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Modélisation Mathématique et Analyse Numérique

IMAGE SEGMENTATION WITH A FINITE
ELEMENT METHOD

BLAISE BOURDIN1

Abstract. The Mumford-Shah functional for image segmentation is an original approach of the image
segmentation problem, based on a minimal energy criterion. lts minimization can be seen as a free
discontinuity problem and is based on F-convergence and bounded variation functions théories. Some
new regularization results, make possible to imagine a finite element resolution method. In a first time,
the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete
formulation for the Mumford-Shah problem is proposed and its F-convergence is proved. Finally, some
numerical results, computed from bot h artificial and real images are present ed and discussed.

Résumé. La fonctionelle de Mumford-Shah est une approche originale du problème de la segmen-
tation d'images, basée sur un critère d'énergie minimale. Sa minimisât ion peut être vue comme un
problème de discontinuités libres et repose alors sur les théories de la F-convergence et des fonctions
à variations bornées. Des résultats de régularisation récents ont permi d'envisager une méthode de
résolution, à base d'éléments f\ms. Dans un premier temps, le modèle est présenté et des résultats
existants sont cités. Ensuite, une formulation discrète du problème de Mumford-Shah est proposée et
sa F-convergence prouvée. Enfin, des résultats numériques, issus de calculs sur des images synthétiques
et réelles sont proposés et discutés.
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INTRODUCTION

Our aim is to minimize the functional proposed by Mumford and Shah [12] in the problem of image segmen-
tation, namely

S(u,T)=f3 f\u~g)2dx+ f \Vu\2 dx + aUn-\T^n)

where îî C R2, an open bounded set, is the image domain, g is the observed grey level of the image (g G
L°°(Çl; [0,1])) and u is a smooth approximation of g (u G C1(Q \ F1)), F dénotes the set of possible edges (a
closed subset of fi) and H™"1 dénotes the n — 1-dimensional Hausdorfî measure and a and /3 are positive fixed
parameters.
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In a formai way, £ can be represented by an energy, associated to a function uy which must be smooth and
close to the original image, except on a curve set F, called the edge set of the image.

Thïs problem has been studied by several authors. First, De Giorgi, et al. [8] proposed an equivalent
functional, E, with u in S BV (ft) and F represented by SUi the discontinuity set of u.

Then, Ambrosio and Tortorelli devised an approximation Ec of E by means of an elliptic functional that
uses an additional variable v, representing (in some sense) 'Hn~'l(Su) and a small parameter, c, the relaxation
parameter, via F-convergence. In view of the properties of F-convergence, the minimization of E reduces to
that of Ec, for small c. See [1,2].

This work led to at least two different numerical approaches: Belletini and Coscia [3] proposed a discrete
approximation E^h of Ec by piecewise linear functions, which lends itself to a flnite element analysis of the
problem, while Richardson and Mitter [13] implemented a gradient method.

In this study, we start from the functional Ec, propose a discrete approximation Ec^ different from that
proposed by Belletini and Coscia and implement a finite element method for the minimization of ECth-

The content of this paper is as follows:
Section 1 is entirely devoted to notation. In Section 2, we recall various results borrowed from the already

quoted références. In Section 3, we present our discrete functional ECjh and prove its F-convergence to E and the
convergence of the minimum values and of the minimizers. In Section 4, we detail the numerical implementation
of the computation. In Section 5, we present and discuss a few numerical results computed from both real and
artificial images.

1. NOTATION

In Mn, | • | dénotes the usual Euclidean norm, dx or £n , the Lebesgue measure, and %k, the /c-dimensional
Hausdorff measure.

Set £(uy F) = (3 ƒ (u - g)2 dx + ƒ | Vu |2 dx + aH71"1^ n F) (the Mumford-Shah functional).
n\r n\r

Let BV (il) be the space of functions u E L1(Q) such that the distributional derivative of u can be represented
by a regular Borel measure with flnite total variation Du : B(Q) —> Mn, where B(fl) dénotes the set of all Borel
subsets of Cl,

Let Su be the complement of the Lebesgue set of u, ie.,

Su=<x£il:flzeR such that lim p'n / | u{x) -
P~»O+ J

{ Bp{x)

z\ dx = 0

Dénote by S BV (il) y the space of functions u in BV (Cl) such that Du is absolutely continuous with respect

