . i / d T + / psv-t/>= f

Hence, v is the solution (in the sense of distributions) of the following elasticity problem:

- div [<r(v)] -h psv = psg, in Qs,
o-(y)v = (— p + PFgk -w- I/)I/, onFI5

cr(v)n = 0, onFN,
v = 0, onFD.

Therefore, according to [13], we know that v G iï1+t(£ls)2, with t G (0,1] depending on the reentrant corners
3, on the angles between FN, FD and F i ; and on the Lamé coefficients Às and /xs, and

<C

concluding the lemma. D

Finally, further regularity can be proved for the eigenfunctions of our problem:

Theorem 4.3. Let (u, v) be an eigenfunction of T associated with an eigenvalue X G (0,1). Let p G Q be
such that (u, v,p) is the correspondmg eigenfunction of (3.4)-(3.5). Then u G HS(QF)2, U • v G H1/2+s(Yo),
v G # 1 + t (^s ) 2 , V (

with s and t as m Lemmas 4..2 and 4>3, respectwely, and C not depending on c.

Proof Since À / 1, because of Theorem 4.2, (u,v) G G. Now, (u, v,p) is the solution of problem (3.9-
3.10) with (f, g) = | (u ,v) G G C K X H . Therefore, Lemmas 4.2 and 4.3 apply. Moreover, because of (4.4),
Vp+pFu = ApPu; so,p G iJ1+s(r2p) with ||P||H1+S(£7P) ^ C Ku? v)l- Finally, as shown in the proof of Lemma 4.2,
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u • v = j^V on F o ; hence u • v G üf1 /2 + s(ro) and ||u • Hlnva+^r ) < C | ( U ) V ) | J allowing to conclude the
theorem. G

5. FlNITE ELEMENT DISCRETIZATION

In the previous section it was shown that T | G is compact, but a standard discretization of G would require to
use finite element spaces of irrotational functions. To avoid it, we will deal with the non compact operator T|v
instead. This operator has an infinité dimensional eigenspace K consisting of pure rotational motions with no
physical entity. However, any suitable numerical approximation should take care of them; otherwise, spurious
modes would appear.

In [3] a discretization which does not present spurious modes is introduced for the case of a compressible
fluid, but neglecting the gravity effects. An extension to incompressible fluids has been made in [4], where
error estimâtes independent of the acoustic speed have been obtained. The same discretization can be used in
our case.

Let {Th} be a family of regular triangulations of ÜF U Os such that every triangle is completely contained
either in fip or in ft$ and such that the end points of FD, FN, Fx and Fo coincide with nodes of the triangulation.

For each component of the displacements in the solid we use the standard piecewise linear finite element
space

Lh(Qs) ~ {v G H^Üs) : v\T G 7>i(T), VT € Th, T C Üs}
and, for the fluid, the Raviart-Thomas space [20]

Rh(ÜF) := {u G ff (div, fïF) : u|T G 7^(r) , VT e Th, T C

where
7ZÖ(T) := {u€ 'P i ( r ) 2 : u(x,y) = (a + 6x,c + 6y), a,6,cE

The discrete analogue of X is

The conforming finite element spaces V D X^ are not adequate for our problem (see [4]). Instead, we use the
following ones:

Vh := | ( u , v) € Xh : f (u v - v - v) dT = 0, W C F n l edge of T, T e Th\ -

Let us remark that, since V^ ^ V, our method is non conforming. Finally, for the pressures we use the space
of piecewise constant functions

Qh := {p G L2(nF) : p\T G V0{T), VT G T ^ T C ttF} .

Let Wh := {(u, v) G V^ : 6((u, v),g) = 0, Vg G Qh} = {(u, v) G V^ : divu = 0}. The lemma below shows
that the bilinear forms a and b satisfy both Brezzi's conditions on these finite element spaces.

