
M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

P. DEGOND

F. POUPAUD

A. YAMNAHAKKI
Particle simulation and asymptotic analysis of kinetic
equations for modeling a Schottky diode
M2AN - Modélisation mathématique et analyse numérique, tome
30, no 6 (1996), p. 763-795
<http://www.numdam.org/item?id=M2AN_1996__30_6_763_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et
analyse numérique » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1996__30_6_763_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 763 à 795)

PARTICLE SIMULATION AND ASYMPTOTIC ANALYSIS OF KINETIC
EQUATIONS FOR MODELING A SCHOTTKY DIODE (*)

by P. DEGOND (»), F. POUPAUD (2) and A. YAMNAHAKKI (3)

Abstract. — The deterministic partiale simulations o f the Boltzmann Transport équation for
modeling the Schottky diode problem show that the behavior of the device is entirely controlled
by the non-equilibrium part of the distribution function, which is very s mail comparée with the
equilibrium part. Then, an asymptotic analysis of the problem gives us an analytical expression
for the equilibrium part, and the deterministic par tic le method is applied to compute only the
non-equilibrium ( bail is tic) part of the distribution function. This gives more accurate numerical
results.

Résumé. — La simulation par la m éth o de pa rtic nia ire dé te rm in is te de Véqua tion de t ran sp o / 7
de Boltzmann pour le problème de la diode Schottky montre que le comportement de ce
composant est entièrement contrôlé par ta partie hors-équilibre de la fonction distribution. Or
celle-ci est très petite par rapport à la partie en équilibre. Une étude asymptotique de ce
problème permet de donner une expression analytique de la partie en équilibre. La méthode
particulaire est alors utilisée pour calculer uniquement la partie hors-équilibre (ballistique) de
la fonction distribution. Cette démarche permet d'obtenir des résultats numériques plus précis.

1. INTRODUCTION

Most numerical simulations of carrier transport in semiconductor devices
are based upon drift-diffusion models (see [33], [25], [26], and références
therein). However, it is well known that these équations are only valid when
the carriers are in local thermo-dynamical equilibrium, which is not true when
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764 P. DEGOND, F. POUPAUD, A. YAMNAHAKKI

the electric field îs large or when the active zone of the device is short.
Besides, the distribution function near contacts or junctions is not an equi-
îibrium distribution, and kinetic boundary layer phenomena may appear»
which are of course not conveniently described by classical Drift-Diffusion
models, [30]. To remedy to these ïnaccuracies, hydro-dynamical models were
proposed by rnany authors in various forms [1], [2], [8] and [28]. However,
these models require transport parameters which are not known with good
accuracy (e.g. relaxation times, heat conductivities, ...)• Then, the kinetic
model (the Boîtzmann équation) seems to give the most accurate description
of the physics attainable by numerical computations.

The most widely used numerical method to simulate this kinetic model is
certainly the Monte-Carlo method (see [32], [21] and références therein), but
the deterministic partiële method seems to be attractive in particular when one
is concerned with the distribution function or transient regimes.

The ai m of this work is to numerically and mathematically study the
Schottky diode problem. The first part concerns the application of determin-
istic partiële simulations of the Boltzmann Transport Equation to the Schottky
diode problem. In such a device, the carrier dynamics is governed by boundary
conditions which, therefore» must be accurately taken into account by the
numerieal method. The geometry is one dimensional in space and three
dimensional with axisymetry in wave vector. The fully coupled systern con-
sisting of the Boltzmann Transport équation and the Poisson équation is
solved ; the collision operator takes into account many kinds of interactions of
the standard GaAs model and includes PaulPs exclusion principle. These
simulations show that the behavior of the device is entirely controlled by the
non-equilibrium (or ballistic) part of the distribution function, which is very
smal! compared with its equiîibrium (or Maxwellian) part. So, numerical
errors round-off and truncation errors, which are small compared with the
total, and thus, with the equiîibrium distribution, are large compared with the
non equiîibrium one. Thus, the numerical results concerning the quantities
which are driven by the non-equilibrium part of the distribution function (such
as the current for instance) are drowned in numerical noise and are unacces-
sible. A remedy is found by flrst performing an asymptotic analysis of the
problem, which allows an analyticaî computation of the equiîibrium part of the
distribution function. Then, the deterministic particle method is applied to only
compute the non-equilibrium (ballistic) part of the distribution function. These
computations are presented in Section 2. Section 3 contains an asymptotic
analysis of the one dimensional Vlasov-Poisson System specifîcally designed
for modeling a Schottky diode5 in order to support and interpret numerical
results of Section 2. The perturbation parameter appears in the boundary
conditions* in close relation with the previously studied Child-Langmuir
asymptotics (see [14], [15], [10], [3], [4] and référence therein). The limit
Poisson problem (when the perturbation parameter is set to zero) is in the form
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PARTICLE SIMULATION OF KINETIC EQUATIONS 765

of an obstacle problem. On the other hand, we obtain explicit approximations
of the equilibrium and non-equilibrium parts of the distribution function,
and explicit formulas for the current, electric field, potential, depletion
width, ...

A generalization of this asymptotic analysis to the three dimensional case
can be found in [}6]. A review paper which focuses more on the involved
physics can be found in [5].

