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MATH E MAT IC AL MODELLING AND NUMERICAL ANALYS1S
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 6, 1996, p. 743 à 762)

ERROR ANALYSIS FOR THE FINITE ELEMENT
APPROXIMATION OF A RADIATIVE TRANSFER MODEL (*)

b y C h r i s t i a n FÜHRER ( ' ) a n d R o l f R A N N A C H E R (»)

Abstract. — Th is note deals wit h the nu me ri cal solution of a weakly singular intégral équation
a rising in radialt've or neutron transfer physics. In contrast to the common discrete ordinales
method, the approach considered hère is designed for physical applications where the major
interest is in Computing the scalar flux or only a limit ed number offlow intensities in arbitrary
directions rather than the whole radiât ive field. Apart from a global convergence resuit, we al s o
dérive interior a priori and a posteriori error estimâtes partie ularly tempt ing for astrophysical
applications where the computational boundary is mostly art ifiel al.

Résumé. — Cette note traite de la solution numérique d'une équation intégrale faiblement
singulière qui joue un rôle important en astrophysique et en physique des neutrons. Contraire-
ment à la méthode des « ordinations discrètes » conventionnelle, notre méthode est particuliè-
rement intéressante pour des problèmes mettant enjeu une intensité moyenne ou un petit nombre
d'intensités spécifiées. En plus d'un résultat global de convergence, nous présentons des
estimations d'erreurs locales non seulement a priori mais aussi a posteriori particulièrement
intéressantes pour des applications en astrophysique qui ont, pour (a plupart, des frontières
artificielles.

INTRODUCTION

The radiative (or neutron) transfer équation is of key importance for
understanding various transport phenomena in astronomy as well as in nuclear
and environmental physics. A simplified n-dimensional (n = 2, 3) version
with (n - 1 )-dimensional ordinate space of this integro-differential équation
reads

, 0) + K{X) U(X, 0) = k(x) R(0, 0* ) u(x> (f ) dtf +f(x) ,

(x,0) e QxSn (0.1a)
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744 Christian FÜHRER, Rolf RANNACHER

with inflow boundary conditions

)) , xe r~ . (0.1

Hère, Q is a bounded subdomain of R" with piecewise smooth boundary,
A{X) > 0, K{X) > 0 and f(x) e L2(Q), while Sn represents the unit sphère
in R'1 (ordinate space with parametrization 0) with n0 being the unit vector
associated to a point on Sn. Further, F~(} - {x e 3Q ; n0• n(x) < 0}, where
n(x) dénotes the outward normal in x with respect to dQ.

Problem (0.1) can be understood as describing the changes of a flow
intensity u in a point x with flow direction 0 if the particle flow is subject to
losses due to scattering and absorption (represented by the term
(zc(jc) u(x, 0) ), retrieves some particles by means of recombination (the
intégral term) and is further stimulated by internai sources/(x) (for a more
detailed introduction, see [1], [2], [6] or [15]). The redistribution function
R(0y0*) is a measure for the radiation retrieved by these recombinational
processes and describes the number of particles which, due to scattering,
change their flow direction from (f to 0. In this note, we focus on the special
case that R(0,0 ) — R(0 ), and, for simplicity, assume R{0 ) = 1, i.e.,
isotropic scattering in Q. Finally, b{xj)) is considered to be a sufficiently
smooth function describing radiation entering Q from the outside.

A large part of numerical research for radiative transfer problems has been
directed towards particle methods like the Monte-Carlo-method which avoids
the straightforward solution of (0.1) by following the path of individual
particles as they are exposed to the spécifie physical conditions created by
K, A and ƒ Anoihcr family of numerical methods, the so-called discrete
ordinates methods (DOM) (see [12] or [13]), replaces the intégral on the righl
hand side by a finite quadrature sum, thus getting a highly-coupled System of
partial differential équations which are then solved in an itérative process (see
[12]) using a characteristic method (see [15]), a finite différence scheme (see
[2]) or a finite element discretization (see [12]). Indeed, recent research (see
[7] and [18]) shows that DOM schemes including finite element upwind
stratégies for handling the resulting transport équations are efficient tools for
solving a large class of radiative transfer problems.

