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Modélisation Mathématique et Analyse Numérique

ON A PARALLEL IMPLEMENTATION OF THE MORTAR ELEMENT METHOD

GASSAV S. ABDOULAEV1, YVES ACHDOU2, YURI A. KUZNETSOV1

AND CHRISTOPHE PRUD'HOMME3

Abstract. We discuss a parallel împlementation of the domain décomposition method based on the
macro-hybrid formulation of a second order elhptic équation and on an approximation by the mortar
element method The discretization leads to an algebraic saddle-pomt problem An itérative method
with a block-diagonal preconditioner is used for solvmg the saddle-pomt problem A parallel împle-
mentation of the method is emphasized Fmally the results of numericaî experiments are presented

Résumé. Nous présentons ici un algorithme parallèle pour un problème elliptique du second ordre
en trois dimensions discrétisé par une méthode d'éléments finis avec joints Le problème est écrit sous
forme de point selle Nous utilisons une méthode itérative avec un préconditionneur diagonal par blocs
Après avoir décrit l'algorithme parallèle, nous présentons des tests numériques
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1. INTRODUCTION

Domain décomposition methods for solving the linear Systems arising from the approximations of elliptic
partial differential équations have been studied intensively by many researcher s, motivated by the need to
develop new algorithms for parallel computers.

In this paper, we deal with an algorithm for solving the linear Systems arising from the mortar method,
introduced by Bernardi, Maday and Patera [11]. The main feature of this method is that the continuity condition
at the interface of the subdomains is treated in a weak form, i.e. the jump of the finite element solution on the
interfaces should be L2-orthogonal to a well chosen finite element space on the interface. Thus, it allows us to
combine different approximations in different subdomains. In [11], it is shown that the approximation properties
of such a method are optimal in the sensé that the error is bounded by the sum of the sub domain-by-sub domain
approximation errors. In this paper, we focus our interest on the mortar finite element methods, which permits
in particular to choose the mesh independently in each subdomain. Therefore, it is possible to choose structured
grids in the subdomains. This will give an opportunity to take advantage of very efficient preconditioners

Keywords and phrases Domain décomposition, mortar finite element method, saddle-point problem, preconditioned itérative
method, parallel computing
1 Institute of Numerical Mathematics, Russian Academy of Sciences, UI Gubkma 8, GSP-1, Moscow, Russia
2 INSA Rennes, 20 avenue des Buttes de Coesmes, 35043 Rennes, France and CMAP, École Polytechnique, 91128 Palaiseau
Cedex, France e-mail yves. achdouOinsa-rennes. fr
3 ASCI, CNRS, Université Paris Sud, bâtiment 506, 91405 Orsay, France and INRIA Rocquencourt

© EDP Sciences, SMAI 1999



246 G.S. ABDOULAEV ET AL.

It is possible to write a hybrid formulation of the mortar method, by introducing a Lagrange multiplier for
the weak continuity constraint. The present paper is devoted to an itérative algorithm for the algebraic saddle
point problem coming from this formulation. Other algorithms for this kind of saddle point problems have been
studied in [3.16,24]. It is also possible to design algorithms for solving the Systems arising from the formulation
in the constrained space ie. without Lagrange multipliers. For the two dimensional case, such algorithms are
proposed in [5,6,13].

The efficiency of the itérative method to solve the algebraic System with a large-scaled matrix dépends
heavily on the preconditioner used. For the present system, we shall take the block diagonal preconditioner
designed by Kuznetsov [23], where all the blocks but one correspond to the subdomains, and one smaller block
corresponds to the interfaces. For building the blocks of the preconditioner corresponding to the subdomains,
the multilevel structure of the grid is used: indeed, the subdomain preconditioner is based on a multilevel
BPX-like method [12,19,27].

The blockwise structure of both the matrix and the preconditioner allows to parallelize emciently the matrix
multiplication and preconditioning procedures, the communication cost being very low compared to the cost of
computation.

The paper is divided int o four sections. In Section 2 the mortar finit e element approximation of a self-adjoint
elliptic équation in a 3D domain is considered. For the sake of simplicity the computational domain is assumed
to be a union of parallelepipeds, and Qi finite éléments on a uniform grid are used for each subdomain. In
Section 3 the itérative method for the saddle-point problem and the preconditioner are described. Next, some
remarks on parallel implementation aspects are given in Section 4. Finally, we present the results of numerical
experiments on the parallel computer Cray T3E. The algebraic optimality of the method, as well as the weak
dependence on the parameter c (see below), had been demonstrated numerically in the paper [1]. Recent results
on application of the mortar element method for solving the Navier-Stokes équations and the Helmholtz wave
équation can be found in [2].