2. DETERMINISTIC PARTICLE SIMULATION OF THE BOLTZMANN TRANSPORT
EQUATION FOR A SCHOTTKY DIODE

2.1. Introduction

The aim of this section is the numerical simulation of électron transport near
a metal-N-type semiconductor contact. Due to the intrinsically kinetic char-
acter of électron transport in the depletion région of a Schottky contact it is
necessary to use the Boltzmann Transport Equation. The discretization method
used is the deterministic partiële method. One interesting issue of such
simulations is to obtain information on électron transport coefficients within
the depletion layer near the junction, such as momentum or energy relaxation
times. Such values of the transport coefficients are needed for instance in
hydrodynamic models.

2.2. The kinetic model of the physical problem

A Schottky diode consists of a metal-semiconductor contact. At thermal
equilibrium, because of different electro-chemical properties of the metal and
semiconductor, a positive charge is distributed all over the depletion layer,
near the semiconductor surface. This induces a potential barrier, the built-in-
potential Vbn which dépends on the metal work function, the électron affinity
of the semiconductor and the doping profile (see [34] chapter 5 for more
details). When a bias is applied to the structure, the value of the built-in-
potential strongly influences the current flowing through the device.

We assume the diode consists of a one-dimensional N-type semiconductor
of length L in the x-direction. The distribution function ƒ is supposed invariant
under rotation of the wave vector k about the x axis. Therefore we suppose
f = f(x, kv k2) where x e [0, L], kx e R is the component of the wave vector
parallel to the x-axis, and /c2 e [0, <*>] is the magnitude of the normal
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766 P. DEGOND, F. POUPAUD, A. YAMNAHAKKI

component of the wave vector to the jt-axis. The Schottky contact is put at
x — 0 while an ohmic contact is assumed at x — L. Then the Boltzmann-
Poisson system reads as follows :

(2.1)
i e [ 0 , L ] , ke UxU+ , t ^ 0,

k,t = Q)=fQ(x,k) , XG [0,L] , ke UxR+ ,

E(x,t) = - ^ \ x e [ 0 , L ] , r > 0 , ( 2 . 2 )

[0,L] , r ^ 0,

where k = (kv k2) e R x R+ is the wave vector, v(k) is the électron
velocity, given by the band diagram energy e(k) according to :

v(k) =\vkt(k) , (2.3)

h is the Planck constant, q the absolute value of elementary charge, E(x, t) the
electric field, 0(x, t) the electric potential, ND(x) the given doping profile,
and n(x, t) the électron density (see (2.9)). The Euclidean volume element in
wave vector space is given, in this geometry, by :

dQ(k)=2nk2dkx dk2 . (2.4)

The boundary conditions for this problem read :

j{x = 09ktt) ==N°M(k) , k] > 0 , k2 > 0 , t ^ 0 ,

f(x = L, k, t) = A '̂DM(k) , /Cj < 0 , A:2 > 0 , r 5= 0 ,

) = 0 , t ^ 0 ,

) = Vw - V. , r ^ 0 • (2.5)

Here, we further assume that the semiconductor is non-degenerate (i.e. mod-
erately doped) and that the injected électron distribution functions at 0 and L
are at thermo-dynamical equilibrium (i.e. Maxwellians with respect to k).

N° =
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PARTICLE SIMULATION OF KINETIC EQUATIONS 767

is the equilibrium density at x = 0, Mc the effective density of states at the

conduction band, Mc = 2
2nh2 , (see [34]). Vbi is the built-in potential,

which gives the potential différence between the bottom of the conduction
band at x = 0 and x = L. lts définition (2.6) assumes that neutrality holds
at the ohmic contact x = L. &h is the barder height, which dépends on the
metal work function <Pm and the semiconductor électron affinity
X : &b = <Pm - X> (see ^g. 1). kB is the Boltzmann constant and M(k) is the
normalized Maxwellian at the lattice température T:

M(k) = C. , whereCiss.t. M(k)dQ(k) = 1 .
J

is the applied potential.

vacuüm level

Metal

0

X

\ semiconductor

l<ermi levcl

0 X

|V bi

Metal / Semiconductor
interface

2.a) Band diagram of the Schottky diode

at equilibrium

vacuüm level ^

Metal

0

- -

X

,L

\semiconductor

Metal / Semiconductor
interface

q 0

0 ->?

2.b) Band diagram of the Schottky diode

under forward bias

Figure 1. — Energy band diagram of the Schottky diode.

We shall only consider électrons in the /"-valley of GaAs and intra-valley
collision terms only. To be more realistic, we should perform multi-valley
simulations (see [11], [17] for multi-valley simulations using the deterministic
partiële method). However, the purpose of this paper is more to show the
practical feasibility of the method rather than to give the most accurate
physical results. Q(f), the intra-valley collision term, is given by :

Q(f)(x,k,t)=\ [S(x,k',k)f(x,k')(l-f(x,k))

vol. 30, n° 6, 1996
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where S(x, /:, k') dQ(k') is the transition rate of the state k to the volume
element dQ(k') around the state A;'at the position x. We take into account, in
this model, the following elementary interactions :
O acoustic and piezo-electric interactions in their elastic approximation ;
O polar and non polar optical interactions (émission/absorption),
O ionized impurities interactions (its transition rate is the only one which
dépends on the x variable via ND(x)).