Lemma 5.1. The bilinear forms a and b satisfy:

ij a is coercive on W ^ ;
%%) there exists (3 > 0 ; not depending on h} such that

i n f s u p
Q (u,v)eVh
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Proof. Since W^ <£_ V, the coerciveness of a on this space does not follow from Lemma 3.1. However, it is
enough to show that for all (u,v) G V^, ||u • v\\2

L2(r ) < ||v • ̂ | |^2/ r )- For this, since u • v is constant on each
edge £ C Fj, from the définition of V^ we have

where \t\ dénotes the lengt h of that edge.
To prove the inf-sup condition we are going to show that for all q G Qh there exists (u^, v^) G V^ satisfying

= ç in and ) vh)\\ < C \q\. (5.1)

Let (u, v) G V be defined as in the proof of Lemma 3.1. Since Qh C Q, then (u,v) satisfies (3.7). Let
Vh G Lh(fl$)2 be a Clement's interpolant of v, vanishing on FD U FN (see [9]); then

><C|gj ,

the last inequality because of (3.7).
Let co G M be such that the following Neumann problem is compatible:

Aip — q1 in Opj

— - vh-z/, on n

Hence,

on

(5.2)

(5.3)

(5.4)

(5.5)

o I \JaF

and then, because of (5.2),

\co\<C\q\. (5.6)

Let ^ b e a solution of problem (5.3-5.5). Because of the usual a priori estimate, cp e H1+S(QF), with s > 1/2
as in Lemma 4.2, and

<C \Q\
>) <C\q\, (5.7)

the last inequality being true because of (5.2), (5.6) and the fact that c0 is constant.
Let u/t G R^(OF) be the Raviart-Thomas interpolant of V99 (see [8]). Then, for each edge

= f^dT= [
Ji dv Jê

(5.8)

hence, (uh,Vfe) G V h .

On the other hand, for those edges £ C F o we have

(5.9)
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and then

EE l'l(|iï / Ê ^ ) ^K-*( r i ) + M2|ro|<C|9|2. (5.10)

Now, by the stability property of this interpolation,

^p) < C [||V^||^(nF)2 + ||div(V^)||L2(np)] < CM, (5.11)

and by the classical property of Raviart-Thomas interpolation, divu^, is the L2(QF) projection of div (Vip) = q
onto Qh\ hence, since q G Qh, then divu^ = q.

Finally, (5.2), (5.10) and (5.11) show that (u^, v^) satisfies the inequality in (5.1), which allows us to conclude
the lemma. •

Remark 5.1. The previous proof is valid provided F o ^ 0. However, for similar problems without a free
boundary of the fluid F o , the result is also true. In fact, the proof of Theorem 5.1 in [4] can be repeated in this
case and this, plus an additional inequality similar to (5.10) (needed to take care of the gravity effects), prove
the result.

Remark 5.2. If the fluid domains has an interior angle of 2?r, the constant 5 in (5.7) takes the limit value
s = 1/2 and then | ^ is not well defined as an L2(TT) function. However, the intégral Je -^ dT makes sense
as stated in Section III.3.3 of [8]. In fact, since Hs(nF) ^ L2^l~s\QF) and div (Vtp) € L2(ÜF)} it is easy
to check that these normal derivatives are well defined in the dual space [VF1~1/r'r(rp)] for r = j ^ € (1,2).

In this case, the intégral Ĵ  ̂  dT in équations (5.8) and (5.9) must be understood in the sense of the duality
pairing

with Xe being the characteristic function of the edge £ which is known to satisfy Xg ̂  W1~1^r'r(TF)1 for any
r e (1,2).

As a conséquence of Lemma 5.1, by applying the standard theory of mixed methods (see, for instance, [8])
we know that for any (f, g) G H, there exists a unique solution (u^, Vhyph) € V\ x Q^ of the discrete source
problem:

)eV f c , (5.12)

b((uh, vh), q)~-^ f phq = 0, Vq € Qh, (5.13)

and, moreover,

(5.14)

with a constant C independent of h and c (even for c = oo).
Now, we can define a discrete analogue of T: let T^ : H —> Vh be defined by T^(f,g) — (u^,v^), with

(uh, VhïPh) being the solution of (5.12)-(5.13); because of (5.14), the operators T^ are bounded uniformly on h
and c. In the following section we show that the spectra of these operators provide optimal order approximations
of the spectrum of T.
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6. SPECTRAL APPROXIMATION

In [4] and [18] the spectral approximation theory for noncompact operators from flll has been adapted to the
nonconforming case to obtain error estimâtes for other simpler fluid-structure vibration problems. This theory
can be extended to cover our problem, however it does not seem to provide optimal error estimâtes.

In fact, the theory in [18] yields error estimâtes for the computed eigenfunctions and eigenvalues in terms of
||(T - T\) |vJ | . In our case, it can be proved that ||(T - T \ ) | V J | < C7ir, but with r := min{|,£} instead of
r := min{s,£} as in [4] (s and t being the constants of Lemmas 4.2 and 4.3, respectively). Thus, such procedure
yields non optimal error estimâtes when t and s are both greater than 1/2.