2. THE MORTAR METHOD WÏTH LAGRANGE MULTIPLIERS

Let O be-a bounded domain of R3. We dénote its boundary by dft. We shall suppose that ft is a union of
m parallelepipeds fik'-

We shall suppose that the domain décomposition is geometrically conforming. It means that if jki = fi* D
fti (k ^ l) and jkl ¥" 0) then "fki can be either a common vertex of fîfc and fîj, or a common edge, or a common
face. In the last case we define Tki = Jki as the interface between fik and fij. Note that Tki = Tik-

We consider the Neumann boundary value problem, but all the considérations below can be extended to a
more gênerai case:

—Au + cu — f in O,

fü=O on du, (1)

dn

where c < 1 is a nonnegative constant, ƒ G L2{p) is a given function.
The usual weak formulation of (1) reads as follows:

Problem I. Find u G .ff1 (O) such that

f (VuVv + cuv)dx= f fvdx, \/v£Hl(tt). (2)
Ja Jo.
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on the interfaceLet us dénote by Hz(Tki) the trace space of one of the spaces Hl(Qk) or
can define two product spaces:

247

i- We

k=l Q<L<k

|iwo

The space A will be a trial space for the weak continuity conditions on the interfaces.
We introducé the bilinear forms a (u ,v ) : V x V —> M, 6(A,v) : A x 7 - ) 1 and the linear functional

ƒ (v) : V -» M:

a (u ,v ) = ajb(u,v)=

m m

cukvk) dx,

where Xki = — A^, and where (-, •) |rfci stands for the duality product between lH^(Tki)J and H^ÇT^) . The

bilinear form <!&(•,•) corresponds to the Neumann problem in the subdomain Q^ for the operator —A + cl.
Provided the solution is smooth enough, (2) can be rewritten in the equivalent macro-hybrid form [3,9]:

Problern II. Find ( U , A ) G F X À such that
a(u,v)+6(A,v) = / (v) ,

6(M,u) = 0, (3)
V(v,/z) e V x A.

For each subdomain 0^ we use a uniform tensor-product grid

= |J eh.

If e^ = [xi\x% -h /ia] x [Î/J;2/J + hy] x [^fc;^ + hz], then dénote /ie = max{/iXî ^ , /i^}, and define a grid size of
Çlkh as ftfc = maxehe7"fc /ie. Assume that there exist two positive constants c\ and C2, such that c\h < hk < c^h
for some positive h and for ail k. We define the subspace Vkh of £T1(Qfc) as the space of the Q\ finite éléments
[9] on the grid Qkh- Dénote Tkih the trace of Qkh on Tki and by Wfe^ the trace of the finite element space Vkh
on Tki' Let A*^ be a well chosen subspace [9] of one of the spaces Wkih or Wikh- The mortar finite element
problem in its hybrid formulation reads:

Problem III . Find (u^,A^) 6 Vh x A^ such that

a(uhjv)+b(\h>v) = /(v),
6(M,uh) - 0, (4)

with
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The approximation and convergence issues of the mortar element method were considered for example, in [8,10].
If ü and À dénote the vectors of the components of u/> and À̂  in the corresponding nodal bases, the discrete
problem is equivalent to the following saddle point System:

A = y s o

where
( M O \ IBT-

V o Am / v B l
and njt x n/c-matrices Ak correspond to the Neumann problem for each subdomain. The matrices Ak and
have the following block représentation:

AIk AITk \ D T ( 0

where index / stands for the components corresponding to the grid nodes which are inside flki &nd T — to the
nodes on dVtk.

3. ITÉRATIVE PROCEDURE AND PRECONDITIONER

In this section we give a brief description of the itérative method and the preconditioning algorithm, particu-
larly emphasizing the implementational aspects. Here we only state the spectral équivalence of the constructed
preconditioner to the matrix A, whereas the full proof can be found in [23].