Nevertheless, the DOM is not entirely devoid of disadvantages. First of all,
some practical applications require knowledge only of the mcan value of the
intensity //, i.e., the « scalar flux »,

U(x) := u(xj) )d() .

In these cases, of course, the DOM delivers much more numerical information
than is actually needed. Further, the DOM inherently entails itérative processes
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APPROXIMATION OF A RADIATIVE TRANSFER MODEL 745

such as the so-called /1-iteration still favoured by many authors (see [2] or [6])
because of its apparent simplicity, or more efficient techniques like the
conjugate gradient-type methods recently proposed by Turek [18]. In addition,
the ordinates have to be spread in a uniform manner on the unit circle in order
to guarantee convergence of the DOM (see [6] or [12])» so that a user whose
interest focuses only on very few directions and the respective flow întensïties
would be forced to include many unnecessary ordinates in the computational
process to get satisfactory results. Also» due to the possibly reduced regularity
of the scalar flux at the boundary (see [16] for a detailed discussion), most
DOM schemes suffer, at least in theoretical considérations, from a distinct lack
of précision» which seriously impairs all efforts to construct fully-discrete
schemes of higher order for the scalar flux (see [6]). Finally, the mathematical
theory developed for the DOM so far does not suggest how to efficiently
include the idea of adaptivity (see, e.g., [4] and [5] for proto-type examples
concerning both elîiptic and parabolic probiems) into these considérations.

Inspired by these deflciencies of the DOM, this note tries to explore a
différent approach for solving (0.1), which appears quite justified in the case
of isotropic scattering, It explicitly uses the fact that the scalar flux obeys the
following Fredholm intégral équation :

(I~TÀ)U(x) = Tf(x) + B(x) infl, (0.2)

where Tand TÀ are certain weakly singular intégral operators, B(x) represents
inflowing radiation» while I dénotes the identity. Intégral équations like (0.2)
feature in quite a lot of physical problems ; however, in many applications, the
operator Tïn (0.2) is mostly replaced by the identity, making it a little easier
to evaluate the right hand side. As soon as a reliable, stable and précise
numerïcal solution technique for (0.2) is available, équation (0.1) boils down
to a simple set of linear transport équations which may then be solved by a
standard intégration process. We emphasize that (0.2) differs from the prob-
lems usually associated with the boundary element method where a differential
équation in Q becomes an intégral équation on the cîosed manifold BQ.

The following discussion is prïmarily devoted to the cause of investigating
the theoretical properties of a finite element approach for solving (0.2). A
central objective is to couple the concepts of adaptivity and of interior error
estimâtes (in the spirit of Nitsche and Schatz [14]) so as to gain an interior a
posteriori error estimate that ensures a sufficient degree of grid refinement
away from the boundary while not overly refining the mesh close to it. One
of the big problems surrounding the actual use of conventional a posteriori
error estimâtes for adaptive mesh controî is the global charaeter of the
estimâtes in contrast to the local, i.e. element-wîse, charaeter of the mesh-
refinement necessary to guarantee efficiency. Eriksson and Johnson make up
for this deficiency by simply equilibrating the error over all éléments which,
at least for the model problems presented in [4] and [5], provides satisfactory
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746 Christian FÜHRER, Rolf RANNACHER

results. A gênerai abstract analysis of global a posteriori error estimâtes for the
boundary intégral methoci has been provided in [3]. So far, it seems that local
a posteriori error estimâtes have only been reported for certain pseudodiffer-
ential équations in [19],