For further properties of B V and S BV, see [10] and [1],
Dénote by 7£, the class of all piecewise C2 submanifolds of W1 of dimension n—l.
Dénote by {Sh}hj & regular family of partition of O int o simplices.
Let Pn(r2) be the space of polynomials on Q of total degree less or equal than n.
Dénote by Vh{£ï) C HX(Ü), the linear finite element space over Sh' Vh £ Vh if and only \ivh € F1(T), VT G S h

and vh eC(Q).
Let Vh(«, [0,1]) = {v G Vfe(fl); Va; G n,v(x) e [0,1]} .
Let iTh be the Lagrange projection operator over 14, i.e. given v e C(Q), 7Th{v) is such that ir^v) €

and for all nodes s G Sh, (^h(^)) (s) =v(s).
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2. VARIOUS RESULTS

2.1. Extension to S BV and equivalent problem

Set

E(u) = /3 f(u- gf dx+ f \S7u\2 dx + aH71'1^ n ïl). (1)

It is proved in [8] that min{E(u),u G SBV(Q)} and min {£(u,F);F closed subset of ÎÎ and u G C^fi \ F)} are
equivalent problems. Firstly, inf {E(u),u E SBV(Q)} is smaller than inf{£(u, F); F closed subset of fl and
uGC 1 ( f i \ r )} , whichisimmediatebecause3iftieC1(^\F)nLoo(^), J ^ | Vu |2 do; < oo and ̂ ^ ( Q n F ) <
oo, then u G SBV^fi) (Lemma 2.3 of [8]). Then the existence of mm{E(u)}u G SBV(Q)} is established in
Lemma 5.1 of [8]. Finally, if u is a minimizer of E, on S BV (CL), then (Lemma 5.2 of [8]) u G Cl(ü\ Su) and
Hn"1((^u n f i ) \ Su) = 0, and the result is achieved.

The next step is to focus on the term l-Ln~l(Su f) fi). To this effect, E is approximated in the sense of
F-convergence by means of an elliptic functional.

Many such functionals have been proposed [1=3,13].

2.2. F-convergence results

The main idea is to use an additional functional variable v : Q —» [0,1], that will "represent" the jump set
Su and to define the relaxed functional Ec(u, f), with u and ï ; ina convenient space.

One sets

and

F(u v) = f Ec(u7v) if (u,v) G Dom(Ec),
cV ' } \ oo otherwise,

_ ƒ E(u) if u G Dom(E) and v = 1 a.e.,
\

\ _ ƒ
^ ' ^ ~~ \ oo otherwise.

If Fc F-converges to F when c —» 0, with respect to the L2(f2) x L2(£7; [0,1]) strong topology, and if the
séquence of minimizers (uc, vc) for £"c is compact in Dom(E)y then a subsequence of (uc, vc) (still indexed by c)
is such that uc —> u in L2(f2) and t?c —> v in L2(Q) and (u,v) minimizes F, i.e., u minimizes E,

Remark . It is not necessary to establish the F-convergence of Fc to F so as to construct approximate mini-
mizers. Indeed it suffices to prove that if (n, v) is a minimizer for F , there exists (ucy vc) in Dom(Ec), such that
(uCivc) —> {u,v) in L2(ü) and F(uyv) > limsupFc(uc ,i;c), that the lower inequality, liminf Fc(üC}vc) > F(ü}v)
if (üc,vc) —>• (ü,v) in Z/2(f2), holds and that séquences of approximate minimizers are compact in L2{Vt).

The first approximating functional of this kind was proposed in [1]. It is

i,v)= f |/3(u - gf + (| Vu |2 + | Vv |2) (1 - v2)i +Ec(u, v)= {(3{u- gf + (| Vu |2 + | Vu |2) (1 - v2)i + ̂ v2 \ dx (2)

with W^2(ü) x{vG Wl>2{ny,0< v<l a.e.} c Dom{Ec) c B(fï) x {v e B(fi);0 < v < 1 a.e.}, where B(fi) is
the set of Borelian mappings on D>.

The F-convergence takes place in L2(£l) x L2(H; [0,1]) strong topology, and the total variation of
(1 — t>)1+1/c weakly converges in the sense of measures to 2Hn~1\_Su(B)J as c —>• 0, ie . , /ic defined as
Mc(-B) = (l + £) JB uc(l - vc)i | Vvc | dx vaguely converges to Wn~1iSu: as c ->• 0.