On the other hand, the standard spectral theory for compact operators as stated in [1] (Section 7) cannot be
directly applied to our problem. In fact, T is not compact since it is the identity when restricted to the infinité
dimensional subspace K. However, as we show below, lim^^o || (T — T^) |K^H II = 0, and this can be exploited
to show that the spectrum and the eigenfunctions of T\ approximate those of T with optimal order.

Firstly, let us show that the discrete operators T^ have eigenspaces providing good approximations of the
infinité dimensional eigenspace K of T, and with exactly the same eigenvalue.

Theorem 6.1. À = 1 is an eigenvalue of Th with corresponding eigenspace K^ = K n V^.

Proof. The proof is omitted since it is essentially the same as that of Theorem 4.2 in [3]. •

Notice that the discrete eigenspace K/j, can also be written

Kh = {( curl£, 0) : £ G L^(Qp) and £ is constant on each connected component of Fp} ;

therefore, for any eigenfunction (curl£,0) G K there exist discrete eigenfunctions ( c u r l ^ , 0 ) G K^ such that
| (cur l^ ,0) — (curl£, 0)|| -^ 0 as h —» 0. In fact, this is for instance true if Çh £ L ^ H F ) is chosen as a
Clement's interpolant of £ preserving its constant boundary values on each connected component of FF (see [9]).

Secondly, let us show that smooth functions of V can be well approximated from V^. In [3] a V^-interpolant
operator 1̂  is introduced; it consists of the Lagrange interpolant of the solid displacements and the Raviart-
Thomas interpolant of the fluid displacements, the latter conveniently modified on the interface edges in order
to allow for I^(u, v) € Vh.

The same interpolation is useful in our case. In fact, for any r G (0,1) let V r dénote the subspace of V
defined by

V r :={(u,v) G V : U G Hr(QF)2, divu G tfr(ttF), u - u G Hr(To) and v G H1+r{Üs)
2}

and || * ||r the natural norm of this space; we have the following approximation resuit.

Lemma 6.1. There exists a linear operator 1̂  : V r —> Vh and a strictly positive constant C such that for all
(u,v)GVr;

\\(U,V) -Ih(u,v)\\ < Ch^Ku^Wr. (6.1)

Proof The arguments in Theorem 5.2 and Lemma 5.1 of [3] can be easiiy modified to prove that the interpolant
operator defined therein satisfy (6.1) with the norm || • || including the L2(FP) terms and for any r > 0. •

Now we are able to prove that || (T — Th) IKXH II converges to zero as h goes to zero, and with optimal order
when restricted to an eigenspace of T.

Lemma 6.2. There exists a strictly positive constant C, depending neither on h nor on c, such that for all
(f,g)eKxH
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with r := min{|,£}. Furthermore, if (f, g) (E K X H is an eigenfunction ofT then r := min{Sj£}. The constants
s G [|, l] and t € (0,1] are those of Lemmas 4.2 and 4-3} respectively.

Proof. Let (u, v) := T(f, g) and p E Q he such that (u, v,p) is the solution of the mixed problem (3.9)-(3.10).
Analogously, let (u^, v^) := T\(f, g) and ph G Qh such that (uhiVhyPh) is the solution of the discrete problem
(5.12)-(5.13). Since V^ is not a subspace of V, (u^Vh,,^) is a nonconforming finite element approximate
solution of (3.9)-(3.10); however, the standard theory can be easily adapted to cover this case.

Following the lines of [8] (Sections IL2.4 and II.2.6), by using that V^ and Qh satisfy both Brezzi's conditions
(Lemma 5.1), it is easy to show that

(u,v)-{uh,vh) -ph\ <C dist ((u,v),Vh) + dist

fl((u, v), , g),

with a constant C depending neither on c nor on h,
Now, for any (f, g) e K X H , by virtue of Lemmas 4.2 and 4.3 we have that

| |U|US(QP)2 -f ||u • ̂ ||i/i/2(ro) + |b||/fi(aF) + l|v||iïi+t(ns)3 < C\(ï% g)|

(with C independent of c), whereas if (f,g) is an eigenfunction of T, Theorem 4.3 provides further regularity
for u • v and p:

Therefore, we have

dist (p, Qh) < ChM < Ch\(f, g) (6.3)

in both cases and, since divu = -~^iP (because of (3.10)), by applying Lemma 6.1,

dist((u,v) ,Vh)<C/i r | ( f ,g) | , (6.4)

with r = min{|, t} for any (f, g) € K ^ , and r = min{s,t} if (f,g) E K X H is an eigenfunction of T.
The remaining consistency term in the right hand side of (6.2) can be bounded proceeding as in Lemma 5.7

of [3]; by so doing, we obtain for all (<£,V0 £ ^h

|a((u, v), (</>, g) dr (6.5)

Therefore, by replacing (6.3), (6.4) and (6.5) in (6.2), we obtain ||(T - Th)(f,g)|| = ||(u,v) - (uh,vh)\\ <
C/ir |(f,g)|, and conclude the lemma. •

Remark 6.1. As a byproduct of the proof of this Lemma (see (6.2)), the following error estimate for the
approximation of the pressure has been also proved:

\p-Ph\<Chr\(f,s)\, (6.6)

with r G (0,1] as in Lemma 6.2.
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Notice that since À = 1 is an eigenvalue of T with corresponding eigenspace K and G = K xv is an invariant
subspace of T, then <r(T|v) = {1} U cr(T|G).

Analogously, À = 1 is an eigenvalue of T\ with corresponding eigenspace K^ — Kn VV Let G^ dénote the
orthogonal complement of K^ in W It is easy to check that G h := K^ Vh = K X H n V^ and that G^ and K^
are also orthogonal with respect to the bilinear form d. Hence, since T^ is self-adjoint with respect to d} then
G^ is an invariant subspace of TV Thus we also have a(Th\\-h) = {1} U a(Th\Gh)-

We want to show that the spectrum and the eigenfunctions of T^ |G^ approximate those of T |G- For this, it is
convenient to define the operators T := T o P and T\ := T^ o Pfe, where P : H i—^ K X H and P^ : H i—> K.h

 H

are the H-orthogonal projections onto KXH and K^H, respectively. Then T | K = 0 and, since G C K X H 5

T | G = T|G . Analogously, fh\Kh = 0 and, since G^ C K^H, Th|Ghj= Th\Gh. Therefore, apart from A = 0 or
1, the corresponding spectra and eigenfunctions coïncide for T and T, as well as for T \ and TV Furthermore,
we have the following approximation resuit.

Lemma 6.3. There exists a strictly positive constant C} depending neither on h nor on c, such that for any
eigenfunction (f, g) of T corresponding to an eigenvalue À > 0

||(T-Th)(f,g)||<C7rKf.g)l,

where r := min{s,£}; with s G [|, l] and t G (0,1] as in Lemmas J^.2 and 4-3, respectively.

Proof. By the définitions of T and Th it holds that T|K_LH = T|K_LH and Th\ ±H = Th\ ±H. Hence, this

lemma is a direct conséquence of Lemma 6.2 and the fact that if À > 0, then (f,g) G K X H C K h
H . •

Finally, in order to use the spectral approximation theory in [1], we prove the convergence of Th to T in
norm.

Lemma 6.4. It holds that

s u p
(f,g)€H
()

Proof. Let (f, g) S H and consider its orthogonal décomposition

(f,g) =

with (V^,g) € K^H and (curl^,0) € K. Then

(6.7)

The first term in the right hand side of (6.7) can be bounded by using Lemma 6.2:

||(T - Th)(V^,g)|| < Cfcr|(VV,g)| < <W|(f,g)|, with r > 0. (6.8)

To deal with the second term we dénote

^0) = Th (P

Hence, there exists ph G Qh such that (u^, vh,ph) is the solution of the équations (5.12-5.13) with (f, g) in
(5.12) substituted by P^(curl£,0). In particular, by using (0,?/>) = (u^,v^) in (5.12) and q = ph 'm (5.13)
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we may write

On the other hand, since (5.13) implies that divUH = j^Vh, we know that

\\(uh,vh)\\
2 <C a((uh,vh),(ufc,vfc)) +

L PFC

even for c — oo because of Lemma 5.1 (i). All together, the last three équations show that

\\fh(cuTl^0)\\2<Cd(Ph(cuTl^0),(uh^h)). (6.9)

Now, since (uh,vh) e Gh C K^H and (curl£,0) G K,

d(Ph( curie, 0),(uhïvfc)) = d{(curli,O),(uh,vh)) (6.10)

= d(( curl e, 0), (uhi vfc) - (ü, v)),

for any (ü, v) G K^H . In particular, let us take (ü,v) := (Vx, v^), with \ ^ ^ 1 ( ^ F ) / ' ^ O being the solution of
the Neumann problem

A x = divuh, in QF,
| ^ = uh v, onTF.