The outline of this paper is as follows. Section 1 gives a more detailed
summary of the theoretical properties of (0.1), dérives équation (0.2) and
briefîy illuminâtes its spécifie analyticaî behaviour. In Section 2» we introducé
a class of finite element methods for solving (0.2), discuss its main advantages
and disadvantages and prove» largely using techniques borrowed from
L2-projection theory, global a priori H~ - and L2-error estimâtes. Also, this
section strives to critically review techniques designed to boost the
L2-convergence rate without excessive additional computational effort An a
priori and an a posteriori localization resuit for the L2-error away from the
critical boundary layer of the exact solution will be unveiled in Section 3,
opening up the way for locally adaptive finite element techniques in numerieal
radiative transfer. Combining the finite element approach for the mean inten-
sity U with a simple characteristic method gives us the solution of (0.1) for
an arbitrary ordinate 0 with increased accuracy. Numerieal tests concerning the
reliability and efficiency of adaptive grid refinement for radiative transfer
problems will be presented in a fortheoming work [8].

Let us finally introducé some notation to be used throughout this paper,
|| . || 0 . Q dénotes the L2-norm on Q, whereas ( , , . ) indicates the correspond-
ing L2-scalar product and Hm{Q) (m being a positive integer) the usual
Sobolev-space with norm || . \\m.a*Hm(Q) with m a noninteger is to be
understood as a suitable interpolation space as in [12]. Departing from the
usual notation we let |j . \\_m.Q be the norm of the dual of Hm(Q)'
deflned by (see [10])

U / 1 1 - ™ - S U P
;Q

For a fixed domain Q, we may omit the £2-index. ïf not otherwise indicated,
C will be used as some generic constant and h will serve as a parameter
characterizing the mesh-size of the finite element meshes.

1. THE CONTINUOUS PROBLEM

Let us first outline some basic analytical properties of the radiative transfer
model équation (0.1) with R(0,0 ) == 1 and the corresponding intégral
équation (0.2) for the scalar flux. Abbreviating the right side of (0.1) as
g(x), we get

, 0) + K(X) U(X, 0) = g(x), (x, 0) e Q x Sn (1.1a)
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APPROXIMATION OF A RADIATIVE TRANSFER MODEL 747

and

Since (1.1) can also be interpreted as an ordinary differential équation along
the straight characteristics (i.e., in /-^-direction), we can explicitly define a
solution operator To for (1.1) by

Çd(x.O) / Çs \
u(xt0) = Tog(x) := x expl - K(X~ tno) dt g(x - sn0) ds

Jo \ Jo /

+ e x p ( - d(x> 0)) b{x - d{x, 0) n0) , (1.2)

where d(x,0) dénotes the distance of x from the inflow boundary f^} in
négative /^-direction. After an intégration over the unit sphère, (1.2) results in

U(x) := u(x,O)dO
J s

:= u(x,
J s„

f NUO) ( H \
xexpl » K(x-tno)dt (W+f) (x - sn0) ds dO + B(x) ,

with

B(x) := txp(-d(x,0))b(x-d(x,0)no)d0.

Substituting y \- x - sn0 and n,; =
 x ~ V = , x ~ V, furnishes

5 |x j |

. (1.3)

Utilizing the weakly singular intégral operators T} and T defined by

vol. 30, n° 6, 1996



748 Christian FÜHRER, Rolf RANNACHER

and

Tg(x):=T{g(x)

(1.3) may be written as

(f-TÀ)U(x) = Tf(x) + B(x), (1.4)

For the numerical analysis to come we need some basic stability properties
of the operator T. Mikhlin has shown in [12] that T maps L2(Q) into
Hl(Q) and satisfles

\\Tg\\x * ; c i i 0 i i o , ( i . 5 )

so that U, for X sufficiently srnall and H sufficiently smooth, fulfils

(1.6)

with a positive constant C = C(A, Tt Q).
Since both T and T? are compact as mappings in L2(Q), (1.4) is a weakly

singular Fredholm équation of the second kind. Assuming from now on
1 £ (r(Tk), where &(TX) dénotes the spectrum of Tp we obtain that
( / — TkY

 l exists on L2(Q), i.e., for a given ƒ e L2(Q), there exists a unique
solution U(x) = (I-Txy'l Tf(x) of (1.4). This solution can then be
inserted into (0.1) to get the unique solution of our radiative transfer model
équation for any ordinate 0 desired.