Note that because of the term (1 — v2)c} this functional cannot be easily discretized, as c —> 0.
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Then, in [2] the F-convergence, with respect to the L2(ü) x L2(ü; [0,1]) strong topology, of the following
functional is addressed:

Ec(Ui v)=f {{3(u - g)2 + (v2 + kc) | Vu |2 +a (c | Vv |2 + ^ ) } dx,

with fcc <êC c and a > 0.

In (3), Dom(Ec) = {L°°(Q) n Cx(^)} x {L°°(Q; [0,1]) n C^O; [0,1])} and t; plays the role that 1 - v played in
(2). This expression gave rise to two different numerical méthodologies.

In [3] the F-convergence of a piecewise linear functional close to (3) is investigated.
It is of the form

*&(«.«) = / {^h((« " 3c)2) + (v + fcc)|VW|2} dx + 2-fMCth{v)

with MCth{v) = ƒ (c\Vv\2 + ±nh(l - v2)) dx, W

where (u,v) G V^(fî) x V^(fî; [0,1]), gc G CQ°(Q) approximates g, in a manner such that gc —> g in L2(fi),
II^CIIL00^) < IIPIU00^) a n ( i llV^cllxc»^) ^ Ç> which is feasible by convolution with an approximation of the
identity (cf. e.g. [5], Sect. IV.4). If h = o(kc) and kc = o(c) then Fc^ (defined from Ec^ as Fc was defined from
£?c) F-converges to F, with respect to the L2(Q) x I/2(Q; [0,1]) strong topology, as c -> 0.

The functional £7^ is a good candidate for a finite element analysis of the problem. A numerical implemen-
tation of (4) has been recently proposed by [11] for synthetics images.

Yet another change from (3) is the formulation proposed in [13], namely,

f f ( (1 — v)2\ 1
Ec(u,v) = / < f3(u — g)2 + $(^) I Vu I2 + a ( c$(v) I Vv I2 + - — 1 > dx. (5)

J { \ 4c /J

In (5), $ and ^ are C1 functions with "good" properties, in which case, Fc is shown in [2] to F-converge to F,
with respect to the L2(ft) x L2(£l; [0,1]) strong topology.

Using this expression of £c , a gradient descent algorithm is implemented in [13]: given (u°,i>°) and cUri,cVn,
2 scalars, compute:

and update the scalars cUn,cVri, using un, vni $ and ^ .
The authors also propose dynamic scaling, setting c = c(n)} (3 — P(n), then using c(n) as a stopping criterion,

because the edge width is correlated with the value c(n).
In the present paper, we propose to build a piecewise linear discretization of (3) proposed by Ambrosio and

Tortorelli. We revisit the F-convergence of the discretized problem with respect to the L2(Q.) x L2(Ü; [0,1])
strong topology, the compactness of the séquence of the minimizers, then implement a finite element method
so as to solve the discretized problem.

3. T H E FINITE ELEMENT METHOD FOR IMAGE SEGMENTATION

3.1. F-convergence and piecewïse linear approximation

Let us consider the functional ECJ proposed in [2], namely,

Ec(u,v) = f i(3{u - g)2 + (v2 + kc) | Vu |2 + ^ (c \ Vv \2 + ^ ~^ \ \ dx. (7)
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Set

Ec{u,v) if (u,v) € H^il) x
^ + o o o t h e r w i s e W

and let Ec^h, be the following

ECth(u,v) = J{(3(u- gCih)
2 + {v2 + fcc) | Vu | 2 } dx + ^MC ) / l(t;) (9)

n

where

{ }
and gCth = 7rh(gc), with #c as in (4),

and

+ o o

Then, the following approximation theorem, which is a mère adaptation of Theorem 1.1 in [3] holds:

Theorem. Let h <ëC kc <C c; then the minimum of (Ec^h) converges to the minimum of F as c —> 0.
Furthermore, if (uC)h:vc^h) is a minimizer for Fàih then, possibly passing to a subsequence, (uC)hiVc,h) con-

verges strongly in L2(Çl) x L2(fi; [0,1]) to a minimizer of F.

The proof of this theorem divides into three steps:

Step 1. - the lower inequality.
Let h = o(c), (u,v) G L°°(rt) x L°°(Q; [0,1]) and for every c > 0 let (uCih,vCth) 6 Vh(Q) x Vh(Ü\ [0,1]) be such
that the séquence {{uc^^Vc,h)}c converges to (u}s) in L2(ft) x L2(fi; [0,1]).
Then

F(u,v) < liminf FCih(uCthivCth)- (12)

Step 2. - the upper inequality.
Let h = o{kc)y \u,v) G SBV(Ü) nL°°(ü) x L°°(Q; [0,1]). Then for every c > 0, there exists (uCth,vCth) G
V^(fi) x Vh(il] [0,1]) such that the séquence {(ttC)h)^c,h,)}c converges to (u,v) in L2(Q) x L2(Q; [0,1]) and

F(u,v) > limsupFCih(uCjhivCih). (13)

Step 3. - compactness of the minimizers for Fc>h and convergence of the minimum values.