S(x, k, k') is the sum of all these elementary transition rates, see [32] or
[12], [17], [20] for their expressions.

The energy band diagram e(/c) of this model is spherical, and not para-
bolic :

^K (2.8)( ) ( ( ) ) K
2 m

with m the effective mass and a the non parabolicity coefficient. The density
and the other macroscopic quantities are defined as follows :
• density :

n(x, t) = f /(x, K t) (4 7I3)" ' dQ{k) , (2.9)
JRXR +

mean velocity :

<!>)(*, r ) =rf ! ( x , f ) v(k)f(x,k,t) (4n3)~ l dQ(k)
J R x R +

(2.10)

mean energy :

<€>(*, r )=/ f ' (x , f) f e(k)f(x,k,O(4niyldQ(k),
J RxR +

(2.11)

mean internai energy :

e(xt t) = <€>(*, t) - \ m\v)\x, t) , (2.12)

current density :

( ƒ > ( * , t ) = - qn(x, t ) ( v ) ( x , t ) + e0e,£t(E(x, t ) ) , (2.13)
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(4 7T3)~ ' is the density of states in /:-space. We also define the total charge :

nD(x) -n(xtt))dx. (2.14)
o

We recall that the current density is independent of x. In the numerical
simulation, an average over x is computed in order to increase the accuracy.
The relaxation times deduced from a kinetic model are a priori functions of
(x, f), since the are computed from moments of the collision operator. Their
expressions are given as follows (see [2], [23], [18])
• momentum relaxation time :

-n(x,t)(v)Ut)l f v(k)Q(f)(x,k,t)(4n3yldQ(k) \ \ (2.15)

• energy relaxation time :

(2.16)

where W(x, t) = n(x, t)(e)(x, t) and

, = n(x,t) I

Now, we give a brief présentation of the numerical method.

2.3. Présentation of the deterministic partiële method

This numerical method has been investigated first in ([31], [9]) in the
context of incompressible fluid dynamics. The application to collisional ki-
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nctic équation has been done in [24]. ït has been used for the semiconductor
Boltzmann équation in [13], [12], [11]. The distribution function is approxi-
mated, in the sensé of weak solutions, by a sum of Dirac measures in the phase
space (particles) :

ƒ(* ,* , O = f Uk, 0 = ^ 0 ) ^ 0 ö(x- xi(t))®S(k-ki(t)), (2.17)
/ - i

where N is the number of particles, ;c.(f), kj=(k] , - ( 0 » ^ {(t)), f^t) and
œ{ are respectively the position, wave vector, weight and control volume of the
ith particle. They evolve in time according to :

§ =!>(*,); *.(0) =x%

dt
^ = 0; *2.,(0) = 4 , . (2.18)

f =0,(0; f,(0) =ƒ«,

where £",-(/) and Q(.(/) are the approximations of the electric field and of the
collision operator acting on thc i"' particle. The initial xj, k°, fi, and o>° are
choscn so that

(2.19)

the approximation (2.19) is also taken in the weak topology of measures.
Possible choices of ;c°, &?, co* and/^ can be found in [31].

To define Q{O)> w e introducé a cut-off function Ça(x) such that

jx)dx=\, (2.20)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



PARTICLE SIMULATION OF KINETIC EQUATIONS 771

where £ is a compactly supported function, and we write

^ > ^ ; -^.(r))o;7Ca(xy-^)] . (2.21)

where S'' is a régularisation of the exact transition rate S, see [24], [11], [17]
for a justification of this expression and [17], [20] for a présentation of a fast
algorithm to compute the collision operator.

For the approximation of E^t), we considered the classical « Particle in
Cell » (PIC) method, see [22], [6], [7] and références therein for a présentation
and [27], [9] for an error analysis. The approximations of the other macro-
scopic quantities, which depend on position and time, are defined at a fixed
grid mesh points Xm = m Ax by using a numerical quadrature and a régu-
larisation function W, for example : W(x) — Max (0, 1 — \x\ ) and

(v) (X,„, O -» : , ' (0 2 a, v(K)f,(O^ w(^J \ x '" j . (2.22)

The numerical simulation is initialized with the slationary solution of the
coupled Boltzmann-Poisson System at equilibrium :

where n is the solution of the following semi-linear elliptic problem :

njx) = N° exp(^) ; P = fj., (2.23)

^ ^ ^ . , (2-24)

with /V° given by (2.6). The time stepping procedure is detailed in [17], [20].
The computational domain is chosen rectangular. We have chosen the
following boundary conditions on the wave vector : particles which
leave the domain on ki - kx max (resp. k]=-kl max) are re-injected, with
^ i / = ~^i,max ( resP- ^i r ^ i m a x ) without changing neither their weights
nor their positions, see [13], [11], [17] for a discussion of artificial boundary

vol. 30, n° 6, 1996
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Figure 2. — Particles injection scheme in position.

conditions for particle methods. If a particle exits the domain at x = 0 or
x = L, it's re-injected in the domain according to figure 2, with a weight
consistent with formula (2.5). These boundary conditions are stable and have
been shown to numerically preserve the total charge up to machine accuracy.