For reasons of simplicity, let us for now consider K to be equal to one,
X > 0 to be a constant parameter, and set h(x, 0) = 0 on dQ so that (L4)
becomes

{x) = Tf{x) (Î.7)

with

rg(*):=
\x~y\

which means that existence and uniqueness of a solution to both (1.7) and (0.1)
can be guaranteed for X" l g (j{T). Let us also note that T is self-adjoint as
shown in [1].

For numerical purposes, we would like to have some information about the
smoothness of the solution U of (1.7). Ho wever, the smoothing property of T
is, because of its weakly singular character, Hmited. In fact, various authors
have shown (see, for example, [16]) that the generic regularity of U is
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U <E HV2~\Q), c > 0. Note that even for an ideally smoothƒ with ƒ ^ 0 near
the boundary dQ, this singularity (which manifests itself mainly in areas close
to the boundary, see [16]) cannot be outweighed.

2. A FINITE ELEMENT APPROACH

This section aims to establish some basic properties of the finite element
method as applied to équation (1.7). We may formulate the following varia-
tionaî analogue of (1.7) :

Given/e L2(Q), flnd U e L2(Q) such that

(U-W)U,<p) = (Tf,<p) V(Pe L2(Q). (2.1)

In order to dérive a corresponding finite element form of (2.1), we now take
Vh cz L2( Q ) to be a finite-dimensional subspace characterized by the local
approximation properties

for ail v G Hk(Q\ ) and appropriate subdomains Q} a Q, where h is a inesh-
width parameter. A typical example of this situation is furnished by the space
of piecewise linear, continuous (or discontinuous) éléments on a regular
décomposition Kh of the domain Q into triangles or tetrahedra K. Using this
définition, the corresponding discrete analogue of (2,1) then reads : Find
Uh e Vht such that

((I-AT) Uh, <ph) = { Tf, <ph ) \f(ph e Vh . (2.2)

For X sufflciently smaîl, there holds for ail v e L2(Q) :

((I-XT)v^v) > (1 - A | | 7 ï | 0 ) ||y|lo = yl|y|lo w i t h y > 0 , (2.3)

which indicates an easy way to establish both existence and uniqueness of a
solution Uh e Vh of (2.2), using the finite-dimensional character of Vh. In order
to get an impression of the size of the scattering parameters À allowed for the
ensuing estimâtes, we must find an upper bound for the L2-operator norm of
T. First of all, the définitions of T and To (see (1.2)) yield

Tnd0 / i (5 w )sup | |7 ö | | 0 ,

where /J(SH) := 2 F(\/2)n F(n/2) is the measure of the n-dimensional
unit-sphere with F denoting the Gamma-function. The size of | |7^| |0 follows

vol. 30, n° 6, 1996



750 Christian FÜHRER, Rolf RANNACHER

from a close look at the actuaî size of the stability constant featuring in the
standard L2-stability estimate of (1.1) as can be seen in [6]. We obtain
II F,, || 0 ^ 1 and thus ||7*||0 ^ ju(S„), so that X should comply by

1

Remark : In a gênerai physical setting, the function K{ . ) in (0.1) and (1.3)
would have to be replaced by /c( . ) + X{ . ), thus creating an additional
dependence of the operator T? on X. Setting both K and X constant, a stability
analysis of the corresponding transport problem

n0. Vu(x, 0) + (/c + X) u(x, 0) = g(x)

quickly reveals that the critical scattering parameter XQ must obey

Let us now prove two simple L2- and H~ ^error estimâtes taking explicitly
into account the reduced regularity of U in (1.7).

LEMMA 2.1 : For 0 < X ^ Ao, there holds

\\U-Uh\\_x+h\\U-Uh\\0*ï Ch2\\f\\0

wit h a positive constant C = C(X, Q) and the norm || . || _ , being defined in
(0.3).