The following properties pertaining to E^h1 were proved in [3] (see Theorem 6.1 and 6.2), and will apply to
Ec^hi at the expense of minor changes in the proofs.

Let h = o(kc), and (uC}h}Vcth) £ V^(fl) x Vh{£l; [0,1]) be a minimum point of FCih, then, a subsequence (still
indexed by c) {{uCthj vC7h)}c converges in L2(Ü) x L2(ü; [0,1]) (as c -> 0) to (it, 1) where u G SBV(ft) x L°°(n)

Further, assume that there exists at least a minimizer ü of F, Then the minimum values of FCih converge
to the minimum value of F as c —> 0. Moreover, any family {(itC)/i, vc,h)}c of absolute minimizers of {FCyh}c is
relatively compact in L2(ü) x L2(Q; [0,1]), and each of its limit points minimizes F.
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Proof of step 1. Assume that liminf FCih{^c,h^ Vc,h) < oo, otherwise the result is trivial. Then,

]imïnï ECth(uCth,vCth) = liminï Ec(uCjh7vCih).

Indeed,

But

f 2 2

Jn

/ {{uc,h ~ gc,h)2 - (uCih - g)2} dx< g2
 h -g2dx + 2 / uCih.(g - gC)h) dx.

Jn Jn Jn
Since gc,h = Kh(gc), gc e C^°(Ct) and h = o(c), gC}h -> g in L2 when c -> 0.

Hölder's inequality implies

1/2 / r x l / 2

<(f i2 V (f i2 V
_ yj^ c,h J • yj^ c,h j

and by virtue of the convergence of uCih to u and gc^h to g in L2 when c —> 0,

r
Jn

Thus liminfc_}.o^c)/i(^c,/i,^cï^) = liminfc^o Ec(uCyh,Vc,h) and since V^(Q) C H1^), one can use the
T-convergence of Fc to F and conclude that F(u,v) < liminfc_^o FCih{uCih^c,h) and that the lower inequality
holds.

Proof of step 2. In a first time, we will prove the upper inequality with the additional hypothesis, Su E 1Z,
which has been supposed in [3]. Then, we will explain how to prevent from the use of it.

Let h = o(fec), (u, v) e L°°(n) f] SBV(Ü) x L o o (n^0 ï 1]). If F(u, v) is not finite, the result is trivial, then we
can suppose that v = 1 and u € SBV(Ü) f)H1(Ü\ 5U).

Set (uCtk,vCih) ^ Vfc(fi) x V^(n; [0,1]) such that (uCjhtvCth) -> (u,u) in L2 when c -> 0, ECih(uc^vC)h) < C
for all c and wCj/l € W 2 ' 0 0 ^ ) ; VS € Sfc.

One has:

Cih-gc)
2) - (uCih - gCjh)

2dx

Is(yc,h + kc)\Vuc,h\2 - (vlh + fcc)|VuC7h\2 dx

We now prove that ICjh = (3 fQ \^h (^h) ~ (uc,h)2\dx -> 0 when c -> 0. Indeed, /Cj/l < Y^sesh I^l-l

< f c l lL«(n), and, using [7], Theorem 3.1.5, JCjh < C'./i2. E s ^ s , | 5 | - [ | ^ 2 ( < J [ | L - ( S ) .

Since uc,h is piecewise linear, ||JD
2(tt2^)||Loo(5-) = 2.\\VuC}h <E) VUC^HLOO^) = 2.|VtiC)/l|

2, for all S e Sh and

since EC}h(uCjh,vc>h) < C for all c, one has S s e S ^ Is \^uc,h\2 dx < ^ t n u s ^c,^ ~^ 0 as c -»- 0.
The same kind of argument is used to prove that j3 JQ \-KH {g2) - {gc,h)2\ dx —> 0 and (3 j a \TTH (uCih-gc) ~

(^c,h-5c,h)2| dx —» 0 when c —• 0.
Since Ï;CJ^ e Vh(£2; [0,1]), v2 ^ < vCthi and Jn(vc^h + fcc)|Vifcc,fe|2 - ( ^ + fcc)|Vuc,A|2 cte > 0. Further, since