Let B be a symmetrie and positive definite matrix. Suppose that eigenvalues of the spectral problem

Ax = vBx

belong to the union of the segments \à\\ cfe] U [̂ 3; dy, where d\ < c?2 < 0 < ^3 < d±. Then it is possible to
implement the generalized Lanczos method of minimal itérations [25] with the preconditioner B to solve the
saddle point problem Ax = y. The algorithm is given below:

3 = 1,
s = 2,

- 1 - &sPs-l ~ PsPs-2, S > 3,

Xa = XS~l —isVs, S > 1,
CS — Arp __ n, C "> f)

V^- , s > 2,

-
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The convergence rate for the method above can be estimated as follows:

\\es\\B-i<2qs\\e\\B-i,

K — 1 maxjd^, |di|}
K + V min{d3,|d2|}

If we take as a preconditioner the block diagonal matrix

Ru 0
0 Rx

where Ru is spectrally equivalent to A, Rx is spectrally equivalent to Sx ~ BA~1BT', and the corresponding
spectral bounds do not depend on h and on the coefficient c, then we can prove [21,23], that the itérative
method has a rate of convergence also independent on h and c. The proof is based on a simple observation
(Kuznetsov, 1990), that the eigenvalue problem

A BT \ f A 0
B 0 ) X ~ V \ 0

can have only three nontrivial solutions: (1 — V5)/2, 1, (1 + \/5)/2.
Now the problem is to construct Ru and R\, satisfying the requirements on the spectra and such that solving

Systems with the matrices Ru and R\ is inexpensive. It is natural to take Ru in the block-diagonal form

Ri 0 \

(6)

0 Rm )

with the blocks Rk spectrally equivalent to the matrices Ak. The preconditioners Rk are local in the sense that
each of them acts within a particular subdomain, and in gênerai may be chosen independently, whereas Rx acts
in the whole mortar space A&, and thus can be considered as globaL

o

Let Ak be a symmetrie positive semi-definite matrix, generated by the bilinear form

Ja,Jnk

and dénote M& the subdomain mass matrix, defined by the relation

(Mkukivk)= uhvhàx, uh,vheVkh.

o

Hence, we have Ak = Ak + cMk. Dénote also

Afc = A* + ^Mki (7)

where dk is a diameter of the subdomain Q,k. We assume that there exist positive constants <i, Ci, C^ such
that dd <dk < C2d for ail k.

Let Pk be the ^-orthogonal projector onto the kernel of Ak: ft = lk — Pk (Ik is the nk x nk identity
matrix), and let Hk be any symmetrie positive defmite matrix, spectrally equivalent to A^1. Then we define
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the preconditioner Rk as follows:

R~l = PkHkPk + ^ 3 Pk.

Estimâtes of the spectral bounds for this preconditioner can be found in [23].
The procedure of preconditioning 5A consiste of two stages: first, we construct some approximation 5A of

the matrix 5A, ie . a matrix spectrally equivalent to 5A such that the implementation of the product of a
vector by S\ is relatively cheap; second, we "invert" 5A roughiy by the generalized Chebyshev method with a
preconditioner R\. Let us remind that matrices Ak and Bk can be decomposed blockwise as in (5).

Note that Aih, is a symmetrie positive definite matrix. Hence, the matrix 5A can be written as

Then, we take 5A in the for m

m

fc=l

with the matrix Hrk7 spectrally equivalent to 5 ^ , constructed by
^ ^ i

Hrk = PrkHrkPrk H—T~7r2 r̂fc>

where Prfe is the /2-orthogonal projector onto the one-dimensional space spanned by the constant vector of
dimension npfc, npfc being the number of grid nodes on dÇlki and Ppfc = -̂ rfe ~ Prk* The preconditioner Hrk

must be spectrally equivalent to

1 . ,

where Mrk dénotes a nr^^x nrk matTix, associated wlth the bilinear form

vkuk ds,/
Jank

0 0 ^

and where Srk is the Schur complement of the matrix Ak- One of possible définitions of the matrix Hrk will
be given later in this section. Next, let us introducé an auxiliary matrix

which is derived from 5A by substituting Hrk by (l/hk)Irk {Irk ~ the nrk x nrk identity matrix) in the définition
of Hrk • Obviously, the matrix R\ can be rewritten as