2.4. Direct simulation

We have used a GaAs model with one valley (F) at 300 K. The physical
and numerical parameters are chosen according to [20] and [17]. Spécifie
values of the parameters for the Schottky diode are given in table 1. Results

Table 1. — Physical and numerical parameters.

Physical values

Applied voltage (Volts)
Lattice température (K)
Device length (microns)
Doping profile (m"3)
Barrier height (GaAs-Aluminium contact) (volts)

0.2
300.00

1.2
2.E + 22

0.8

Numerical values

Time steep (ps)
Poisson meshes number
Particles number
Position régularisation parameter fj( um )
Energy régularisation parameter a ( meV )
Maximal parallel energy e^ax - e°(eV )
Maximal perpendicular energy e™ a x-e°(eV)

0.005
M= 120

36 000
0.009
4.0
1.2
0.3
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are shown in figure 3 to 8. The equilibrium density (i.e. that corresponding to
VA = 0) is shown on figure 3 while the stationary density obtained after 2 ps
simulation for VA ~ 0.2 V is displayed on figure 4. The results are fairly
correct in spite of a variation of 8 order of magnitudes of the density between
x = 0 and x~ L. The stationary density for V̂  = 0.2 V at x = 0 is larger
than the equilibrium density at the samc point, which is a conséquence of the
direct biasing of the junction. The clectric field (fig. 6) is almost linear and the
electric potential {fig. 5) almost parabolic in the deplction région. Howevcr, the
current density as a function of time {fig. 7) displays a chaotic behavior, with
an undetermined sign and an absolute magnitude of 3 orders of magnitude
above the expected one (which is about (5.10~4A/cm2 [34]). Figure 8
displays the stationary distribution function at time t-2ps. It is essentially
Maxwellian with some numerical fluctuations, which shows that the method
has only been able to capture the equilibrium part of the distribution function.

0.4 0.6 0.8
distance(^m)

1.2

Figure 3. — Equilibrium density (VA = 0) (solution of cq. (2.23)).

le+23
le+22

lc+20

-;i) le+18

le+16

le+14
le+13

C
i

0.2

r~ 1 1

1 ! l

0.4 0.6 0.S
distance(/j77i)

-

l 1.

Figure 4. — Density (VA = 0.2 V ) at stationary state (t = 2ps) (direct simulation),
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0.2 0.4 0.6 0.8
distance {fini)

1.2

Figure 5. — Electric Potential ( VA = 0.2 V) at stationary state (/ = 2ps) (direct simulation).

0.2 0.4 0.6 0.8
distance(/jm)

1.2

Figure 6. — Electric field ( VA = 0.2 V) at stationary state (/ = 2ps) (direct simulation).

0.8
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0.4

0.2

{A/cm7) 0

-0.2

-0.4
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-0.8 L

/ If
f

/V i AiVVw\V A A

/n V
0 0.2 0.4 0.6 0.3 1 1.2 1.4 1.6

time(ps)

Figure 7. — Currcnt dcnsity ( VA = 0.2 V ) as a function of time (direct simulation).
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5~
5 * =
5 S J
_ ti -

I ^
i s =

Figure 8. — Distribution function at / = 2./?s(dircct simulation).

The non-equilibrium part, which détermines the current is completely con-
cealed by the numerical fluctuations. This explains why the method has been
unsuccessful to capture the correct value of the current.

2.5. Décomposition in equüibrium and non equilibrium distributions and
simulation of the non equilibrium distribution

In the previous subsection, we have pointed out that no information about
the non equilibrium part of the distribution function (and thus, about the
current) could be obtained from a direct computation of problem (2.1), (2.2),
(2.5), (2.7). In this subsection, we reduce the problem to the computation of
the non equilibrium distribution function.

In what follows, we assume that the électrons gas is non degenerate, i.e. the
collision term Q is linearized in (2.7), we make 1 — f~ 1. Let

= N°(x)M(k), N\ (2.25)

where 0U is solution of the following semi-linear elliptic problem :

dx~

= 0 , = Vh. - VA

Then, it will be proved in the next section that N°(x) is an approximation of
the stationary state carrier density (which is confirmed by a comparison

vol. 30, n° 6, 1996
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0 0.2 0.4 0.6 0.8 1 1.2
distance(^m)

Figure 9. — Stationary state carrier dcnsity TV (x ), solution of (2.25),

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 10. — Current dcnsity (VA = 0 . 2 V ) as a fonction of time (simulation of the non-
equilibrium distribution).

between fig. 4 and fig. 10) and that f is an approximation of the stationary
statc distribution function. Under a forward bias, we consider the distribution
function ^ =/° - ƒ It satisfies the following Boltzmann-Poisson System:

w i t h
f
dx

=f=f{N°(x)- ng(x, t)-ND),xe ]0, L[, t > 0 ,

g(x,k,t)dQ(k),x<= ]0, L[,t>0, (2.26)
RxR
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with boundary conditions :

g(L, k) = Q, for k{ < 0, J^ 2* 0, f > 0 ,

0(0, *) = N0(zxp(jf) - 1 J M(k), for *, > 0, *2 2* 0, f > 0 , (2.27)