TTfc is a linear projection, TTA(V2
 fe) < 7r^(uC)/l) = uCj/l, ^ ( 1 - v2

ch) > 1 - üc>fc > (1 - ^ ) 2 a n d EseS/, Js 7 r^(1 ~
vlh) ~ i1 ~ vc,h)2 dx > 0. Thus limsupJSf^^c^,^^) > limsupEc^h(uC}h,vc,h)

We now consider the séquence (uc^,vc,h) built in [3] for the upper inequality, and suppose that Su G 1Z; it
is such that {uCth7vc,h) -> (w,v) in L2, l imsup c^ 0 Efh{u^h,vc^h) < JQ \Vu\2 + 0|tA - ^ | 2 ^ + a'Hn~1(5u) and
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vérifies the above mentioned hypothesis. Thus,

< f \Vu[2+/3\u'g\2dx + ann-1{Sv). (14)
Jn

We now explain how to prevent from the use of the hypothesis Su G 72.:
In [12] Mumford and Shah conjectured that the minimizing set F of £ should be a finite union of C1 hyper-

surfaces. Some recent works partially proved this conjecture:
In [4], Bonnet proved it in the 2-dimensional case with the following additional hypothesis: F has a finite

number of connected components.
Dibos and Séré proved in [9], Theorem 1.7, that if (u,T) is a minimum point of £ then Ve > 0, 3(we,Fe)

where Fe is a finite union of smooth hypersurfaces (included in hyperplanes, sphères or cylinders), such that
ue e C1(ïl \ Fe), \\u€ — u\\Li < e and £(ue,Te) < £(u,T) H- e. This result was generalized by Dal Maso in [6],
Lemma G.2, to all functions of S BV (Cl). Then, each function of S BV (Cl) can be approximated by functions uc

such that ue -^u in L1, E(u€) < E(u) 4- e and SU£ € 72,. We apply the upper inequality to ue and by a diagonal
séquence argument, conclude: If ft = o(kc) and (u,v) € L°°(Ct) n SBV(Cl) x L°°(Cl; [0,1]), then there exist a
séquence (uCihjvC}h) G Vh(Cl) x Vh(Cl; [0,1]) such that

F(u,v) > limsupFCih(uC}h,vCih).
c—>0

The proof of the third step follows step by step that of Theorems 6.1 and 6.2 in [3].

4. NUMERICAL IMPLEMENTATION

4.1. The constraint on v

A rapid investigation of the constraint v G [0,1], permits to simplify the numerical minimization of Ec^.
Suppose that (u,v) G Vh(Ct)2 are minimizers for Ec h- Set v — TTH (min(l, t;)), which is allowed since min(l,v) €
()

Then j a \Vv\2 dx < Jn \Vv\2 dx, / n ( l - vf dx < JQ(l - v)2 dx and j n (v
2 + Jfcc) \Vu\ dx < JQ (v2 + kc) \Vu\ dx.

If \{x G Ct;v(x) > 1}\ > 0, then the two last inequalities are strict and Ec^h(u,v) < ÉCih(u,v), which is
in contradiction with the hypothesis that (u,v) are minimizers for ECth on Vh(Cl)2. Thus, the constraint
v G Vh(Cl](—oo,1]) is satisfied for the minimizers of ECjh over Vh(Cl)2.

A similar argument would show that v(x) > 0 a.e. in Q, and we conclude that all minimizers (u,v) for
ECih over Vh(Ct)2 are such that v(x) e Vh(Cl\ [0,1]). Consequently, our choice of discrete functional renders the
constraint on v internai, which is not the case of the formulation proposed in [3]: if (u,v) in a (constrained)
minimizer for E^h then v(x) > 0 a.e. and Efh(u, —v) < Efh(u,v) as soon as \{x G Cl;v(x) > 0}| > 0, so that
the unconstrained minimization will never yield a non négative minimizer v (if such a minimizer exists).

For a numerical standpoint, the absence of constraint on v greatly simplifies the algorithm.

4.2. Minimization strategy

Consider the problem

(u,v) = min {EC)h(u,v)\(u,v) e Vh(ü)2} . (15)
(u,v)

Because of the cross term v2 \ Vu |2, a direct finite element method cannot be used. Since ECth is strictly convex
in the directions (•yv) and (u, •), we propose an alternate minimization scheme; specifically, our algorithm is

{as follows: given (u°,v°), compute { U = mmuECih(uv ) ^ ^ =v J \ vn = mmv ECih(un,v) c
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FIGURE 1. Relative error of the different parts of the functional.