Hence, there exists C € iJx(^p) such that (ü,v) — (V%, v^) = (curl^, 0) G K. On the other hand, because of
the usual a priori estimate, x ^ H3/2(iïF)/Vo and

h,vh)|| < C|Ph(curlÇ,0)| < C|(f,g)|,

where we have used (5.14) to bound IKu ,̂ Vfc)||. Thus, the arguments in the proof of Lemma 5.5 of [3] can be
repeated to prove that

| ( u h ) v h ) - ( ü , v ) | = ||curlC|U2(fip)2 < Ch^WVxWmm^) <Ch^\(f,E)\. (6.11)

Therefore, (6.9), (6.10) and (6.11) yield

which together with (6.7) and (6.8) allow us to conclude the lemma. •

As a conséquence of this lemma isolated parts of CT(T) are approximated by isolated parts of a(Th) (see [14]).) [ ] )
More preciseiy, for any eigenvalue A of T of finit e multiplicity m, there exist exact ly m eigenvalues Xh ... Â
of T \ (repeated according to their respective multiplicities) converging to A as h goes to zero. Furthermore,
no spurious modes can arise as it is typical with other discretizations of displacement formulations (see for
instance [15]). We state this result in the following theorem.

Theorem 6.2. Let I be a closed interval such that I n cr(T) = 0. There exists a strictly positive constant hj
such that if h < hj then I n c(Th) — 0-

From now on and until the end of this section, let A G (0,1) be a fixed eigenvalue of T of finite multiplicity m
and let E C G be its associâted eigenspace. Then A is also an eigenvalue of T with the same multiplicity and
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eigenspace. Let be the m eigenvalues of T\ converging to A and let E^ be the direct sum of the cor-

responding eigenspaces. For h small enough, all the \{
h
} are strictly positive and hence they are also eigenvalues

of T/i with the same associated eigenspaces; furthermore, E^ C G^.
So, by applying the spectral approximation theory for compact operators as stated in [1] (Theorem 7.1) to

Th and by using Lemma 6.3, we have the following error estimâtes.

Theorem 6.3. There exist a strictly positive constant C, independent of h and c, such that
i) for each (uh, vh) G Eh , dist ((uh,vh),E) < Chr\\{uhivh)\\,
ti) for each (u,v) G E ; dist ((u,v),Eh) < Chr\\(u, v)\\,

where dist dénotes the distance %n the norm || • || and r := min{s, t}, with s G [|, l] and t G (0,1] as m Lemmas
4-2 and 4-3, respectively.

Finally, regarding the eigenvalues, we prove the following theorem providing an optimal double order of
convergence.

Theorem 6.4. There exist a strictly positive constant C, independent of h and c, such that

X- \h

where r := min{s,t}, with s G [|, l] and t G (0,1] as in Lemmas 4-2 and 4-3, respectively,

Proof. It is easy to check that T and T\ are self adjoint in H with respect to the inner product d. Since by
Lemma 6.4 lim/j-̂ o |T — T/J = 0, then by specializing Theorem 7.3 of [1] to these operators we have that

sup sup d((T~T/l)(f,g),(f,g))+|(T-T/l)|s|
g)€E (fg)eE(fig)eE

for % = 1, • • • , m. Because of Lemma 6.3 we just need to estimate the first term in the right hand side of this
expression.

Let (f, g) and (f, g) in E and let

(u, v) := T(f, g) G G, (Û, 9) := T(f, g) G G,

Uh,vh) := lh(t,g) G i*hi (UhiVh) •— lft(t,gj G CJT .̂

Furthermore, let p,p G Q and Ph,Ph G Qh be the corresponding pressures associated by équations (3.9-3.10)
and (5.12)-(5.13), respectively. For the sake of notational simplicity we dénote:

A(U, Û) := a((u, v), (Û, 9)) + 6(p, (Û, 9)) + 6(p, (u, v)) - - \ f pp,
PFC JnF

F := (f,g,0), F := (f,g,0), D(U,F) := d((u,v), (î,g)).