, t) = 0,

with ZV0 = ND exp( Sïsi)
V K T)-

t ^ 0 ,

In the numerical simulation, we put r = 0

because it is of higher order with respect to the small parameter a = -3-—. It

wil! be justified in Section 3. We have solved this System by the above
described deterministic partiële method with g = 0 as initial distribution
function. Moments of g will be referred to in the subséquent discussions as
« non equilibrium moments » and designed with an index g as opposed to the
moments of y0 which will be the « equilibrium moments ». The physical and
numerical parameters are the same as in subsection 2.5 and are summarized in
table 1. The current density (fig. 10) seems perfectly correct. We also remark
that the total velocity (fig. 12) vanishes outside the depletion zone and the non
equilibrium électrons velocity {fig. 11) is very high in this région. The énergies
of the two électron populations are given in figures 13 and 14. Finally,
figures 15 and 16 give plots of g as a function of (x,k{) near k0 = 0 at
t = 1 ps and at stationary state. At t=\ps, the collisions had not have
enough time to act, and figure 15 provides a numerical picture of the asymp-
totic analysis done in the following section which concerns a collisionless
case. Indeed, the distribution function seems to follow a parabola îike char-

-4

<

-5

-6

-7

(10Tcm/s)-8

Q
- y

-10

-11

-12
C

V,—r'

Î 0.2

! 1

0.4 0.6
distaneefiim)

—I—-

t
ft tV

^y

0.8

= 1
= 2

S.
%

.ps —

.ps -0-

t .

1 1.

Figure 11. — Mean velocity of the non-equilibrium électrons (simulation of the non-equilibrium
distribution).
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0.2 0.4 0.6 0.8
distance(/im)

Figure 12.— Mean velocity (simulation of the non-equilibrium distribution).

0.4 0.6 0.8
distance(/mi)

Figure 13. — Mean energy of the non-equilibrium électrons (simulation of the non-equilibrium
distribution).

0.32

0.28 r
0.24 I
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-
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distance (um)

Figure 14- — Mean energy (simulation of the non-equilibrium distribution).
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Figure 15. — The non-equilibrium distribution function at f = 1 ps.

8. e 15. 9^

Figure 16. — The stationary state non-equilibrium distribution function (simulation of the
non-equilibrium distribution).

acteristics^ = \/2 &(x) ), starting from the metal semiconductor contact
(x = 0) with a zero velocity at the starting point. Once the equilibrium has
been reached (fig. 16), the ballistic part of the distribution function is clearly
visible and follows the same parabola, and the contribution of électrons which
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have suffered one or more collisions appears as a thermalized part near
kl — 0. This distribution function is close to the one obtained by the Child
Langmuir asymptotics of the Boltzmann Transport équation in [4].

3. ASYMPTOTIC ANALYSIS OF VLASOV-POISSON SYSTEM FOR MODELING A
SCHOTTKY DIODE

3.1. A simplifiée! model

In this section, we will consider the stationary one dimensional Vlasov-
Poisson system in the parabolic band approximation :

m dx

= â.(N(X)-ND), Xe ]0,L[ (3.1)
dX '-s

=
J -

N(X) = F(Xy V)dV.
J - oo

For the sake of simplicity, we neglect collisions. This is justified by the fact
that the depletion zone, which is the most important région of the device, is
very short and that électrons have not enough time to suffer important
collisions. Boundary conditions are given as follows :

0 ( 0 ) = 0 ,

, v>0, (3.2)

The thermal velocity Vth is given by Vth = v kB T/m . Other physical
constants are defined in Section 1. We also define a characteristic velocity

[q0~L
——, which is the typical électron velocity when accelerated by the
m

electric field.

3.2. Scaling

Now we assume that the lattice température is small, or equivalently that the
typical velocity of the injected électrons at the junction which is of the order
of the thermal velocity Vth is small compared with the velocity VL that they
reach after being accelerated by the electric field :

(33,
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Therefore, we introducé the small parameter /• by :

C = TT<S 1 . (3.4)
VL

We shall use L, VL, &L and ND as characteristic length, velocity, potential and
density scales. We introducé auxiliary units of current density J and distribu-
tion function F according to

(3.5)

and use the following scaling :

X = Lx , V = VL v , 0 = 0Lp,
F=Pf, N = NDn, 7 = - J y . (3.6)

With these hypotheses, the dimensionless Vlasov-Poisson system reads :

^ ? = A ( « ( J C ) - 1 ) , xe ]0 , 1 [ , (3.7)

n ( j c ) = ^ . O d ü , x e ] ö , ! [ .

The dimensionless constant À is given by

qNDL2

Boundary conditions then become :

= 0 , <p(\)=l

( 3 - 9 )
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with the following relations :

where the constant ju > 0 is of order 1 (fj< 1 under a forward bias and
jj > 1 under a reverse bias). Now, we are interested in the limit behavior of
the distribution function, and then the density and the potential, when the
parameter e goes to zero. We use the same procedure as the 3 dimensional case
[16]. However, we will obtain explicit expressions and, of course, more
regularity results of the limiting problem. We introducé the functions fQ v and
H :

(3.10)

H(t) = e x p ( - 0 for t>0,

H(t) = 0 for f < 0 , (3.11)

and we writc the distribution function in the following form :

- (3-12)

We will prove the two following theorems, and we will only sketch the
différences with [16].