TABLE 1. Computation on a 256 x 256 pixels images with a =
c = 10"1, without Jacobi preconditioning.

10~3, (3 = 5 x 10"1,

Size of the subimages
128 x 128
64 x 256
64x64
32 x 128
16 x 256
32x32
16x64

Time
149 s
82 s
85 s
52 s
36 s
46 s
31 s

Alt. min. steps | C. G. steps (u) \ C. G. steps (v) |
9
9
48
48
48
218
217

225
223
959
1001
1094
3726
3793

233
249
895
912
1003
2867
2859

TABLE 2. Computation on a 256 x 256 pixels images with a = 5 x 10 3, j3 ~ 5 x 10 x, c = 10
with Jacobi preconditioning.

- i

Size of the subimages | Time | Alt. min. steps | C. G. steps (u)

128 x 128
64 x 256
64 x 64
32 x 128
16 x 256
32x32
16 x 64

84 s
49 s
57 s
36 s
26 s
36 s
26 s

9
9
48
48
48
218
217

121
122
566
559
569
2237
2247

C. G. steps (v)
73
74
325
319
336
1214
1216
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(a) Computational domain. (b) Edge déformation.

FIGURE 2. Edge déformation across boundary.

(a) Starting image. (b) Deformed edge set. (c) Theoretical edge set.

FIGURE 3. Different behavior of edges across the subdomain boundary.

Since the successive minimization problems are strictly convex, the existence and uniqueness of un and vn is
ensured.

The successive minimization problems being strictly convex and quadratic, a straightforward finit e element
method can be implemented.

Remark. We have not managed, as of yet, to prove the convergence of the alternate minimization algorithm.
Remark however that the séquence E™ is decreasing.

In Figure 1, we present the évolution of the relative error for the different parts of ECih for a computation on
a real image of 256 x 256 pixels with the following parameters: a = 2 x 10~2, (3 = 5 x 10"1, c — 10"1.
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J
(a) Start ing image. (b) Edgeset V ' . (c) Soft image { V\

FIGURE 4. Angle with c = 4 x 10 , a = 5 x 10~3, p = 2 x 10 , kc = 5x 10~3.

(a) Starting image. (b) Edge set V . (c) Soft image "it".

FIGURE 5. Cuspidal point with c = 4 x 10~2, a = 5 x 10"3,^ = 2 x 10"2, kc = 5x 10~3.

J
(a) Starting image. (b) Edgeset V ' . (c) Soft image ' V .

FIGURE 6. Square angle with c = 4 x 10~3, a = 2 x 10~\/3 = 5 x ÏO"1.

The data plotted is ^ '^"(TO) where Ei(i) is the part Ei of ü7C)h, according to the following nota-
tions, at the step t of the alternâtes directions scheme. The labels are: E\ = JQ(v2 + kc)\Vu\2 dx, E2 =
a Ia (c|Vt;|2 + i i ^ £ ) dx, and E3=PfQ\u- gc,h\

2 dx.

4.3. P a r a m e t e r choice

We now describe the choice of the discretization parameter Zi, according to the hypothesis h = o(c), as well
as that of the pixel coordinates.
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(a) Starting image. (b) Edge set V ' . (c) Soft image ' V

FIGURE 7. Cuspidal point with c = 4 x 10"3,a = 2 x 1O=2,^0 = 1.

Let f2, be the original domain, and set x = (l/k).x £ Û — k.Q> for all x G ft, then one has

u\2 dx f ~JEc(u(x),v(x)) = J^v2 + kc)\Vu\2 dx

dx

The magnitude ratio between the different terms in Ec will only be preserved for all homothetics of ratio k of
the original domain if

c(ft) = c.k

H*(k) = H

Thus the domain size k influences both the choice of allowable discretization parameter h and of the constants
a and f3. In other words, différents computation cannot be compared until a,(3 and k are specified.

4.4. General choices

No computation can be performed without prior mesh génération. A simplifying idea would be to use
regular meshes (grids), the nodes of which coincide with the pixels. The finite element method could then
be equivalent to a finite différence method, provided all éléments are identical and identically oriented. This
lowers the computation time, since approximate intégration or affine transformation are then superfluous. In a
finite element method, however, the computation time is mostly spent solving the linear System, while the time
spent generating more complicated finite element matrices is negligible; this motivâtes our décision to generate
arbitrary meshes that do not need to coincide with the pixels.