So, we have to bound d ((T - Th)(f,g), (f,g)) = D(U - Uh,F).
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D(U - Uh, F) = A{U, U) - A(Uh,Uh)
= A(U -Uh,Ü- Uh) + A(U - Uh,Uh) - A(Uh,Û - Ûh)
= A(U -Uh,Û- Ûh) + [A(U,Ûh) - D(F, Ûh)] + [A(UH, Û) - D(Uh,F)] .

Since (f, g) and (f, g) are eigenfunctions of T belonging to K^H , the first term in the right hand side of this
équation is easily bounded by using Lemma 6.2 and the estimate (6.6) for the pressure:

The other two consistency terms are due to the nonconformity of the method and both can be handled identically
because of the symmetry of A and D. For instance, for the first one we have:

\A(U, Uh) - D(F, Uh)\ = a ((u, v), (Ûfc, vh)) + b(p, (Ûh, %)) - d ((f, g), (Ûh, vft)).

This expression coincides with the left hand side of (6.5) and can be dealt with in the same way to obtain:

) ,(û^vh)) = / p(uh-v-vh -
J

however, since (û^, v^) — T^(f, g), the estimate (6.5) can be improved by proceeding as in [18]. In fact, let P^
dénote the L2(FI)-projection onto the piecewise constant functions. Since (û^, v^) 6 V^, the discrete interface
condition implies that û^ u = P^(v^ • u) and hence

I ^vu« ^ [p

< \\P- Ph

Since (f,g) G E, according to Theorem 4.3, p G H1+S(ÜF), with s > 1/2, and
it holds

) < Ch\\p\\m{ri) <

On the other hand,

- vft

The first term in the right hand side of (6.15) is easily bounded by using Lemma 6.3:

| |(/ - Ph)(v • i/ - Vft • i/

(6.13)

<C|(f,g)l; hence,

(6.14)

^(r,)- (6-15)

(6.16)

For the second term notice that, because of Theorem 4.3, v € H1+t(üs)2, with t > 0, and
C |(f, g)|; hence, for f := min{l, t + 1/2}, it holds

\\(I - Ph)(v • v) (6.17)
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Finally, since r < f, (6.13-6.17) yield

323

/ p(nh • v - 5h • v) dT

which allows us to conclude the theorem. •

7. NUMERICAL EXPERIMENTS

We have applied the method analyzed above to the computation of the vibration modes of a 2D steel vessel
partially filled with water as that in Figure 1. We have used the following physical parameters for the steel:
density ps = 7.7 x 103kg/m3, Young modulus E = 1.44 x 10 n Pa and Poisson ratio v3 = 0.35 (the Lamé

ï a nd Ms —coefficients being As — ,1+|/ \ïi_2v
(c = oo) and with density pF = 103 kg/m3.

)- The water has been idealized as perfectly incompressible

0 500m

1 OOOm

0 125m

0 125m 1 OOOrn 0 125m

FIGURE 2. Steel vessel filled with water: geometrical data and initial mesh.

Figure 2 shows the geometrical data of the fluid and solid domains and the coarsest used mesh. To estimate
the order of convergence of the method, the vibration modes of this coupled problem have been computed using
several uniform refinements of this mesh. The refinement parameter N dénotes the number of layers of triangles
in the solid; the mesh in Figure 2 corresponds to N = 1.

The eigenvalue problem to be solved is the discrete version of problem (3.4-3.5) for c = oo:

FindXh e l , (uhivh,ph) eVhx Qk, (uh,vh,ph) ^ (0,0,0), such that:

o-(vh) :
Jrl

dT - / ph dr
*J Op

> (7.1)

E Qh. (7.2)
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TABLE 1. Computed eigenfrequencies (in rad/s) of the first sloshing modes.

Mode N = 2 N = 3 N = 4 Order

5.2946
7.7334
9.3491

5.3052
7.7877
9.4898

5.3090
7.8071
9.5414

1.99
1.94
1.87

Since divu^ G Qh, équation (7.2) implies that divu^, = 0 in Q-p. Hence, in view of the discrete inf-sup condition
of Lemma 5.1, the eigenvalue problem (7.1-7.2) is equivalent to the following one:

Find Xh e R, (uh,vh) G Wh, (uh,vh) ^ (0,0), such that:

/ o-(vfc) : e(ip) + / pFguh'is<j>-vdV + pFg\<L'vvh - vij) - vdT =

Xh([ Pvuh-4>+f p s v „ - A V(0,^)€Wh ï (7.3)
\JnF Jtïs /

where W/̂  = {(u, v) E V^ : divu = 0}, as defined in Section 5 above.
Now, since {u e R ^ ( ^ F ) - divu = 0} = {curl£ : £ 6 ^ (Qp)} , problem (7.3) can be seen as a piecewise

linear continuous discretization of a stream function formulation of the original problem. The interface condition

reads / -—- dT = I v • vdY for each edge £ C TI, where -—- stands for the tangential derivative of £, and we

impose it by means of a Lagrange multiplier (see [4] for details).