To ensure that ak is positive, and hence, R\ is positive definite, we have to impose the condition hk < l/(cdk)
on the grid size hk- The last inequality is not very restrictive and holds true for many practical cases, for
instance, when c<Cl and dk = 0(1).
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Let Dx be a diagonal matrix, spectrally equivalent to 5ZfcLi(V^fe)^rfe^rv ^ ^ sm iPlest choice, which had
been implemented for numerical experiments, is Dx — hs Y?k=i ̂ rfe [23]; another possibility consists in utilizing
the niass lumping procedure for Bpk B^k. The matrix Rx is next defined as

m

Rx = Dx +^2akBrkPrkBrk' (9)
fc=i

As shown in [23], the eigenvalues of the problem S\w — JJLRX'W belong to the segment [70, jid/h], where 70, 71
are positive constants, independent on h, d, c. Practically, these spectrum bounds can be computed in advance
using, for example, the Lanczos algorithm [18].

Now we can finally define the preconditioner Rx:

1=1

-1

where lx is the nx x nx identity matrix, pi are the Chebyshev parameters [26], corresponding to the segment
[707 l\d/h\. The algorithm for solving the problem Rx^x = v is given by:

wl = w1'1 - faRï1 (Sxw^! - u) , l = 1,..., L,

Solving the System with the matrix Rx can be reduced to the factorization of a small matrix, its size being
equal to the number of subdomains. Indeed, let us consider the System

£A™ = v, (10)

with Rx, as defined in (9). Multiplying (10) with Pp^^D^1, we can easily transform it to the System (/m -h
T)w = v, where /m is the m y. m identity matrix (m - the number of subdomains), and entries of T, u>, v are
defined as follows:

uk = {Brkek,w):

vk = (D^B

efc = ^ - ( 1 , . .

k, l = l , . . . ,m.

The solution of (10) can be computed by w = D^1 (v ~ YA^I afcnrfc5rfcefcUJ/c). The System (Im + T)w = v
can be considered as a "coarse grid" problem, but hère the nodes of the "coarse grid" correspond to the whole
sub domains.

It is known [15,22], that the eigenvalues of the problem Sx w = fiRxw belong to the segment [1 — <$£,, 1 + ÖL],
where
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Simple calculations show that provided d is fixed, L = O ( / I D 1 / 2 ) preconditioned Chebyshev itérations are
sufficient to guarantee that

and hence,

Rx ~ SA-

To ensure the optimality of the preconditioner, we have to demand that both multiplication with Sx and
inversion of Rx have the arithmetical complexity of the order ofO(/i~5^2) at most. It is obviously the case for
Rxi which involves only computations on the interfaces. As for Sx, we should have an inexpensive preconditioner
Hvk for the boundary Schur complement matrix Srk • Construct ion of Hrk is based on the well known f act
that cor resp onding blocks of speet rally equivalent matrices are also speet rally equivalent with at least the same
spectrum bounds.

Let Hfç be a symmetrie positive defmite matrix, spectrally equivalent to the matrix A^1 defined in (7). The
matrices Hk and A^1 can be decomposed blockwise as in (5):

•J-J- f JLJL I , i l | | ' , 1 ,. " 1 f ^

)• * • (

where Srfc = Ark — AnkAI*Airk. Hence, Hrk ~ Sr^- As soon as we have the preconditioner Hkj the
matrix-vector multiplication procedure ^r —> Hrkvr can be implemented easily, namely

Here Q — (0 / p j isanjt x nrk matrix. Particularly, the choice of a multigrid preconditioner (BPX, multilevel
diagonal scaling [12,19,27]) for Hk proves to be very efficient. As it is shown in [19], the BPX preconditioning
procedure includes three main components: restriction of a grid function from the finer level grid to the coarser,
scaling (diagonal matrix multiplication) of the grid function on each level or direct solver on the coarsest level,
and interpolation (prolongation) from coarser grid to finer. The result of the restriction procedure applied
to the grid function with nonzero values only on the nodes on the boundary of a subdomain, is a (coarser)
grid function with nonzero values also only in the boundary nodes. Similarly, if we need the grid function to
be interpolated to the boundary grid nodes, then only the boundary node values of the coarser grid function
will be used. Thus we see that only those components of the grid function are involved in preconditioning
computations, which correspond to the grid nodes on the boundary of the subdomain or to the coarse grid
nodes. Hence, the arithmetical complexity of the action of matrix Hrkvr on a vector can be bounded from
above by const • (d/h)2 ln(d/h) opérations.