Proof: Making use of Galerkin orthogonality, we have, setting
e:=U-U„

( ( / - Â7") e, e) = ( ( / - XT) e, U - Ph U) ,

wherc Ph represents the L2-projection into Vh. Furthermore, standard
L2-estimates give

ai-ÀT)e,U-PhU) $ | | / - A r | | 0 | k | | 0 | | C / - P „ f / | | 0

^ C/7|k II o 11/11 0'

where stability estimate (1.6) has been used. The desired L2-error estimate
follows now from (2.3).

In order to prove a global H~ '-error estimate, we consider an auxiliary dual
problem

(I- XT) q>-g mQ

M2 AN Modélisation mathématique et Analyse numérique
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with g(x) being an arbitrary function in H\Q). Observing that T is self-
adjoint and employing once more the Galerkin orthogonality, we get

(e, g) = (e, (I - AT) <p) = ((I- kT) e, <p - Ph <p)

=S C\\e\\0 \\I-ÂT\\o \\<P-Ph<P\\o^Ch\\e\\o | | p | | , •

In view of the a priori bound (1.6), this estimate may also be written as

| | 0 < CA2 H/110,

thus finishing the proof. D

Remark : Making use of the maximal regularity available for U and
employing a suitable interpolation argument, the results of Lemma 2.1 can
theoretically be sharpened to

\\U ~ Uh\\_ x+ h\\U - Uh\\Q^ Cch
5l2^\\f\\0.

The global a priori results above are only sub-optimal as both lag at least
about half a power of h behind the interpolation error due to the pollution
effect of the boundary. Therefore, several aulhors have explored different
stratégies to make up for this distinct lack of accuracy. One popular way to do
so has been considered by Graham [9] who has, for the one-dimensional
analogue of (1.7), developed a spécifie mesh refmement technique designed to
at least partly suppress the effect of the loss of regularity close the boundary.
Of course, it is quite possible to apply Graham's idea also to the n-dimensional
équation discussed above, but since the boundary in our case is a manifold in
R" rather than merely two points, the additional computational cost would
render this technique rather useless. In addition, as already mentioned before,
the boundary dQ may be a purely mathematical one of only limited physical
importance.

Another perhaps for higher-dimensional problems more feasible way to
boost the accuracy of our finite element method is to post-process the discrete
solution Uh in the framework of a smoothing opération. Sloan and Thomée
[17] have proposed such a technique based on the simple post-processing step

and have demonstrated that Üh satisfles

vol. 30, n° 6, 1996



752 Christian FÜHRER, Rolf RANNACHER

providcd that T fuîfils

\ \ T g \ \ 0 * C H 0 I L , .

The latter follows immediately from the fact that T is self-adjoint as well as
from (1.5), Notice that the eomputatton of TUb is, at least in principle, inherent
in the process of calculating the finite élément solution Uh, so that Computing
Uh should theoreticalîy not increase the computationaï cost.

However, as already mentioned, numerous publications concerning the
singularity of U Imply that the non-smooth character of U is confined to areas
close to the boundary (see [16]), while there is apparently no reason to boost
accuracy in the interior of Q. Therefore, it would indeed be very désirable to
have some kind of interior error estimate valid only in areas of higher
regularity.

3. INTERIOR ERROR ANALYSIS

This section is devoted to presenting an a priori interior L2-error estimate
and a corresponding a posteriori analogue designed for use in adaptive finîte
element codes. Let U and Uh be the solutions of (2.1) and (2.2), respectively.
The folîowing theorem gives a simple proof for an a priori interior error
estimate for the finite element approach outlined in the previous section.

THEOREM 3,1 : For any fixecl subdomains Q{ and ÙvQ]c:ciQlczczQ,
such thaï U e H2(Q{ ), there Iwlds

l l t / - ^ l l o - . f l I
l S C { / I

2 | | £ / | | 2 : â i + | | u - t / J L 1 : 0 } , (3.1)

where C>0 dépends on Qv Qv Q as well as on dist(dQlf dQ) and
éist(SQv bQy).