With arbitrary mesh, the implementation of further enhancements like scale focusing, mesh adaptation, and
the processing of non rectangular images becomes possible. For the same reason, it would be possible to use
higher order éléments, if one could prove the convergence of the discrete functional for a better discretization.

In the presented computations, however, the computational mesh has been taken to coïncide with the pixels
(but the possible simplification resulting from the use of such a mesh have not been implemented; in other
words, we are still using a gênerai finite element algorithm for the solving of the minimization problem). In any
case, h, defined as the radius of the inscribed circle in an element is thus of the order of 1, while k (the size of
the image) is proportional to the square root of the number of pixels.
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(a) Startmg image, 480 x 480 pixels (b) Soft image V

(c) Edge set V

FIGURE 8. Computation for a = 5 x 10~3, ̂  = 5x 10"1, c = 10"1.

Each alternate minimization step involves the resolution of a linear system, the dimension of which is the
number of nodes.

Since finite element method, produces linear system whose matrices are symmetrical with a large proportion
of zéros, a skyline storage is implemented: the only terms to be stored as a vector are the éléments of each line
between the fîrst non logically zero term and the diagonal term. A second vector, the profile, keeps the position
in the compressed vector of the diagonal terms of the starting matrix.

Computations are then performed only inside the skyline, which enhances the computational speed too.
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(a) Startmg image, 256 x 256 pixels (b) Soft image ' V

(c) Edge set ' V

FIGURE 9. Computation for a = 2 x 10~2,/? = 5 x l C r \ c = 10

The linear system resolution algorithm we use is a conjugated gradient method. For this algorithm, a starting
point is required, and we use the results of the former alternate minimization step, considering this way that
the convergence rate of the alternate minimization is low enough to produce results close one from another.

A second enhancement is the implementation of a Jacobi (diagonal) preconditioning, inside the conjugate
gradient algorithm: the conjugate gradient direction for the resolution of A.x = b is that of D"1 ,A.D~t

7 instead
of that of A, where [D]lj3 = SZi3-^/[Alt3], The Jacobi preconditioning reduces the number of conjugate steps by
a factor close to 2 for the ti-problem and 3 for the i>-problem.
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(a) Startmg image, 256 x 256 pixels (b) Soft image "u"

'S
t\w

(c) Edge set V

FIGURE 10. Computation for a — 2 x 10^2,(3 = 5 x ÎO"1^ = 10

At last, we need a stopping criterion for the alternate minimization. Since we didn't manage to prove the
convergence of this scheme, we can't use an error majoration, then we decided to use the distance between the
results of successive alternate minimization results, %.e. the norm of vn — vn-i in H1, L2 or L°°} as desired,
with an upper bound for the total number of alternate minimization steps
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4.5. Domain décomposition

Since bot h computational time and memory requirempnt dépendance on the nunaber of pixels are more than
linear, for fini te element method, we implemented a domain décomposition method: each image is decomposed
into sub-images and the minimization of ECjh is computed on each subimage.

The difnculty in such an algorithm résides in the lack of continuity of u and v on subdomain boundaries:
déformations could then appear across the subdomain boundaries. We show in the next section how to control
the edges déformation across subdomain boundaries, but the lack of continuity of u should, in truth, necessitate
a better décomposition algorithm, which may use, for example, overlapping subdomains.

In Table 1 and 2, we present some computational time and parameter for a 256 by 256 image, wit h se ver al
décomposition.

Table 1 is related on computations without preconditioning, and Table 2 is related on computations with a
Jacobi preconditioning.

It is important to remark that even with those enhancements, between 50 and 75% of the computation time
is spent in implementing the conjugate gradient method: thus any improvement in the linear System resolution
results in an important decrease in computational time.

5. NUMERICAL RESULTS

5.1. Edge geometry

The following regularity conjectures on the minimizing set F for E can be found in [12] Theorem 2.1, p. 599:
• F meets dü perpendicularly,
• a point P G ft, is the end of 0? 1 or 3 edges {Le. corners, cuspidal points and cross point are not allowed),

and if P is a triple point, the arcs meet with angles 2TT/3.

Those geometrical restrictions lead to two kinds of edge déformations: across the subdomain boundaries and
at edge corners or intersection inside each subdomain. In view to décompose the domain into several subdo-
mains, we want to prevent from the first effect.