4. REMARKS ON THE PARALLEL IMPLEMENTATION

The parallelization of the algorithm described above is based on two very simple principles. First, we merge
the subdomains into clusters, each of them corresponding to a processor. Clearly, load balancing considérations
motivate such a clusterization procedure. Indeed, in some régions of the computational domain the grid may
be finer, but the décomposition of the original domain into subdomains may not follow the size of the grid cells.
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FIGURE 1. Domain décomposition.

It means that the number of the grid nodes can vary strongly in different subdomains. To ensure load
balancing we merge the sub domains wit h the coarser subgrids, making thus the number of grid nodes in each
cluster approximately equal. To illustrate the idea let us consider a décomposition of the unit cube into eight
equal cubes. If subgrids are the same in ail subdomains, then obviously the best choice is taking eight processors
with one subdomain per processor. Suppose that the grid in one subdomain is uniformly refined to produce a
twice finer mesh. Now there is no reason to use eight processors as the overall performance will be crucially
limited by the computations in the subdomain with the finer grid. For the particular case considered above, it is
sufTicient to use only two processors, merging the seven subdomains with coarse grids into one cluster. Besides,
clusterization turns to be very useful when the number of processors available is much less than the number
of subdomains, which is very often the case in practice, especially when debugging on machines with only a
few processors. For a given mesh, the load balancing/clustering process is achieved by a discrete optimization
algorithm, namely a genetic algorithm [17,20]. As shown in Section 5.1 the Computing time increases linearly
with the number of unknowns. Thus one possible discrete functional to minimize is the following one:

Nprocs

E (tf) -
i=0

(12)
Nprocs

describing the déviation to grid size equirepartition, where Nprocs is the number of processors and Si is the grid
size of the processor i.

Another feature of the parallel implementation considered here consists of duplicating the data at the in-
terfaces between subdomains belonging to different clusters. If Tki is such an interface, then the Lagrange
multiplier vector Xki is stored in both the processors treating fîjt and £V Although the data storage is increased
a little, we gain a significant réduction of the communications.
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B15

1)

FIGURE 2. Communications for B matrix multiplication.

As an example, consider the splitting of a unit square into four little squares, as in Figure 1, where the dash
rectangles dénote clusters and the bold segments correspond to mortar interfaces. Note that when neighbour
sub domains belong to different clusters, we have two copies of the mortar interface variables, stored in different
clusters. We enumerate the interfaces as shown in the picture. The matrix A has the following form:

A =

f Ai

0

# 1 5

# 1 6

0

^ °

A2

# 2 5

0

# 2 7

0

^ 3

0

# 3 6

0

# 3 8

0

A4

0
0

# 4 7

# 4 8

# 1 5

# 2 5
0
0

# 1 6
0

#3T6
0

0

# 2 7
0

TDT

#47

0 ^
0

# 3 8
DT
#48

j

(uj} U2 y U31, uJ)T, A = (A51,

Let us consider the matrix-vector multiplication procedure with the matrix A and the vector (i2,A), where
ü and A have the following componentwise représentation, according to the enumeration in Figure 1: ü =

•\ The resulting vector (vy jl) = A- (ü> A) can easily be computed as

(13)

where the upper indices dénote the cluster (the processor), in which this variable is stored. Two upper indices

mean that this variable is stored in both processors. We should keep in mind that A; "̂  = A; K Note that so far
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FIGURE 3. Parallel matrix-vector multiplication.

we need communications only when Computing //£. For example, we have

We see that /4 and /4 are computed in parallel, and then should be interchanged and summed (Fig. 2).
In Figure 3, the gênerai scheme of the parallel matrix-vector multiplication (13) is shown.

For preconditioning, only the multiplication by the block R\ requires communication. More precisely, com-
munications occur when multiplying with the matrices BTk. As shown in Section 3, inverting of R\ reduces to
solving a "coarse grid" linear system. Since the number of subdomains, which equals the size of the "coarse
grid" system, is not too large in our experiments, we have chosen to store this global "coarse grid" matrix in
each processor and solve the same global problem for each cluster, rather than storing this matrix in only one
processor and broadcasting the solution afterwards.

It follows from the définitions of S\ and R\ in the previous section, that the amount of data to be commu-
nicated at each Chebyshev itération is more than twice bigger than for the matrix-vector multiplication (13).
Thus, the Iess Chebyshev itérations are executed in R\7 the higher is the speed-up. Therefore, for minimizing
the CPU time, the optimal number of Chebyshev itérations for the parallel implementation may be Iess than
for the sequential one. This statement should be checked up numerically.