Proof : We choose a cut-off function co G C^(Q) obeying au = 1 in Q{ and
ou = 0 in Q\ÙV thus getting for X ^ Âo

ylMlo;«, ^y\\we\\l.M^ (V~ÂT)œe,coe), (3.2)

with y as in (2.3). The commutator property, or even sïmpler, the smoothing
property of T (see (1.5) or [12]) then induces

( ( / - AT) œe9 we) = ( ( / - AT) ey co2 e) + Â( (coT- TOJ) e, we)

M2 AN Modélisation mathématique et Analyse numérique
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Using Galerkin-orthogonality îeads us to

753

e))

\A(coTe, we)\ + C\\e\\_ {:Q\\œe\\0.Q

where again» Ph dénotes the L2~projection into Vh. Then, using the approxi-
mation properties of Ph as well as (3.2) above, we obtain the desired
resuit. D

In conjunction with the global négative Sobolov-norm estimate of
Lemma 2.1, Theorem3.1 guarantees an optimal interior L2~error estimate
away from the boundary of Q, In order to prove an a posteriori resuit as sharp
as possible» we must flrst dérive an interior analogue of (1.6) with enhanced
regularity properties.

LEMMA 3.2 : For domains Qï c c Ùl CZŒ Q S := dist ( BQV

âflj)>0, and for any v e L2(Q) there holds

(3.3)

where Cc(ô) = O(S " ") and 8 > 0 is arbitrarily stnall, but fixed,

Proof : The proof relies strongly on the f act that the domains Qx and
Q\Ùl are disjoint. There holds

dx

v(y)
exp( - Ix - y \ )- --—j dy
^ \x~y\

dx

+ 211 dx,

vol. 30, n° 6» 1996



754 Christian FÜHRER, Rolf RANNACHER

The second term on the right side can, in view of the smoothing property of
T, be majorized by C\\ v \\Z x. Q , giving us the first term for (3.3). In order to
cope with the second term, we use

I f
Ja, J

IQ\Ù1 \x~y\
dx =

e x p ( ~ \x-y\)
x(y)v(y)

where j e C°°(O) with ^ = 1 in Q\Ql and x H= O in

Um(Qx ):={xe Q: dist(*, f2, ) ^ S/2}.

It follows that

expMs-y)), X(yl_^

dx,

thus inducing

f f . exp( - |* -y | ) V{y)
dx

e x p ( » \x- .

(3.4)

D
Let us now dérive an interior a posteriori error estimate for (1.7). The proof

of such a local estimate for our intégral équation is easier than for most PDE's
as the relation between the error e and the residual
R(Uh) := Tf- (/ - AT) Uh = (/ - XT) e is rather weak. From now on
we assume, as usual» h = h(x) to be a piecewise constant function of x.

THEOREM 3 3 : For subdomains Q, e c Q, a a Q as above, there holds

+ C 2 | | / 2
3 / 2 - £ /? (C/ A ) | | 0 ; ^ i } , (3.5)
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where

c
C ' : =' : = ( l - A | | 7 | | 0 : ô i ) 2 1 C 2 : = ( l - A | | 7 - | | 0 : Q x ö i ) 2 >

while C[ dénotes an interpolation constant depending only on the shape ofthe
éléments considered, C results from the application of (1.6),
S := dist(d£2j 3£2, ) > 0, and again, c > 0 is arbitrarily small, but fixed.

Remark: Note that using the results of Theorem 3.1 above, the residual
obeys

for U sufficiently smooth in Qv i.e., the residual R(Uh) ~
(I — AT) ( U — Uh) and the actual error U — Uh correspond directly to each
other.

Remark : Before we embark on the proof of Theorem 3.3, it is important to
define the norm of T on an arbitrary subdomain Q of Q and to get an
impression of its actual size. We set for g G L2(Q)

Tg(x):=Tg (x) ,

where

g(x) for x e Q

O else.