THEOREM 3.1 : (Convergence of the equilibrium part)
When e —» 0, the solutions (ƒ., <pv) of problem (3.7)-(3.9) ver if y :

« t , nOc -> /;0 /// L
!\ ]0, 1 [ ) , / ? < « ö t ó /« C'( [0, i [\VD) ,

where d£( [0, 1 ] x [R ) /s //?e space of bounded measures on
[ 0 , l ] x R , and

M2 AN Modélisation mathématique et Analyse numérique
Malhematical Modelling and Numericai Analysis



PARTICLE SIMULATION OF KINETIC EQUATIONS 783

where VD is a neighborhood of lD = //?ƒ( l , ^ 1 J, (pQ and n() are defined as :

nö(x)=ö if x*klD, no{x)=\ if x>lD,

<pQ(x) = t-x(lD-x)+f-,x<lD <pö(x)= \tx =s lD

THEOREM 3.2 : (Convergence of the kinetic part)

in Jfb((Q, 1 ) x IR) , (3.13)

(p0 is defined in theorem (3.1).
M o re o ver, the carrent density is given (for i: smalt enongh) by :

jt = \ycU v)dv=irn (exp(- ̂ ) - exp(- ̂ ) ) . (3,4)

To prove theorem (3.1), we begin by giving some uniform estimâtes.

3.3. Uniform estimâtes

Let:

) ) ^ ) d ( 3 J 5 )

(3.16)

v2

The function fy c is non négative. Indeed ƒ, t. = / 0 c if -y - <pc ^ 0 and if

^ - ^ 0 , then fUe = eXp(-JL^glem We get :

PROPOSITION 3.1 : There exists a solution f, <pc of the problem (3.7)-(3.9)
suc h that :

fi.c^fc^fo.0 lf A'^ 1. (3.17)

, (3.18)

(3.19)
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Proof : The fonctions fQ v and/j c are solutions of the Vlasov équation (3.7).
Morcover, we have

ƒ, ,.(0, v ) = c x p ( - ^ ) ̂ À=-r exp ( - ^ i ) =/ t(0, 1; ) v > 0 ,

and / 0 c ̂  ƒ j t. for (j ̂  1, then, these functions are respectively lower and
upper-solutions of (3.7) and vice versa for /j ^ 1. The existence of a solution
of (3.7)-(3.9) such that (3.17) holds holds is guaranteed by [29]. Thus,

\fc-foJ * \fi.c-foj * ( e X p (~^ ) + e x p ( - ^ ) ) ^ - - ( 3 ' 2 0 )

The function H is boundcd by 1, so (3.15) and (3.20) lead to (3.18). On the
other hand, we have :

i»,--'-'
then by using (3.15) and (3.20) we obtain

But,

/;, ( ; ( . v ) - e x p f ^ 1 ^ 1 f o r <pc ̂  0 , ( 3 . 2 2 )

and for <pc > 0, the change of variable t = 5 yields to

f ^ * . f.,o.
Then, wc have

/ ; i - U ) ^ ^ f e l C X P v 7 " ° d f = 1 ' ^ ^ ° ' (3-23)
The estimate (3.19) is a conséquence of (3.21), (3.22) and (3.23).
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We introducé now the following elliptic problem :

= /•( expl ) - 1 1 , x e ] O , l [ , (3.24)

then, we have

PROPOSITION 3.2 : The problem (3.24) has a unique solution which satis-
fies :

1 ^ y f t t ( x ) » ÀX(]~X) + x V x e [ 0 , 1 ] , (3.25)

p'Oc(x)^O V x € [ 0 , 1 ] . (3.26)

Proof : The existence and uniqueness of solution of the problem (3.24) is
classical. Then we have

The maximum principle implies that g?0 e is bounded from below as in (3.25).
Now, Iet xQ the point where (p0 e matches its maximum. If we suppose that
(pQ €(xö) > 1, and [xQj /] the maximum interval in which <pQ c(x) ^ 1. Thus,
<p£jx)*0, V x e [XQJ], and <p'Ote(x) > <p'QJxQ) = 0. Vx e [ x 0 , / ] . This
implies that <pOtC(l) ^ <PQ c(*o) > U an<^ we have / = 1. This leads to a
contradiction ( p O t C ( l ) = i ) , and (3.25) holds.

Then, ç>OtC(x) ' ^ 1 implies that (p'^c{x) ^ 0 and ^ t ( 1 ) 5= 0. Thus ,
^Q Ljs decreasing and qf0 c(x) ^ q>'Q c(\) *& Q on [0,1]. •

Now, we have the following approximation results :

PROPOSITION 3.3 : Let (/£, <pK) be a solution of the problem (3.1)-(3.9) for
which proposition (3,1) holds, then we have :

(3.27)

dx dx
(3.28)

(3.29)

where the gene rie constants C do not depend on £.

vol. 30, n° 6, 1996



786 P- DEGOND, F. POUPAUD, A. YAMNAHAKKI

Proof : Let Sc = (pc — (pQ c, and rl = nc — n0 t>, then we have

<5£(0)=^.(l) = 0 ,

(
S"( x ) = A[ exp

/
~ exP

We obtain by multiplying by Sc and integrating with respect to x :

The previous inequality holds from the exponential being a nondecreasing
function and the estimate (3.19). But

^(x)dr

(n ! is the Poincare constant of ]0, 1 [ ). This leads to

and according to the continuous embedding of//' into C°, we obtain (3.27).