As for the parallel implementation, a message passing strategy has been chosen, using the message passing
interface (MPI) library. The code is single program multiple data (SPMD) and we use asynchronous non
blocking communications in order to compete with shared memory stratégies such as SHMEM on the Cray
T3E. The code is written in C++, and has been ported on several machines (Cray T3E, IBM SP2, HP 800 with
4 processors).
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5. NUMERICAL RESULTS

The goal of this section is to demonstrate the very good parallel properties of the mortar element method
and the block-diagonal preconditioner (6) described in Section 3. Therefore we consider only uniform grids and
décompositions into equal subdomains. The équation

-Au + cu = f

with c = ÏCT4 is solved in a parallelepiped. All the computations have been performed on the Cray T3E
computer with up to 64 processors used. As the stopping criterion for the itérative method the réduction of the
preconditioned residual is taken: ||£fce||ö-i < £ | | £ 0 | |B - I , while the number of Chebyshev itérations is constant
and equal to 8, except when mentioned explicitly. For all computations, the number of multigrid levels is equal
to 4, except in Section 5.1.

Note that even with matched grids at sub domains' interfaces the solution is different from that of the single
domain case, because of the mortar element discretization.

5.1. Computing time versus problem size

The unit cube is decomposed into 64 cubic subdomains. In each subdomain the grid is uniform and contains
TV nodes, TV taking the value 253, 333, 413. The total number of nodes varies from 1000 000 to 4410 944. The
table 1 displays the dependence of the elapsed CPU time and of the number of itérations on N. The desired
accuracy is 10~7 and the number of Chebyshev itérations is 8 or 16. For these tests, the number of multigrid
levels equals 3, and the number of processors is fixed at 64.

TABLE 1. Number of itérations and elapsed CPU time vs. the number of unknowns in the
subdomains and the number of Chebyschev itérations, with 64 processors.

8

16

Cheb.

Cheb

N

it.

. it.

#iter
T
-1- cpu
#iter
J-cpu

253

39

66
48

333

82
81

68
97

413

82
141

68
165

The CPU time varies slightly sublinearly with the number of unknowns. This can be explained by cache
effects when the size of the problem is increased.

5.2. Computing time versus stopping criterion and number of processors

In Table 2 the elapsed CPU time (in seconds) versus the stopping criterion e and the number of processors
is shown.

We wish to estimate the speed-up of the method, ie . the dependence of the elapsed CPU time with the
number of processors, the global mesh size of the problem and the number of subdomains being fixed. The total
number of grid nodes is equal to 129 x 129 x 129 = 2146 689, and the number of subdomains is 4 x 4 x 4 = 64. The
subdomains are grouped into 16, 32 or 64 clusters (iVc = N% x N^ x TV*), so that 16 = 4 x 2 x 2 (4 subdomains
per cluster), 32 = 4 x 4 x 2 (2 subdomains per cluster), 64 = 4 x 4 x 4 (1 subdomains per cluster). In Table 2
the elapsed CPU time (in seconds) versus the stopping criterion e and the number of processors is shown. In
the last column we give the Euclidean norm of Buke, which is nothing but the jump of the computed solution
on the interfaces.

The actual speed-up, given in parentheses, is very close to the ideal, demonstrating thus very good parallel
properties of the method. The speed-up is estimated with respect to the 16-processors case.
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TABLE 2. CPU time (speed-up) vs. the number of processors and stopping criterion.

257

!
Number of
processors

e = ÎCT5

e = 10"6

E = IQ" 7

16
4 sd./pr.

89(1)

247(1)

351(1)

32
2 sd./pr.

45(1.97)

124(1.99)

177(1.98)

64
1 sd./pr.

23(3.86)

64(3.85)

91(3.85)

1 1

Number of
itérations

24

65

92

1 )

\\Bvh-\\

1.5e-5

l.le-6

6.5e-8

5.3. Scalability

The next series of results (Tab. 3) prove the excellent scalability of the algorithm. Now each subdomain is
a cube with the edge lengt h 0.5 and has a grid composed of 33 x 33 x 33 nodes. The number of processors
used for computation increases linearly with the number of subdomains, so that there is always one subdomain
per processor. As we can see from the Table 3, the convergence rate is almost independent on the number of
subdomains, although the boundary value problem is not the same, provided the grid in each subdomain does
not change, and the CPU time increases less than 19%, when the number of processors goes from 16 to 64.
This increase of CPU time can be explained by the f act that the average number of mort ar sides per sub domain
increases with the number of subdomains.