Two kind of eigenmodes can be fonnd by solving the eigenvalue problem (7.3):
• low frequency sloshing modes>
• hydroelastic vibration modes.

The first ones correspond to the gravity waves on the surface of the liquid, whereas the second ones are the
vibration modes of the elastic vessel modified by the interaction with the liquid.

In Table 1 we show the frequencies eu f of the three first sloshing modes (ie., those corresponding to the
three lowest eigenfrequecies) computed with different meshes. When the container is not rigid no exact solution
is known for this problem, but the orders of convergence for each eigenfrequency (in powers of h) have been
estimated by extrapolation; they are included in the last column of the table.

For a polygonal convex fluid domain as that in Figure 2, if the container were perfectly rigid, the order of
convergence would be exactly 2. Since for such low range of frequencies steel is almost rigid, the estimated orders
are also very close to 2. The rigidity of the steel for these sloshing modes can be observed in Figure 3 where
the corresponding computed fluid displacement fields are shown: it can be seen that their normal components
are practically null on the whole fluid-solid interface.

In Table 2 we show the computed frequencies ojf1 of the four lowest frequency hydroelastic vibration modes.
Once more no exact solution is known and the orders of convergence included in the table have been estimated
by extrapolation.

The orders of convergence are now significantly smaller than those of the sloshing modes. This is due to the
fact that the displacement fields corresponding to the vibration modes of the vessel have strong singularities at
the non convex angles of the solid domain. In fact, according to [13], constant t in Lemma 4.3 is approximately
0.68 for our problem. Hence, the order of convergence in that case should be 2t « 1.36.

Figures 4 to 7 show the deformed structure and the fluid displacement and pressure fields for these hydroelastic
vibration modes.
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Eigenfrequency: Eigenfrequency: Eigenfrequency:

»- -zzsttffi

FIGURE 3. Fluid displacement fields of the lowest frequency sloshing modes.

TABLE 2. Computed eigenfrequencies (in rad/s) of the first hydroelastic vibration modes.

Mode
, ,H
wl
, >H
iv2
UJ3

^4

7V = 2
627.8907
2014.4331
3487.2386
3803.7429

540.0423
1765.7687
3145.0289
3317.3062

7V-4
502.7057
1656.1781
2978.5786
3104.0943

Order
1.46
1.36
1.08
1.37

Fluid displacement field.

Deformed structure.

/

\

1
TT
â\1

1
!
1
iI\
i

Fluid pressure field.

FIGURE 4. Hydroelastic vibration mode of frequency LO^ .

8. CONCLUSIONS

We have intro duced a finit e element method able to solve hydroelasticity vibration problems without ne-
glecting gravity effect s. We have proved convergence and given optimal error estimâtes for eigenmodes and
eigenfrequencies. We have also proved that the method does not present spurious modes. The method can be
used for incompressible as well as nearly incompressible fluids, and the obtained error estimâtes are independent
of the acoustic speed.
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Fluid displacement field.

Deformed structure.

mx
Fluid pressure field.

FIGURE 5. Hydroelastic vibration mode of frequency co^.

Fluid displacement field.

Deformed structure.

fm
/ / i l i l

Fluid pressure field.

FIGURE 6. Hydroelastic vibration mode of frequency UJ^ .

The numerical results are in good agreement with the theoretical prédictions for both, sloshing and elastic
modes. Furthermore, the met ho d still converges when the fluid domain has large reentrant interior angles (even
of 2?r). Therefore it provides a tool to simulate the performance of thin baffle-plates in reducing sloshing in
liquid containers. The application of the method to this problem is to date under investigation.

The authors wish to thank Professor R. Ohayon for useful comment s and discussions.
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Fluid displacement field.

Deformed structure.

327

Fluid pressure field.

FIGURE 7. Hydroelastic vibration mode of frequency UJ^ .
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