We now focus to the intersection of a sub domain and a circle of radius R, centered at the point where an
edge, F, crosses the boundary. We suppose that F is a segment, crossing the boundary into an angle 9 and that
g equals 1, above F and 0, otherwise (see Fig. 2a for the geometrical construction). Then, we build a second
edge set, denoted by F2, derived from F and such that from a distance l from the boundary, F has been replaced
by an arc of radius r, crossing the boundary perpendicularly (see Fig. 2b for the geometrical construction). By
imposing that the are is tangent to the theoretical edge, we get r — l. cot 9.

Let Si and 82 be the total energy of each configuration; then E\ ~ R.u, while since |T21 = R — l.{l — 9, cot 9)
and \Üe\ = ^-^9,62= P^2

c o t^.(l - 9. cot 9) - l.a.{l - 9. cot 9) + R.a.
We now minimize £2 over all l < R: if R > % tan#, the minimum value is reached for l = % tan0 and is equal

to R.a - ^(tanfl - ff). Since, for 0 e [0, f ], tan0 - 0 > 0, we obtain £2 < £u and the detected edge set will be
different from the theoretical one at the point where it crosses the subdomain boundaries, if not perpendicular.

In Figure 3a, we decomposed the image of Figure 3b into two vertical bands; the resulting déformation of
the edge is demonstrated.

One can however estimate the radius of the area where such déformation appears as a linear function of a/P
(see the expression of the optimal l above). Then, a proper choice of a/P should be such that the radius is less
than the width of a pixel; in such a case, the edge will take its theoretical shape (see Figure 3c).

The resolution parameters in Figure 3 are for (b): a = 5x 10~3, ƒ? = 2 x 10~2 and c = 4x 1CT2, and for (c):
a = ICT3,/? = 5 x ICT1 and c = 4 x 10"2.

A similar argument can be used to show that there are no corner or cuspidal point allowed for the optimal
edge set but that, with a proper adjustment of the parameters a and ƒ? the déformation can be controlled and
inscribed inside a pixel.
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Figures 4 and 5 show deformed corners and cuspidal points for the set of parameters a — 5 x 1CT3, j3 = 2 x 10~2

and c = 4 x 10~2, while Figures 6 and 7 show results based on the same images, with adjusted parameters, so
as to generate the real edge geometry.

In Figure 8, we present a numerical resuit for a standard image, "Lenna" (a), the soft image, corresponding
to u (b) and the edge set v (c).

In Figure 9a, we magnify a detail from Figure 8a and perturb it with random noise (sait and pepper noise
with maximal intensity ±80); the results are presented in Figures 9b and c; they demonstrate the sturdiness of
the algorithm when subject to random noise.

In Figure 10a, we took a rastered portrait of A. Einstein (magnification of a printed image) and used our
algorithm. The results are shown in Figure 10b and 10c; they are unaffected by periodical perturbations.

The author would like to thank A. Chambolle and G. Francfort for their helpful advices.

REFERENCES

[1] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via F-convergence.
Co-mm. Pure Appl. Math. 43 (1990) 999-1036.

[2] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. BolL Un. Mat. Ital VI-B (1992)
105-123.

[3] G. Belletini and A. Coscia, Discrete approximation of a free discontinuity problem. Num. Funct. Anal. Optim. 15 (1994)
201-224.

[4] A. Bonnet, On the regularity of the edge set of Mumford-Shah minimizers. Prog. in Nonlinear Differential Equation and Their
Applications 25 (1996) 93-103.

[5] H. Brezis, Analyse fonctionnelle. Masson (1989).
[6] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations.

SIAM J. Appl. Math. 55 (1995) 827=863.
[7] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1987).
[8] E. De-Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational

Mech. Anal. 108 (1989) 195-218.
[9] F. Dibos and E. Séré, An approximation resuit for the minimizers of the Mumford-Shah functional. Boll. Un. Mat. Ital. A 11

[10] L.C. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (1992).
[11] S. Finzi-Vita and P. Perugia, Some numerical experiments on the variational approach to image segmentation, in Proc. of the

Second European Workshop on Image Processing and Mean Curvature Motion, Palma de Mallorca (1995) 233-240.
[12] D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Comm.

Pure Appl Math. XLII (1989) 577-685.
[13] T.J. Richardson and S.K. Mitter, A variational formulation based edge focusing algorithm, Sadhana Acad. P. Eng. S. 22

(1997) 553-574.