From (3.19), it remains to bound n0 c - expl 2 ) *n order to get (3.29).
\ g /

One can remark that

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



PARTICLE SIMULATION OF KINETIC EQUATIONS 7 8 7

By using (3.25) and (3.27), we have

sup {qfr 90tC)^ 1 + c (exp( - -y + exp^-^J J ,

xexpl C-

which leads to (3.29). (3.28) is then a conséquence of (3.27) and (3.29). •

3.4. Asymptotic limit of the elliptic problem

This subsection concerns the passage to the limit i: —» 0 in the elliptic
problem (3.24). The function (pQ f. remains bounded by 1 (see (3.25)), then we
have

0 ^ <p'óiE(x) ^ - A , (3.30)

and (pö c is bounded in W^°°( ]0, 1 [ ). By using Ascoli's theorem, we have up
to a subsequence :

<pOv -» p0uniformly i n C ' ( [ 0 , 1] ) (3.31)

<PQ v—*(pQ in L°°( ]0, 1 [ ) weak . (3.32)

LEMMA 3.1 : For every fixed value (p e [0, 1 ), there exist two unique real
numbers <pQ L( <p ) and (po( <p ) such that :

Proof : It's sufficient to show that ^0 c and ^0 are increasing functions of JC,
for all x such that ^0 C(JC) ^ 1 or ^ 0 (x) ^ 1.

If ^ ó , £ ( x ) = 0 ' t n e n Po.cCy)"" o n (x> H (^ó.c i s decreasing and
^ ( 1 ) ^ 0 ) and cp0 c(y) = (pQ c( 1 ) = 1 on (JC, 1]. We proceed likewise
for $90.
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Now let lDc ~ sup{x ; (p0 c(x) < l} , and lD = supfx ; tpQ(x) < 1}, then
the functions r/?0 c and r/>0 are one to one maps respectively from [0, lD J and
[0, lD] to [0, 1 ). We note 0O c and (p0 their inverses. For #>* e [0 S 1 ), we
have :

by using the uniform convergence of <p0 c to (p0. Therefore, for E small enough,

% ( ^ o c ( ^ ) ) < ] a n d 0 o ( ^ o ( ^ o , ( / ) ) ) = ^o , . ( / ) • T h e function 0O is
continuous, then

which gives (3.33).

PROPOSITION 3.4 : 77?e Hmiting potentlal (p0 is given as follows

ço(x) = X—^ + f for x^lD

(po(x) = 1 /or x ^ /ö, vî /ï̂ r̂  /D e (0, 1 ] .- (3.34)

Proof: lD = sup{^ ; (pQ(x) < l} . For every / < lD, let <p* G (/, lD) and
<p* = <po(<p*). By using (3.33), we can obtain that, for e small enough,
<p0 c(<p+) > L Thus, ç>OtC(x) ^ ^* on [ 0 , / ] , the functions (pQ c are nonde-
creasing. Then, we have :

Aexpf ~ — 5 - J , (3.35)

and <PQ v—> — A in C° (0 , / ) uniformly.
By using (3.31) and (3.32), we can conclude that :

(Po.t; -» ^o uniformly in C2( [0, /] ) V/ < /D (3.36)

«£(*) =-A on [ 0 , / D ] , (3.37)

but, <po(O) = 0 and p o ( / D ) = 1, then (3.34) holds for x =2 Z .̂ The functions
<p0 c are nondecreasing, we then conclude that <p0 is also nondecreasing from
(3J1) . For xs (lD7 1), we have 1 = <pQ(lD) < ^ 0 (x ) ^ p o ( l ) = 1,
which ends the proof. •
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PROPOSITION 3.5 : The real number lD is given by ;

lD=\ if A ̂ 2 , /o = V l if

klD I
Proof: For x < lD, we have </?Q(X) = - AJC + -9 - + 7—. But the function7

, lD
\ A^D 1

(pQ is C , then we have <p'0(lD) = - - « - + , — . #>0 is constant on [/D, 1], then
if lD<\ we necessarily have : (p'0{iD)~—ö~ + 7~ = 0> ^D ~ V "» a n c i

the condition A > 2 holds.
On the other hand, if lD= 1, then

< ^ ( X ) = - A X + | + 1 V x e (0, 1),

and #?0 being increasing imposes that x0 = «• + — 2= 1, which leads to
(3.38).

Finally, the following theorem allows us to obtain the limit behavior of

PROPOSITION 3.6 : The functions (p0 c verify :

(PQ v "^ ^0 m ^ 2 ( t^' ^ l ^ ü ) uniformly for every neighborhood VQ oflD . (3.39)

Proof: In view of (3.36) we have only to consider the case where
lD < 1. We remark that ^ e + X ^ 0. If we note

\j/c- X expl —^5 J, then for every x, y e ] /D ) 1 [

where rjc(x,y) ->r_^öO by using (3.31).
On the other hand, the functions y/c are nondecreasing (like (p0 c), then

(y-x) WE(x) ^ ¥,{z)dz ^ (y-x)\

y-X

and X+ .— ^ WE(x) ^ ^ ( 1 ) = A , Vx e ] / D ,
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Thus , V[r/, b] ç ] / o , 1 [, i//r —> A on [eu b] uniformly.