TABLE 3. Number of itérations and CPU time vs. the number of processors and stopping
criterion for cubic subdomains.

Nsd

e = 10"5

e = ÏO"6

e = IQ"7

#iter
T
-*• cpu

#iter
-*• cpu

#iter
J-cpu

16

27
23

43
37

67
58

32

29
27

45
42

69
63

64

29
28

46
45

70
69

5.4. Influence of the shape of the subdomains

The series of results, shown in Table 4, concerns the behavior of the algorithm when the unit cube is divided
into 16, 32, 64 rectangular parallepipeds respectively similar to [0,0.5] x [0,1] x [0,1], resp. [0,0.5] x [0, 0.5] x [0,1],
resp. [0,0.5] x [0,0.5] x [0,0.5]. As in the previous tests, each processor corresponds to a single subdomain, and
the number of unknowns per subdomain is 33 x 33 x 33. The différence with the previous series of tests lies in
the fact that the subdomains are no longer cubic. It is clear that the performances deteriorate when the aspect
ratio of the subdomains increases. This problem should be solved in a near future by replacing the multilevel
preconditioner by a f ast direct method.

5.5. Nonmatching uniform grids

In this series of tests, we focus on the effect of nonmatching grids on the performances of the solver. The unit
cube is divided into 4 x 4 x 4 subdomains. We compare two cases: in the first case, all the subdomains have a
grid with 33 x 33 x 33 nodes, so the grids are matched at the interfaces. In the second case, only the subdomains
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TABLE 4. Number of itérations and CPU time vs. the number of processors and stopping
criterion for stretched sub domains.

Nsd

shape of a subdomain

e = 10~5

e = 10"6

e = 10"7

#iter
-i-cpu

#iter
T
•*• Cpu

#iter
T
-'-cpu

16

0 . 5 x 1 x 1

40
34

92
80

142
123

32

0.5 x 0.5 x 1

40
37

108
102

159
149

64

I x l x l

24
23

65
64

92
91

TABLE 5. Effect of nonmatching grids.

#iter
T
-*• cpu

case 1

82
81

case 2

90
87

located in the half space x^ > 0.5 have 33x33x33 nodes while the other subdomains have 25x25x25 nodes.
For these tests, the number of multigrid levels equals 3, and the number of Chebyshev itérations is 8.

The performances of the solver are slightly affected by the présence of nonmatching grids. In this example,
the load balancing is very bad, so the CPU time is governed by the processors taking care of the finest grids.

6. CONCLUSIONS

For finite éléments, the mortar method permits to use independent meshes in different subdomains. For
sol ving the linear Systems arising from this technique, parallel algorithm have to be developed.

It has turned out that the macro-hybrid formulation of the mortar method, leading to a saddle point al-
gebraic problem, and the block-diagonal preconditioner are particularly well suited for parallel computations.
The convergence rate of the proposed algorithm does neither depend on the grid size nor on the size of the
subdomains, and the experiments have demonstrated very nice scalability properties. Moreover, the constructed
itérative method is algebraically optimal, ie . the total amount of work to reduce the residual by a given factor
is proportional to the number of unknowns, which has been confirmed by the numerical experiments.

However, there is still a number of unsolved problems. Though the methods seems to work very well for
low aspect ratio domains and uniform grids, in more gênerai cases, and in particular for distorted domains and
highly nonuniform grids, the convergence slows down. This drawback can probably be overcome by introducing
a sub domain preconditioner taking advantage of a fast direct method instead of the multigrid method proposed
above. Another way of improvement consists of implementing a non itérative preconditioner for the mortar
variables, also based on a fast direct solver in subdomains. With this approach, the method would be less
dependent upon the shape of the sub domains and the quality of the grid, but not necessarily algebraically
optimal.

This work has been done at the ASCI laboratory, in Orsay. We would like to thank P. Lallemand and O. Pironneau
for their support. We have used the CRAY T3E of the IDRIS institute for all computations. The work of the first author
has been partially support ed by the A.M. Liapunov French-Russian institute on informaties and applied mat hématies
(Moscow).
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