Using this définition (Only points y e Q contribute to the computation of
(Tg(x) ! ), we can conclude

o:ù \\n IIO;Ô
S U P -jTTjj = S U P - j [T] j

I 0: fi 0*9

\Tg Ho-o \\Tg llo-o
TTii ^ SUP T T Ü

» II 0 ; i2

Further, the stability constant corresponding to Q can be majorized as

vol. 30, n° 6, 1996
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Proof: The fairly simple relation between the error e and the residual
R(Uh) leads to

| M I O ; Ö | =£ \ \ R ( U h ) \ \ Q : £ 2 t + X \ \ T e \ \ O l Q i , (3.6)

so that, making use of the local smoothing property of T as described in
Lemma 3.2, there follows

Now we must employ a local duality argument to get a sharp upper bound for
the term || e ||_ , . ^ . Set <p e L2(Q) r\ H\ÙX) equal to zero in Q\QX and let
#> in Qx be determined by

( / - ÂT)ç = g e H\QX) ,

which entails

Following the path leading to the global H ^estimate in Section 2, we arrive
at

or

A similar (global) estimate for ||e||_ m + r-Q\ùi ^na^Y delivers

Repeating now the error-splitting procedure (3.6) on both Q{ and Q\ÙV we get

and
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thus yieîding for X sufficiently small (see above)

and

which finishes our proof. D

Let us now analyze the local a posteriori error estimate (3.5) in a little more
detail, particularly the size of the constants on the right hand side and their
dependence on the parameter S. Assuming optimal local behavior in the
L^-norm and taking Ql as some sort of a cluster of éléments containing Qx

(perhaps even ranging up close to the boundary) somewhere inside of Q, the
terms on the right hand side of (3.5) show the following asymptotic behavior
for U e Hm~%Ü)nH2(Ql):

(3.7)

Due to the constant CC(S) the global term in (3.7) behaves like
O(h*~2eS~n~m)9 forcing us to choose <5 « 0 ( 1 ), Le.» Q{ should be a
sufficiently large domain around Q{ and may even comprise almost the whole
of Q with the exception of the boundary layer ; otherwise our interior error
estimator would possible over-estimate the error on Qv The practical value of
(3.5) is mainly based on the fact that it strives to separate potential global
pollution effects caused by the lack of regularity from phenomena which may
result from a locally non-smooth character of the right hand side function ƒ in
the interior of Q. A suitable mesh-refmement strategy may now be constructed
by comparing the size of the local terms in (3.5) to that of the boundary term
which is possibly responsible for introducing a global pollution effect. In case
of dominating local terms, one would have to refine the mesh locally applying»
for example» the error-equilibrating technique put forth in [4] and [5]. As a
result of such a process, the local error may be majorized by an expression
mainly dominated by the « global » boundary term» thus giving us a prescrip-
tion for effective local error control,
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Another notable aspect of (3.5) is the local character of the stability
constants Cs & and their spécifie dependence on A, especially in the case of a
non-constant scattering parameter. Replacing T by Tx while omitting the
constant Â-factor yields

In addition, there holds (for K = 1 )

\\JÀ\\Q;Ù = S U P

= sup

and thus

where \A\Ù := max |A|. It follows that a locally large value of X will
automatically cause a locally large stability constant Cv ^ for this subdomain,
always provided that an erratic behavior of Â does not destroy the overall
solvability of (1.4). As a resuit, our a posteriori error estimate is also able to
differentiate between areas of negligible scattering and those with considérable
scattering activity, Le., it opens the way for the development of a
A-adaptive finite element technique.

Applying an L2-duality argument, we can dérive yet another possibly
sharper local a posteriori error estimate for (2.2). Let <p G L2(Q) be the
solution of

(/ - AT) (p = œe in Q ,

where œ e CQ(Q), Ql c cz Ql ci cz Q, is a cut-off function with œ = 1 in
Qx and œ = 0 in Q\Ù{. There follows

= ( ( / - XT)e, œ<p- Ph(œ<p)) + À((œT- Tœ) ey <p) =ƒ+ /ƒ .