( V X G [ a , i ] , A « - y/c(a) ^ y/c(x) ^ ^ C ( 1 ) = A ) ,

which leads to the uniform convergence of Ç?Q eto ^ o o n ]'/>» ' [ •
Then, (3.36) ends the proof of (3.39).

DÉFINITION 3 . 1 : lD is called the depletion length, and the région
{x s.t. 0 ^ x ^ lD} is the depletion zone of the Schottky diode.

We now are able to prove theorem (3.1) about the limiting solution of the
Vlasov-Poisson problem when e goes to zero.

Proof of theorem (3.1) : Proposition (3.6) and the estimâtes (3.27), (3.28)
allow us to obtain that

tpc —> <p0 uniformly in Cl( ]0, 1 [ ) .

On the other hand, we have

K-O) -"o(
— 1

- e x p

- e x p

nö(x) - e x p

Then Proposition (3.6) and estimate (3.29) imply that

nc -» nQ uniformly in C°( ]0, 1 [\VD) ,

for every neighborhood VD of lD.

In the same way <p0 e —> <p0 uniformly in C2( [0, l]\VD). Besides, by using
the estimâtes (3.25) and (3.29), nc is uniformly bounded by 2 for /• small
enough.

Now, let VD be a fixed neighborhood of lD then :

Jo
\nc{x) - no(x)\p dx ^ \\nc - rto||L-([oA]Wi)) + 3 meas ( VD) .

.f,.lim sup \nc(x) - nö(x)\p dx s£ 3 ( VD) .
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Since VD is an arbitrary neighborhood, this yields nc-*n0 in Z/ ( ]0 , 1 [ )
p < oo. Ltkewise, we have <pt —> <pQ in W2'p( ]0, 1 [ ), p < °°, On the other
hand, we have

by using (3.18) and (3,19). Then» we easily conclude that

i n

We now turn to the scaled Vlasov-Poisson problem (3.7) with boundary
conditions (3.9), and to the décomposition (3.12) of the distribution function,
where / a e is the equilibrium distribution (3.10) and h£ is solution of Vlasov
équation with boundary conditions

( ) ) e x p ( - ^ ) , v > 0

(3.40)

hc is the kinetic part of the distribution function.
We are now interested in the proof of theorem (3.2) which concerns the limit

of the correction term hc> because it carries all the non equilibrium dynamics.

In particular, since jöc=
 vfo.€dv~Qf the current is given by ;

V X P \ 27J' eXPV 2 ^ 0 ) Jhc f Jhc " Jj = e max

Proof of theorem (3.2) : Let r£ = —-, where

2 e
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with | a j ^ 1 and av —>v_^0 Sign ( 1 — / J ) , then re satisfies Vlasov équation
with boundary conditions :

re( 1, u ) = 0 , v < 0 ,

thus, for a small enough, the explicit expression of rc is ([14], [19]) :

ƒƒ is defined by (3.11) and h is the Heaviside step function, (h(v)~ 1,
v > 0 ; / z (ü) = 0 , Ü < 0 ) .

_ I / \
Then, rc converges to (4n(p0) 2 öyv - y2 <p0 ) in

weak* :
Indeed, let ^ € C°o( [0, l ] x R ) . We have

rc(x, u ) y/(x,v)dxdv =
[ 0 , l ] x R

[o. i

By using the change of variable t = — 5 — , we have :

r ( x, v ) i//(;c, v

J J [ O , l ] x R

. (3.4D

When e —> 0, the Lebesgue dominated convergence theorem implies that :

dx

J
rc(x,v) y/(xyv)dxdv - , , . r v - , v _ r u , - ,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



PARTICLE SIMULATION OF KINETIC EQUATIONS 793

Moreover, we have

h(v)dv =
f 1 f
Ju £ fcv27cJ{^-Ve>o

Jo 7T

which ends the proof. •

Remark 3,1

— We notice that hc and jc are positive in the reverse bias case (p < 1 or
VA<0) and that /i.£ and jc are négative in the direct bias case
(ft>\ or V ^ > 0 ) .

— The limiting function of the non-equilibrium part h0 is the distribution
function of a mono-kinetic beam starting from thejunction with velocity
0. However, the beam evolves in an uncoupled way with the electric
field generated by the equilibrium part. This explains why the conver-
gence of the non-equilibrium part is easier to obtain than the usual
Child-Langmuir asymptotics [14], [15].

3.5. Comparaison with physical formulas

In physical variables, the depletion length reads :

4ND

A formula for the depletion length is given in [34] :

f -

The différence is explained by the fact that UT < Vhi - VA in our
asymptotics. Then the values of LD and LD are asymptotically equal. The other
physical quantities, like the density, electric field and potential are exactly the
same as the ones given in [34]. In particular, the current density becomes :

J = Sign(VA)Js
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We recover a classïcal formula ([34], Section 5.4). The expression of the
saturation current Js corresponds to the électron flow (in either reverse or
forward directions) above the barrier at equilibrium.
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