As in Theorem 3.1, term II allows the estimate

II ^ Q > , T) X\\e\\_ , ; f l | | p | | 0 : ö ^ C. C(w, 7) A|^|L , ; ö | | o ; e | | 0 ; ö ,
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e.g., produces a negligible term of higher order in h. Assuming R e Vh to be
sorne local approximation of R, the flrst term yields

^ XT) e^<p ~ Ph{ü>(p)) = {R{Uh) - R(Uh)yœ(p ~ Ph(œ<p))

with a(œ) :=- — ^ thus resulting in

|| e |i 0 Q ** a{ Ü) ) || R( Uh )-R(Uh)\\ö.Ql + « global higher order term »
(3.8)

The introduction of a suitable R is Hkely to reduce the size of the right hand
side of (3.8), even for non-smooth R. Note that, given an approximation ë of
e (take, for example, ë := Uh - Uh/2), it is in principle possible to calculate
the quantity a(co), thereby vindicating (3.8) as a real a posteriori error
estimate.

Finally, let us now address the question of how to actually compute the
radiative intensity u(x, 0) for an arbitrary ordinate 0. Setting K for simplicity
constant and inserting the discrete solution Uh of (2.2) into the transport
équation (1.1) yields (note that the intensity now dépends on the mesh-size h
of the mesh used for the computation of Uh) :

n0. Vuh(x, 0) + Kuh{x% 0) = XUh(x) + ƒ(*) . (3.9)

As outlined in Section 1, the solution of (3.9) along one of the straight
characteristics can be written as

N(x.O)
uh(x,0)= exp(-Ks)(XUh+f)(x-sno)ds, (3.10)

thus giving us a simple prescription for actuaîly Computing uh(x,. ), Le.,
replacing the intégral in (3.10) by a cubature formula (see also [15] for an
application of the characteristic method to a real-world radiative transfer
problem). This characteristic technique even allows us (for a sufficiently exact
cubature rule) to dérive an a priori interior error estimate for the radiative
intensity without any further assumptions on the regularity of «(je,. ). Note
that the évaluation of the intégral in (3.10) is greatly facilitated by the fact that
Uh is a piecewise linear funetion,
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LEMMA 3.4 ; For any domain Ql e c Q wlth S := di$t(dQ9 dQ{ )> 0 and
a sujficiently exact cubature rulefor the charade ristic method, the L2-erwrfor
the radiative intensity obeys

+ exp(-/o5) | | t /- t /J0 : O}, (3.11)

so that for K5 sujficiently large, we can expect optimal interior accuracy for

Proof : Again, the idea is to split up the right hand side of (3.10) into a
purely interior part and boundary contributions. There holds (neglecting the
cubature error)

.-sno)ds

A
-ê

'exp(- KS) ( U- Uh ) ( . - sn0) ds

.,0) cxp(-Ks)(U-Uh)(.-sn0)ds

Clearly, the first intégral now incîudes only points JC in the interior domain
Ql and can thus be majorized by C\\U— Uh\\Q.Q , producing the first term
on the right hand side in (3.10). The second intégral extends over the boundary
région and therefore only permits the usual global estimate for the mean
intensity U including, however» the multiplicative factor exp(— KS). D

We may control the global term on the right hand side of (3.11) by assuming
KS to be sufficiently large, i.e., by choosing

exp( -«5 )

which entails

As a resuit, S must obey S^(2K)
 l\n(l/h), so that Q{ must lie

sufficiently far away from dQ. We emphasize that for a negligible absorption
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factor K, this prescription may be impossible lo fulfil so that (3.10) would
guarantee only sub-optimal accuracy for u (always provided that an adequate
numerical intégration formula is used for solving the transport problem).

Remark : Of course, if a user is interested in getting précise information
about the behavior of u in a fixed interior domain Q^ the distance S has to
grow ïike In ( l/h ) to ensure optimal order convergence of the method, i.e., the
domain Q (the « observers's frame ») may have to be enlarged artificially.
Consequently, several of the «constants» C, C^a), C p C2> etc. used in
various lemmata and theorems above also grow and could render our estimate
useless if this growth with Q turned out to be exponentiai. However, a
thorough study of the dependence of these constants on Q reveals only linear
growth with increasing /J(Ü) (see also [1], [6] and [12]), thus preserving the
overall structure of (3.11).
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